The Welfare Effects of Passenger Transportation Infrastructure: Evidence from China

Panle Jia BarwickDave DonaldsonShanjun LiYatang LinCornell and NBERMIT and NBERCornell and NBERHKUST

ABFER 6th Annual Conference, May, 2018

Motivation

- Enormous public resources invested in passenger transportation infrastructure across the globe:
 - Airports, railways, highways, subways
 - New high-speed railway projects under discussion in UK, US, India
- Limited research on the importance of these large-scale projects:
 - Reduced form evidence on passenger transportation largely within city (e.g., subways)
 - Quantitative welfare evaluation mostly focuses on the flow of goods
 - Substantial data challenges in obtaining ideal data on bilateral passenger flows across the entire network

This paper

- Study China's high-speed railway system (HSR), one of the largest passenger infrastructure projects of the world
 - Total length exceeding 15,000 miles (25,000 km) in 2017, connecting cities from 29 provinces out of 33
 - Total investment of \$300 billion from 2011 to 2015
- Draw on new data on universe of debit/credit card transactions (40 Trillion Yuan in 2015) to measure:
 - City-to-city passenger flows
 - City-to-city transactions
- Develop a quantitative model for evaluating the welfare implications of passenger transportation infrastructure improvements
 - Aggregate consumer welfare gain of the HSR network
 - Distributional impacts

Related literature

- Transportation infrastructure and development
 - Baum-Snow(2007), Michaels (2008), Donaldson (2014), Duranton and Turner (2012), Faber (2014), Baum-Snow et al. (2016), Storeygard (2016)
- Quantitative evaluation of infrastructure projects:
 - Donaldson (2014), Allen and Arkolakis (2014, 2017), Ahlfeldt, Redding and Sturm (2017), Donaldson and Hornbeck (2014), Alder (2016), Fajgelbaum and Schaal (2017)
- Evaluation of the HSR system
 - China: Zheng and Kahn (2013, 2017), Qin (2014), Lin (2017), Xu (2017)
 - ► Other countries: Bernard, Moxnes, and Saito (2015) in Japan, Charnoz, Lelarge, and Trevien (2016) in France

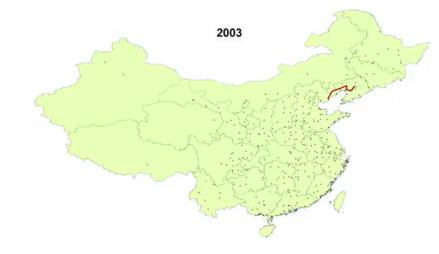
Roadmap

- Background and data construction
- CES model on demand for travel and goods
- Model estimation
- Ongoing: Random coefficient logit framework to capture passenger heterogeneity

Background

• China's HSR expansion

- ▶ In 2003, the first line opened connecting Qinhuangdao and Shenyang
- By 2017, over 20,000 km routes in service, with 7 bn cumulative number of trips
- Operation speed: 250 km/h- 350 km/h, versus up to 120 km/h for regular railway
- Ministry of Railway plan (2008)
 - Main network: four horizontal and four vertical lines
 - Connect major cities with more efficient means of transportation
 - Environmental and national security concerns
- Planning and Financing
 - Centrally planned and managed by Ministry of Railway (later China Railway Corporation), mostly funded by MOR
 - Local government helps with compensation for land use; limited private investment



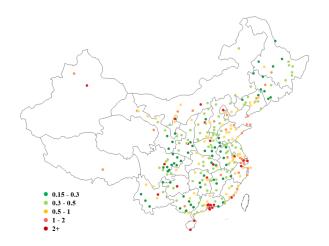
Data at the City-pair and Month Level

- Transport network and cost features:
 - ► HSR and traditional train: routes, schedule, and fares
 - Air travel: routes, schedule, and number of seats; fares for a small subsample
 - ▶ Road: highway distance and travel time for all city pairs in 2017
- Bilateral passenger flows and transaction values constructed from Unionpay card (credit and debit card) transactions
- Consumption goods price indices constructed from Unionpay data

Coverage of the Bank Card Data 2011-2017

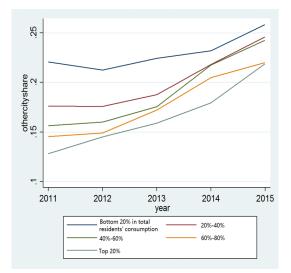
- In 2015: 2.7 bn cards, 48% of retail sales of consumer goods, 40 tn RMB worth of transactions (China's GDP is 69 tn RMB)
- Number of active bank cards per capita similar across cities

Figure: Number of Active Cards per Capita, 2015



Out-of-town Spending 2011-2015

• About 20% of the transactions are made out-of-town, increasing over time Figure: Share of out-of-town spending: by the size of resident city



Summary Statistics

Bilateral transaction and trip flows

Bilateral Card Transactions (1% Unionpay sample)

Exclude Own city Flows					
	Obs	Mean	Variance	Min	Max
Transaction value (Y)	1,935,262	82453.5	663243.6	1	8.32E+07
Transaction count (N)	1,936,603	35.5	284.4	1	31580
Number of trips (T)	1,783,886	21.53	146.73	1	11635

Motivating Evidence

• Question: how does direct HSR connection change cross-city travel and consumption behavior?

$$ln(y_{ijt}) = \beta connect_{ijt} + \alpha_{ij} + \eta_{it} + \gamma_{jt} + \epsilon_{ijt}$$
(1)

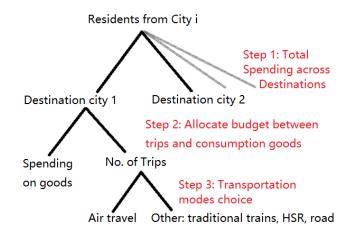
- y_{ijt}: number of trips or total transaction value made by residents in city i to city j
- Connect_{ijt} = 1 if city i and city j are connected by HSR at month t
- α_{ij} city pair FE; η_{it} and γ_{jt} are origin/destination*month FE.

Motivating Evidence

	In(Trips)	In(Value)	In(Trips)	In(Value)
HSR connection	0.37*** (0.02)	0.37*** (0.02)	0.35*** (0.02)	0.28*** (0.03)
Observations Pair FE, Month FE	2,214,670 Y	2,214,670 Y	2,214,597 Y	2,214,597 Y
Origin*month FE, Destination*month FE	Ν	Ν	Y	Y
R-squared	0.83	0.58	0.86	0.63

Model: Setup

- Representative agents from city *i* with fixed income X_i make travelling decisions in three steps (3-layer nested CES)
 - Inner nest: transportation mode choices
 - Middle nest: trips and consumption goods
 - Outer nest: decision about travelling across all destinations



Model of Demand for Travel and Goods

- Basic idea draws on logic of revealed preference: use changes in ridership and consumption associated with changes in travel cost to back out consumers' willingness to pay for HSR
- Outer layer:

$$U_{it} = \left(Q_{ijt}\phi_{ijt}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

• Middle layer:

$$Q_{ijt} = \left[\left(q_{ijt} \right)^{\frac{\delta-1}{\delta}} + \left(T_{ijt} \epsilon_{ijt} \right)^{\frac{\delta-1}{\delta}} \right]^{\frac{\delta}{\delta-1}}$$

• Inner layer:

$$\mathcal{T}_{ijt} = \left[\left(t_{ij1t} \eta_{ijt}
ight)^{rac{
ho-1}{
ho}} + \left(t_{ij2t}
ight)^{rac{
ho-1}{
ho}}
ight]^{rac{
ho}{
ho-1}}$$

Model: Inner Nest

• Holding constant spending and the number of trips made from *i* to each destination *j* at month *t*, agents decide on transportation

$$T_{ijt} = \left[\left(t_{ij1t} \eta_{ijt}
ight)^{rac{
ho - 1}{
ho}} + \left(t_{ij2t}
ight)^{rac{
ho - 1}{
ho}}
ight]^{rac{
ho}{
ho - 1}}$$

- Two modes: air and other (including HSR, traditional trains, and highway)
- η_{ijt} idiosyncratic demand shifter for air travel
- Travel cost for air c_{ij1t}: a function of both travel time and fare cost
- ► Travel cost for non-air mode c_{ij2t}: the minimum travel cost among HSR, traditional trains, and highway

Preferences: Inner Nest

• Intermodal choice can be used to identify ρ :

$$\frac{t_{ij1t}}{t_{ij2t}} = \left(\frac{c_{ij1t}}{c_{ij2t}}\right)^{-\rho} (\eta_{ijt})^{\rho-1}$$

Once ρ (and residual η_{ijt}) estimated, obtain travel cost index c_{ijt} across all transportation modes as follows:

$$c_{ijt} = \left[(c_{ij1t}/\eta_{ijt})^{1-
ho} + (c_{ij2t})^{1-
ho}
ight]^{rac{1}{1-
ho}}$$

Preferences: Middle Nest

• Holding constant total consumption quantity at each destination j as Q_{ijt} , agents allocate it across goods consumption q_{ijt} and trips T_{ijt}

$$Q_{ijt} = \left[(q_{ijt})^{\frac{\delta-1}{\delta}} + (T_{ijt}\epsilon_{ijt})^{\frac{\delta-1}{\delta}} \right]^{\frac{\delta}{\delta-1}}$$

- Intuition: consumers derive utility from access to consumption goods (q) in city j, as well as free local amenity (tourist attractions, visiting family/friends etc.), which is a function of trips made (T)
- Reductions in travel cost might induce consumers to make more frequent trips, but spend less per trip
- ϵ_{ijt} : idiosyncratic demand shifter between goods consumption and trips

Preferences: Outer Nest

• Consumers from city *i* allocate total spending across all destination cities to maximize utility, subject to the budget constraint

$$egin{aligned} U_{it} &= \left(Q_{ijt} \phi_{ijt}^{rac{\sigma-1}{\sigma}}
ight)^{rac{\sigma}{\sigma-1}} \ Q_{ijt} &= rac{P_{ijt}^{-\sigma}}{P_{it}^{1-\sigma}} X_{it} \phi_{ijt}^{\sigma-1} \ P_{ijt} &= \left[(p_{jt})^{1-\delta} + (c_{ijt}/\epsilon_{ijt})^{1-\delta}
ight]^{rac{1}{1-\delta}} \ P_{it} &= \left[\sum_{i=1}^J (P_{ijt}/\phi_{ijt})^{1-\sigma}
ight]^{rac{1}{1-\sigma}} \end{aligned}$$

 Q_{ijt}: total consumption quantity in city j; X_{it}: total spending for consumers from city i; φ_{ijt}: taste shocks across destination cities

Welfare Impact

$$U_{it} = \frac{X_{it}}{P_{it}}$$

- We focus on the "consumer" benefits of HSR, which appear purely through P_{it}. Further, impact of HSR on P_{it} comes purely through impact of HSR on c_{ijt}
- So far, following effects omitted:
 - HSR changes the price of consumption goods in cities
 - ► ⇒ No business stealing effects in this model: cities will not be worse off after the HSR connection
 - HSR changes incomes (and hence X_{it})

- Estimation in three steps
- Step 1: Inner layer:

$$\ln(\frac{t_{ij1t}}{t_{ij2t}}) = -\rho \ln(\frac{c_{ij1t}}{c_{ij2t}}) + \alpha_{ij} + \beta_{it} + \gamma_{jt} + \tilde{\eta}_{ijt}$$

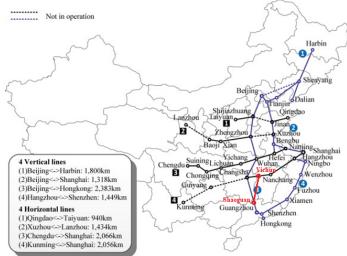
- Obtain ρ and η_{ijt} from estimating the equation above, using data on travel cost and frequency (air travels measured by seat capacity) for different modes of transportation
- Construct c_{ijt} from c_{ij1t}, c_{ij2t}, ρ, and η_{ijt}
- Construct T_{ijt} from t_{ij1t} , t_{ij1t} , ρ , and η_{ijt}
- Instrument $ln(\frac{c_{ij1t}}{c_{ij2t}})$ with HSR indirect connection dummy

Instrument

- Instrument $\ln(\frac{c_{ij1t}}{c_{ij2t}})$ with HSR indirect connection dummy to take care of:
 - Measurement errors in travel cost
 - Fare price endogeneity
 - Endogeneity in the availability of new transportation modes
- Idea of Instrument
 - China's HSR network is quite intensive with four main horizontal lines and four main vertical lines
 - When a (segment of) a horizontal line gets joined with a vertical line, non-nodal cities from both lines get "indirectly connected", which are less likely to be planned in advance

Instrument

Exploiting indirect connections



• Yichun and Shaoguan is considered to be indirectly connected after both Changsha-Nanchang and Changsha-Guangzhou lines are in operation

Reduced form evidence

	In(Trips)	In(Value)	In(Trips)	In(Value)
Indirect connection	0.171*** (0.0201)	0.194*** (0.0368)	0.148*** (0.0207)	0.117*** (0.0364)
Observations Pair FE, Month FE	2,147,311 Y	2,147,311 Y	2,147,241 Y	2,147,241 Y
Origin*month FE, Destination*month FE	Ν	Ν	Y	Y
R-squared	0.799	0.549	0.835	0.595

Constructing c_{ij1t} and c_{ij2t}

- Travel cost for different modes of transportation
 - c_{ijkt} = farecost_{ijkt} + ValueforTravelTime(VTT) * traveltime_{ijkt}; VTT assumed to be 1/3 of hourly wage
 - Air: distance and duration of all flights from 2010 to 2017, price data available for a small subset
 - HSR and traditional trains: railway timetable data that report duration and ticket price for all train schedules from 2008 to 2016
 - Road: calculate duration and distance of travel by road for any city pairs using OpenStreetMap
 - c_{ij2t}: the minimum of travel cost across HSR, traditional trains, and road

Constructing passenger flows and consumption

- Bilateral passenger transportation ridership on air (t_{ij1t}) and the rest (t_{ij2t})
 - Air: total seats of all flights serving each city pair
 - Total number of trips made by card holders from city i in city j: constructed using UnionPay data
- Bilateral consumption q_{ijt} and destination city price index p_{jt}
 - Assume the distribution of quantity purchased per transaction constant over time, and use the average value per transaction as a proxy for p_{jt} (alternative approaches)

Parameter estimation

• Step 2: Middle layer:

$$\ln(\frac{T_{ijt}}{q_{ijt}}) = -\delta \ln(\frac{c_{ijt}}{p_{jt}}) + \alpha_{ij} + \beta_{it} + \gamma_{jt} + (\delta - 1) \ln(\tilde{\epsilon}_{ijt})$$

- Plug in T_{ijt} and c_{ijt} from the inner nest
- Obtain δ and ε_{ijt}

• Construct
$$P_{ijt} = \left[(p_{jt})^{1-\delta} + (c_{ijt}/\epsilon_{ijt})^{1-\delta} \right]^{\frac{1}{1-\delta}}$$

- Instrument $\ln(\frac{c_{ijt}}{p_{it}})$ with HSR indirect connection dummy
- In practice, inclusion of γ_{jt} means that regressor is effectively just $\ln(c_{ijt})$.

Parameter estimation

• Step 3: Outer layer:

 $\ln(X_{ijt}) = (1 - \sigma) \ln(P_{ijt}) - (1 - \sigma) \ln(P_{it}) + \ln(X_{it}) + (\sigma - 1) \ln(\phi_{ijt})$

- ► X_{ijt} = p_{jt}q_{ijt} + c_{ijt}T_{ijt}: total spending by consumers from city i in destination city j
- Plug in $P_{ijt} = \left[(p_{jt})^{1-\delta} + (c_{ijt}/\epsilon_{ijt})^{1-\delta} \right]^{\frac{1}{1-\delta}}$ from the previous step
- Add city-pair FE and origin/destination*monthFE, absorbing ln(P_{it}) and ln(X_{it})
- Obtain σ and ϕ_{ijt} to construct final city-level price index P_{it}
- Instrument $ln(P_{ijt})$ with HSR indirect connection dummy

Estimation of the demand system: Results

Columns Variables	(1) In(air/non-air)	(2) In(trip/consumption)	$(3)\\ {\sf ln}(X_{ijt})$
Estimation steps	Inner layer	Middle Layer	Outer layer
ln(cost air/cost non-air)	-2.33** (0.97)		
In(travel cost)		-0.07 (0.20)	
$\ln(P_{ijt})$			-1.92* (1.15)
Model interpretation Estimation method	- ho	$-\delta$	$1-\sigma$
Observations R-squared	81,807 0.69	V with connect dummy 1,927,482 0.18	1,927,482 -1.89

Results

- A direct HSR connection leads to 13% drop in bilateral travel costs
- Trips and spending in destination city very closely complementary, with an elasticity of substitution around 0.07
- Substitution elasticity between different cities around 2.9
- Removing the whole HSR network increases P_{it} by 2.8% on average
 - Our model did not take into consideration of utility from local consumption. Accounting for it would mean the total effects on aggregate welfare to be around 0.2*2.8% given the share of out-of-city spending

Ongoing Work

- Limitations of the current framework:
 - Limited substitution patterns across different transportation modes
 - Choice over transportation mode is multi-dimensional: fare cost, time, frequency, delays etc.
 - Passenger heterogeneity: different groups of people have different valuation over these characteristics (income; business vs. personal trips)
 - Distributional consequences
- Extend the current framework to allow for:
 - Multiple transportation mode characteristics
 - Heterogeneity across income distribution

Random Coefficient Mixed Logit Framework

- Nested logit: consumers choose destination city first, then transportation modes
- The utility of consumer *i* travelling to city *k* by travel mode *j* is defined as

$$U_{ijt} = x_{kt}\beta_i + x_{ijt}\eta_i - \alpha_i p_{ijt} + \nu_{ikt} + \xi_{ijt} + \mu_{ijt}(\lambda), j \in C_{ikt}$$
(2)

- x_{ikt} is a vector of destination city characteristics, such as city GDP, population, tourist attractions, etc.
- x_{ijt} is a vector of transportation mode characteristics (duration, frequency of flights etc.),
- *v_{ikt}* is the unobserved (to researchers) characteristic/amenities of city k
 to residents from city i.
- ξ_{ijt} is the unobserved (to researchers) characteristic of travel mode j that deviates from the nest average
- µ_{ijt} is a nested logit random taste shock (Type I extreme-value distribution)

Random Coefficient Mixed Logit Framework

$$U_{ijt} = x_{kt}\beta_i + x_{ijt}\eta_i - \alpha_i p_{ijt} + \nu_{ikt} + \xi_{ijt} + \mu_{ijt}(\lambda), j \in C_{ikt}$$
(3)

 Passenger Heterogeneity: We assume β_i and η_i to be functions of observed and unobserved household demographics:

$$\beta_i = \beta + \alpha_h z_{ih} + \epsilon_i \tag{4}$$

- We randomly draw individuals from city income distributions and pick parameters to minimize the distance between simulated market shares and
 - The share of origin *i* passengers travelling to different destination *k*
 - The share of passengers travelling by air for each city pair per month

Conclusion

- Goal of paper: combine various novel datasets to evaluate the impacts of HSR in China
 - Bilateral consumption and travel patterns in China using card transaction information
 - Evolution of transportation network and travel cost of various modes of transportation over time
- Framework for assessing welfare impact of passenger transportation infrastructure improvements via a "revealed-preference"-like approach

Estimation of the demand system: Results

Columns	(1)	(2)	(3)	
Variables	ln(air/non-air)	In(trip/consumption)	$\ln(X_{ijt})$	
Estimation steps	Inner layer	Middle Layer	Outer layer	
ln(cost air/cost non-air)	-3.86***			
	(1.22)			
ln(travel cost)		-0.67***		
		(0.20)		
$\ln(P_{ijt})$			-1.46***	
			(0.35)	
Model interpretation	- ho	$-\delta$	$1 - \sigma$	
Estimation method	IV with indirectconnect dummy			
Observations	82,027	2,000,336	2,000,336	
R-squared	0.90	0.24	-6.64	

