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Abstract

We develop a dynamic general equilibrium model that describes the evolution of land

prices and rental rates in a monocentric city. The model explores the implications of

urban configurations that may differ in terms of the flexibility of the citys borders and

land use, i.e., zoning and the presence of undevelopable land, as well as differences in

transit technology, i.e., cars versus rail. The model also considers the effect of production

technologies that have different land use intensities and agglomeration externalities. Our

analysis suggests that volatility is amplified when production exhibits strong agglomera-

tion effects, and is dampened when land use plays a larger role in the production function

and when transit exhibits strong congestion effects. In some settings land supply con-

straints make rental rates more volatile. However, we also identify settings under which

increases in land supply constraints dampen volatility.

1 Introduction

According to a research report by Savills, a UK real estate consultant, the total value of all real

estate in the world is about US $217 trillion, which is about 2.7 times the world’s GDP. Real

estate is clearly the most important capital asset in the world economy, but as illustrated by

the recent financial crisis, our understanding of the determinants of real estate valuation, and

in particular, the volatility of real estate prices, is still incomplete. The existing discussion of

real estate volatility in the academic literature is based on the idea that prices are expected to

be more volatile in regions where the supply of real estate is relatively inelastic since, in these

regions, shocks to demand are offset less by increases in supply.1 The theoretical literature,

∗McCombs Business School, University of Texas at Austin, Sheridan.Titman@mccombs.utexas.edu
†Alberta School of Business, University of Alberta, guozhong@ualberta.ca
1See, for example, Glaeser et al. (2006) and Hilber and Vermeulen (2016). For an excellent synthesis and

review of this literature see Glaeser and Gottlieb (2009).
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however, has not precisely articulated a mapping between urban characteristics, supply elas-

ticities and price volatilities, making the empirical implementation of this idea somewhat less

straightforward.2

This paper examines the relationship between urban characteristics and rent volatility within

the context of the seminal monocentric city models originally developed by Alonso (1964), Mills

(1967), and Muth (1969). In this class of models, all commercial activity is conducted in an

exogenous central business district (CBD) at the center of the city and workers commute to

work from the outer rings of the city. The productivity of the firms in the commercial sector,

along with the cost of transporting workers from the outskirts to the CBD, determines rents,

wages and the size of the city.

Our extension of these models explicitly considers agglomeration externalities that make

firms more productive in larger cities, and thus amplify exogenous productivity shocks that

attract additional workers to the city. We also consider alternative physical characteristics (or

zoning restrictions) that effectively create land supply constraints, and as we show, dampen

the effect of productivity shocks on population growth. We also explore the implications of

transportation costs, which also effectively limit urban growth.

Consistent with the existing literature, supply constraints in our model always dampen the

effect of exogenous productivity shocks on population growth. We show, however, that this does

not necessarily imply that supply constraints make rents more sensitive to productivity shocks.

Indeed, a key insight of our model is that when agglomeration externalities are sufficiently

strong, supply constraints can dampen the effect of productivity shocks on rents. Specifically,

since supply constraints dampen the population increase, they reduce the agglomeration channel

that amplifies the productivity shock, and this in turn, dampens the increase in wages and

rents. As we show, in addition to the magnitude of the assumed agglomeration parameter,

the sensitivity of rents to exogenous productivity depends on the transportation cost function,

the amount of land in the city that cannot be developed, land supply in the CBD, and the

importance of land and capital in the firms’ production function.

After analytically exploring how the response of wages and rents to productivity shocks

depends on urban characteristics, we simulate a dynamic version of the model that allows

us to quantitatively study land rent volatilities, serial correlation and rent to value ratios.3

2The approach taken in the empirical literature is to use measures of a city’s terrain and land use regulation,

e.g., Saiz (2010), to proxy for constraints that may influence supply elasticities.
3Although Berliant and Wang (2005) review a number of dynamic urban models, we believe that we are the

first to study the fluctuation of rental rates. The focus of the existing literature is on capital accumulation and

urban population growth rather than on how the design of cities affects the patterns of property prices and

rents. There is clearly a relation between the growth rate of an urban economy and the growth rate of land

rents and prices. However, as we show, the growth rate of the urban economy is just one of several determinants

of the growth rate of rents.
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Although the dynamic model assumes that the exogenous component of a city’s productivity

follows a random walk, we introduce persistence by assuming that agglomeration externalities

are realized with a one period lag, i.e., total factor productivity in the current period is an

increasing function of the city’s population in the previous period. As we describe below, the

lagged response to changes in total factor productivity is needed to generate the positively

serially correlated rents as well as the dispersed rent to value ratios that we observe in the data.

The relation between land rent volatilities and urban characteristics generated by our dy-

namic model are consistent with the elasticities that we derived in our static model. In particu-

lar, our simulations reveal that rents in cities with stronger agglomeration externalities tend to

be more volatile and that commercial rents in cities with greater residential supply constraints

tend to be less volatile. The dynamic model also generates novel implications about serial

correlations of land rents and rent to value ratios. As expected, since the persistence in our

model is generated because of agglomeration externalities, we find that stronger agglomeration

externalities tend to be associated with greater serial correlation. In addition, our simulation

results indicate that land supply constraints always reduce the serial correlation of land rents.

This is intuitive – the persistence is generated because population growth increases future pro-

ductivity, so anything that dampens population growth dampens the magnitude of the serial

correlation.

The dynamic model generates land rent volatilities and serial correlations that are roughly

consistent with what we observe in data provided by CBRE, a commercial real estate brokerage

and investment firm. Our simulations also allow us to explore differences in rent to value ratios

across cities. To gauge the magnitude of these differences we assume that cities are initially

identical and simulate exogenous productivity shocks and record the distribution of rent to

value ratios generated after 50 years. We show that the distribution of rent to value ratios of

commercial land is roughly consistent with the dispersion of rent to value ratios reported by

Real Capital Analytics, a real estate data vendor.

As we mentioned at the outset, although our model builds on the traditional monocentric

urban framework, we address issues that have attracted considerable attention in the recent

literature. For example, there is a recent literature that explores the role played by housing

supply constraints in the recent increase in the cross-city dispersion in housing prices. For

example, Nieuwerburgh and Weill (2010) develops a dynamic general equilibrium model that

illustrates how housing supply constraints can amplify relatively small differences in produc-

tivity and create relatively large differences in house prices. The Gyourko et al. (2013) model

describes how supply constraints can further increase dispersion in housing prices if cities at-

tract a heterogeneous mix of residents with different tastes in amenities, i.e., certain cities will

have amenities that cater to a wealthier clientele who are willing to pay higher housing prices.

Finally, Hseih and Moretti (2017) develop a model that illustrates how inelastic housing sup-
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plies, perhaps caused by restrictive zoning, dampened economic growth by implicitly limiting

migration from less productive to more productive cities.

These more recent models extend the Rosen (1979) and Roback (1982) framework, which

take the supply elasticities and productivity shocks as given, and ignore within city spatial

characteristics and agglomeration externalities that can amplify and dampen exogenous pro-

ductivity shocks. By including these elements in a monocentric city model we provide the

micro-foundations of the cross-city differences in land supply constraints and productivity dif-

ferences. As we show, these implications of these micro-foundations are not completely obvious.

For example, Hseih and Moretti (2017) suggest a policy of developing public transportation to

relax housing supply constraints in high productivity cities in order to reduce spatial misap-

plication. Our model explicitly addresses the role of transportation and shows that although

better transportation increases migration to high productivity cities it does not necessarily

dampen the effect of exogenous productivity shocks on housing prices.

The rest of the paper is organized as follows. Section 2 introduces the benchmark model

and shows, that in general, the model exhibits multiple equilibria. Section 3 focuses on what

we think is the most plausible equilibrium and examines the elasticities of wages, population

and land rents with respect to changes in exogenous shocks to productivity. Section 4 considers

these same elasticities in alternative settings that allow us to explore the implications of CBD

land flexibility, boundary expandability and capital mobility. Section 5 introduces the dynamic

model and shows the numerical results. Section 6 concludes and provides a discussion of

potential future studies.

2 The Benchmark Model

In this section we develop our benchmark model. As we describe below, relative to existing

monocentric urban models, the main contribution of the benchmark model relates city charac-

teristics that are roughly related to the elasticity of the supply of land. Specifically, we consider

the flexibility of city boundaries, the amount of land within the city that cannot be developed,

and the transportation technology. Both capital and labor are assumed to be perfectly mobile

in the benchmark model and the size of the CBD is exogenous. However, in extended models

we consider endogenous CBD size and immobile capital.

2.1 Geometry of the City

The city consists of a commercial CBD of size S, implying a CBD radius of
√
S/
√
π, surrounded

by rings of residential land indexed by i, with the ring nearest to the CBD being i = 0. The land

area in each ring is normalized to unity and includes both usable and unusable land. Specifically,
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Λ percent of the land cannot be developed, because of either geographical constraints, such as

lakes or oceans, or regulatory constraints, such as green areas that are used for parks or drainage.

In the benchmark model we will assume that these areas are evenly distributed throughout the

city and have no inherent amenity values.

The distance from a ring to the CBD is measured by the distance between its inner circle

to the circumferences of the CBD. Thus, for the ith ring, the distance is the difference between

the radius of its inner circle and the radius of the CBD. Since the inner circle of the ith ring

encompasses an area of S + i, its radius is
√
S + i/

√
π, hence its distance is

ji =

√
S + i−

√
S√

π
(1)

The distance ji is simply a non-linear transformation of the location index i, so without loss of

generality, we use j to denote both distance and location, with j = 0 representing the inner-most

ring with a zero distance. The outer-most ring, denoted by j = J , is endogenously determined

by equating its rent with the exogenous agricultural rent.

2.2 Transportation Cost

If we denote w as the wage for all workers, the wage net of transportation costs for workers

living at location j is w×e−f(j,N) where N is the city population. The function f(j,N) assumes

that transportation costs increase with wages, since transit takes time, and also increases with

population, since larger cities are more congested.4 Specifically, the transportation cost function

f(j,N) is assumed to have the following form:

f(j,N) = β0 + β1j + β2jN (2)

where β1 > 0 is the distance gradient of transportation, and β2 > 0 captures the congestion

effect. The congestion effect increases with distance since

∂f(j,N)

∂N
= β2j. (3)

The net wage (wage net of transit cost) for workers living in location j is

W (j) = w × e−f(j,N)

2.3 Firms and Workers

The city is populated by a continuum of firms and a continuum of workers. Both are price

takers and produce tradable goods, which serve as the numeraire in the model. Following the

4The exact transportation cost as a fraction of wage is 1− e−f(j,N). We call f(j,N) the transportation cost

function since 1− e−f(j,N) ≈ f(j,N) when f(j,N) is small.
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standard practice in the urban literature, we assume the land and capital are owned by absentee

owners who collect rent from either land or capital but do not live in the city.

2.3.1 Workers

Workers are perfectly mobile both within and across cities, which implies that they realize a

reservation level of utility. Each worker is endowed with one unit of labor and allocates their

wage to land rent, transit cost, and the consumption good. Workers have the option to live

adjacent to the CBD and have zero commuting costs, or alternatively, they can live farther-out

and spend resources to commute to the CBD.

Workers at location j take their wage and the land rent as given and choose their consump-

tion of land, h, and the consumption good, c to solve the following optimization problem:

maxc,h = u(c, h)

s.t.

c+ pr(j)h = w × e−f(j,N) (4)

where pr(j) is the rental rate of residential land in location j.

It is straightforward to show that the optimal allocation between land and the consumption

good satisfies:

pr(j) =
∂u(c, h)/∂h

∂u(c, h)/∂c
(5)

The right side of the above equation is the marginal rate of substitution between land and

the consumption good. Given the assumed Cobb-Douglas utility function, i.e., u(c, h) = c1−θhθ,

equation (5) becomes:

pr(j) =
θ

1− θ
c

h
. (6)

From equation (6), we get c = 1−θ
θ
p(d)h. Substituting this into the budget constraint

(equation (4)) yields the optimal consumption good choice,

c(j) = (1− θ)w × e−f(j,N) (7)

and land demand function

h(j) = θ
we−f(j,N)

pr(j)
(8)

Since workers are identical, the rents, in equilibrium, make workers indifferent about where

they live. Because rents decrease with distance to the CBD, workers that live near the CBD

consume less land but more of the consumption good.
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2.3.2 Firms

There exists a unit measure of identical firms that use land in the city’s CBD along with capital

and labor to produce the consumption good using a constant returns to scale Cobb-Douglas

production function:

F (`, k, n) = A`σkξn1−σ−ξ (9)

where `, k and n are land, capital and labor input respectively, the relative importance of which

is determined by the share parameters σ, ξ, and 1 − σ − ξ, respectively. A is the total factor

productivity (TFP) of this city relative to other cities.

The firms take productivity A, land rent pc, the price of capital r, and wage w as given, and

solve the following optimization problem:

max
`,k,n

F (`, k, n)− wn− rk − pc`

subject to equation (9). From the first-order conditions, we obtain the usual allocation rules as

the following:

`

n
=

σ

1− σ − ξ
w

pc
(10)

k

n
=

ξ

1− σ − ξ
w

r
(11)

`

k
=

σ

ξ

r

pc
(12)

2.4 The Equilibrium

We start this subsection by presenting the partial equilibrium bid-rent function, which describes

the rental rate as a function of the wage and the distance from the CBD. We then describe

the general equilibrium, which determines wages, the rent in the CBD, the amount of capital

deployed and the population of workers in the city.

2.4.1 Bid-rent Functions

Following Fujita (1989) and Lucas and Rossi-Hansberg (2002), we separately describe bid-rent

functions for the residential and commercial land markets. These functions describe the market

clearing land rents for given levels of reservation utility, the wage rate, and the rental price of

capital.

Residential Bid-rent Functions By substituting equation (7)-(8) into the Cobb-Douglas

utility function, we can express the worker’s reservation utility as a function of rent, the wage
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rate and transportation costs:

u =
(1− θ)1−θθθ

pr(j)θ
we−f(j,N)

which can be rearranged as follows:

pr(j) =

[
(1− θ)1−θθθ

u
we−f(j,N)

]1/θ

= B0

[
we−f(j,N)

]1/θ
, (13)

where B0 =
(

(1−θ)1−θθθ
u

)1/θ

decreases with the reservation utility.

This residential bid-rent function expresses rent as a function of exogenous reservation utility

u. The bid-rent function also reveals a positive relation between the residential land rent and

the endogenous wage. Notice wage net of transportation cost we−f(j,N) is raised to the power

of 1/θ > 1, which implies that a 1% increase in net wages causes a more than 1% increase in

rent. This follows because workers, with higher wages and even higher land rent, substitute

some land consumption for non-land consumption to achieve the reservation level of utility.

Commercial Bid-rent Function Because firms enter and exit the city freely, owners of

commercial land take all the economic benefits from production. Thus commercial land rent

equals the maximum revenue from one unit of land after paying for labor and capital. Produc-

tion per unit of land is f(`) = Akξn1−σ−ξ, thereby the commercial bid-rent function is solved

from:

pc = max
n,k

Akξn1−σ−ξ − wn− rk.

First-order conditions with respect to labor and capital are:

wn = (1− σ − ξ)Akξn1−σ−ξ

rk = ξAkξn1−σ−ξ

We substitute these first-order conditions back into the problem of maximizing revenue

minus wages and capital rents per unit of land. After some algebra we obtain

pc =

[
Aσσξξ(1− σ − ξ)1−σ−ξ

rξw1−σ−ξ

] 1
σ

(14)

Notice that pc is a decreasing function of the wage w, which is in contrast to residential

rents, pr, which increases with w. Ceteris paribus, higher wages allow workers to pay more for

rent, but reduce the rent that firms can pay and still earn zero profits. Similarly, commercial

rent is lower when the capital price is higher. It is also easy to see that commercial land rent

increases with productivity A.
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2.4.2 City Level Variables

In addition to rents and wages, a city, in this model, is characterized by its total factor produc-

tivity, its population, its physical size, and the total amount of capital it rents.

Aggregate Quantities The relationships between wages, aggregate capital, and population

are derived from the first order condition of firms. Since firms are identical, equations (10)-(12)

hold for each firm. Thus at the city level we have:

N

S
=

1− σ − ξ
σ

× pc
w
, (15)

N

K
=

1− σ − ξ
ξ

× r

w
, (16)

The above quantities are derived from the firms’ optimization problem and thus reflect the

number of workers per unit of land and per unit of capital demanded by firms. Capital is

elastically supplied at a fixed cost, so its price and aggregate quantity is determined completely

by the firm’s demands. Labor is also elastically supplied, but at an exogenous reservation utility

level rather than an exogenous wage rate. Because rents and transportation costs increase as

the city grows, the wage rate must increase as the supply of labor grows. For a given rent

gradient and wage rate we can determine the amount of land consumed per worker in location

j, h(j), from equation (8). Since there 1 − Λ units of developable land at each location, the

number of residents per location is (1 − Λ)/h(j). Integrating over all locations, we derive the

total number of workers in the city as a function of the wage rate and the rent gradient:

N =

∫ J

j=0

1− Λ

h(j)
dj =

∫ J

j=0

(1− Λ)pr(j)

θwe−f(j,N)
dj (17)

Since the right hand side of this equation, the number of workers at each location, is deter-

mined in part by congestion, as expressed by the transportation cost function f(j,N), N is on

both sides of the equation. Hence, N must be solved as the fixed point that satisfies both sides

of the equation. As we will show, for any given wage rate, the above equation implies a unique

population, i.e. a unique fixed point.

The equilibrium quantity of residential land is uniquely determined by J , the distance from

the city’s border and the CBD. Equating the residential bid-rent function at location J and the

exogenous agricultural p, the equilibrium boundary satisfies:

p = pr(j=J) = B0

[
we−f(J,N)

]1/θ
, (18)

which is equivalent to f(J,N) = log(w)− θlog
(

p

B0

)
. Using the explicit form of transportation

cost function, we obtain

J =
log(w) + θlog

(
B0

p

)
− β0

β1 + β2N
(19)
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City Level TFP While individual firms take the city TFP as given, the equilibrium TFP is

determined endogenously as a function of the population. We assume the production externality

takes the following form:

A = ÃNλ (20)

where Ã is the exogenous productivity of a city, and λ is the agglomeration parameter that

determines to what extent the city TFP increases with total number of employment in the city.

Table 1 lists parameters of the model along with some key variables.

Table 1: Parameters and Some Key Variables

λ agglomeration effect

ξ capital share in production

σ land share in production

θ land share in preference

Ã exogenous productivity

f(j,N) transportation cost, f(j,N) = β0 + β1j + β2jN

β1 distance gradient of f(j,N)

β2 congestion effect or population gradient of f(j,N)

Λ fraction of unusable land in each residential location

S CBD size

J city boundary

u reservation utility

B0

(
(1−θ)1−θθθ

u

)1/θ

2.4.3 General Equilibrium

With the rental price of capital exogenously given, we need to determine three equilibrium

prices: {pr, pc, w}. As given in equation (13), residential land rent in each location is pinned

down by pr, the rent at location j = 0, and transportation costs. These variables, along

with {N,K, J,A}, represent the seven endogenous variables that are determined by the seven

equations, i.e. equations (13)-(20). In Appendix A.1 we show that given any {w,N} pair, each

of the remaining endogenous variables is uniquely determined and the system of seven equations

can be reduced to the following two equations that describe wages and population:

log(N) =
1

λ− σ
log

(
rξ

Ãξξ(1− σ − ξ)1−ξSσ

)
+

1− ξ
λ− σ

log(w) (21)

log(N) = log

(
(1− Λ)B0

θ

)
+

1− θ
θ

log(w) + log

(∫ J

0

e−
1−θ
θ
f(j,N)dj

)
(22)
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Equation (21) is the aggregate labor demand equation, which describes total labor demand

in a city when the commercial land market is in equilibrium and the agglomeration effect is

taken into account.5 Obviously the equation represents a linear relationship between log(w)

and log(N).

Equation (22) is the aggregate labor supply equation. For a given wage, it describes the

number of workers that are housed in the city when the residential land market clears.6. As we

show in Appendix A.2, the equation represents a non-linear relationship between log(w) and

log(N). Its slope converges to infinity as population tends toward zero, and the slope converges

to 1−θ
2θ

as population tends toward infinity.

It is noteworthy that the slope of equation (22) is smaller when the transportation cost is

larger. To see this, we define the following function :

F =
θ

1− θ

(
1− e−

1−θ
θ

(β1+β2N)J
)(β1 + 2β2N

β1 + β2N

)
(23)

Here F is a transformation of transportation costs between the CBD and the periphery. It is

increasing in both N and J since both parenthesized terms in equation (23) are increasing in

N and J . F converges to zero as N and J tend toward zeros. As N tends toward infinity, the

limit of F is limN→∞ F = 2θ
1−θ . When N and J are not too large, it is well approximated by

F ≈ (β1 + 2β2N)J

It is easy to verify the following relationship between the slope of equation (22) and the

transportation cost:
dlog(N)

dlog(w)
=

1

F
. (24)

Therefore, the slope is large when the transportation cost is small, and a small increase in wage

will enable the city to accommodate a lot more population. When the transportation cost gets

large, the slope becomes smaller and the city needs to increases the wage to a larger extent in

order to accommodate additional population.

Obviously F becomes a constant and equation (22) represents a linear relationship provided

that (i) β2 = 0, i.e., higher population does not cause transportation congestion and (ii) J is

exogenously specified. Under these conditions, our model is a special case of Lucas and Rossi-

Hansberg (2002), and it has a unique equilibrium as both the aggregate demand function and

aggregate supply function are linear functions.

However, the equilibrium is not necessarily unique in our more general setting that allows

the physical size of the city to be endogenous and assumes that rising population causes more

5Our “aggregate labor supply function” and “aggregate labor demand function” correspond to the “popula-

tion supply function” and “population demand function” in Fujita (1989).
6The upper bound of integral in equation (22) is the city boundary J which is also a function of wage and

population as shown in equation (19)
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congestion. Figure 1 illustrates three possibilities.7 The first panel illustrates a case where

the agglomeration effect is relatively weak and there is a unique equilibrium. As illustrated in

the second panel, when the agglomeration effect is stronger, there can be two equilibria. In

the small city equilibrium firms are less productive and thus pay lower wages, but workers are

able to achieve their reservation utility levels because rents and congestion are lower in smaller

cities. In this case with multiple equilibria, workers in small and large cities achieve the same

reservation utility and firms all make zero profits. However, landlords make more money in

large cities. Finally, the third panel illustrates the case where the agglomeration externality

is very high. In this case, we still get a small city equilibrium. However, a sufficiently large

city will generate a level of utility for workers that is greater and the level of utility will grow

without bounds as the size of the city increases.

Figure 1: Equilibrium

 
 
 
 
 
 
 

log(N) 

log(w) 

aggregate labor demand 

aggregate labor supply 

(a) σ > λ

 
 

log(N) 

log(w) 

aggregate labor demand 

 
aggregate labor supply 

(b) σ < λ < σ + (1− ξ) 2θ
1−θ

 
 

log(N) 

log(w) 

aggregate labor supply 

 
aggregate labor demand 

(c) λ ≥ σ + (1− ξ) 2θ
1−θ

Note: The number of equilibrium (equilibria) is determined by the slopes of aggregate labor supply curve and aggregate

labor demand curve.

These three possibilities are summarized in the following Proposition. The formal proof is

given in Appendix A.2.

Proposition 1 Given the exogenous transportation function f(j,N) and the exogenous levels

of reservation utility u, productivity Ã, rental rate of capital r, and CBD size S, the model

1. has a unique equilibrium if λ < σ ;

2. has two equilibria if σ < λ < σ + (1− ξ) 2θ
1−θ .

3. has two possibilities: (i) an equilibrium with a small population, and (ii) a situation where

there is no steady-state, and the size of the city explodes, if λ > σ + (1− ξ) 2θ
1−θ .

7We deviate from the convention of using the vertical axis for prices for the sake of simpler mathematical

expression in the equations.
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In our analysis below, we impose regularity conditions that rule out some perverse outcomes.

First of all, we assume λ < σ + (1− ξ) 2θ
1−θ , thereby rule out the explosive city as illustrated in

panel (c) of the above figure.

Second, for the case of λ > σ, the condition dlog(N)
dlog(w)

< 1−ξ
λ−σ is imposed. This rules out the

small city equilibrium when the equilibrium is not unique, because it guarantees the aggregate

labor supply curve is flatter than aggregate labor demand curve at the point they intersect.

Note that the small city equilibrium is not stable. Starting from this equilibrium, a positive

productivity shock causes firms to hire more workers and pay higher wage, and the migration of

more workers lead to even higher productivity. This feedback loop continues until the economy

reaches the large city equilibrium in panel (b) of figure 1, and it continues indefinitely in panel

(c).

The two regularity conditions to be used in the rest of the paper is summarized below:

λ < σ + (1− ξ) 2θ

1− θ
(25)

1

F
<

1− ξ
λ− σ

,when λ > σ. (26)

Focusing on the large city stable equilibrium, we get the following corollary, which describes

how the population of the city is affected by the exogenous specification of the size of the CBD,

the productivity Ã, and the proportion of the land in the city that can be developed:

Corollary 1.1 In a non-explosive equilibrium,

1. both the wage rate and population increase with the CBD size S;

2. population decreases with the share of undevelopable land; wage decreases (increases) with

the share of undevelopable land if λ > σ (λ < σ).

Item 1 the corollary is easily seen from equation (21) and figure 1: the larger S is reflected in

the rightward shift of the aggregate labor demand curve, leadings to a larger population and a

higher wage. For item 2, notice that more undevelopable land is reflected in the rightward shift

of the aggregate labor supply curve, which leads to a smaller population and a lower (higher)

wage if λ > σ (λ < σ). Intuitively, cities will have larger populations when there is more land

available for both the commercial and residential sectors.

3 Comparative Statics

This subsection examines how land rent, wages and population are affected by exogenous pro-

ductivity changes. Specifically, we will analyze what we refer to as productivity elasticities,
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defined as the rate of change of an endogenous variable in response to an exogenous productiv-

ity shock. We will pay particular attention to how these elasticities are affected by alternative

city structures, like the transportation technology and exogenous restrictions on development.

We use ζw = dw/w

dÃ/Ã
, ζN = dN/N

dÃ/Ã
, and ζpc = dpc/pc

dÃ/Ã
and ζpr(j) = dpr(j)/pr(j)

dÃ/Ã
to denote the

productivity elasticity of wage, population, the commercial land rent and the residential land

rent in location j respectively. These elasticities, which are essentially comparative statics

between two steady states, provide intuition about the volatility of these variables. In section 5,

we simulate a multi-period version of this model with i.i.d. shocks to the exogenous part of

TFP. There the volatilities of the endogenous variables are directly analogous to the elasticities

we derive describe in this section.

3.1 The Elasticity of the Wage, Population and City Boundary

We will start by examining the elasticity of the wage rate and the population. As discussed

by Glaeser et al. (2006) and others, a positive shock to productivity is likely to result in a

large increase in population and a small increase in wages in a city that can easily expand

and a small increase in population and a large increase in wages in a city whose growth is

constrained. In our model, the size of the city is not explicitly constrained, but workers bear

higher transportation costs when the population increases, and these costs effectively constrain

the size of the city.

To explore the tradeoff between population growth and wage growth in our model, we

differentiate the aggregate labor supply function (equation 22) with respect to the productivity

shock, log(Ã), to obtain the following relationship between the elasticity of the wage rate and

the elasticity of the population.8

ζw
ζN

= F (27)

The above equation, where F is defined in equation (23), indicates that a productivity shock

affects wages relatively more than population when the cost of traveling between the CBD and

the boundary is higher.

By differentiating equation (21), the aggregate labor demand equation, with respect to Ã,

we obtain

ζN = − 1

λ− σ
+

1− ξ
λ− σ

ζw. (28)

The above equation, together with equation (27), leads to the following expression for the

elasticity of population:

ζN =
1

−λ+ σ + (1− ξ)F
(29)

8Equation (27) can also be easily derived from equation (24).
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Since we have ruled out the small city equilibrium using inequality (26), the denominator in

the above equation is positive, which implies that ζN > 0. Given the relation between ζw and

ζN in equation (27), ζN > 0 implies that ζw > 0. Therefore, both population and the wage rate

increase (decrease) in response to a positive (negative) change in the exogenous productivity

parameter Ã.

We also study how the city boundary responds to a productivity shock. It seems intuitive

that shocks that increase population are likely to increase the physical size of a city, but as

we show, this is not always the case. From the equation J =
log(w)+θlog(B0/p)−β0

β1+β2N
(equation 19),

we see that a positive productivity shock affects the city boundary through two channels: (i)

congestion costs increase as population increases, which increases the transportation costs of

living far from the CBD; and (ii) a higher wage allows workers to spend more on transportation

from the periphery, while keeping their utility at the reservation utility level. As shown in

Appendix A.3, the derivative of log(J) with respect to log(Ã) which is elasticity of city boundary

with respect to Ã is

ζJ =
F − β2JN

(β1 + β2N)J
ζN (30)

Therefore ζJ > 0, i.e., increased productivity expands the size of the city, if and only if

F − β2JN > 0, (31)

for which a sufficient condition is

(β1 + 2β2N)J <
2θ

1− θ
(32)

See Appendix A.3 for the proof.9

It follows that when transportation costs, as captured by the left-side of inequality (32),

are low relative to workers’ preference for land (θ), a positive productivity shock causes the

boundary of the city to expand. However, when transportation costs are relatively high and

workers’ preference for land is relatively low, condition (31) does not hold, and a positive pro-

ductivity shock causes the city boundary to contract despite the rising population. Intuitively,

if the growth in population leads to very high congestion costs, and if workers do not have

a strong preference for land consumption (i.e. θ is small), then workers will respond to the

worse congestion by moving closer to the CBD, decreasing the area of the city and increasing

its density.

We summarize the above results in the following proposition.

Proposition 2 Given a positive (negative) productivity shock,

9Recall that F is bounded above by 2θ/(1− θ) thus it might be smaller than β2JN which is unbounded.

15



• the population and the wage rate always rise (declines),

• the city boundary J expands (contracts) if and only if condition (31) holds.

In the simulations that we describe in Section 5, we find that condition (31) is satisfied

under what we consider reasonable parameter values.10 Based on this, we simplify the following

analysis by assuming that these conditions are satisfied, implying that we focus only on cities

that expand geographically in response to a positive productivity shock.

3.2 Elasticity of Residential Land

We now turn to the elasticity of land rent, the main focus of this paper. From the residential

bid-rent function (equation 13), we derive the following equation,

ζpr(j) =
1

θ
ζw −

β2jN

θ
ζN . (33)

which shows that residential land rent elasticity increases with ζw but decreases with ζN . In

other words, a positive productivity shock leads to an increase in the wage rate, which has the

effect of increasing rent. However, the increase in productivity also increases population, and

thus congestion, which at least partially offsets the advantage of the higher wage.

Using equations (27) and (29) to substitute out ζw and ζN in (33), we derive the following

expression for the elasticity of residential land rent:

ζpr =
1

θ
× F − β2jN

−λ+ σ + (1− ξ)F
(34)

where the denominator is positive since we rule out the small city equilibrium, and the

numerator is positive since we assume condition (31) always holds. Under these conditions,

ζpr > 0, which means that a positive (negative) productivity shock causes land rent to rise

(fall) in every location in the city.11

A few points are clear from this equation. First, ζpr increases with λ, which means that land

rent is more sensitive to productivity shocks in cities with stronger agglomeration externalities.

This again reflects the fact that agglomeration externalities amplify productivity shocks. Sec-

ond, ζpr increases with ξ, the share of capital in the production function, but ζpr decreases with

σ, the share of land. What this means is that if land is used less as a production input, its value

10In the simulation exercise in Section 5, our calibration leads to (β1 + 2β2N)J ≈ 0.15 and 2θ
1−θ ≈ 0.86.

11While the above result is intuitive, it should be stressed that there are conditions under which rents in some

parts of the city decline as the population increases. Indeed, in cases where the area of the city declines as

the population increases, rents near the boundary of the city will decline in response to positive productivity

shocks.
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is more sensitive to productivity shocks. This is intuitive: since the supply of commercial land

is fixed, and capital is elastically supplied, the value associated with an increase in productivity

is captured by the land holders. Hence, if very little land is needed in the production process,

the value of land, per unit, will increase more when productivity increases. As we will show in

Section 4, in the case where capital is also in fixed supply, ζpr decreases with both ξ and σ, i.e.,

land rent elasticity is dampened when capital is less important in the production process.

Equation (34) also shows that land rent elasticity is location-specific. Close-in locations are

more sensitive to productivity shocks than farther-out locations. This is due to our assumption

that farther-out locations are more affected by congestion. Indeed, land rent elasticity is the

same in each location if the congestion has the same effect on commuting times in each location.

Specifically, given the alternative transportation cost function of f(j,N) = β0 + β1j + β2N , we

have

ζp?r =
1

θ
× F ? − β2N

−λ+ σ + (1− ξ)F ?
(35)

which is not location specific. Appendix A.4 provides the proof as well as the expression of F ?

as a function of total population and city boundary.

Determining the relation between transportation technology and the land rent elasticity

in equation (33) is less straightforward since the transportation cost F shows up in both the

denominator and the numerator. By taking the partial derivative of ζpr with respect to F , we

can show that land rent elasticity decreases with F if and only if λ− σ > (1− ξ)β2jN .

Land rent elasticity also depends on city population. There are two reasons for this. As

equation (33) shows, since larger cities are more sensitive to increased congestion, land rent is

more sensitive to increased population, as captured by the term β2jN . In this channel the effect

of population on land rent elasticity is location-specific. There is a second channel: a larger

population implies a larger transportation cost F . As just discussed, the effect of the second

channel depends on how large the agglomeration effect is. For cities with strong agglomeration,

both channels predict that a larger population leads to a smaller land rent elasticity. For cities

where the agglomeration effect is below certain threshold, we can show that a larger population

leads to the larger land rent elasticity. The formal proof is presented in Appendix B.1.

We summarize our analysis of how residential land rent elasticities are influenced by city

characteristics in the following proposition:

Proposition 3 In the benchmark model, residential land rent elasticity is

1. always positive.

2. increasing in λ and ξ but decreasing in σ in each location.

3. decreasing in distance to the CBD.
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4. decreasing in F if λ− σ > (1− ξ)β2jN ; and increasing otherwise.

5. decreasing in N if λ− σ > −χ; and increasing otherwise.

where χ =
F− dF

dlog(N)
dF

dlog(N)
−β2jN

(1 − ξ)β2jN ≈ (1−ξ)β1j
2−j/J .12 Note that residential land rent elasticity is

more likely to decrease with N than to decrease with F , since the former requires λ− σ > −χ
which is a much less strong condition than λ− σ > (1− ξ)β2jN , the condition for the latter.

It should be noted that the term λ − σ plays an important role in item 4-5 in the above

proposition. The agglomeration parameter, λ, and σ, the parameter that represents the im-

portance of land in the production function, have offsetting effects when population grows.

Specifically, λ determines the extent to which productivity per worker increases when popula-

tion increases, while σ determines the extent to which productivity per worker falls due to the

reduced amount of commercial land per worker. In our model, λ− σ determines the net effect

of these two offsetting forces on productivity per worker, and hence captures the magnitude of

the net agglomeration externality.

We also study how S, the size of the CBD, affects land rent elasticity. It is noteworthy that

S does not show up in equation (34), so it affects rent elasticity indirectly through its effect on

the transportation cost parameter F and population N . A larger CBD clearly leads to more

population and higher wage as stated in Corollary 1.1, and in addition, we can show that a

larger CBD causes the city boundary to expand.Therefore, a larger CBD unequivocally leads

to higher transportation cost F , and thus affects the rent elasticity as shown in the following

corollary.

Corollary 3.1 Residential land rent elasticity is decreasing in the CBD size if λ − σ > (1 −
ξ)β2jN ; and increasing otherwise.

See Appendix B.3 for a proof.

The last parameter that we shall explore is Λ, the fraction of residential land that is un-

developable. Like the CBD size S, Λ does not show up in Equation (34), indicating that it

does not have a direct effect on land rent elasticity once we control for other exogenous and

endogenous city characteristics. However, Λ does effect the population N of the city as well

as its geographic size, as captured by J , and through these channels, Λ affects transportation

costs and thus indirectly affects the land rent elasticity.

To understand this, consider two cities with the same population, but with different levels

of Λ. The high Λ city will have a larger overall area, i.e., J , the distance from the CBD

12Since F = dlog(w)
dlog(N) , the term dF

dlog(N) in χ is equivalent to dlog(w)
d2log(N) , i.e. the second derivative of the inverse

aggregate labor supply function. When F is not too large, F ≈ (β1 + 2β2N)J is an accurate approximation as

given in equation (23), thus dF
dlog(N) ≈ 2β2JN and χ ≈ β1J+2β2JN−2β2JN

2β2JN−β2jN
(1− ξ)β2jN ≈ (1−ξ)β1j

2−j/J . Derivation of

the threshold χ is in Appendix B.1.
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to the periphery will be larger. To see this, first note that for the high Λ city to have the

same population, it must either have a higher productivity Ã or a larger CBD, which in turn

implies a higher wage, as indicated in the Corollary to Proposition 1. Next, recall that the city

boundary is determined by equation (19) which shows that, given the same population, the

higher wage city has a larger J . Since the high Λ city has a larger J but the same population

as the unconstrained city, it has a larger transportation cost F . From the third point of

Proposition 3, we conclude that cities with more undevelopable land have lower residential land

rent elasticities if and only λ− σ > (1− ξ)β2jN

We also study the effect of undevelopable land on the city’s boundary J . In Appendix B.3

we prove that the following derivative,

dJ

dΛ
=

ΛdN
dΛ

(1− ξ)(β1 + β2N)
[λ− σ − (1− ξ)β2JN ] (36)

is positive if and only if λ − σ < (1 − ξ)β2JN . In other words, Λ can either increase or de-

crease J depending on the magnitude of other parameters. To understand this, it should be

noted that population is decreasing in undevelopable residential land. The magnitude of the

reduction in population depends on the agglomeration externalities; when these externalities

are strong, the reduction in population is amplified. If Λ has only a modest effect on popula-

tion, then the boundary will expand, since for a given boundary, there is less residential land

available. However, if population declines significantly when Λ increases, the boundary can

actually contract.

We summarize these properties related to undevelopable land in the following proposition.

Proposition 4 Among cities with more undevelopable land (i.e. larger Λ)

1. have lower residential land rent elasticities if and only if λ− σ > (1− ξ)β2jN , given the

same population.

2. have a larger geographical size if and only if λ− σ < (1− ξ)β2JN .

3.3 Elasticity of Commercial Land

Substituting A = ÃNλ into the commercial bid-rent function, we have

pc =

[
Ãσσξξ(1− σ − ξ)1−σ−ξ

rξw1−σ−ξ

] 1
σ

N
λ
σ (37)

Differentiating the above equation with respect to Ã, we obtain the following expression for
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the elasticity of commercial land rent:

ζpc =
1

σ
+
λ

σ
ζN −

1− σ − ξ
σ

ζw

=
1 + F

−λ+ σ + (1− ξ)F
(38)

where we have used equations (27)-(28) to substitute out ζw and ζN .

We are interested in how ζpc changes with the agglomeration externality, transportation

costs, and capital and land share in the production function. The following proposition follows

from equation (38).13

Proposition 5 In the benchmark model, the elasticity of commercial land rent is

1. increasing in λ and ξ but decreasing in σ,

2. decreasing in transportation cost F .

The above proposition indicates that the elasticity of commercial land rent has similar

properties as residential land, except that it always decreases with transportation cost parameter

F .

As shown previously, higher transportation costs lead to higher wages, which in turn causes

commercial land rent to fall. As discussed earlier, a larger share of undevelopable land, Λ, leads

to higher transportation costs, F , among cities with the same population. The increase in F

will in turn lower commercial land rent elasticity as indicated in Proposition 5. In addition, it

is straightforward to show that a larger CBD size S always increases both the physical size and

population of a city and leads to higher transportation cost F , and hence, lower commercial

land rent elasticity. We summarize these results in the following corollary.

Corollary 5.1 Commercial land rent elasticity ζpc is

1. decreasing in Λ, given the same population.

2. decreasing in the pre-specified CBD size S.

3.4 Discussion

As we mentioned in the introduction, we are not the first to ask how the configuration of

an urban environment affects how land prices respond to shocks to either the productivity

or amenities of a city. For example, Glaeser et al. (2006) and Saiz (2010) talk in terms of

the elasticity of housing supply, and provide models where housing supply is more elastic will

13The derivative of ζpc to F is −λ−(1−σ−ξ)
[−λ+σ+(1−ξ)F ]2 < 0. Thus ζpc always decreases with transportation cost.

20



respond less to shocks to demand. In this subsection we describe how our model relates to

these prior contributions.

The city in our model has a number of characteristics that effectively constrain the amount

of new land that becomes part of the city, and thereby effect the elasticity of supply. Since the

boundary of the city in our model can expand indefinitely, there is no direct constraint; however,

because workers must commute to the CBD, transportation costs effectively constrained the

physical size of the city. If transportation costs are high, the effective cost of adding marginal

land units is higher because new residents on the periphery will be paying higher commut-

ing costs. As in Saiz (2012), the presence of undevelopable land is also relevant, because it

determines how much new developable land is added when the boundary expands.

Our model illustrates that urban characteristics that increase the sensitivity of transporta-

tion costs to the growth in population decrease the sensitivity of population growth to exogenous

productivity shocks, and thus dampen the extent to which agglomeration externalities amplify

those shocks. As a result, and as we show in Proposition 5, the elasticity of commercial land

always decreases with both increases in undevelopable land and increases in transportation

costs. To understand this, first note that firms respond to an exogenous shock to productivity

by hiring more workers, expanding the boundary of the city and thus increasing the commut-

ing costs of workers at the boundary, rents in the interior, and wages. When transport costs

or the portion of land that is undevelopable are higher, the effect of a productivity shock on

both wages and rental rates are higher because in both cases, an increase in population results

in a greater increase in the cost of commuting from the boundary. This in turn implies that

the effect of the productivity shock on firm profits, and thus commercial rents, is dampened.

Supply constraints also reduce the number of new workers that are hired, so the amplification

effect on TFP from the agglomeration effect is also dampened.

Proposition 3 shows that effective supply constraints can have the opposite effect on resi-

dential price elasticities, but this depends on the agglomeration parameter λ. When λ is quite

small, the intuition about commercial rent elasticities can be reversed. Intuitively, the resi-

dential result can be the opposite of the commercial result because the channel that makes

residential rent more expensive increases wages, and thereby reduces the demand for commer-

cial space and thus its rent. Specifically, a shock to productivity has a greater effect on rental

rates when supply constraints are higher because the increased demand for workers, which ex-

pands the boundary of the city, increases commuting costs and thus rents in the interior more

when transport costs are higher. This argument reflects the traditional discussion of how the

elasticity of housing supply affects the sensitivity of the cost of housing to productivity shocks,

e.g., Glaeser et al. (2006).

Let’s now consider the case where λ is quite large. In this case, there are important feedback

effects that arise from the amplification of the exogenous shock that arises because of the

21



agglomeration externalities. Because the magnitude of this feedback effect is influenced by

supply constraints, the relation between supply constraints, like transportation costs, and the

price elasticity can be reversed. In particular, an exogenous shock to productivity may have

less of an effect on land rents when supply is more constrained. Intuitively, this is because the

constraints limit the growth in population, and thus reduce the amount by which the exogenous

shock is amplified.

To summarize, supply constraints have two offsetting effects on ζpr . The first effect, which

is discussed in the existing literature, is that the constraints effectively steepen the land supply

curve, causing land rent to rise more for a given demand change. The second effect, which

our model illustrates, is that constraints dampen the amplification of the agglomeration effect,

effectively suppressing the shift in the demand for land, causing land rent to increase less. When

λ− σ is sufficiently large, the second channel dominates.

Figure 2: City Constraints and Land Rent Elasticity
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Note: The responsiveness of land rent to a positive productivity shock depends on both the

supply elasticity of land and the strength of agglomeration effect.

We illustrate these two effects in Figure 2, which describes the supply and demand curves for

land, and is similar to Figure 1 in Glaeser et al. (2006). Here constrained cities are those with

more land supply constraints, represented by the steeper land supply curve. Unconstrained

cites are similarly defined, represented by the flatter supply curve. Starting from the original

equilibrium (point O), Glaeser et al. (2006) exposits that a positive productivity shock shifts

the land demand curve to the right, crossing the land supply curve at point A for unconstrained

city and point B for constrained city. Thus land rent should rise more in constrained cities.

However, this analysis ignores an important channel: given the same exogenous productivity

shock, the shift of demand curve also depends on whether the city is constrained or not. In

constrained cities, the demand curve shifts to a less extent due to weaker agglomeration. In

Figure 2, after the productivity shock, equilibrium in constrained cities are determined by the
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two thick lines that cross at point B. For unconstrained cities, the new demand curves are

the dashed lines that cross the supply curve at point A1 and A2. Therefore compared with

constrained cities, unconstrained cities may have lower rent (A1 < B) or higher rent (A2 > B),

depending on the strength of the agglomeration effect.

4 Extensions

In this section we extend the benchmark model in three ways: First, in contrast to our bench-

mark model that had a fixed CBD, we consider an extension that allows for a flexible CBD that

can expand and contract as the demand for commercial space increases or decreases. Second,

in contrast to our benchmark model, that assumes that the residential part of the city can be

expanded, we consider an extension that assumes that the city has a fixed boundary. Finally,

in contrast to the benchmark model that assumes that capital can freely migrate in and out

of the city, we consider an extension that assumes that capital in the city is immobile. With

immobile capital, the price of capital, i.e. the interest rate, is endogenously determined.

Our benchmark model and its extensions consider polar extremes, and thus allow us to

better understand the implications of our most important assumptions and the robustness of

our main results. As we show in Appendix C, the main results about how land rent elasticity

depends on city characteristics is largely true in the extended model, with a few exceptions.

The first exception is that when capital is immobile, both ζpc and ζpr decrease with the

capital share in production ξ, which is in contrast to our earlier result that they increase with

ξ in models with mobile capital. Intuitively, this is because immobile capital suppresses city

expansion and contraction, and the suppressing effect is stronger when the capital share in

production is larger. The second exception is that for cities with fixed boundaries, neither ζpc
nor ζpr is affected by the transportation cost F . Intuitively, the fixed boundary itself is a form

of land supply constraint, and it diminishes the effect of the implicit constraint that arises from

the fact that transportation costs increase as the city expands.

Our comparison of the elasticities in the extended models with those in the benchmark

model is described in the following proposition. More details about the extended models and

the proof of the proposition is given in Appendix C

Proposition 6 Relative to the benchmark model, the following is true:

1. fixing the city boundary,

(a) residential land rent elasticity is lower if λ− σ > β2jN(1− ξ) for all j,

(b) commercial land rent elasticity is lower if λ− σ > −(1− ξ).
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2. allowing the CBD to expand and contract, land rent elasticity is higher than the benchmark

model if and only if F < θ
1−θ .

3. assuming immobile capital (i.e. fixing the city-level capital stock), both commercial land

and residential land have lower rent elasticities.

As the above proposition demonstrates, the important linkage between agglomeration exter-

nalities and elasticities continues to hold. Indeed, the central message one gets from comparing

the alternative models is that supply constraints described in our model can reduce or increase

land rent elasticity depending on the strength of agglomeration externalities.

To illustrate this, consider the effect of fixing the city boundary, which is the most direct

land supply constraint. Like constraints we studied earlier, the effect of this constraint depends

on how large the agglomeration parameter is relative to the immobile production factor, i.e.,

land. When λ− σ is large, the land supply constraint suppresses agglomeration externality to

a larger extent and leads to smaller land rent elasticity.

Also consider the effect of having a flexible CBD, which loosens the constraints on com-

mercial land relative to our benchmark model. As we showed in the last section, with a fixed

CBD, the agglomeration externalities are offset by the fact that a growing city has less com-

mercial space available. This constraint on commercial land lowers the marginal productivity

of workers by increasing the ratio of employees to land. When the size of the CBD is flexible,

commercial land expands with increases in productivity, which in turn allows the number of

workers to grow more, thereby increasing the agglomeration externality. This leads to a higher

residential land rent elasticity unless the city has a large transportation cost relative to the

worker’s preference for land, i.e. F > θ
1−θ which indicates that the constraint on expansion

comes mainly from the residential land market. Note that θ
1−θ is much larger than 0.1 based on

most of the empirical studies, so F < θ
1−θ is generally true and CBD flexibility generally leads

to more land rent elasticity. The flexibility of capital plays an identical role. When capital is

fixed, it dampens the agglomeration externality and thus reduces the residential rent elasticity.

5 The Dynamic Model

This section explores a simple dynamic version of the static model we developed in the previous

sections. The dynamic model is solved numerically, and generates rental rate volatilities, serial

correlations, and rent to value ratios that can be compared to actual data on commercial rents

and values from major U.S. cities. As shown in Table 5, based on data from CBRE, a large

commercial broker, the standard deviation of yearly changes in office rents in the CBDs of U.S.

cities average about 12% and first order serial correlations average about 27%. As shown in

Figure 5, rent to value ratios reported by Real Capital Analytics, a real estate data vendor, show
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a large dispersion between the 10th and 90th percentiles for both commercial and residential

real estates. Although we cannot provide formal tests on this limited data set, it is interesting

to note that these variables differ across cities and that rent to value ratios appear to be more

disperse for commercial properties than for multi-family.

Figure 3: Rent to Value Ratios in the Data
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Note: The dispersion of rent to value ratios for apartment buildings and offices buildings.

Data are from Real Capital Analytics.

Our dynamic model assumes that the exogenous productivity parameter Ã follows a random

walk. However, in contrast to the static model, which assumes that the benefits of agglomeration

are realized immediately, the dynamic model assumes that total factor productivity in a city

is a function of last year’s population. We will provide various parameterizations of our model

that we use to conduct simulations that allow us to gauge how quickly the model’s endogenous

variables, e.g., population, rents, and wages, respond to exogenous shocks, and to also measure

the relation between the volatility of these parameters and various city characteristics.

Our simulations focus on two different types of cities. The first type of city is a classic

monocentric city, which we call the “large city”. What we have in mind here is a large city

like New York, which is home to an industry, e.g., finance, that does not require substantial

amounts of land and benefits a lot from agglomeration. The second type of city, which we

call the “small city,” houses an industry that benefits less from agglomeration and requires

somewhat more land per worker. As our simulations reveal, the equilibrium population of the

second type city will be substantially smaller than the first type.14

14It should be emphasized that the relevant population of a city in our model is the number of workers in the
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Table 2: Volatility and Serial Correlation of Commercial Land Rent in the Data

City Serial Corr Volatility City Serial Corr Volatility

Albuquerque 0.2913 0.0813 Miami 0.482 0.0948

Atlanta 0.3179 0.1274 Nashville 0.0967 0.0506

Austin 0.3165 0.2048 New York 0.3905 0.2198

Baltimore 0.2847 0.06 Newark 0.0599 0.095

Boston 0.3088 0.1353 Oakland 0.572 0.1013

Charlotte 0.2251 0.088 Orange County 0.1005 0.0768

Chicago 0.3386 0.0809 Orlando 0.1331 0.0746

Cincinnati 0.0342 0.1776 Philadelphia 0.4067 0.0879

Cleveland 0.18 0.2028 Phoenix -0.0053 0.0695

Columbus 0.2877 0.2546 Portland 0.4336 0.1079

Dallas 0.3988 0.2052 Riverside 0.388 0.0806

DC 0.5857 0.138 Sacramento 0.0233 0.1117

Denver 0.434 0.1104 Salt Lake 0.4636 0.1145

Detroit 0.0896 0.0694 San Diego 0.2705 0.2658

Edison 0.1296 0.0796 San Francisco 0.2895 0.1985

Fort Lauderdale -0.1112 0.0989 San Jose 0.1409 0.1164

Fort Worth 0.2449 0.116 Seattle 0.066 0.1172

Hartford -0.4285 0.2361 St. Louis 0.1593 0.1213

Honolulu 0.1505 0.1088 Stamford 0.1265 0.0743

Houston 0.285 0.1278 Tampa -0.1178 0.0804

Indianapolis 0.2079 0.1209 Trenton 0.4092 0.066

Jacksonville 0.3558 0.1296 Tucson -0.1523 0.0651

Kansas 0.2739 0.0902 Ventura 0.2731 0.0986

LA 0.2335 0.0571 West Palm Beach -0.3991 0.1456

Las Vegas 0.3985 0.1113 Wilmington 0.0418 0.0849

long-island 0.4451 0.1326 Average 0.2143 0.1189

Note: Data on rental rate of office building are from CBRE, ranging between the first quarter of 1988 and the fourth

quarter of 2014. We remove the macroeconomic factors by regressing the raw data on quarter dummies. Volatility

is measured as the standard deviation of logarithm.
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5.1 Calibration

To study the dynamics of land rents, we modify the agglomeration effect in equation (20) as

follows:

At = ÃtN
λ
t−1 (39)

i.e., the agglomeration effect on productivity depends on lagged rather than contemporaneous

city population.

The logarithm of the exogenous element of productivity is assumed to follow a random walk

process:

log Ãt = log Ãt−1 + εt,

εt ∼ N (0, σ2
ε ) (40)

The standard deviation of the productivity shock is set to σε = 0.003, taken from Davis et

al. (2014), and the share of consumer expenditure on land is set to θ = 0.3, consistent with the

estimates in Morris and Ortalo-Magne (2011). The capital share in production is ξ = 0.2.15

These parameter values are listed in the top block of Table 3. In addition, we choose the

values of parameters for reservation utility u, agricultural rent p, and the initial productivity

parameter(Ã) so that the large city has a population of 5 million and a radius of 16 kilometers.

These parameter values are shown in the bottom block of Table 3.

Table 3: Parameter Values

Symbol Definition Value

σε stdev. of productivity shocks 0.003

θ land share in preference 0.3

ξ capital share in production 0.2

u reservation utility 0.118

p agricultural rent (per 100km2) 0.447

Ã initial productivity 2.735

Note: This table shows the parameter values used in quantitative analy-

sis.

For the large city, the parameter of agglomeration is set to λ = 0.08, which is about the

upper-bound bound in Ahlfeldt et al. (2015).16 The share of land in production is σ = 0.05.

city’s CBD. In reality large metropolitan areas, like Dallas-Fort Worth, contain a number of different CBDs,

e.g., downtown Dallas and Fort Worth and Plano. Within the context of our model Dallas-Fort Worth should

be viewed as three (or more) medium size cities rather than one megalopolis. We will leave a more thorough

analysis of the poly-centric cities for future research.
15This is in line with the estimates for service and investment industry in Valentinyi and Herrendorf (2008).
16The Ahlfeldt et al. (2015) estimates come from a structural model that exploits the exogenous variation

from the division and reunification of Berlin.
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The share of undevelopable land is initially set to Λ = 0 and the transportation cost function is

given by equation (41), which represents the costs in a car-based city. We assume that there is

no fixed component in a car based city, but the cost of traveling by car increases with distance,

and because of road congestion, transportation costs increase for any distance as population

grows.

f(j,N |car) = 0.0000 + 0.0018× j + 1.50e−9 × j ×N (41)

f(j,N |rail) = 0.0285 + 0.0017× j + 1.15e−9 × j ×N. (42)

The simulations also consider a rail-based transportation technology with a cost function

given by equation (42). We choose the function parameters that generate the same population

for the rail-based city as its car-based counterpart with the same CBD size and city boundary.

Note that the rail-based transportation cost function has a large fixed component but exhibits

smaller increases with both distance and population.

Given σ = 0.05 and ξ = 0.2, the implied labor share in production is 1 − σ − ξ = 0.75,

which is consistent with the idea that the large city houses an industry in which human capital

plays a large role, and it is higher than the average labor share world-wide documented in

Karabarbounis and Neiman (2014).

5.2 Initial City Configuration

We start by describing the relation between our parameter values and the steady state size and

prices in the cities we study. Using the parameter values given in Table 3 and the transportation

cost functions shown in equation (41), we obtain the city configuration as shown in the first row

of Table 4. Note that although the population, CBD size and radius are effectively engineered

by our choices of u, p and Ã, given these parameters, the model generates wage, commercial land

rent and residential land rents to clear the labor and land markets. We also report residential

density, defined as residents per 100 square meters of residential land in the city.

The second row of Table 4 shows how the city configuration changes when 40% of the

available residential land cannot be developed (the pre-specified CBD size, reservation utility

and agricultural land rent are held constant). Relative to the city where 100% of the residential

land can be developed, the population of the city with undevelopable land declines from 5

million to 3.88 million, and the city radius expands from 16 kilometers to 18.28 kilometers. It

is noteworthy that the reduction in the availability of residential land causes residential rents

to fall slightly, which illustrates our result that when agglomeration externalities are large,

constraints on developable land does not necessarily increase prices. Commercial land rent

falls quite a bit with the introduction of residential supply constraints and wages also decline

because workers are less productive in smaller cities. It should also be noted that because the

more constrained city has a larger radius, residential density actually falls.
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Table 4: Initial City Configuration

Population
(million)

CBD
(km2)

Radius
(km)

Wage pc
(per100m2)

pr
(per100m2)

Density
(pop/100m2)

λ=0.08, σ=0.05 5.00 30 16.00 3.14 3.49 0.73 62.20

Λ = 0.4 3.88 30 18.28 3.11 2.68 0.71 61.66

λ=0.076, σ=0.05 2.50 30 11.70 2.88 1.60 0.56 58.06

λ=0.076, σ=0.15 1.72 30 9.79 2.82 3.73 0.52 57.06

Λ = 0.4 1.58 30 12.09 2.84 3.46 0.53 57.41

Note: Initial city configurations. pc is the commercial land rent in the CBD, and pr is the residential land rent next to the CBD.

Λ = 0.4 denotes the case where 40% of the residential land is undevelopable. Density is the average population density of residential

land, calculated as total population divided by total developable residential land.

The third row of Table 4 considers a city that houses an industry with lower agglomeration

externalities. As we show in Table 4, a small change in λ makes a large difference. Lowering λ

from 0.08 to 0.076 and keeping all other parameters the same, the city population is reduced

by 50%. A snowballing effect is evident: lower λ leads to lower productivity, and hence lower

population, which further reduces productivity.

The fourth row of Table 4 describes a smaller city that is home to an industry that utilizes

more land in its production function. Specifically, we increase the land parameter, σ, from

σ = 0.05 to σ = 0.15. The larger land share implies smaller labor share in production, which

implies the city population is further reduced, which in turn reduces the city radius. In this city,

residential land rent is lower, but because of the increased importance of land in production,

commercial land rent rises considerably. It should be noted that we are considering a case

where the physical size of the CBD is fixed. In a model where the CBD can grow, the physical

size of the CBD could be larger and commercial rents could be lower.

The last row in Table 4 illustrates how the small city changes when 40% of its land is

undevelopable land. As was the case for the large city, the undevelopable land causes population

to fall but radius to expand. In contrast to the larger city that hosts firms that require less

commercial land, the constraint on the supply of residential causes residential land rent to rise.

As we illustrated in Figure 2, this is because the effect from reduced agglomeration is dominated

by the effect of less available residential land. Commercial land rent and population density

fall, but to a less extent compared with the large city.

It should be noted that the individuals in all the cities described in Table 4 enjoy the same

level of utility and the firms in these cities are endowed with the same exogenous productivity

shocks. Yet we see significant cross-city differences in wages and even larger difference in land

rents. This illustrates how cross-city differences in city characteristics, as well as different

productivity shocks, can generate the cross-city house price differences studied in Gyourko et

al. (2013) and Nieuwerburgh and Weill (2010).
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5.3 Volatility

To simulate possible paths the economy may take, we draw one hundred sample paths of

exogenous productivity shocks based on the stochastic process shown in equation (40), each

path consists of one hundred periods (years). Then we feed each exogenous productivity path

into the economy and calculate the resulting endogenous elements of the economy. Using these

simulated economies, we calculate the average volatilities for each urban configuration. The

volatility measure we use is the standard deviation of the logarithm of rents.

5.3.1 Large Cities

Results for the large cities are reported in the first two rows of Table 5. The average volatility of

the exogenous productivity shocks in our simulated samples is 1.122. These shocks are amplified

to create a volatility of total factor productivity of 1.849 in the car-based city and 2.161 in the

rail-based city. Volatilities of all the endogenous variables are larger if the city is rail-based, for

the reasons illustrated in Figure 2. We are particularly interested in the volatility of commercial

land rent, which is about 11% in a car-based city and 15% in a rail-based city, which is roughly

comparable to the average volatility of 12.19% for office rent, which is reported in Table 5.

Table 5: Volatility (std. of logarithm)

λ=0.08, σ=0.05 Productivity
(endogenous)

Wage Population pc pr
j=0

pr
j=5

Baseline (Car) 1.849 1.715 9.564 11.276 5.715 4.780

Rail 2.161 1.847 13.712 15.552 6.158 5.180

Λ = 0.4 (car) 1.869 1.694 10.286 11.977 5.647 4.861

Fix capital (car) 1.354 0.577 3.110 3.686 1.922 1.610

Fix boundary (car) 1.341 1.493 2.944 4.437 4.976 4.679

λ=0.076, σ=0.05

Baseline (car) 2.707 2.059 21.348 23.387 6.863 5.586

λ=0.076, σ=0.15

Baseline (car) 1.840 0.469 9.765 10.233 1.564 1.219

Rail 1.935 0.349 11.044 11.392 1.163 0.908

Λ = 0.4 (car) 1.805 0.512 9.307 9.818 1.708 1.406

Fix capital (car) 1.333 0.300 2.952 3.252 0.999 0.813

Fix boundary (car) 1.293 1.165 2.405 3.570 3.882 3.712

Note: Volatility is measured as the standard deviation of the logarithm. pc and pr denote commercial land rent

and residential land rent, respectively. j = 0 and j = 5 denote residential locations next to the CBD and 5

kilometers from the CBD, respectively. Λ = 0.4 denotes the case where 40% of the land in each residential location

is undevelopable.

In the third row of the table we consider the case where 40% of the land is undevelopable.
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As we showed in the previous table, the city has a lower population and is less dense in this

case. As shown in this table, the presence of undevelopable land increases the volatility of

commercial property, it slightly lowers the volatility of residential property close to the CBD

but slightly increases the volatility of residential property further from the CBD. The modest

changes in volatility reflect two opposing forces. On one hand, undevelopable land leads to a

smaller population and hence reduces congestion, which causes volatility to rise. On the other

hand, undevelopable land constrains supply, which dampens volatility when λ is large relative

to σ as we discussed earlier. Thus the net effect of undevelopable land on land rent volatility

is small.

If capital is immobile, then volatilities are much smaller, as shown in the row labeled “Fix

capital”. Volatilities are also lower when the city has a fixed boundary, which is consistent with

our theoretical prediction that land supply constraints leads to lower land rent elasticity when

the agglomeration effect is strong.

5.3.2 Small Cities

As shown in the middle block of Table 5, the city with slightly lower agglomeration externalities

is substantially more volatile. As mentioned earlier, the smaller agglomeration parameter leads

to very unstable cities, unless land share in production is increased. Therefore we focus on the

low agglomeration city with σ = 0.15. The corresponding volatilities is reported in the bottom

block of Table 5. Clearly, compared with the large city, volatilities of wage and residential

land rent are lower almost by a factor of 4. However, the volatility of commercial land rent is

reduced only slightly, which is partly driven by the larger land share in production.

Note that when λ = 0.076 and σ = 0.15, λ − σ is negative, which means that land supply

constraints should increase residential land rent volatilities as discussed earlier. This is illus-

trated in the last block of Table 5. Compared with car-based transportation, the rail-based

transportation is associated with significantly lower residential rent volatilities because land

supply is less constrained with rail transportation. With undevelopable land and fixed city

boundaries, the city is effectively more constrained, and residential land rent is clearly more

volatile.

5.4 Serial Correlation

As we show in Table 5 the growth rate of commercial property rents exhibit positive serial

correlation that tends to differ from city to city. The growth rate of office rents in major US

cities has an average serial correlation of 27.31, but differs substantially from city to city. In

our model, given our assumption that the agglomeration effect is based on lagged population

in the city, the rise and fall of a city due to productivity shocks are gradual. As a result, the
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Figure 4: Transition
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growth of land rent exhibits persistence even though the productivity shock itself is assumed

to follow a random walk.

Figure 4 plots the transition of the city economy when the city receives a shock of three

standard deviations of the exogenous productivity. Although the shock affects exogenous pro-

ductivity only in the current period, the response of each endogenous variable is persistent

because of the agglomeration effect. The top left panel, which presents the transition of endoge-

nous productivity, shows how feedback from the agglomeration externality leads to persistent

changes in total factor productivity. As the figure shows, the responses of endogenous variables

are larger and more persistent in the benchmark city with a rail transport system. Everything

else equal, a car based city has a smaller and less persistent response.

Using the same sample paths described earlier, we calculate the serial correlations of the

growth rate of land rent. As shown in Table 6, the serial correlation varies considerably with

city characteristics. A comparison of the top block with the bottom block of the table reveals

that the serial correlation is lower in the small city. On average, the serial correlation from our

model is in line with the serial correlation reported in Table 5.

It is interesting to note that land supply constraints, which do not always generate higher

volatilities, generate lower serial correlations in all of the configurations we consider. Intuitively,
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Table 6: Serial Correlation

λ=0.08, σ=0.05 pc pr (j=0) pr (j=5)

Baseline 0.366 0.356 0.357

Rail 0.455 0.432 0.433

Λ=0.4 0.391 0.380 0.381

Fix capital 0.139 0.139 0.139

Fix boundary 0.131 0.131 0.132

λ=0.076, σ=0.15

Baseline 0.357 0.351 0.351

Rail 0.386 0.380 0.379

Λ=0.4 0.345 0.342 0.342

Fix capital 0.126 0.125 0.125

Fix boundary 0.100 0.100 0.100

Note: Cities are car-based unless stated otherwise. pc and pr denote commercial land rent and residential

land rent, respectively. j = 0 and j = 5 denote residential locations next to the CBD and 5 kilometers

from the CBD, respectively. Λ = 0.4 denotes the case where 40% of the land in each residential location is

undevelopable.

land supply constraints dampen serial correlations by reducing the amount that population

responds to an exogenous shock to productivity. If population responds less, the subsequent

increase in total factor productivity is also less. Having a fixed residential boundary has an

especially significant effect on serial correlations as well as volatilities: it lowers the persistence

of residential land rent in location j = 0 from 0.351 to 0.100, but raises the volatility from 1.564

to 3.882.

5.5 Rent to Value Ratio

Rent to value ratios reflects expectations about future rent increases. In this subsection we

explore the extent to which our model can generate the cross-city dispersion in rent to value

ratios observed in the data. To explore the dispersion in rent to value ratios we simulate our

model, for each set of exogenous parameters, by drawing 100 year sample paths of exogenous

productivity Ã as described in subsection 5.3. In the simulations, cities of the same type

are initially identical, but they become increasingly different over time due to the different

realizations of productivity shocks.

We calculate the distributions of rent to value ratios in year 50, dividing the realized year

50 rents by values calculated as the discounted sums of expected rental income from years 51

through 100. The discount rate is assumed to be 4% per year, thus the land rent to value ratio
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is about 0.04 in a steady state.17

Figure 5: Rent to Value Ratios
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Note: Given the initial configuration as shown in the first row of Table 4, we simulation the city

economy for 100 years. This figure shows the distribution of land rent to value ratio in year 50. Note

the cities are car-based and the agglomeration effect is strong.

Figure 5 shows the scatter plot of rent to value ratios in year 50 of simulation for large cities

from the benchmark model. The dispersion of ratios is clearly larger for commercial land –

the minimum and maximum of the rent to value ratio are 0.035 and 0.069, respectively. For

residential land next to the CBD, the difference between the minimum ratio and maximum

ratio is about 0.01, and the difference is somewhat larger for locations close to the CBD.

To summarize the distribution shown in Figure 5, we rank cities by their rent to value ratios

and report the ratio of the 10th percentile city and that of the 90th percentile city. Table 7

shows these statistics. As the first row shows, from the benchmark model the rent to value

ratios of commercial land are 4.01% and 5.27% for the 10th and 90th percentiles respectively.

This amounts to a difference of 1.26% which is 27.32% of the average rent to value ratio, as

reported in the block labeled “Dispersion” in the table. The dispersions are 13.54% and 4.7%

of the mean rent to value ratio for residential land next to the CBD and 5 kilometers away

from the CBD, respectively.

17Numerically we can only sum up the rent stream for finite years, thus the land rent to value ratio is slightly

larger than 0.04 in a steady state. Note that cities have smaller rent to value ratios if they are small in population

in year 50, or if they receive large positive productivity shocks more often between year 50-100, or both.
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Table 7: Land Rent to Value Ratio (%)

10th percentile 90th percentile Dispersion
100×(90th−10th)/mean

λ=0.08, σ=0.05 Lc Lr
(j=0)

Lr
(j=5)

Lc Lr
(j=0)

Lr
(j=5)

Lc Lr
(j=0)

Lr
(j=5)

Baseline 4.01 4.25 4.60 5.27 4.87 4.83 27.32 13.54 4.70

Rail 3.85 4.24 4.60 5.72 4.92 4.86 39.18 14.90 5.41

Λ=0.4 3.91 4.24 4.61 5.40 4.88 4.84 31.98 13.98 4.89

Fix capital 4.36 4.46 4.58 4.74 4.65 4.66 8.24 4.28 1.76

Fix boundary 4.32 4.29 4.59 4.77 4.79 4.84 9.89 11.09 5.16

λ=0.076, σ=0.15

Baseline 4.01 4.48 4.58 5.11 4.64 4.63 24.14 3.49 1.14

Rail 3.95 4.50 4.57 5.17 4.62 4.62 26.75 2.60 0.89

Λ = 0.4 4.04 4.47 4.58 5.09 4.65 4.64 23.08 3.85 1.25

Fix capital 4.39 4.51 4.57 4.72 4.61 4.61 7.25 2.22 0.89

Fix boundary 4.36 4.35 4.59 4.74 4.74 4.78 8.31 8.54 4.19

Note: Land rent to value ratios in term of percentages. Cities are car-based unless stated otherwise. For each

type of city, given the initial configuration, we simulate the city economy for 100 years. We rank cities based on

their land rent to value ratio in year 50, then we reports the average rent to value ratios for the 10th and 90th

percentiles. Cities that collapse are dropped in the calculation.

Among cities with large agglomeration effects, the dispersions between the 10th percentile

and the 90th percentile are larger in rail-based cities than in car-based cities. When cities have

undevelopable residential land (i.e. the case of Λ = 0.4), the dispersion is also larger relative

to the baseline case. This is because cities with undevelopable land have smaller populations,

which allow them to rise and fall to a larger extent. The dispersion in rent to value ratios are

also fairly small in cities with fixed boundaries and fixed capital, since these constraints limit

the amount by which the cities can grow. Table 7 also shows that the dispersion in rent to value

ratios are smaller for the smaller cities with lower agglomeration externalities. In particular,

among small agglomeration cities, rail-based cities have less disperse rent to value ratios than

car-based cities, which is the opposite of the pattern observed in large agglomeration cities.

This is consistent with our theory that transportation cost, as a form of land supply constraint,

leads to more response of residential land rent to productivity shocks when the agglomeration

effect is weak.

Using a sample of 54 major US cities between 2002-2017, we find that the dispersion between

the 10th percentile and the 90th percentile is 27.95% of the mean value for office buildings, and

the dispersion is 33.17% for apartments. Thus our model does generate the larger dispersion

in the rent to value ratios of commercial buildings observed in the data, aside from the extreme

cases of fixed capital and fixed city boundary. But our model generates much smaller dispersion
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in the rent to value ratios of residential land than in the data.

The large dispersion in the rent to value ratio of residential land in the data is likely to

be caused by some missing ingredients in our simple model. For example, our model does not

include consumption externalities, which have been shown to be important.18 Another missing

ingredients in our model is the heterogeneity of workers in terms of skills or human capital

levels. As Gyourko et al. (2013) and other studies show, high human capital workers tend

to sort themselves into superstar cities like New York and San Francisco. Further, these rich

households select to cluster in prime locations of a city (gentrification) as studied in Guerrieri

et al. (2013). Our conjecture is, with the inclusion of heterogeneity workers, the model would

generate larger dispersions in rent to value ratios of residential land, both between cities and

within cities.

6 Conclusion

Although the financial crisis had a number of causes, an important contributor was the percep-

tion that real estate is a relatively low risk investment. This misperception created an overly

levered property sector as well as overly exposed financial institutions, some of which failed.

The model developed in this paper provides a framework for thinking about how the design

of a city and the firms that inhabit it affect the size of the city, its land values and the risk of

its real estate. We start by extending the seminal monocentric urban models in ways that allow

us to more carefully consider how effective constraints on urban growth, like the presence of

undevelopable land and congestion, interact with industrial characteristics, like agglomeration

externalities and the role of land in the firms’ production functions. This static model is then

extended to a dynamic model that we solve numerically. By simulating shocks to the exogenous

element of a city’s productivity, we are able to explore how the structure of the city and its

industrial base affects the volatility of its population and land rents.

Before one takes our numerical analysis too seriously, it should be noted that we made

a number of assumptions to improve tractability, which probably should be relaxed in future

work. Most importantly, the model does not actually include physical buildings, which are both

slow to build and slow to depreciate. Including buildings to our model is likely to dampen the

volatility of land rents if it takes time to construct new buildings. Intuitively, part of benefit of a

productivity shock will be captured by increases in the value of structures that are temporarily

in short supply, which means that less will be captured by increases in the raw land.19 Adding

18Glaeser et al. (2001) is one of the earlier papers that point to the role of cities as centers for consumption as

well as production. Rossi-Hansberg et al. (2010) and Ahlfeldt et al. (2015) estimate how residential externalities

increase with residential density.
19Glaeser and Gyourko (2005) make the point that the slow depreciation of urban buildings slows the decline

of cities that experience negative productivity shocks.
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building structures to a dynamic model like ours is clearly warranted, but it is beyond the scope

of the current paper.20

It should also be noted that although productivity shocks are the sole source of uncertainty

in the model we simulate, our model suggests a number of variables that have a meaningful

influence on urban land values, and many of these are also likely to be stochastic. For example,

we show that the agglomeration externality has a large influence on both population and land

rents. It is likely that in some urban areas with human capital based industries, like the

Bay Area, these agglomeration benefits have increased, increasing both population and land

rents. However, improvements in telecommunication technologies and other innovations can

potentially reduce the relative benefits of physical proximity, thereby lowering agglomeration

externalities and reducing property values. Uncertainty about these technologies is clearly an

important source of real estate risk.

Likewise, our model points to transportation technology as an important source of uncer-

tainty. Indeed, increases in total factor productivity, either from exogenous shocks or from

increases in the benefits of agglomeration, lead to meaningful increases in population and real

estate prices only if the effects are not dampened by transportation costs. Hence, improvements

in rail transit and autonomous driving technologies can potentially have a substantial effect on

both prices and the evolution of uncertainty.

Finally, we should note that since undevelopable land plays an important role in our model,

uncertainty about future zoning decisions is a source of risk. In our model, zoning choices that

increase the amount of residential land that can be developed always increases the value of

commercial land. However, residential land can increase or decrease in value depending on its

location, agglomeration externalities, and congestion effects. Given the conflicting interests of

the various parties, political outcomes that determine future property values are likely to be

difficult to predict.

20Landowners, in such a model have an incentive to wait to build, it might be interesting to develop a model

where the density of the city increases as uncertainty is resolved.
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Appendices

A Equilibrium in the Benchmark Model

The benchmark model has seven endogenous variables {pr, pc, w,N,K, J,A} that are deter-

mined by seven equations: (13), (14), (15), (16), (17), (18), and (20). In this appendix we

show that the seven equation can be reduced into two equations: the aggregate labor supply

equation and aggregate labor demand equation. Then we prove Proposition 1
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A.1 Aggregate Labor Supply/Demand Equations

Aggregate Labor Supply Since we assume each location has 1−Λ unit of land, the clearance

of land market in location j is given by

n(j)h(j) = 1− Λ,

thus the number of workers residing in location j.

n(j) =
1− Λ

h(j)
=

(1− Λ)pr(j)

θwe−f(j,N)

The total number of workers residing in the city is the integral of workers in each location, as

shown in equation (17). Now we substitute out land rent using the residential bid-rent function

to obtain:

N =

∫ J

j=0

(1− Λ)pr(j)

θwe−f(j,N)
dj

=
(1− Λ)B0

θ
w

1−θ
θ

∫ J

0

e−
1−θ
θ
f(j,N)dj (43)

Taking logarithm of the above equation leads to the aggregate labor supply equation which

is equation (22).

Given the transportation cost function f(j,N) = β0 + β1j + β2jN , the transportation

gradient is ∂f(j,N)
∂j

= β1 + β2N , thus the term
∫ J

0
e−

1−θ
θ
f(j,N)dj can be re-written as∫ J

0

e−
1−θ
θ
f(j,N)dj =

∫ J

0

1

−1−θ
θ

∂f(j,N)
∂j

de−
1−θ
θ
f(j,N)

= − θ

(β1 + β2N)(1− θ)

∫ J

0

de−
1−θ
θ
f(j,N)

= − θ

(β1 + β2N)(1− θ)

(
e−

1−θ
θ
f(J,N) − e−

1−θ
θ
f(0,N)

)
=

θ

(β1 + β2N)(1− θ)

(
e−

1−θ
θ
β0 − e−

1−θ
θ
f(J,N)

)
(44)

where we have used f(0, N) = β0.

The city boundary J is endogenously determined by equating its rent with the exogenous

agricultural rent, i.e. pr(J) = p, which is equivalent to B0[we−f(J,N)]1/θ = p using the bid-rent

function. That is

f(J,N) = log(w)− θ
(
log

p

B0

)
(45)

Substituting this boundary condition into equation (44), we obtain:∫ J

0

e−
1−θ
θ
f(j,N)dj =

θ

(β1 + β2N)(1− θ)

(
e−

1−θ
θ
β0 − e−

1−θ
θ

[
log(w)−θ

(
log

p

B0

)])
(46)
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With the above equation, the aggregate labor supply function (equation 22) can be rewritten

into:

log(N) = log

[
(1− Λ)B0

1− θ

]
+

1− θ
θ

log(w)− log(β1 + β2N)

+log

[
e−

1−θ
θ
β0 − e−

1−θ
θ

[
log(w)−θlog

(
p

B0

)]]
(47)

Aggregate Labor Demand In equations (15), total labor input relative to land is deter-

mined by commercial land rent relative to wage. Using the commercial bid-rent function to

substitute out land rent, we obtain:

N

S
=

1− σ − ξ
σ

pc
w

=

[
Aξξ(1− σ − ξ)1−ξ

rξw1−ξ

] 1
σ

(48)

To take the agglomeration into account, we to substitute out A with A = ÃNλ (equation 20),

and re-write equation (48) as

N =

[
rξw1−ξ

Ãξξ(1− σ − ξ)1−ξSσ

] 1
λ−σ

, (49)

Taking logarithm of the above equation leads to equation (21), the aggregate labor demand

function.

Solving Other Variables From {w,N} Once we find the market clearing {w,N}, we can

solve for pr, pc, K, J and A from the residential bid-rent function, commercial bid-rent function,

equation (16), equation (45), and equation (48) respectively.

A.2 Proof of Proposition 1

To prove the proposition, first we show the slope of aggregate labor supply curve is close to

infinity when wage and population are small, implying that transportation costs are near zero,

and a small increase in the wage rate causes a large in-migration of workers. The slope converges

to 1−θ
θ

when wage and population keep growing. Next, we show the aggregate labor demand

curve may have two crossings with the aggregate labor supply curve.

Slope of Aggregate Labor Supply Curve From equation (47), the derivative of log(N)

with respect to log(w) is:

dlog(N)

dlog(w)
= − β2N

β1 + β2N
× dlog(N)

dlog(w)
+

1− θ
θ

1 +
e
− 1−θ

θ

[
log(w)−θlog

(
p

B0

)]

e−
1−θ
θ
f(0,N) − e−

1−θ
θ

[
log(w)−θlog

(
p

B0

)]
 .

41



Therefore

dlog(N)

dlog(w)
=

(
β1 + β2N

β1 + 2β2N

)(
1− θ
θ

)(
e−

1−θ
θ
f(0,N)

e−
1−θ
θ
f(0,N) − e−

1−θ
θ

[
log(w)−θlog

(
p

B0

)]
)

=

(
β1 + β2N

β1 + 2β2N

)(
1− θ
θ

)(
e−

1−θ
θ
f(0,N)

e−
1−θ
θ
f(0,N) − e− 1−θ

θ
f(J,N)

)
(50)

=
1

F

where the definition of F is given in equation (24). Here we have used f(J,N) = log(w) −
θ
(
log

p

B0

)
, which is equation (45). Equation (50) indicates:

1. When log(N) and log(w) are small, distance from the CBD to the boundary J is near

zero, thus the slope given by equation (50) converges to infinity as the term e−
1−θ
θ
f(J,N)

converges to e−
1−θ
θ
f(0,N), and β1+β2N

β1+2β2N
converges to one.

2. When log(N) and log(w) approaches infinity, the slope given by equation (50) converges

to 1−θ
2θ

because the term e−
1−θ
θ
f(J,N) converges to zero and the term β1+β2N

β1+2β2N
converges to

2 as N converges to infinity.

In conclusion, the aggregate labor supply function is an increasing function that is concave

downward.

Aggregate Labor Demand Curve and the Number of Equilibrium (Equilibria) The

slope of aggregate labor demand curve, as given in equation (21), is 1−ξ
λ−σ . When λ < σ, 1−ξ

λ−σ < 0

and the curve is downward sloping. Clearly the curve crosses the aggregate labor supply curve

once, and the equilibrium is unique.

If λ > σ, then the aggregate labor demand curve is upward sloping. It crosses the aggregate

labor supply curve at least once since the latter has a near-infinity slope when wage and pop-

ulation are small. If λ is not large, then the slope 1−ξ
λ−σ is larger than 2θ

1−θ which is the slope of

aggregate labor demand curve when wage and population are large. In this case, the two curve

will cross twice, leading to two equilibria.

Thus the necessary and sufficient condition for the existence of two equilibria is that the

aggregate labor demand curve is steeper than the aggregate labor supply curve when wage and

population converge to infinity, i.e. 1−ξ
λ−σ >

2θ
1−θ , which is equivalent to σ < λ < σ + (1− ξ) 2θ

1−θ .

Finally, if

λ > σ + (1− ξ) 2θ

1− θ
,

then the aggregate labor demand curve is flatter than the aggregate labor supply curve, and

the city keeps expanding with population and wage converging to infinity. This is the case we

rule out in the paper.
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A.3 Elasticity of City Boundary to Productivity

First, we derive the elasticity of ζJ as given in equation (30). Using equation (19) and taking

the derivative of J with respect to log(Ã), we obtain

dJ

dlog(Ã)
=

dlog(w)

dlog(Ã)
(β1 + β2N) + β2

dN
dlog(Ã)

(β1 + β2N)J

(β1 + β2N)2

=

dlog(w)

dlog(Ã)
+ β2

dlog(N)

dlog(Ã)
JN

β1 + β2N

=
ζw + ζNβ2JN

β1 + β2N

Therefore,

ζJ =
dlog(J)

dlog(Ã)
=
ζw − β2JNζN
(β1 + β2N)J

=
F − β2JN

(β1 + β2N)J
ζN

where we have used equation (27) to substitute out ζw.

Next, we show that F − β2JN > 0 if the following is true:

(β1 + 2β2N)J <
2θ

1− θ
which is condition (32) in the main body of the paper. From Taylor expansion, it is true that

1− e−x > x− x2

2
for x > 0, thus we have the following:

F =
θ

1− θ

(
1− e−

1−θ
θ

(β1+β2N)J
)(β1 + 2β2N

β1 + β2N

)
>

θ

1− θ

[
1− θ
θ

(β1 + β2N)J − 1

2

(
1− θ
θ

)2

(β1 + β2N)2J2

](
β1 + 2β2N

β1 + β2N

)
= (β1 + 2β2N)J − 1− θ

2θ
(β1 + β2N)(β1 + 2β2N)J2

> (β1 + 2β2N)J − 1

(β1 + 2β2N)J
(β1 + β2N)(β1 + 2β2N)J2

= β1JN (51)

where we have used −1−θ
2θ

> − 1
(β1+2β2N)J

which follows from condition (32). Thus condition (32)

implies F − β2JN > 0.

A.4 Residential Land Rent Elasticity When Congestion Effect Is

Not Location-Specific

Here we prove equation (35) which is the residential land rent elasticity when the the transporta-

tion cost function is f = β0 +β1j+β2N . That is, if the congestion effect is not location-specific,

then residential land rent elasticity is not location-specific either.
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With the new transportation cost function, we have ∂f(j,N)
∂j

= β1, thus we rewrite equa-

tion (44) as the following:∫ J

0

e−
1−θ
θ
f(j,N)dj =

θ

(1− θ)β1

[
e−

1−θ
θ

(β0+β2N) − e−
1−θ
θ
f(J,N)

]
Substituting this into equation (43), the aggregate supply equation becomes:

log(N) = log

[
(1− Λ)B0

(1− θ)β1

]
+

1− θ
θ

log(w)

+log

[
e−

1−θ
θ

(β0+β2N) − e−
1−θ
θ

[
log(w)−θlog

(
p

B0

)]]
Differentiating both sides of the above equation with respect to log(w), we obtain the following:

dlog(N)

dlog(w)
=

1− θ
θ

+
− (1−θ)β2N

θ
e−

1−θ
θ
f(0,N) dlog(N)

dlog(w)
+ 1−θ

θ
e−

1−θ
θ
f(J,N)

e−
1−θ
θ
f(0,N) − e− 1−θ

θ
f(J,N)

,

which leads to the following slope of the aggregate labor supply curve:

dlog(N)

dlog(w)
=

1−θ
θ

1 + 1−θ
θ
β2N − e−

1−θ
θ
β1J

:=
1

F ?
. (52)

Here F ? is similarly defined as F for the case of location-specific congestion in the benchmark

model. From the above equation, the expression for F ? is

F ? =
θ

1− θ

(
1− e−

1−θ
θ
β1J
)

+ β2N ≈ β1J + β2N (53)

Using equation (52), it is easy to show the following:

ζw
ζN

=
dlog(w)/dlog(Ã)

dlog(N)/dlog(Ã)
=
dlog(w)

dlog(N)
= F ?, (54)

which is the similar to equation (27) for the case of location-specific congestion. Note that the

aggregate labor demand equation is not affected by the new transportation cost function, thus

we substitute equation (54) into equation (28) to obtain:

ζN =
1

−λ+ σ + (1− ξ)F ?
(55)

With the new transportation cost function, df(j,N)

dlog(Ã)
= β2NζN . Thus we obtain the following

by differentiating the residential bid-rent function with respect to log(Ã):

ζp?r =
1

θ
(ζw − β2NζN) (56)

Equations (54)-(56) lead to equation (35).
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B Dependence of Residential Land Rent Elasticity on

Population, CBD Size and Undevelopable Land

This appendix shows how residential land rent elasticity, as given in equation (34), depends on

the city population N , the CBD size S, and the share of undevelopable land Λ.

B.1 City Population

Here we show that the item about how rent elasticity depends on city population in Proposi-

tion 3 is true. From equation (34), the derivative of residential land elasticity to city population

is:

dζpr
dN

=

(
dF
dN
− β2j

)
[−λ+ σ + (1− ξ)F ]− dF

dN
(1− ξ)(F − β2jN)

θ[−λ+ σ + (1− ξ)F ]2

=
(−λ+ σ)

[
dF
dN
− β2j

]
+ (1− ξ)β2j

[
dF
dN
N − F

]
θ[−λ+ σ + (1− ξ)F ]2

=
(−λ+ σ)

[
dF

dlog(N)
− β2jN

]
+ (1− ξ)β2jN

[
dF

dlog(N)
− F

]
θN [−λ+ σ + (1− ξ)F ]2

(57)

Recall that F is the slope of the inverse aggregate labor supply curve, and limN→∞ F = 2θ
1−θ , i.e.

the slope becomes a constant. Thus as N tends toward infinity, we have dF
dlog(N)

→ 0. Therefore,

lim
N→∞

dζpr
dN

=
β2j[λ− σ − (1− ξ)F ]

θ[−λ+ σ + (1− ξ)F ]2
< 0,

since λ − σ < (1 − ξ)F from regularity condition (26). More generally, when N is large such

that dF
dlog(N)

≤ β2jN , we show that dζpr
dN

< 0. To see this, first note that dF
dlog(N)

≤ β2jN implies
dF

dlog(N)
< F since F is larger than β2jN , thus the two bracketed terms in the numerator of

equation (57) are both non-positive, i.e.,
[

dF
dlog(N)

− β2jN
]
≤ 0 and

[
dF

dlog(N)
− F

]
< 0. In the

case of −λ+σ ≥ 0, so clearly dζpr
dN

< 0. In the case of −λ+σ < 0, using the regularity condition

of λ− σ < (1− ξ)F , the numerator of equation (57) becomes

(−λ+ σ)

[
dF

dlog(N)
− β2jN

]
+ (1− ξ)β2jN

[
dF

dlog(N)
− F

]
= (λ− σ)

[
β2jN −

dF

dlog(N)

]
− (1− ξ)β2jN

[
F − dF

dlog(N)

]
< (1− ξ)F

[
β2jN −

dF

dlog(N)

]
− (1− ξ)β2jN

[
F − dF

dlog(N)

]
= −(1− ξ) dF

dlog(N)
(F − β2jN)

< 0,
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hence
dζpr
dN

< 0 when
dF

dlog(N)
≤ β2jN

i.e., as the city population gets exceedingly large, more population always leads to smaller land

rent elasticity.

We focus on the case of dF
dlog(N)

> β2jN , i.e., dF
dlog(N)

− β2jN > 0. From equation (57),
dζpr
dN

< 0 is equivalent to

(−λ+ σ)

[
dF

dlog(N)
− β2jN

]
< (1− ξ)β2jN

[
F − dF

dlog(N)

]
Since

[
dF

dlog(N)
− β2jN

]
, this is equivalent to

λ− σ > −

[
F − dF

dlog(N)

dF
dlog(N)

− β2jN

]
(1− ξ)β2jN := −χ

That is, dζpr
dN

< 0 if and only if λ− σ > −χ.

B.2 CBD Size

B.3 Undevelopable Land

Proof Here we show how the city boundary J changes with S, the size of pre-specified CBD.

We also prove equation (36) which shows how J changes with Λ, the share of undevelopable

land.

C More Details on Extended Models

This Appendix provides more details about the extended model and proves Proposition 6.

C.1 Expandable CBD

In this subsection, we maintain the monocentric city assumption, but allow the CBD size to

be determined by competition between firms and residents for the land at the CBD border.

In this setting, an increase in the exogenous productivity parameter increases the demand for

commercial land, which in turn leads to an increase in the geographic size of the CBD.

C.1.1 Equilibrium CBD Size

Land use competition ensures the equality of residential rent and commercial rent on the border

of the CBD, i.e. pr(j=0) = pc. Substitute out pr=0 and pc using the residential and commercial

46



bid rent functions (equations 13-14) and taking the agglomeration effect into account, this

equality implies the following:

log(S) =
1

λ
log

(
rξ(B0e

−β0/θ)σ−λ

Ãξξσσ−λ(1− σ − ξ)1−σ−ξ+λ

)
+

1− θ
λθ

[
σ − λ+

θ

1− θ
(1− ξ)

]
log(w), (58)

Using (58), we can substitute for S in the aggregate labor demand function (equation 21)

to obtain the following aggregate labor demand equation:

log(N) =
1

λ
log

(
rξ(B0e

−β0/θ)σ

Ãσσξξ(1− σ − ξ)1−σ−ξ

)
+

1

λ

(σ
θ

+ 1− σ − ξ
)
log(w). (59)

Clearly the new aggregate labor demand function is upward sloping unless λ = 0. Therefore

with λ > 0, this extended model always has two equilibria. In contrast, two equilibria arise

in the benchmark model only when the agglomeration effect is strong enough, i.e. λ > σ.

Intuitively, this is because flexible CBD strengthens the agglomeration.

The extended model here shares the same aggregate labor supply function as the benchmark

model (i.e. equation 22), since the function is derived from the partial equilibrium in the

residential land market, and it is not affected by the expandable CBD. As in the benchmark

model, the aggregate labor demand function and aggregate labor supply function determine the

equilibrium wage and population, which in turn determines the other endogenous variables.

As in the benchmark model, the city grows explosively if the slope of aggregate labor demand

curve is flatter than that of aggregate supply curve. We rule this out by imposing the condition

λ < 2σ + (1− ξ) 2θ
1−θ .

C.1.2 Elasticities

Differentiating equation (59) with respect to log(Ã), we obtain obtain:

ζN =
1

λ

(σ
θ

+ 1− σ − ξ
)
ζw −

1

λ
. (60)

This, combined with equation (27), yields the following population elasticity:

ζN =
1(

σ
θ

+ 1− σ − ξ
)
F − λ

(61)

This population elasticity shares some properties as in the benchmark model. It is increasing

in λ and ξ, but decreasing in the land share σ. As in the benchmark model, we rule out the

unstable small city equilibrium by imposing the condition ζN > 0.

Based on equation (27), (33), and (61), the elasticity of land rent is:

ζpr(j) =
1

θ
× F − β2jN(

σ
θ

+ 1− σ − ξ
)
F − λ

(62)
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Compared with the benchmark model, the elasticity in equation (62) is larger if and only

if F < θ
1−θ . Thus everything else equal, land rent is more responsive to a productivity shock if

transportation cost is small relative to the worker’s preference for land. Since θ
1−θ is much larger

than 0.1 based on most of the empirical studies, we take F < θ
1−θ as given in what follows.

We state important properties for cities with expandable CBDs in following proposition.

Proposition 7 When the CBD is flexible, land rent elasticity ζpr(j) is

1. larger than land rent elasticity in the benchmark model in each location provided that

F < θ
1−θ .

2. increasing in λ and ξ but decreasing in σ.

3. decreasing in distance to the CBD.

4. decreasing in F if λ >
(
σ
θ

+ 1− σ − ξ
)
β2jN ; but increasing otherwise.

C.2 Fixed boundary

This subsection considers cities where the city boundary is fixed rather than endogenous. This

new assumption affects the aggregate labor supply function since J in equation (22) is now

exogenous, thus differentiating the equation with respect to Ã yields:

ζw
ζN

=
θ

1− θ
β1 + 2β2N

β1 + β2N
− β2JN

e−
1−θ
θ

(β1J+β2JN) − 1
(63)

≈ θ

1− θ
,

Thus in cities with fixed boundaries, the ratio ζw
ζN

mainly depends on the worker’s preference

for land, while in expandable cities the ratio mainly depends on transportation cost as shown

in equation (27).

We have derived equation (28) from the aggregate labor demand function in the benchmark

model. Combining this with equation (63) to substitute out ζw and ζN in (33), we derive the

following expression for elasticity of land rent in a city with fixed boundaries

ζpr =
1

θ
×

θ
1−θ − β2jN

−λ+ σ + (1− ξ) θ
1−θ

(64)

Using equation (37), the elasticity of commercial land rent is

ζpc =
1

1−θ

−λ+ σ + (1− ξ) θ
1−θ

, (65)
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which indicates that commercial land rent elasticity is independent of transportation cost when

the city has a fixed boundary. Thus given a productivity shock, the land demand effect of poor

transportation (i.e. less demand shift) exactly cancels the land supply effect.

We summarize important comparative statics in the following proposition.

Proposition 8 For cities with fixed boundaries

1. For both residential land and commercial land, rent elasticity is increasing in λ and ξ,

decreasing in σ (same as in the benchmark model).

2. Residential land rent elasticity is decreasing in distance to the CBD (same as in the

benchmark model).

3. Commercial land rent elasticity is not affected by transportation cost (different from the

benchmark model).

4. Compared with the benchmark model:

(a) residential land rent has lower elasticity if λ− σ > β2jN(1− ξ) for all j,

(b) commercial land rent has lower elasticity if λ− σ > −(1− ξ).

where for point (4) we have imposed the condition F < θ
1−θ .

Fixed city boundaries are clearly a form of land supply constraint. As illustrated earlier,

the supply constraint is represented a steeper supply curve, causing land rent to response more

to a productivity shock. However the supply constraint also dampens the agglomeration effect

in production, causing land demand curve to shift less in response to the same productivity

shock. Point (4) of the proposition again indicates that when the agglomeration effect is strong

enough, cities with fixed boundaries have lower land rent elasticity. In addition, for residential

land rent, the positive production externality represented by λ − σ needs to dominate the

negative congestion externality as represented by β2jN(1− ξ).

C.3 Immobile Capital

Thus far we have assumed that capital can flow into and out of the city at zero cost. In this

subsection, we consider the alternative assumption of immobile capital. This is partly motivated

by the observations in Glaeser and Gyourko (2005) that the depreciation of urban buildings are

slow which causes the slow decline of cities that experience negative productivity shocks.
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C.3.1 Endogenous Capital Price

We assume the city has a fixed K̄ stock of capital, and the price of capital r is endogenously

determined by the capital market clearing condition. From the firm’s problem we show that
k
n

= ξ
1−σ−ξ

w
r

(equation 11) for each firm. Aggregating over all the firm we have:

r =
ξ

1− σ − ξ
N

K̄
w (66)

The rental rate of capital rises with productivity. Given the higher productivity, both wage

and total number of workers rise, but K̄ stays the same, thus equation (66) predicts that

r should rise. In other words, due to immobility capital owners share part of the economic

benefits (costs) from the rising (falling) productivity.

C.3.2 Elasticities with Pre-specified CBD

With this endogenous rental rate of capital, we shall substitute out r in the aggregate labor

demand function. For the case of pre-specified CBD, we rewrite equation (21) as:

log(N) =
1

λ− σ − ξ
log

(
1

Ã(1− σ − ξ)K̄ξSσ

)
+

1

λ− σ − ξ
log(w) (67)

Differentiating equation (67) with respect to Ã, we have the following:

ζN =
1− ζw

σ + ξ − λ
(68)

Residential Land: The aggregate labor supply function from the benchmark model is not

affected by capital immobility assumption, because it is derived from the partial equilibrium in

the residential land market. Therefore, equations (27) still holds. Together with equations (68),

it substitutes out ζw and ζN in equation (33) to reach:

ζpr(j) =
1

θ
× F − β2jN

−λ+ σ + ξ + F
(69)

This equation indicated that, when capital is immobile, land rent elasticity decreases with

ξ, the share of capital in production. This is the opposite of the result in the benchmark model.

The contrast is intuitive: when the capital is immobile, a larger ξ imposes more suppression

on production externality, thus less response of land rent to productivity shocks. Compared

with equation (34), it is clear that land rent is less elastic to productivity shocks relative to the

benchmark model.

We have the following proposition:

Proposition 9 If capital is immobile, for cities with pre-specified CBD, residential land rent

elasticity is:
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1. smaller than cities with perfect capital mobility;

2. increasing in λ, and decreasing in σ, ξ, and distance from the CBD;

3. decreasing in transportation cost if λ > σ + ξ + β2jN , and decreasing otherwise

Commercial Land: Using equation (66), we substitute out r in commercial bid-rent function

(equation 37) to obtain:

pc =

[
Ãσσ(1− σ − ξ)1−σK̄ξ

w1−σ

] 1
σ

N
λ−ξ
σ

Thus the elasticity of commercial land rent is

ζpc =
1

σ
+
λ− ξ
σ

ζN −
1− σ
σ

ζw

=
1 + F

−λ+ σ + ξ + F
(70)

Compared with equation (38) in the benchmark model, it is clear that commercial land rent

has lower elasticity when capital is immobile. We summarize important properties of ζpc in the

following proposition.

Proposition 10 If capital is immobile, for cities with pre-specified CBD, the elasticity of com-

mercial land rent ζpc is:

1. increasing in λ, but decreasing in σ, ξ, and transportation cost;

2. independent of the CBD size S and the share of unusable residential land Λ.

3. smaller than cities with perfect capital mobility and CBD segmentation;

C.3.3 Elasticities with Expandable CBD

For the case of flexible CBD segmentation, we rewrite equation (59) as:

log(N) =
1

λ− ξ
log

(
(B0e

−β0/θ)σ

Ãσσξξ(1− σ − ξ)1−σ−ξ

)
+

1

λ− ξ

(σ
θ

+ 1− σ
)
log(w). (71)

Differentiating equation (71) with respect to Ã, we have

ζN = − 1

λ− ξ
+

1

λ− ξ

(σ
θ

+ 1− σ
)
ζw (72)
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Substituting this and equation (27) into (33), we derive the following expression related to the

elasticity of land rent when the CBD is expandable:

ζpr(j) =
1

θ
× F − β2jN(

σ
θ

+ 1− σ
)
F + ξ − λ

(73)

Compared with equation (62) which is for cities with perfect capital mobility, obviously land

rent has lower elasticity here. The following proposition describes the main properties of this

land rent elasticity.

Proposition 11 If capital is immobile, for cities with flexible CBDs, the elasticity of land rent

is

1. smaller than a city with perfect capital mobility;

2. increasing in λ, and decreasing in σ, ξ, and distance from the CBD;

3. decreasing in F if λ > ξ +
(
σ
θ

+ 1− σ
)
β2jN ; but increasing otherwise.
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