Urban Structure, Land Prices and Volatility

Sheridan Titman¹ and Guozhong Zhu²

ABFER 6th Annual Conference Singapore

¹University of Texas at Austin, Sheridan.Titman@mccombs.utexas.edu ²University of Alberta, guozhong@ualberta.ca

Motivating Observations

Cities have very different house price/rent volatilities

- Avg office rent volatility between 1988-2014 (std. of log):
 - 5.71% in LA
 - 6.95% in Phoenix
 - 21.98% in New York
 - 20.52% in Dallas
- Commercial real estate tends to be more volatile than residential (Kwong and Leung 2000)
- City configurations also differ tremendously:
 - Houston (2016): population=2.3 million; area=1,553 km²
 - NYC (2016): population=8.6 million; area=784 km²

Questions

- How do city configuration and city land price dynamics depend on city characteristics?
- We consider a rich set of city characteristics:
 - transportation infrastructure
 - land/housing supply constraints
 - strength of production externality
 - relative share of capital, land, and labor in production

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Approach

- 1. Construct a general equilibrium model and characterize the equilibria
 - perfect mobility of capital and labor across cities
 - monocentric circular cities
 - multiple equilibria may exist
- 2. Study comparative statics about land rent, wage and population
 - analytical results about land rent elasticities with respect to productivity

(ロ) (同) (三) (三) (三) (○) (○)

- 3. Simulate a dynamic model to study
 - land rent volatility
 - land rent serial correlation
 - rent to value ratio of land

Literature

- Theoretical
 - ► Glaeser et al. (2006): a simple model that assume land supply constraint ⇔ supply elasticity
 - Saiz (2010) shows how supply constraint leads to low supply elasticity
 - ▶ We extend the simple model in Saiz (2010) in major ways:
 - allow for feedback from population growth to TFP
 - go beyond supply constraints to study a rich set of city characteristics
 - We show land supply constraint doesn't necessarily lead to more volatile prices
- Empirical
 - Focus on one city characteristic: land/house supply constraints
 - Glaeser et al. (2006), Saiz (2010), Hilber and Vermeulen (2016)

Model

- A monocentric circular city is occupied by firms and workers.
- Competitive firms operate in the CBD, produces tradable goods.
- Workers receive reservation utility and choose
 - consumption of tradable goods and land
 - Iocation of residence
- Absentee landlords take all the economic surplus
- Transportation cost (j=distance; N=population):

$$f(j, N) = \beta_0 + \beta_1 j + \beta_2 j N$$

(ロ) (同) (三) (三) (三) (○) (○)

Workers

$$\max_{c,h} = u(c,h)$$

s.t.
 $c + p_r(j)h = w \times e^{-f(j,N)}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where

- c = non-tradable goods
- h = land
- w = wage
- $p_r(j)$ = land rent in location j
- $u(c,h) = c^{1-\theta}h^{\theta}$

Residential Bid-rent

- perfect labor mobility \Rightarrow reservation utility \underline{u}
- In each location, the landlord charge a rental rate such that workers achieve the reservation utility

$$\mathcal{P}_{r}(j) = \left[\frac{(1-\theta)^{1-\theta}\theta^{\theta}}{\underline{u}}we^{-f(j,N)}
ight]^{1/\theta}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- the rent $p_r(j)$
 - increases with wage
 - decreases with transportation cost
 - decreases with reservation utility

Firms

$$\max_{\ell,n} F(\ell,k,n) - wn - rk - q_c \ell$$
s.t.

$$F(\ell, k, n) = A\ell^{\sigma}k^{\xi}n^{1-\sigma-\xi}$$

- ▶ k=capital, ℓ=land, n=labor
- r=capital rent, exogenous given
- A=TFP that firms take as given
- Firms take TFP as given, FOCs are

$$\frac{\ell}{n} = \frac{\sigma}{1 - \sigma - \xi} \frac{w}{p_c}$$
$$\frac{k}{n} = \frac{\xi}{1 - \sigma - \xi} \frac{w}{r}$$
$$\frac{\ell}{k} = \frac{\sigma}{\xi} \frac{r}{p_c}$$

(ロ) (同) (三) (三) (三) (○) (○)

Commercial Bid-rent

- ► perfect capital mobility + constant return to scale production function ⇒ zero profit
- In CBD, the landlord change a rental rate of commercial land such that firms' profit is zero

$$p_{c} = \left[\frac{A\sigma^{\sigma}\xi^{\xi}(1-\sigma-\xi)^{1-\sigma-\xi}}{r^{\xi}w^{1-\sigma-\xi}}\right]^{\frac{1}{\sigma}}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- the rent $p_c(j)$
 - decreases with wage
 - increases with TFP

City Level Variables

- TFP: $A = \tilde{A}N^{\lambda}$, where
 - Ã=exogenous productivity
 - N=total number of workers (population)
 - λ = agglomeration parameter
- S = total area of CBD (pre-specified)
- K = total amount of capital (MPK=r)
- ► J = distance from CBD to city boundary ($p_r(J) = p$)

(日) (日) (日) (日) (日) (日) (日)

- p = agricultural land rent (exogenous)
- Λ = share of undevelopable residential land

General Equilibrium

- Three endogenous prices:
 - wage (w)
 - commercial land rent (p_c)
 - residential land rent (p_r)
- Four endogenous quantities: $\{N, K, J, A\}$
- Seven equations for seven endogenous variables
- General equilibrium can be summarized by two equations:

(日) (日) (日) (日) (日) (日) (日)

- aggregate labor supply equation
- aggregate labor demand equation

Aggregate Labor Supply

- A positive relationship between population and wage
- Derived from residential land market equilibrium
 - higher wage \Rightarrow higher residential and rent (bid-rent)
 - higher rent \Rightarrow more land in the periphery is developed

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• more land \Rightarrow more workers are housed in the city

Aggregate Labor Demand

The relationship between population and wage

- Derived from residential land market equilibrium
 - ► larger population ⇒ higher TFP (agglomeration)
 - ▶ higher TFP ⇒ firms can afford higher wage and land rent
 - ► Since land is immobile, land rent rises more quickly than wage, therefore higher TFP \Rightarrow larger $\frac{N}{S}$
- The relationship can be positive if the agglomeration effect is strong enough.

Illustration of Equilibrium

- Ignoring congestion effect, the aggregate labor supply curve is a straight line, and equilibrium is always unique, e.g. Lucas and Rossi-Hansberg (2002).
- Whenever multiple equilibria exist, we focus on the good equilibrium.

Elasticities

- The economy starts from a steady state
- It receives an exogenous shock to productivity A
- It reaches a new steady state
- Changes between the two steady states are:

- elasticity pprox volatility in the dynamic model

wage and Population Elasticities

$$\zeta_N = \frac{1}{-\lambda + \sigma + (1 - \xi)F}$$
$$\frac{\zeta_W}{\zeta_N} = F$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- F = cost of travelling from CBD to periphery
- larger F implies:
 - more increase in wage
 - less increase in population
- consistent with Glaeser et al. (2006)

Residential Rent

$$\zeta_{p_r} = \frac{1}{\theta} \times \frac{F - \beta_2 j N}{-\lambda + \sigma + (1 - \xi) F}$$

where $\beta_2 j N$ is the congestion effect in transportation cost function.

We can show that ζ_{pr} > 0 (unless the city can grow explosively), since

•
$$-\lambda + \sigma + (1 - \xi)F > 0$$

 ζ_{pr} decreases with distance to CBD, i.e., rent of close-in land is more volatile.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Residential Rent Elasticity and Production Function

$$\zeta_{p_r} = \frac{1}{\theta} \times \frac{F - \beta_2 j N}{-\lambda + \sigma + (1 - \xi) F}$$

which is:

- increasing in λ and ξ but decreasing in σ in each location.
 - λ = agglomeration parameter
 - ξ = capital share in production
 - σ = land share in production
- ► decreasing in F if λ − σ > (1 − ξ)β₂jN; and increasing otherwise.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Proposition

Among cities with more undevelopable land (i.e. larger Λ)

1. have lower residential land rent elasticities if and only if $\lambda - \sigma > (1 - \xi)\beta_2 jN$, given the same population.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. have a larger geographical size if and only if $\lambda - \sigma < (1 - \xi)\beta_2 JN.$

Commercial Rent Elasticity

$$\zeta_{m{
ho}_c} = rac{1+F}{-\lambda+\sigma+(1-\xi)F}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

which is:

- increasing in λ and ξ but decreasing in σ ,
- decreasing in transportation cost F.

Elasticity: Commercial Land vs Residential Land

$$\zeta_{p_c} > \zeta_{p_r(j=0)} \quad \Leftrightarrow \quad F < \frac{\theta}{1-\theta}$$

Low transportation cost F (relative to $\frac{\theta}{1-\theta}$ which measure the

importance of land consumption)

ightarrow ightarrow easy to develop new residential land in periphery

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $ightarrow \Rightarrow$ residential land supply is elastic

Supply Constraint and Rent Elasticity

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Model Extensions (Proposition 6 in the paper)

Proposition

Relative to the benchmark model, the following is true:

- 1. fixing the city boundary,
 - 1.1 residential land rent elasticity is lower if $\lambda \sigma > \beta_2 j N(1 \xi)$ for all *j*,

1.2 commercial land rent elasticity is lower if $\lambda - \sigma > -(1 - \xi)$.

- 2. allowing the CBD to expand and contract, land rent elasticity is higher than the benchmark model if and only if $F < \frac{\theta}{1-\theta}$.
- 3. assuming immobile capital (i.e. fixing the city-level capital stock), both commercial land and residential land have lower rent elasticities.

Dynamic Model

$$\begin{array}{rcl} \mathbf{A}_t &=& \tilde{\mathbf{A}}_t \mathbf{N}_{t-1}^{\lambda} \\ \log \tilde{\mathbf{A}}_t &=& \log \tilde{\mathbf{A}}_{t-1} + \epsilon_t, \\ \epsilon_t &\sim& \mathcal{N}(\mathbf{0}, \sigma_\epsilon^2) \end{array}$$

- The agglomeration effect on productivity depends on lagged city population.
- Rise and fall of cities are persistent due to the lagged feedback.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- With the dynamic model, we study
 - serial correlation of land rent
 - land rent-to-value ratios
 - Iand rent volatilities

Calibration

Parameter Values						
Symbol	Definition	Value				
σ_{ϵ}	stdev. of productivity shocks	0.003				
heta	land share in preference	0.3				
ξ	capital share in production	0.2				
<u>u</u>	reservation utility	0.118				
р	agricultural rent (per 100 <i>km</i> ²)	0.447				
Ã	initial productivity	2.735				

Commuting Cost

 $\begin{array}{ll} f(j, N, \tau = car) &=& 0.0073 + 0.00008 \times j + 2.2e - 9 \times j \times N \\ f(j, N, \tau = rail) &=& 0.0201 + 0.0005 \times j + 8.0e - 10 \times j \times N \end{array}$

Initial City Configuration

	Pop (million)	CBD (km ²)	Radius	Wage	<i>p</i> _c (100 <i>m</i> ²)	p _r (100 <i>m</i> ²)	Density (pop/100m ²)
λ= 0.08							, , , ,
σ =0.05							
$\Lambda = 0.0$	5.00	30	16.00	3.14	3.49	0.73	62.20
$\Lambda = 0.4$	3.88	30	18.28	3.11	2.68	0.71	61.66
λ =0.076							
σ =0.15							
$\Lambda = 0.0$	1.72	30	9.79	2.82	3.73	0.52	57.06
$\Lambda = 0.4$	1.58	30	12.09	2.84	3.46	0.53	57.41

Transition

Serial Correlation

·	λ =0.08, σ =0.05	p_c	<i>p</i> _r (j=0)	<i>p</i> _r (j=5)
	Baseline	0.366	0.356	0.357
	Rail	0.455	0.432	0.433
	Λ=0.4	0.391	0.380	0.381
	Fix capital	0.139	0.139	0.139
	Fix boundary	0.131	0.131	0.132
	λ =0.076, σ =0.15			
	Baseline	0.357	0.351	0.351
	Rail	0.386	0.380	0.379
	Λ=0.4	0.345	0.342	0.342
	Fix capital	0.126	0.125	0.125
	Fix boundary	0.100	0.100	0.100

Volatility (std. of log)

λ =0.08, σ =0.05	Ã	Wage	Рор	p_c	p_r	p_r
Baseline (Car)	1.849	1.715	9.564	11.276	5.715	4.780
Rail	2.161	1.847	13.712	15.552	6.158	5.180
$\Lambda = 0.4$ (car)	1.869	1.694	10.286	11.977	5.647	4.861
Fix capital (car)	1.354	0.577	3.110	3.686	1.922	1.610
Fix boundary (car)	1.341	1.493	2.944	4.437	4.976	4.679
λ =0.076, σ =0.05						
Baseline (car)	2.707	2.059	21.348	23.387	6.863	5.586
λ =0.076, σ =0.15						
Baseline (car)	1.840	0.469	9.765	10.233	1.564	1.219
Rail	1.935	0.349	11.044	11.392	1.163	0.908
$\Lambda = 0.4$ (car)	1.805	0.512	9.307	9.818	1.708	1.406
Fix capital (car)	1.333	0.300	2.952	3.252	0.999	0.813
Fix boundary (car)	1.293	1.165	2.405	3.570	3.882	3.712

Dispersion of Rent-to-value Ratios

Rent-to-value Ratios

	10 th percentile			90 th percentile			Dispersion 100×(90 th -10 th)/mean		
λ =0.08 σ =0.05	Lc	L _r (j=0)	L _r (j=5)	Lc	L _r (j=0)	L _r (j=5)	Lc	L _r (j=0)	L _r (j=5)
Baseline	4.01	4.25	4.60	5.27	4.87	4.83	27.32	13.54	4.70
Rail	3.85	4.24	4.60	5.72	4.92	4.86	39.18	14.90	5.41
Λ=0.4	3.91	4.24	4.61	5.40	4.88	4.84	31.98	13.98	4.89
Fix K	4.36	4.46	4.58	4.74	4.65	4.66	8.24	4.28	1.76
Fix J	4.32	4.29	4.59	4.77	4.79	4.84	9.89	11.09	5.16
λ =0.076 σ =0.15									
Baseline	4.01	4.48	4.58	5.11	4.64	4.63	24.14	3.49	1.14
Rail	3.95	4.50	4.57	5.17	4.62	4.62	26.75	2.60	0.89
Λ=0.4	4.04	4.47	4.58	5.09	4.65	4.64	23.08	3.85	1.25
Fix K	4.39	4.51	4.57	4.72	4.61	4.61	7.25	2.22	0.89
Fix J	4.36	4.35	4.59	4.74	4.74	4.78	8.31	8.54	4.19

Conclusion

- We develop a framework for thinking about how design of a city and the firms that inhabits it affect its
 - configuration
 - Iand values
 - risk of real estate.
- ► large λ (agglomeration) + small σ (land share in production) \Rightarrow
 - high density, high wage, large population (e.g. NYC)
 - high volatility and large serial correlation in rent
 - more dispersion in rent-to-value ratio
- Land supply constraints do not necessarily lead to more land rent volatility, because constraints

(ロ) (同) (三) (三) (三) (○) (○)

- suppress agglomeration effect
- cause land demand curve to be shifted less.

Future Work

- Add buildings and adjustment cost to the model:
 - Study the endogenous response of real estate development to house price volatility
 - House price volatility is a fixed point
- Allow multiple CBDs to arise endogenously (lot of implications on Chinese cities)
- Consider migration costs of labor
 - Workers in rising cities receives higher utility then workers in falling cities.
 - Implications on labor misallocation (Hseih and Moretti 2017)

(ロ) (同) (三) (三) (三) (○) (○)