Discussion of Liu, Wang, and Xu (2017) "Interest Rate Liberalization and Capital Misallocation"

Ernest Liu

Summary: liberalization and misallocation

- ▶ Interest wedge prevents efficient allocation of capital
 - − standard models: liberalization (wedge \(\)) improves efficiency
 - this paper: SOEs receive subsidies \Longrightarrow liberalization could be harmful
 - important insight, nice paper!
- ► This discussion:
 - graphical representation of the theory
 - some extensions

A simplified model

- Measure one of capital
- Measure one of firms indexed by productivity z ~ F(z)
 Credit market: an assignment rule from capital to firm, k(z)

(Aggregate output)
$$Y = \mathbb{E}^{f} \left[z \cdot k \left(z \right) \right] = \int z \cdot k \left(z \right) \, dF \left(z \right)$$
 (Credit market clearing)
$$\int k \left(z \right) \, dF \left(z \right) = 1$$

A simplified model

- Measure one of capital
- Measure one of firms indexed by productivity z ~ F(z)
 Credit market: an assignment rule from capital to firm, k(z)

(Aggregate output)
$$Y = \mathbb{E}^{f} \left[z \cdot k \left(z \right) \right] = \int z \cdot k \left(z \right) \, dF \left(z \right)$$
 (Credit market clearing)
$$\int k \left(z \right) \, dF \left(z \right) = 1$$

▶ Equivalent representation: endogenous productivity distribution dG(z)

$$dG(z) \equiv k(z) dF(z)$$

$$Y=\mathbb{E}^{g}\left[z\right]=\int z\ dG\left(z\right)$$

Assignment under first-best, autarky, and second-best

Autarky: one unit of capital per firm

$$k(z) = 1$$
 for all z
$$Y = \int z \ dF(z)$$

$$dF(z)$$

First-best: most productive firm gets all capital, $Y = \sup z$

Assignment under first-best, autarky, and second-best

Autarky: one unit of capital per firm

$$k(z) = 1$$
 for all z

$$Y = \int z \ dF(z)$$

- First-best: most productive firm gets all capital, $Y = \sup z$
- ▶ Model has leverage constraints: restricts $k(z) \in \{0, 1, 1 + \lambda\}$

Assignment under first-best, autarky, and second-best

Autarky: one unit of capital per firm

$$k(z) = 1$$
 for all z
 $Y = \int z \ dF(z)$

- First-best: most productive firm gets all capital, $Y = \sup z$
- ▶ Model has leverage constraints: restricts $k(z) \in \{0, 1, 1 + \lambda\}$
 - second-best allocations:

$$k\left(z
ight) = egin{cases} 1+\lambda & ext{for } z \geq ar{z} \ 0 & ext{otherwise} \end{cases}$$
 $Y = \mathbb{E}^G\left[z
ight]$

Now: add other market imperfections, study G(z)

Additional Friction #1: interest wedge

- ▶ Interest wedge ϕ : lending rate < borrowing rate $(r < r + \phi)$
- ► Capital assignment follows cut-off rule

$$k(z) = \begin{cases} 0 & \text{if } z \le r, \\ 1 & \text{if } r < z \le r + \phi, \\ 1 + \lambda & \text{if } r + \phi < z. \end{cases}$$

- ightharpoonup dG(z): upper-envelope of colored regions
- Credit market reallocates capital from white to yellow
- \blacktriangleright Reduction in ϕ : better assignment, output increases

Additional friction #2: output subsidies

▶ Firms participate in credit market with "incorrectly perceived" productivity

$$\tilde{z} \equiv egin{cases} au z & ext{if SOE} \\ z & ext{if POE} \end{cases}$$

 $-\tilde{z}\sim\tilde{F}$: "credit productivity"

- \triangleright Punchline: reduction in ϕ could lead to lower output
- ► A possibility result: generically ambiguous

Extension under log-normal

- ightharpoonup A generalization: all firms get random subsidy au
- ▶ Suppose (z, τ) are jointly distributed as log-normal (so is $\tilde{z} \equiv \tau z$):

$$\left[\begin{array}{c} z \\ \tau \end{array}\right] \sim \log N \left(\left[\begin{array}{c} \mu \\ 0 \end{array}\right], \left[\begin{array}{cc} \sigma_z^2 & \sigma_{\tau z} \\ \sigma_{\tau z} & \sigma_{\tau}^2 \end{array}\right]\right)$$

Extension under log-normal

- ightharpoonup A generalization: all firms get random subsidy au
- ▶ Suppose (z, τ) are jointly distributed as log-normal (so is $\tilde{z} \equiv \tau z$):

$$\left[\begin{array}{c} \mathbf{z} \\ \mathbf{\tau} \end{array}\right] \sim \log N \left(\left[\begin{array}{c} \mu \\ \mathbf{0} \end{array}\right], \left[\begin{array}{cc} \sigma_{\mathbf{z}}^2 & \sigma_{\tau \mathbf{z}} \\ \sigma_{\tau \mathbf{z}} & \sigma_{\tau}^2 \end{array}\right]\right)$$

Proposition. Reduction in interest wedge lowers welfare $(\frac{dY}{d\phi} > 0)$ if and only if

$$Cov(z, \tilde{z}) < 0$$
 (i.e. $\sigma_{\tau z} < -\sigma_z^2$).

▶ In other words, perverse effect only if high \tilde{z} signals for low z

Non-parametric generalization: two sufficient statistics

▶ Under arbitrary joint distribution over z, τ , and leverage constraints

Non-parametric generalization: two sufficient statistics

▶ Under arbitrary joint distribution over z, τ , and leverage constraints

Non-parametric generalization: two sufficient statistics

Under arbitrary joint distribution over z, τ , and leverage constraints

Theorem. Reduction in interest wedge lowers welfare $(\frac{dY}{d\phi} \ge 0)$ if and only if

$$\underbrace{\mathbb{E}^{F|\tilde{F}}\left[z|\tilde{z}=r\right]} \geq \underbrace{\mathbb{E}^{F|\tilde{F}}\left[z|\tilde{z}=r+\phi\right]}$$

average productivity of marginal lenders average productivity of marginal borrowers

Empirical specification

- ▶ Perverse effect happens if and only if
 - highest \boldsymbol{z} among lenders > lowest \boldsymbol{z} among borrowers

Empirical specification

- Perverse effect happens if and only if
 - highest z among lenders > lowest z among borrowers
 - by continuity, highest z among lenders = lowest z among autarky firms
 - both sufficient stats can be measured!
- Exploit cross-industry variation
 - sort firm into those that borrow and others in "autarky"
 - compare bottom of productivity distribution (1%) between the two
 - AIS data: liberalization could reduce productivity in 23% of industries!

Empirical specification

- Perverse effect happens if and only if
 - highest z among lenders > lowest z among borrowers
 - by continuity, highest z among lenders = lowest z among autarky firms
 - both sufficient stats can be measured!
- Exploit cross-industry variation
 - sort firm into those that borrow and others in "autarky"
 - compare bottom of productivity distribution (1%) between the two
 - AIS data: liberalization could reduce productivity in 23% of industries!
- ▶ Over-time variation in ϕ and diff-in-diff:

$$D_{it} \equiv \mathbf{1}\left(z_{it}^{Autarky,1\%} \geq z_{it}^{Borrower,1\%}
ight)$$

$$\Delta Y_{it} = \beta_1 D_{it} + \beta_2 \cdot \Delta \phi_{it} + \beta_3 \cdot D_{it} \cdot \Delta \phi_{it} + \alpha_t + \delta_i + \epsilon_{it}$$

model predicts $\beta_2 < 0$ (standard channel), $\beta_2 + \beta_3 > 0$ (perverse effect)