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Issue

I Voting is the main avenue in which shareholder preferences are
aggregated.

I Many investors do not have to vote in shareholder meetings (e.g.,
US: mutual funds vs. hedge funds).

I Yet many do. Discretionary participation from our data (i.e., US,
S&P 1500 firms, 2003-2011):

I on average 73%;

I considerable variation between sponsors, proposal types, and firms.

I Does voting participation affect outcomes? And if yes by how much?



What We Do

I Develop a rational choice model where participation depends on the
cost and benefit of voting and the probability that one’s vote
matters (i.e., a pivotal voter model).

I Innovation relative to political voting literature is ownership
heterogeneity (regular vs discretionary voters).

I Then use the structure of the model to estimate unobserved
shareholder preferences from aggregate US voting data.

I Conduct counterfactual analysis relative to the full participation
benchmark and relative to scenarios with different costs of voting.



Model - Setup (I/II)

I Firm with n+ 1 voting shares split between two groups of voters:

I γ (fraction) regular voters, who always vote;
I 1− γ discretionary voters, who choose whether to vote;
I Discretionary voters have a single share and hence a single vote each.

I Proposal is a vote between options R or L:

I Shareholders are born with preference types, R or L;
I So they are ‘partisan’ or in a corporate context: ‘disagree’.

I Voter preference types:
I q of regular voters support R, while (1− q) support L;
I q is fully observed and wlog q ∈ (1/2, 1);
I In discretionary voters R has ex ante popularity p ∈ (0, 1);
I Crux of the model is that p is unknown;
I So model features aggregate uncertainty.



Model - Setup (II/II)

I Discretionary voters decide to participate in voting based on:

I benefit v , which they receive only if their preferred option wins vs

I cost c, which they face when they vote, regardless of the outcome.

I Voters simultaneously and confidentially cast their votes; the
outcome is decided by simple majority over the votes cast; in case of
a tie, a fair coin toss is the tie-breaker.

I All the above are common knowledge. The only choice variable
(strategy) is whether a discretionary voter votes.

I We look for symmetric (pure or mixed) strategies within types (R or
L) and the solution concept is Bayesian Nash Equilibrium.



Model - Analysis

I A focal discretionary voter participates if v Pr[Pivotal|i ] > c , or

Pr[Pivotal|i ] > c/v , for i ∈ {R, L}.

If it is smaller she does not participate, while if it is equal she is
indifferent.

I To solve for the equilibrium we rely on calculations of the pivotal
probabilities for large electorates (i.e., n large) similar to Myatt
(2015).

I Let ti ∈ [0, 1] the discretionary participation rate for voter of type
i ∈ {R, L}.

I Ruling out trivial equilibria (with tL = 0 where R wins) there are 6
possible equilibria to compute tL ∈ {(0, 1), 1}, tR ∈ {0, (0, 1), 1}.



Model - Equilibria

I We derive the parameter regions of the model {γ, v/ (cn) , q, l , h}
where each equilibrium exists, for p ∼ U [l , h] ⊆ [0, 1].

I We also derive the possible outcome under each equilibrium:

Eqm Participation Avg outcome
tL tR L wins Tie R wins

mm (0, 1) (0, 1) X
1m 1 (0, 1) X X
10 1 0 X
11 1 1 X X X
m1 (0, 1) 1 X
m0 (0, 1) 0 X

I In all equilibria:

I ∂tL/∂q ≥ 0. This is the (intergroup) underdog effect.

I ∂tR/∂q ≤ 0. This is the (intergroup) free-riding effect.



Model - Equilibria Regions

We plot the non-overlapping equilibrium regions in the plane:
size of the regular block γ × benefit-cost ratio per voter v/ (cn).
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Data

For 18,520 proposals in all S&P 1500 firms between 2003–2011:

I Aggregate voting data from ISS (excl. director election and routine
proposals);

I Ownership data from 13F form fillings and proxy statements;

I Direction of vote for Form N-PX filers.

Mandatory voting:

I Mutual funds and investment advisors have a fiduciary duty to vote
and report their vote (in the N-PX forms);

I Very few (2%) non-institution blockholders over 5%;

I We use “N-PX filers” as an empirical approximation of “regular
voters”.



Selection Effects in the US Data
I We use the observed in the data:

I regular voter (i.e., N-PX) characteristics (γ, q) and discretionary
support of both types amongst those who vote, let dSuR, dSuL,

to estimate using GMM (with four moment conditions) More on Estimation

I the benefit to cost ratio per voter v/ (cn), the avg and stdev of the
fraction of discretionary voters supporting R p and std(p).

I We find that most proposals correspond to the equilibrium with full
participation by the underdog and partial participation by the other
side (i.e., equilibrium 1m).

I We use the estimated parameters to compare the observed voting
outcomes from the benchmark of the counterfactual under full
participation:

I The more popular choice on avg (i.e., R) receives 21% less support;

I The observed voting decision differs by an average 3.7%;

I The probability of underdog wins is highest for governance related
shr proposals and in general larger for shr than mgmt proposals.



(More) Counterfactuals: Misalignment

I Application: recent regulatory attempts to cut EU cost of voting to
US level (i.e., the Shareholder Rights Directive).

I Effects are non-linear: misalignment has a reverse U-shape in cost.
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(More) Counterfactuals: Distribution of Equilibria

I US level: mostly equilibrium 1m (i.e., turning out to lose on avg).

I Peak probability at 3×US level: the level with the most mm
equilibrium (i.e., where the avg outcome is decided by a coin flip).
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Benefit to Cost Ratio

I We plot the “return” of a proposal (assuming cost $1) by dividing
the benefit to cost ratio estimate by the assumed block size.

I For an avg share holding of $1.5 million (see (Ahern (2015) for
insiders) the “return” is 1.3% (Cuñat et’al (2012) find 1.6%).

I The benefit to cost ratio is highest for mgmt proposals on takeover
defense; smallest for board and governance related shr proposals.
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Estimation Performance

I The algorithm assigns 95% (under the single-stage baseline
specification, 86% under two-stage GMM) of the sample proposals
to an equilibrium.

I Our estimation significantly outperforms models from the previous
literature (e.g., Malenko & Shen (2016)).

I Robust to alternative target moments, use of quantiles.

I Holds in various subsamples (ownership, equity lending
supply/demand, number of proposals per meeting, information
content).
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I Voting participation in political elections: Palfrey & Rosenthal
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Krishna & Morgan (2011,2012), Evren (2012), Myatt (2015).

I Corporate voting theory: Maug & Rydqvist (2008), Levit & Malenko
(2011), Bar-Isaac & Shapiro (2017).

I Empirical work on the importance of shareholder proposals: Cuñat
et al. (2012), Metzger & Bach (2017).

I Empirical work on mutual fund voting (N-PX): Brickley et al.
(1994), Matvos & Ostrovsky (2006), Cvijanović et al. (2015),
Malenko & Shen (2016).

I Empirical work on corporate voting participation: Van der Elst
(2011).

I Recent (theoretical and empirical) work on shareholder
disagreement: Bolton et’al (2018), Li et’al (2019).

I Recent empirical work on retail shareholder voting: Brav et’al
(2019).



Conclusions

I Model that links observed participation rates with unobserved
characteristics of shareholder preferences:

I Free-riding effect: Agreement yields lower participation rates;

I Underdog effect: Disagreement yields higher participation rates.

I Using the model and US data we structurally estimate underlying
shareholder preferences.

I Document large selection effects towards the “underdog”.

I Equilibrium regions that inform counterfactual analysis: three times
the U.S. level cost of voting corresponds to 35% of misalignment
relative to the full participation case.



APPENDIX



Estimation Algorithm I/II

I First, create the bins: we sort our data into quantiles of γ, quantiles
of n, and proposal-types. For each bin we compute: the averages γ

and q; the averages dSuL, dSuR, dSuL2, and dSuR2;

I Second, exhaustive search in the space {v/(cn), p, std(p)} and for
each point in the grid and each possible equilibrium:

i) calculate the interval Γ and ask if γ ∈ Γ, if yes continue, o/w
proceed to the following equilibrium;

ii) if γ ∈ Γ then calculate the interval V and ask if v/ (cn) ∈ V , if yes
continue, o/w proceed to the following equilibrium;

iii) if v/ (cn) ∈ V then calculate tL and tR and create estimates for

dSuLest , dSuRest , dSuL2est , dSuR2
est ;

iv) finally, calculate the estimation error:

Estimation Error =
(
dSuLest − dSuL

)2
+
(
dSuRest − dSuR

)2
+

(
dSuL2est − dSuL2

)2
+
(
dSuR2

est − dSuR2
)2

;

I Third, pick the point in the grid and associated equilibrium that
minimizes the error.



Estimation Algorithm II/II

I Our identifying assumption is that within each bin (i.e., a quintile of
γ, quintile of n, and proposal-type) unobserved {v/(cn), p, std(p)}
are constant and the averages γ, q are representative. Hence,
variation in (discretionary support for R) p across proposals is the
(only) variation that allows us to identify the bin-specific
parameters.

I The algorithm returns a point estimate for v/ (nc) only if in the
estimated equilibrium not both rates are “corner” (i.e., equilibria
mm, m1, m0, 1m). Otherwise (i.e., equilibria 11 and 10), we obtain
a set estimate: {v/ (nc)lower , v/ (nc)upper}.

I Given uniqueness of equilibrium for specific parameter values we can
be certain that no other (estimated) parameter values (within the
grid) and corresponding equilibrium result in lower estimation error
given the observed data.



Delta Method
We compute our standard errors using the Delta Method approach:

I First, we find numerically ∂θi/∂mj , where
θ = [v/ (nc)lower , v/ (nc)upper , p, std(p)],

m = [dSuL, dSuR, dSuL2, dSuR2], so i , j ∈ {1, 2, 3, 4}.

I Second, we estimate the variance-covariance matrix, let S , of the
four errors that we base our estimation on

dSuLest︸ ︷︷ ︸
tL(1−p)

−dSuL, dSuRest︸ ︷︷ ︸
tRp

−dSuR,

dSuL2est︸ ︷︷ ︸
(tLstd(p))

2+(tL(1−p))2

−dSuL2, dSuR2
est︸ ︷︷ ︸

(tR std(p))
2+(tRp)

2

−dSuR2,

where tL, tR , p, std(p) are estimates.

I Third, the variance of our error in estimating parameter θi is

∆i × S × ∆T
i ,

where vector ∆i ≡ [∂θi/∂m1, ∂θi/∂m2, ∂θi/∂m3, ∂θi/∂m4], for
i = {1, 2, 3, 4}.



Misalignment Method
We compute the probability of misalignment per bin as follows:

I Given our estimated p, std(p) we simulate proposals p ∼ U [l , h].
I For each p given our estimated tL, tR for this bin we compute:

I The estimated outcome index under discretionary participation:

Odisc (p) ≡

γq + (1− γ) tRp︸ ︷︷ ︸
support forR

−
γ (1− q) + (1− γ) tL(1− p)︸ ︷︷ ︸

support forL

 .

I The estimated outcome index under full participation is:

Ofull (p) ≡

γq + (1− γ) p︸ ︷︷ ︸
support forR

−
γ (1− q) + (1− γ) (1− p)︸ ︷︷ ︸

support forL

 .

I And whether they differ in their assigned outcome

I (Odisc (p)Ofull (p) ≤ 0) .

I Finally, we average for all p and this gives as a per bin estimate of
P [Odisc (p)Ofull (p) ≤ 0].
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