Habits and Leverage

Tano Santos Columbia University Graduate School of Business

Pietro Veronesi University of Chicago Booth School of Business

Motivation

- Much discussion in the academic literature and in policy circles about leverage and its impact on the real economy and on financial markets
- Various related themes, such as:
 - Excess credit supply may lead to financial crisis
 - The excessive growth of household debt and the causal relation between households' deleveraging and their low future consumption growth
 - Leverage cycle: Leverage is high when prices are high and volatility is low
 - Active deleveraging of financial institutions generate "fire sales" of risky financial assets, which further crash asset prices
 - The leverage ratio of financial institutions is a risk factor
 - Balance sheet recessions

—

What we do

- Study a frictionless dynamic general equilibrium model featuring heterogeneous agents with external habit preferences
 - Heterogeneous time varying risk-bearing capacity \implies leverage dynamics

What we do

- Study a frictionless dynamic general equilibrium model featuring heterogeneous agents with external habit preferences
 - Heterogeneous time varying risk-bearing capacity \implies leverage dynamics
- Our model predicts:
 - 1. Aggregate debt \uparrow in good times when prices \uparrow and volatility \downarrow
 - 2. Poorer agents borrow more than richer agents
 - 3. Leveraged agents enjoy a "consumption boom" in good times, followed by a consumption slump
 - 4. Crisis time \implies leveraged agents delever by "fire-selling" stocks, but their debt/wealth ratio \uparrow due to strong discount effects.
 - 5. Intermediaries leverage is a priced risk factor.
 - 6. Wealth dispersion \uparrow in good times

What we do

- Study a frictionless dynamic general equilibrium model featuring heterogeneous agents with external habit preferences
 - Heterogeneous time varying risk-bearing capacity \implies leverage dynamics
- Our model predicts:
 - 1. Aggregate debt \uparrow in good times when prices \uparrow and volatility \downarrow
 - 2. Poorer agents borrow more than richer agents
 - 3. Leveraged agents enjoy a "consumption boom" in good times, followed by a consumption slump
 - 4. Crisis time \implies leveraged agents delever by "fire-selling" stocks, but their debt/wealth ratio \uparrow due to strong discount effects.
 - 5. Intermediaries leverage is a priced risk factor.
 - 6. Wealth dispersion \uparrow in good times
- Model aggregates to standard representative agent models with external habit
- \implies It can be calibrated to yield reasonable asset pricing quantities.

• Continuum of agents with external habit preferences:

$$u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it})$$

• Continuum of agents with external habit preferences:

$$u\left(C_{i,t}, X_{i,t}, t\right) = e^{-\rho t} \log\left(C_{it} - \frac{X_{it}}{X_{it}}\right)$$

• Habit indices:

$$X_{it} = g_{it} \left(D_t - \int X_{jt} dj \right)$$

• Continuum of agents with external habit preferences:

$$u\left(C_{i,t}, X_{i,t}, t\right) = e^{-\rho t} \log\left(C_{it} - X_{it}\right)$$

$$Representative Agent$$

$$X_{it} = g_{it} \left(D_t - \int X_{jt} dj\right)$$

• Habit indices:

- External Habit in Utility: "Envy-the-Joneses"

• Continuum of agents with external habit preferences:

$$u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it})$$

• Habit indices:

$$X_{it} = g_{it} \left(D_t - \int X_{jt} dj \right)$$

- External Habit in Utility: "Envy-the-Joneses"
- Habits' loadings:

$$g_{it} = a_i Y_t + b_i$$

• Continuum of agents with external habit preferences:

$$u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it})$$

• Habit indices:

$$X_{it} = g_{it} \left(D_t - \int X_{jt} dj \right)$$

- External Habit in Utility: "Envy-the-Joneses"
- Habits' loadings: $g_{it} = a_i Y_t + b_i$

(i) heterogeneous: $a_i > 0$ with $\int a_i di = 1$

• Continuum of agents with external habit preferences:

$$u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it})$$

• Habit indices:

$$X_{it} = g_{it} \left(D_t - \int X_{jt} dj \right)$$

- External Habit in Utility: "Envy-the-Joneses"
- Habits' loadings: $g_{it} = a_i Y_t + b_i$
 - (i) heterogeneous: $a_i > 0$ with $\int a_i di = 1$
 - (ii) time varying: $Y_t = Recession \ Indicator \ (next slide)$ \implies Habits matter more in bad times.

• Continuum of agents with external habit preferences:

$$u(C_{i,t}, X_{i,t}, t) = e^{-\rho t} \log (C_{it} - X_{it})$$

• Habit indices:

$$X_{it} = g_{it} \left(D_t - \int X_{jt} dj \right)$$

- External Habit in Utility: "Envy-the-Joneses"
- Habits' loadings: $g_{it} = a_i Y_t + b_i$
 - (i) heterogeneous: $a_i > 0$ with $\int a_i di = 1$
 - (ii) time varying: $Y_t = Recession \ Indicator \ (next slide)$ \implies Habits matter more in bad times.
- Endowments w_i are also heterogeneous, with $\int w_i di = 1$

• Aggregate output:

$$\frac{dD_t}{D_t} = \mu_D dt + \sigma_D(Y_t) dZ_t$$

 $-\sigma_D(Y_t)$: *Economic Uncertainty*.

• Aggregate output:

$$\frac{dD_t}{D_t} = \mu_D dt + \sigma_D(Y_t) dZ_t$$

 $-\sigma_D(Y_t)$: *Economic Uncertainty*.

• Recession indicator Y_t :

$$dY_t = k(\overline{Y} - Y_t)dt - v Y_t \left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t}\right)\right]$$

$$\implies \text{Bad shocks:} \left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t}\right)\right] < 0 \implies Y_t \uparrow$$

• Aggregate output:

$$\frac{dD_t}{D_t} = \mu_D dt + \sigma_D(Y_t) dZ_t$$

– $\sigma_D(Y_t)$: *Economic Uncertainty*.

• Recession indicator Y_t :

$$dY_t = k(\overline{Y} - Y_t)dt - v Y_t \left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t}\right)\right]$$

$$\implies \text{Bad shocks:} \left[\frac{dD_t}{D_t} - E_t \left(\frac{dD_t}{D_t}\right)\right] < 0 \implies Y_t \uparrow$$

• Technical restrictions:

- $Y_t > \lambda \ge 1$ for all $t: \sigma_D(Y_t) \to 0$ as $Y_t \to \lambda$. Otherwise $\sigma_D(Y_t)$ general.

• Aggregate output:

$$\frac{dD_t}{D_t} = \mu_D dt + \sigma_D(Y_t) dZ_t$$

– $\sigma_D(Y_t)$: *Economic Uncertainty*.

• Recession indicator Y_t :

$$dY_t = k(\overline{Y} - Y_t)dt - v Y_t \left[\frac{dD_t}{D_t} - E_t\left(\frac{dD_t}{D_t}\right)\right]$$

$$\implies \text{Bad shocks:} \left[\frac{dD_t}{D_t} - E_t\left(\frac{dD_t}{D_t}\right)\right] < 0 \implies Y_t \uparrow$$

• Technical restrictions:

- $Y_t > \lambda \ge 1$ for all $t: \sigma_D(Y_t) \to 0$ as $Y_t \to \lambda$. Otherwise $\sigma_D(Y_t)$ general.

- Endowments satisfy

$$w_i > \frac{a_i(\overline{Y} - \lambda) + \lambda - 1}{\overline{Y}}$$

- No consumption externalities \implies solve planner's problem
- Consumption shares: $s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i a_i) \frac{\overline{Y}}{Y_t}$

- No consumption externalities \implies solve planner's problem
- Consumption shares: $s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i a_i) \frac{\overline{Y}}{Y_t}$

- High endowment w_i or low habit loading $a_i \Longrightarrow s_{it} \uparrow$ when $Y_t \downarrow$ (good times)

- No consumption externalities \implies solve planner's problem
- Consumption shares: $s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i a_i) \frac{\overline{Y}}{Y_t}$

- High endowment w_i or low habit loading $a_i \Longrightarrow s_{it} \uparrow$ when $Y_t \downarrow$ (good times)

• Risk aversion (curvature):

$$Curv_{it} = -\frac{C_{it}u_{cc}(C_{it}, X_{it}, t)}{u_c(C_{it}, X_{it}, t)} = 1 + \frac{a_i(Y_t - \lambda) + \lambda - 1}{w_i\overline{Y} - a_i(\overline{Y} - \lambda) - \lambda + 1}$$

- No consumption externalities \implies solve planner's problem
- Consumption shares: $s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i a_i) \frac{\overline{Y}}{Y_t}$

- High endowment w_i or low habit loading $a_i \Longrightarrow s_{it} \uparrow$ when $Y_t \downarrow$ (good times)

• Risk aversion (curvature):

$$Curv_{it} = -\frac{C_{it}u_{cc}(C_{it}, X_{it}, t)}{u_c(C_{it}, X_{it}, t)} = 1 + \frac{\boxed{a_i(Y_t - \lambda) + \lambda - 1}}{w_i\overline{Y} - a_i(\overline{Y} - \lambda) - \lambda + 1}$$

-Cross-section: risk aversion \downarrow if $w_i \uparrow$ or $a_i \downarrow$

- No consumption externalities \implies solve planner's problem
- Consumption shares: $s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i a_i) \frac{\overline{Y}}{Y_t}$

- High endowment w_i or low habit loading $a_i \Longrightarrow s_{it} \uparrow$ when $Y_t \downarrow$ (good times)

• Risk aversion (curvature):

$$Curv_{it} = -\frac{C_{it}u_{cc}(C_{it}, X_{it}, t)}{u_c(C_{it}, X_{it}, t)} = 1 + \frac{a_i(Y_t - \lambda) + \lambda - 1}{w_i\overline{Y} - a_i(\overline{Y} - \lambda) - \lambda + 1}$$

- Cross-section: risk aversion \downarrow if $w_i \uparrow$ or $a_i \downarrow$

– Time-series: (1) all agents' risk aversion \uparrow if $Y_t \uparrow$

(2) risk aversion of $i \uparrow$ more if w_i is low or a_i is high

- No consumption externalities \implies solve planner's problem
- Consumption shares: $s_{it} = \frac{C_{it}}{D_t} = a_i + (w_i a_i) \frac{\overline{Y}}{Y_t}$

- High endowment w_i or low habit loading $a_i \Longrightarrow s_{it} \uparrow$ when $Y_t \downarrow$ (good times)

• **Risk aversion** (curvature):

$$Curv_{it} = -\frac{C_{it}u_{cc}(C_{it}, X_{it}, t)}{u_c(C_{it}, X_{it}, t)} = 1 + \frac{a_i(Y_t - \lambda) + \lambda - 1}{w_i\overline{Y} - a_i(\overline{Y} - \lambda) - \lambda + 1}$$

- Cross-section: risk aversion \downarrow if $w_i \uparrow$ or $a_i \downarrow$
- Time-series: (1) all agents' risk aversion \uparrow if $Y_t \uparrow$

(2) risk aversion of $i \uparrow$ more if w_i is low or a_i is high

• Less risk averse agents provide insurance to more risk averse agents

Competitive Equilibrium

• Given price processes $\{P_t, r_t\}$, agents solve

$$\max_{\left\{C_{it},N_{it},N_{it}^{0}\right\}} E_{0} \left[\int_{0}^{\infty} e^{-\rho t} \log\left(C_{it}-X_{it}\right) dt\right] \qquad \text{subject to}$$

$$dW_{it} = N_{it}(dP_t + D_t dt) + N_{it}^0 B_t r_t dt - C_{it} dt$$
 with $W_{i,0} = w_i P_0$

• A competitive equilibrium is a set of stochastic processes for prices $\{P_t, r_t\}$ and allocations $\{C_{it}, N_{it}, N_{it}^0\}$ such that agents maximize their utilities, and good and financial markets clear $\int C_{it} di = D_t$, $\int N_{it} di = 1$, $\int N_{it}^0 = 0$. Representative Agent and State Price Density

- Our model aggregates to Menzly, Santos, and Veronesi (2004):
- As in Campbell and Cochrane (1999), define

Surplus consumption ratio =
$$S_t = \frac{D_t - \int X_{it} di}{D_t} = \frac{1}{Y_t}$$
 (1)

Representative Agent and State Price Density

- Our model aggregates to Menzly, Santos, and Veronesi (2004):
- As in Campbell and Cochrane (1999), define

Surplus consumption ratio =
$$S_t = \frac{D_t - \int X_{it} di}{D_t} = \frac{1}{Y_t}$$
 (1)

• **Proposition**. The equilibrium state price density

$$M_t = e^{-\rho t} D_t^{-1} S_t^{-1}$$
(2)

- which follows

$$dM_t/M_t = -r_t dt - \sigma_{M,t} dZ_t$$
 with $\sigma_{M,t} = (1+v)\sigma_D(S_t)$

• We use S_t as state variable for notational convenience.

(Stock price)
$$P_t = \left(\frac{\rho + k\overline{Y}S_t}{\rho(\rho + k)}\right)D_t$$

(Risk-free rate) $r_t = \rho + \mu_D - (1+v)\sigma_D$

$$r_t = \rho + \mu_D - (1+v)\sigma_D(S_t)^2 + k\left(1 - \overline{Y}S_t\right)$$

(Stock price)
$$P_{t} = \left(\frac{\rho + k\overline{Y}S_{t}}{\rho(\rho + k)}\right) D_{t}$$

(Risk-free rate)
$$r_{t} = \rho + \mu_{D} - (1 + v)\sigma_{D}(S_{t})^{2} + k\left(1 - \overline{Y}S_{t}\right)$$

(Stock holdings)
$$N_{it} = a_{i} + (\rho + k)\left(1 + v\right)\left(w_{i} - a_{i}\right) H(S_{t})$$

(Bond holdings)
$$N_{it}^{0}B_{t} = -v\left(w_{i} - a_{i}\right) H(S_{t})D_{t}$$

where
$$H(S_{t}) = \frac{\overline{Y}S_{t}}{\rho + k(1 + v)\overline{Y}S_{t}}$$

(Stock price)
$$P_{t} = \left(\frac{\rho + k\overline{Y}S_{t}}{\rho(\rho + k)}\right)D_{t}$$

(Risk-free rate)
$$r_{t} = \rho + \mu_{D} - (1 + v)\sigma_{D}(S_{t})^{2} + k\left(1 - \overline{Y}S_{t}\right)$$

(Stock holdings)
$$N_{it} = a_{i} + (\rho + k)\left(1 + v\right)\left(w_{i} - a_{i}\right)H(S_{t})$$

(Bond holdings)
$$N_{it}^{0}B_{t} = -v\left(w_{i} - a_{i}\right)H(S_{t})D_{t}$$

where
$$H(S_{t}) = \frac{\overline{Y}S_{t}}{\overline{Y}S_{t}}$$

$$H(S_t) = \frac{I S_t}{\rho + k(1+v)\overline{Y}S_t}$$

• Stock and bond holdings depend on $w_i - a_i$ and the function $H(S_t)$.

(Stock price)
$$P_{t} = \left(\frac{\rho + k\overline{Y}S_{t}}{\rho(\rho + k)}\right)D_{t}$$

(Risk-free rate)
$$r_{t} = \rho + \mu_{D} - (1 + v)\sigma_{D}(S_{t})^{2} + k\left(1 - \overline{Y}S_{t}\right)$$

(Stock holdings)
$$N_{it} = a_{i} + (\rho + k)\left(1 + v\right)\left(w_{i} - a_{i}\right)\overline{H(S_{t})}$$

(Bond holdings)
$$N_{it}^{0}B_{t} = -v\left(w_{i} - a_{i}\right)\overline{H(S_{t})}D_{t}$$

where
$$\overline{H(S_{t})} = \frac{\overline{Y}S_{t}}{\rho + k(1 + v)\overline{Y}S_{t}}$$

• Stock and bond holdings depend on $w_i - a_i$ and the function $H(S_t)$.

(Stock price)
$$P_{t} = \left(\frac{\rho + k\overline{Y}S_{t}}{\rho(\rho + k)}\right) D_{t}$$

(Risk-free rate)
$$r_{t} = \rho + \mu_{D} - (1 + v)\sigma_{D}(S_{t})^{2} + k\left(1 - \overline{Y}S_{t}\right)$$

(Stock holdings)
$$N_{it} = a_{i} + (\rho + k)\left(1 + v\right)\left(w_{i} - a_{i}\right) H(S_{t})$$

(Bond holdings)
$$N_{it}^{0}B_{t} = -v\left(w_{i} - a_{i}\right) H(S_{t})D_{t}$$

where
$$H(S_{t}) = \frac{\overline{Y}S_{t}}{\rho + k(1 + v)\overline{Y}S_{t}}$$

- Stock and bond holdings depend on $w_i a_i$ and the function $H(S_t)$.
- Stock price and risk-free rate are independent of distribution of w_i and a_i . \implies Prices and quantities have no causal relation with each other.

- **Results**: Agents with $w_i a_i > 0$:
 - (i) take on leverage $(N_{it}^0 B_t < 0)$;

- **Results**: Agents with $w_i a_i > 0$:
 - (i) take on leverage $(N_{it}^0 B_t < 0)$;
 - (ii) "over-invest" in risky assets $(\frac{N_{it}P_t}{W_{it}} > 1)$

- **Results**: Agents with $w_i a_i > 0$:
 - (i) take on leverage $(N_{it}^0 B_t < 0)$;
 - (ii) "over-invest" in risky assets $(\frac{N_{it}P_t}{W_{it}} > 1)$

(iii) increase their debt in good times $(H'(S_t) > 0)$

when $S_t \uparrow$, their risk aversion \downarrow , take on more aggregate risk

- **Results**: Agents with $w_i a_i > 0$:
 - (i) take on leverage $(N_{it}^0 B_t < 0)$;
 - (ii) "over-invest" in risky assets $(\frac{N_{it}P_t}{W_{it}} > 1)$
- (iii) increase their debt in good times $(H'(S_t) > 0)$

when $S_t \uparrow$, their risk aversion \downarrow , take on more aggregate risk

- (iv) enjoy high consumption share s_{it} when their debt is high
 - * Leverage \implies higher return \implies higher consumption in good times
 - * Lower risk aversion \implies even more debt in good times

- **Results**: Agents with $w_i a_i > 0$:
 - (i) take on leverage $(N_{it}^0 B_t < 0)$;
 - (ii) "over-invest" in risky assets $(\frac{N_{it}P_t}{W_{it}} > 1)$
- (iii) increase their debt in good times $(H'(S_t) > 0)$

when $S_t \uparrow$, their risk aversion \downarrow , take on more aggregate risk

(iv) enjoy high consumption share s_{it} when their debt is high

- * Leverage \implies higher return \implies higher consumption in good times
- * Lower risk aversion \implies even more debt in good times
- (v) suffer consumption decline after consumption boom
 - * Spatial interpretation: e.g. counties with high w_i or low a_i
 - * Good times \implies debt \uparrow and consumption $\uparrow \implies$ but lower future growth.
 - * Crucial role of identification strategies to provide causal link between leverage and future consumption

Implications: Active Trading

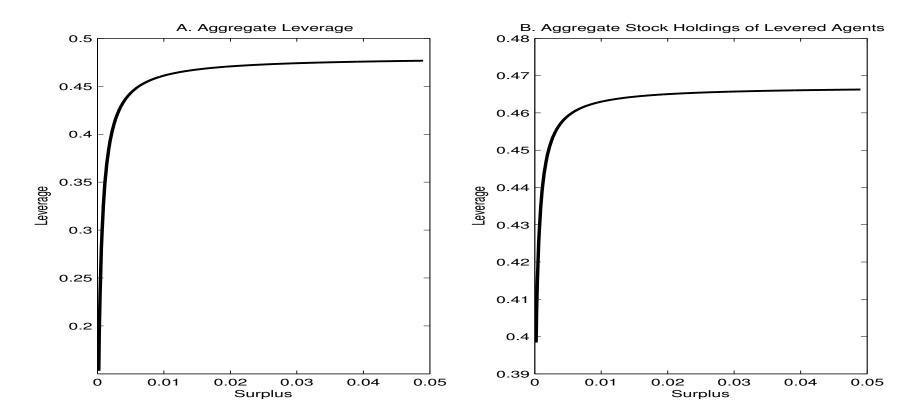
• **Results (cntd.)**. Agents with $w_i - a_i > 0$:

(vi) increase stock holdings in good times (trend chasers)

Implications: Active Trading

- **Results (cntd.)**. Agents with $w_i a_i > 0$:
- (vi) increase stock holdings in good times (trend chasers)

(vii) drastically decrease stock holdings in bad times (H(S) concave)



- Much recent research on role of intermediaries' leverage in asset prices
 - Households invest in risky assets through intermediaries, who issue debt
 - Empirically: leverage risk price is positive or negative depending on proxies

- Much recent research on role of intermediaries' leverage in asset prices
 - Households invest in risky assets through intermediaries, who issue debt
 - Empirically: leverage risk price is positive or negative depending on proxies
- In our model, agents with $w_i > a_i$ leverage by issuing risk-free bonds to others

- Much recent research on role of intermediaries' leverage in asset prices
 - Households invest in risky assets through intermediaries, who issue debt
 - Empirically: leverage risk price is positive or negative depending on proxies
- In our model, agents with $w_i > a_i$ leverage by issuing risk-free bonds to others
- If habit S_t is unobservable, leverage is a proxy for habit.

- Much recent research on role of intermediaries' leverage in asset prices
 - Households invest in risky assets through intermediaries, who issue debt
 - Empirically: leverage risk price is positive or negative depending on proxies
- In our model, agents with $w_i > a_i$ leverage by issuing risk-free bonds to others
- If habit S_t is unobservable, leverage is a proxy for habit.
- Let $\ell_t = Q(S_t)$, and hence $S_t = q(\ell_t) = Q^{-1}(\ell_t)$
 - $\implies SDF = M_t = e^{-\rho t} D_t^{-1} S_t^{-1} = e^{-\rho t} D_t^{-1} q(\ell_t)^{-1}$

- Much recent research on role of intermediaries' leverage in asset prices
 - Households invest in risky assets through intermediaries, who issue debt
 - Empirically: leverage risk price is positive or negative depending on proxies
- In our model, agents with $w_i > a_i$ leverage by issuing risk-free bonds to others
- If habit S_t is unobservable, leverage is a proxy for habit.
- Let $\ell_t = Q(S_t)$, and hence $S_t = q(\ell_t) = Q^{-1}(\ell_t)$

$$\implies SDF = M_t = e^{-\rho t} D_t^{-1} S_t^{-1} = e^{-\rho t} D_t^{-1} q(\ell_t)^{-1}$$

• The risk premium for any asset with return $dR_{it} = (dP_{it} + D_{it})/P_{it}$ is

$$E_t[dR_{it} - r_t dt] = \underbrace{Cov_t\left(\frac{dD_t}{D_t}, dR_{it}\right)}_{\text{Consumption CAPM}} + \underbrace{\frac{q'(\ell_t)}{q(\ell_t)}Cov_t\left(d\ell_t, dR_{it}\right)}_{\text{Leverage risk premium}}$$

• Two potential measures of leverage:

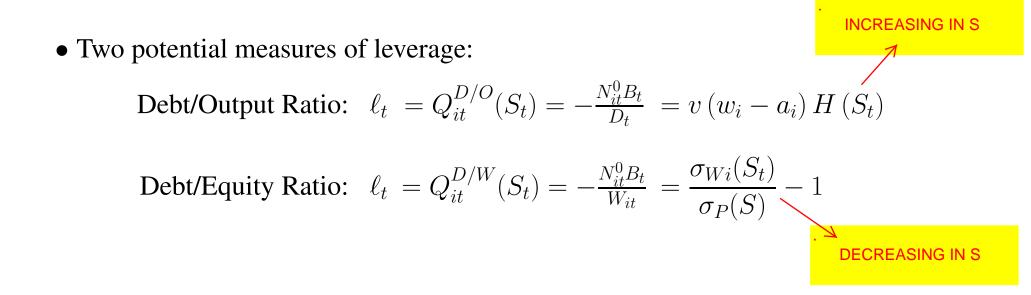
Debt/Output Ratio: $\ell_t = Q_{it}^{D/O}(S_t) = -\frac{N_{it}^0 B_t}{D_t} = v (w_i - a_i) H (S_t)$ Debt/Equity Ratio: $\ell_t = Q_{it}^{D/W}(S_t) = -\frac{N_{it}^0 B_t}{W_{it}} = \frac{\sigma_{Wi}(S_t)}{\sigma_P(S)} - 1$

• Two potential measures of leverage:

Debt/Output Ratio:
$$\ell_t = Q_{it}^{D/O}(S_t) = -\frac{N_{it}^0 B_t}{D_t} = v (w_i - a_i) H(S_t)$$

INCREASING IN S

Debt/Equity Ratio:
$$\ell_t = Q_{it}^{D/W}(S_t) = -\frac{N_{it}^0 B_t}{W_{it}} = \frac{\sigma_{Wi}(S_t)}{\sigma_P(S)} - 1$$



• Two potential measures of leverage:

Debt/Output Ratio:
$$\ell_t = Q_{it}^{D/O}(S_t) = -\frac{N_{it}^0 B_t}{D_t} = v (w_i - a_i) H(S_t)$$

Debt/Equity Ratio:
$$\ell_t = Q_{it}^{D/W}(S_t) = -\frac{N_{it}^0 B_t}{W_{it}} = \frac{\sigma_{Wi}(S_t)}{\sigma_P(S)} - 1$$

• **Result:** The price of leverage risk is

(a) $\lambda_t^{D/O} = \frac{q^{D/O'}(\ell_t)}{q^{D/O}(\ell_t)} \ge 0$ if $\ell_t = \text{Debt/Output Ratio ("book leverage")}.$ (b) $\lambda_t^{D/W} = \frac{q^{D/W'}(\ell_t)}{q^{D/W}(\ell_t)} \le 0$ if $\ell_t = \text{Debt/Equity Ratio ("market leverage")}.$

- In bad times:
 - agents deleverage \implies debt/output $\downarrow \implies$ book leverage risk price > 0.
 - high discounts \implies debt/equity $\uparrow \implies$ market leverage risk price < 0.

- Previous results independent of the functional form of $\sigma_D(Y_t)$.
- Assume now a specific functional form to make model comparable to MSV and obtain reasonable asset pricing implications:

$$\sigma_D(Y_t) = \sigma^{max}(1 - \lambda Y_t^{-1})$$

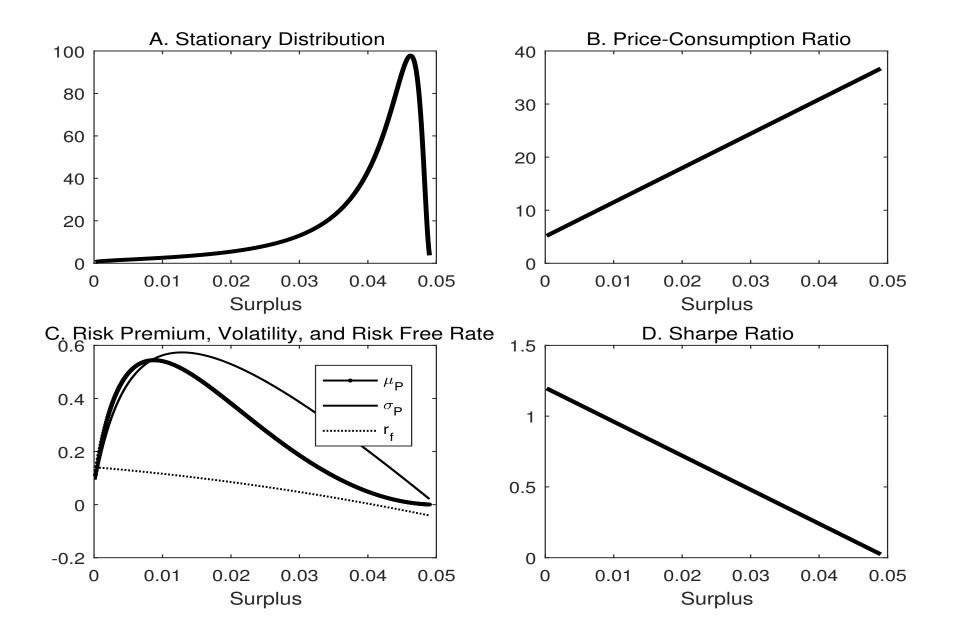
- \implies Economic uncertainty increases in bad times, but bounded between $[0, \sigma^{max}]$
- → Obtain same process for Y_t as in MSV ⇒→ Use their same parameters.
 − Additional parameter σ^{max} chosen to fit average consumption volatility
- All asset pricing results are similar (or stronger) than MSV.

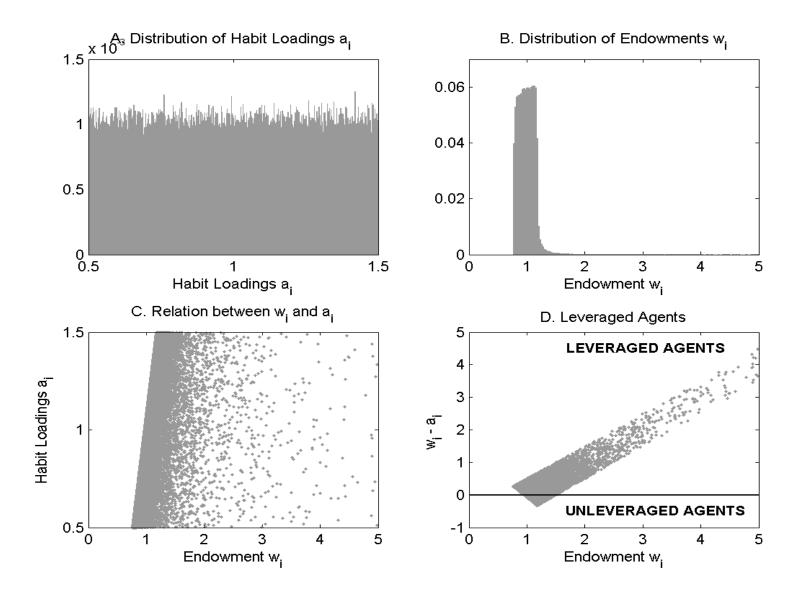
Table 1. Parameters and Moments

Panel A. Parameters (MSV)									
	ho	k	\overline{Y}	λ	\overline{v}	μ	σ^{max}		
	0.0416	0.1567	34	20	1.1194	0.0218	0.0641		
Panel B. Moments (1952 – 2014)									
	E[R]	Std(R)	$E[r_f]$	$Std(r_f)$	E[P/D]	Std[P/D]	SR	$E[\sigma_t]$	$\operatorname{Std}(\sigma_t)$
Data	7.13%	16.55%	1.00%	1.00%	38	15	43%	1.41%	0.52%
Model	8.19%	25.08%	0.54%	3.77 %	30.30	5.80	32.64%	1.43%	1.18%
Panel C. P/D Predictability R^2									
	1 year	2 year	3 year	4 year	5 year				
Data	5.12%	8.25%	9.22%	9.59%	12.45%				
Model	14.18%	23.67%	30.01%	33.81%	35.92				

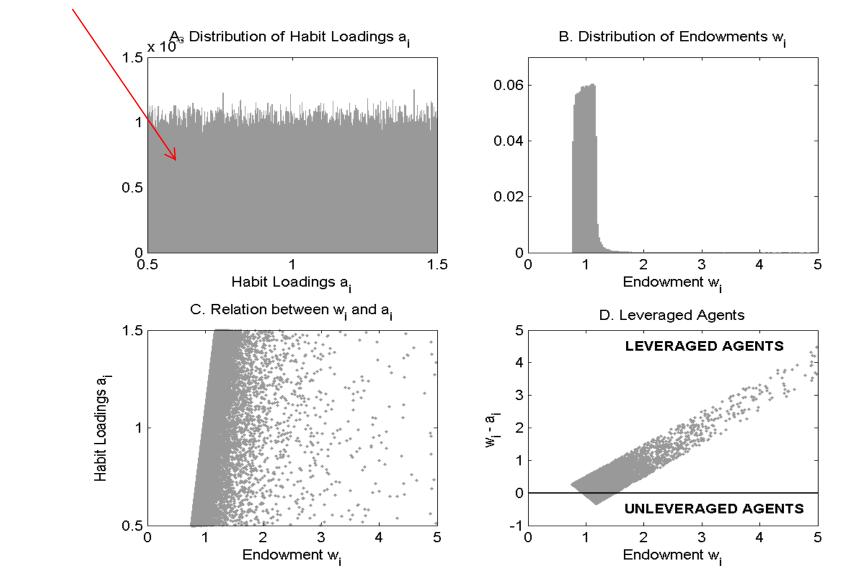
• Model matches asset pricing moments well.

Conditional Moments



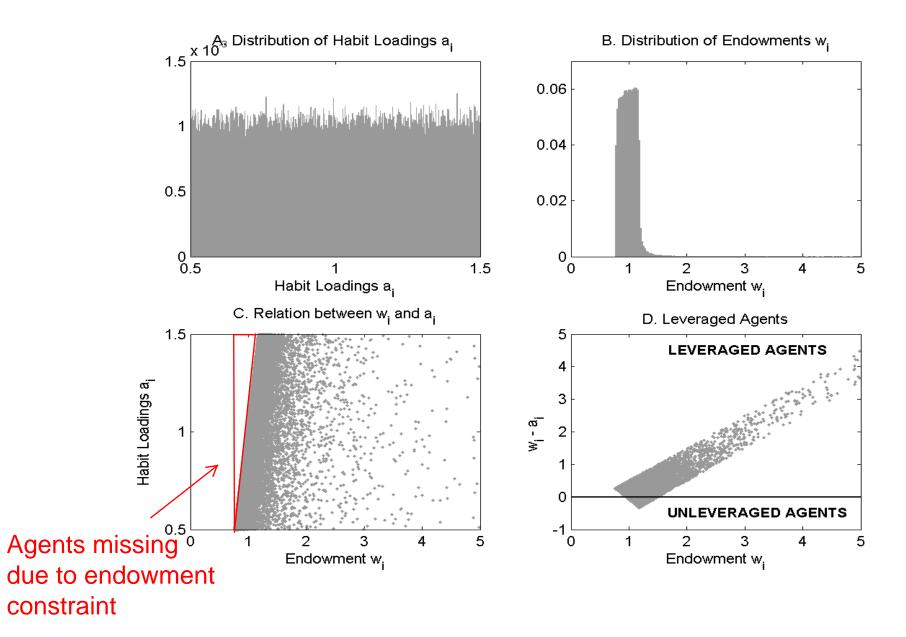


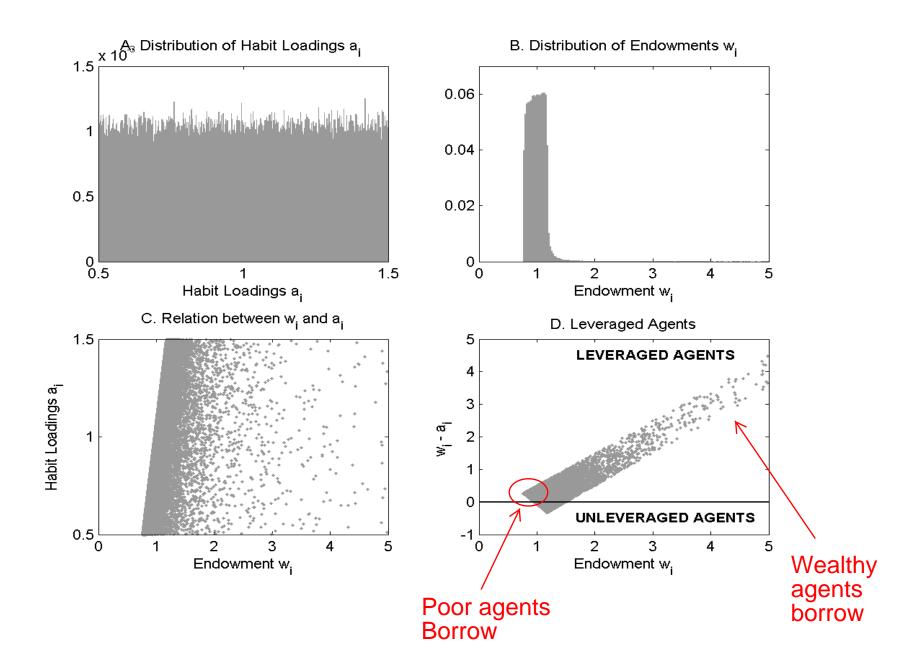
Uniform distribution of habit ai



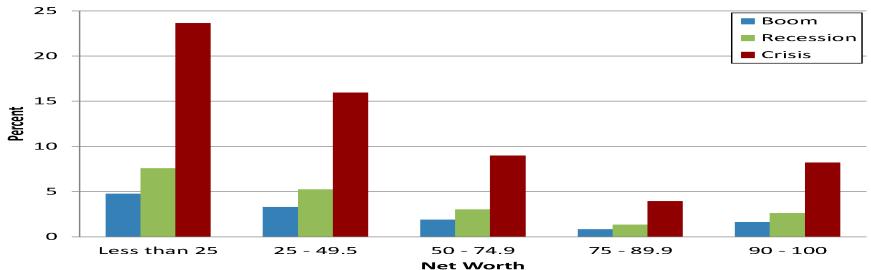
A₃ Distribution of Habit Loadings a_i 1.5 B. Distribution of Endowments w, 0.06 1 0.04 0.5 0.02 0 L 0 0 0.5 1.5 1 2 3 1 4 5 Habit Loadings a_i Endowment w_i C. Relation between w_i and a_i D. Leveraged Agents 1.5 5 LEVERAGED AGENTS 4 Habit Loadings a_i 3 W_i - a_i 2 1 1 0 UNLEVERAGED AGENTS -1 ⊾ 0 0.5 L 0 2 1 2 3 5 1 3 4 5 Endowment w_i Endowment w_i

Positively skewed distribution of wi



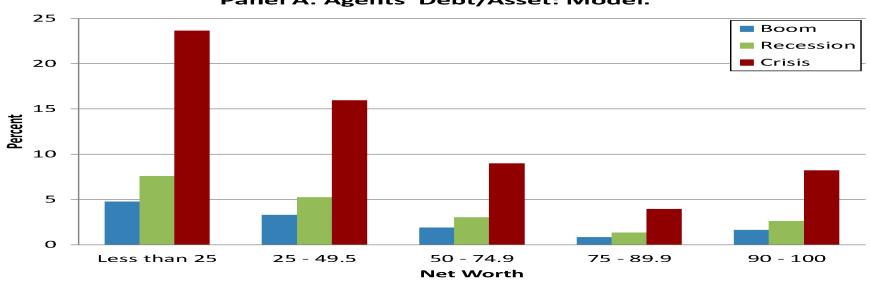


Leverage in Good and Bad Times

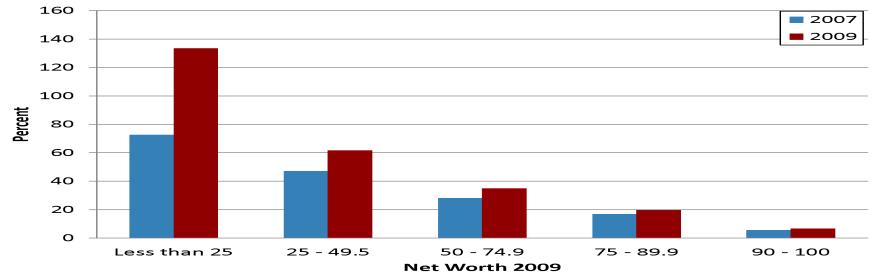


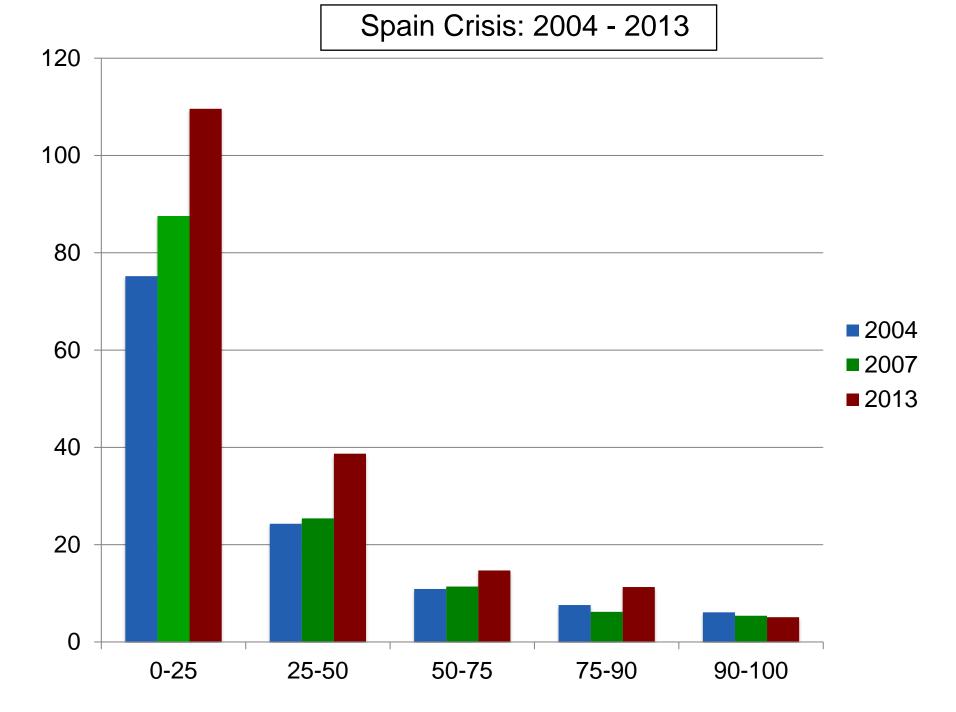
Panel A. Agents' Debt/Asset: Model.

Leverage in Good and Bad Times

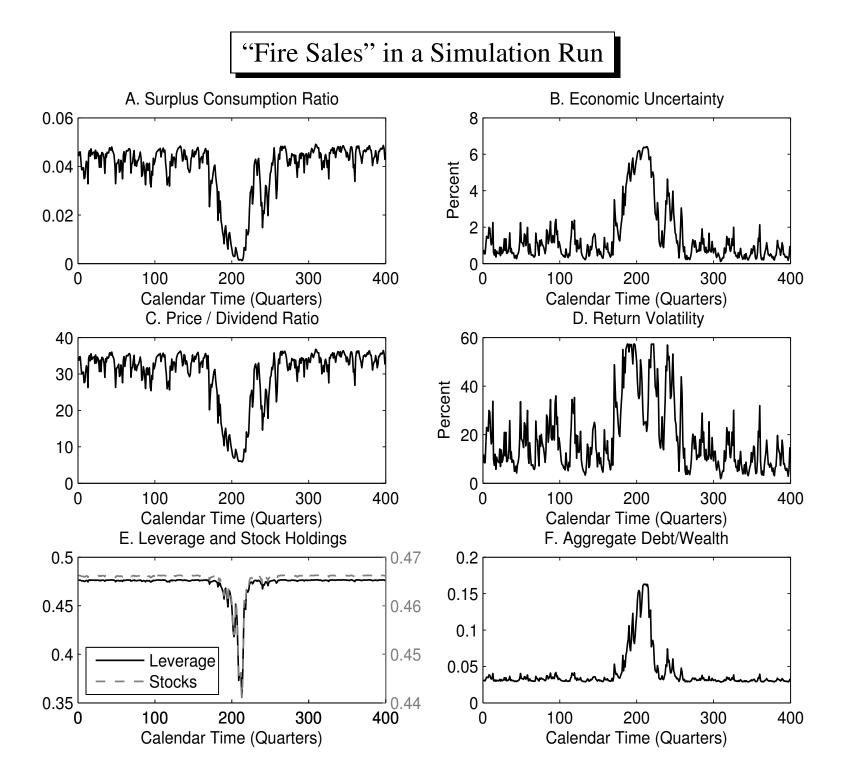


Panel A. Agents' Debt/Asset: Model.

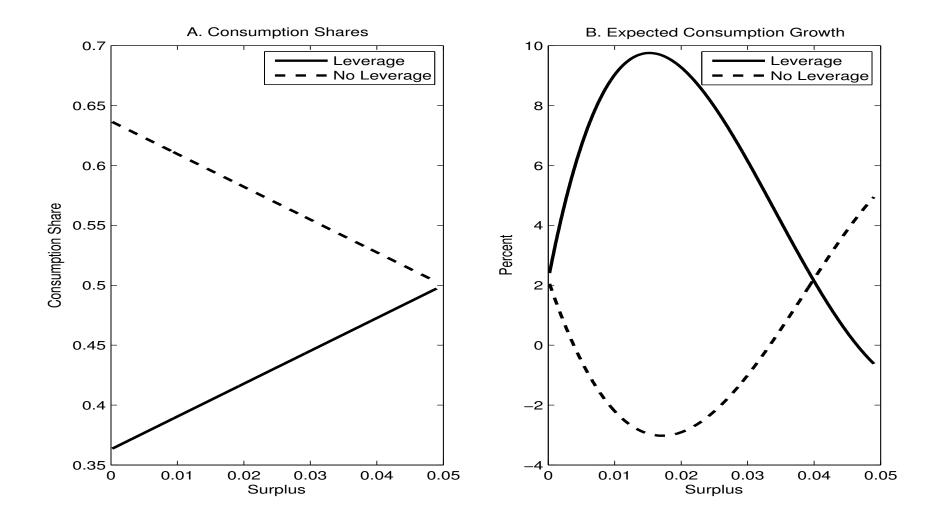




"Fire Sales" in a Simulation Run



Consumption of Levered Agents



- Consumption boom of levered agents during good times
- But expected negative consumption growth going forward

$$\frac{W_{it}}{D_t} = \frac{1}{\rho} \left[\frac{\rho}{\rho + k} a_i \left(1 - \overline{Y} S_t \right) + w_i \overline{Y} S_t \right]$$

• and wealth share:

$$\frac{W_{it}}{\int W_{jt}dj} = a_i + (w_i - a_i)\frac{(\rho + k)\overline{Y}S_t}{\rho + k\overline{Y}S_t}$$

- Higher w_i or lower $a_i \Longrightarrow$ higher wealth in good times

$$\frac{W_{it}}{D_t} = \frac{1}{\rho} \left[\frac{\rho}{\rho + k} a_i \left(1 - \overline{Y} S_t \right) + w_i \overline{Y} S_t \right]$$

• and wealth share:

$$\frac{W_{it}}{\int W_{jt}dj} = a_i + (w_i - a_i)\frac{(\rho + k)\overline{Y}S_t}{\rho + k\overline{Y}S_t}$$

- Higher w_i or lower $a_i \Longrightarrow$ higher wealth in good times

• **Proposition.** Let w_i and a_i be independent. Then:

$$Var^{CS}\left(\frac{W_{it}}{\int W_{jt}dj}\right) = Var^{CS}\left(a_{i}\right)\left(1 - \frac{(\rho + k)\overline{Y}S_{t}}{\rho + k\overline{Y}S_{t}}\right)^{2} + Var^{CS}\left(w_{i}\right)\left(\frac{(\rho + k)\overline{Y}S_{t}}{\rho + k\overline{Y}S_{t}}\right)^{2}$$

- Endowment dispersion \implies higher wealth dispersion in good times
- Preference heterogeneity \implies U-shaped wealth dispersion
 - * Less risk averse richer in good times but poorer in bad times

$$\frac{W_{it}}{D_t} = \frac{1}{\rho} \left[\frac{\rho}{\rho + k} a_i \left(1 - \overline{Y} S_t \right) + w_i \overline{Y} S_t \right]$$

• and wealth share:

$$\frac{W_{it}}{\int W_{jt}dj} = a_i + (w_i - a_i)\frac{(\rho + k)\overline{Y}S_t}{\rho + k\overline{Y}S_t}$$

- Higher w_i or lower $a_i \Longrightarrow$ higher wealth in good times

• **Proposition.** Let w_i and a_i be independent. Then:

$$Var^{CS}\left(\frac{W_{it}}{\int W_{jt}dj}\right) = Var^{CS}\left(a_{i}\right)\left(1 - \frac{(\rho + k)\overline{Y}S_{t}}{\rho + k\overline{Y}S_{t}}\right)^{2} + Var^{CS}\left(w_{i}\right)\left(\frac{(\rho + k)\overline{Y}S_{t}}{\rho + k\overline{Y}S_{t}}\right)^{2}$$

- Endowment dispersion \implies higher wealth dispersion in good times
- Preference heterogeneity \implies U-shaped wealth dispersion
 - * Less risk averse richer in good times but poorer in bad times

$$\frac{W_{it}}{D_t} = \frac{1}{\rho} \left[\frac{\rho}{\rho + k} a_i \left(1 - \overline{Y} S_t \right) + w_i \overline{Y} S_t \right]$$

• and wealth share:

$$\frac{W_{it}}{\int W_{jt}dj} = a_i + (w_i - a_i)\frac{(\rho + k)\overline{Y}S_t}{\rho + k\overline{Y}S_t}$$

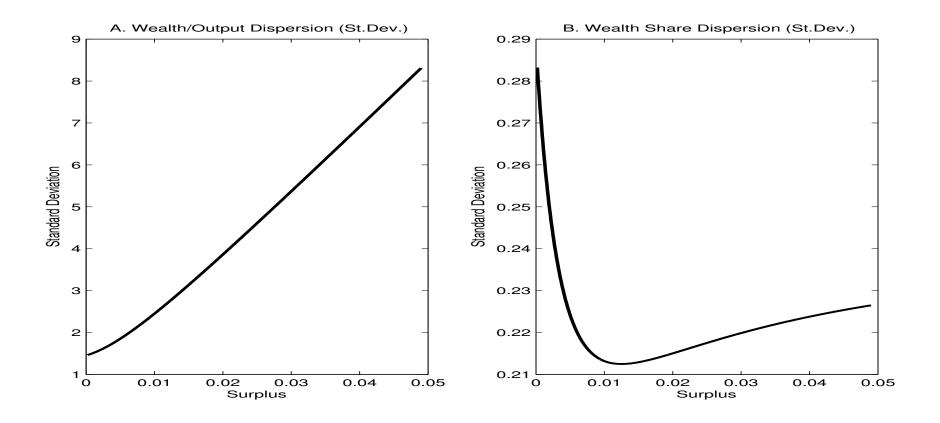
- Higher w_i or lower $a_i \Longrightarrow$ higher wealth in good times

• **Proposition.** Let w_i and a_i be independent. Then:

$$Var^{CS}\left(\frac{W_{it}}{\int W_{jt}dj}\right) = Var^{CS}\left(a_{i}\right) \left(1 - \frac{(\rho + k)\overline{Y}S_{t}}{\rho + k\overline{Y}S_{t}}\right)^{2} + Var^{CS}\left(w_{i}\right) \left(\frac{(\rho + k)\overline{Y}S_{t}}{\rho + k\overline{Y}S_{t}}\right)^{2}$$

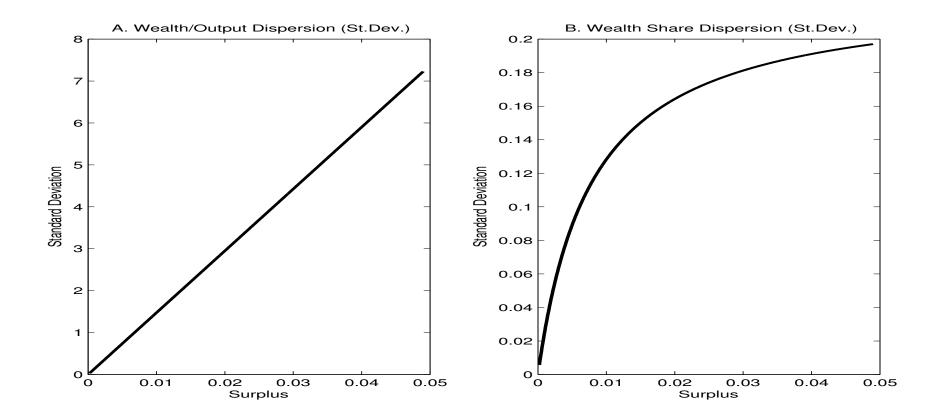
- Endowment dispersion \implies higher wealth dispersion in good times
- Preference heterogeneity \implies U-shaped wealth dispersion
 - * Less risk averse richer in good times but poorer in bad times

Wealth Dispersion



- Level effect: Wealth/output dispersion increases in good times
- Relative effect: Wealth-share dispersion decreases on some range
 - Poor but very leveraged agents become better off as times get better

Wealth Dispersion with only Heterogeneous Endowments



• Relative wealth dispersion now increases in good times

- Only agents with high endowment (i.e. $w_i > a$) borrow \Longrightarrow they become even wealthier in good times

Conclusions

- A frictionless dynamic general equilibrium model with heterogeneous agents and external habits seem consistent with many stylized facts.
- Risk sharing motives generate endogenous leverage dynamics
- Our model predicts:
 - 1. Aggregate debt \Uparrow in good times when prices \Uparrow and volatility \Downarrow
 - 2. Poorer agents borrow more than richer agents
 - 3. Leveraged agents enjoy a "consumption boom" in good times, followed by a consumption slump
 - 4. Crisis time \implies leveraged agents delever by "fire-selling" stocks, but their debt/wealth ratio \Uparrow due to strong discount effects.
 - 5. Intermediaries leverage is a priced risk factor.
 - 6. Wealth dispersion \Uparrow in good times
- Leverage dynamics is due to the differential impact of aggregate shocks on agents' risk aversion.

The Cross-Section of Consumption and Wealth

