Introduction

Measure

Data

Measuring Mispricing in the Global Market: A New Perspective

Return

Flow

Conclusion

2019 May, Singapore

Massimo Massa (INSEAD), Gloria Yu (SMU), Hong Zhang (PBCSF)

1

Motivation

Introduction

Measure

Identifying mispricing in the global market

- The core of modern financial theories.
- Essential to practitioners allocating asset globally.
- Highly complex in practice.
- US market:
 - Englberg, McLean and Pontiff (2018) have examined a list of 97 anomalies observed in the U.S. market that could be related to mispricing due to biased expectations.
 - Hou, Xue, and Zhang (2017) compile a database of 447 anomalies.
- Global market:
 - Local vs global factors: Fama and French, 1998; Griffin, 2002; Bekaert, Hodrick and Zhang, 2009; Hou, Karolyi, and Kho (2011).

Return

Data

Flow

A New Perspective

Introduction

Measure

Data

Return

Flow

- From U.S. investors' perspective: is the non-US food producer industry mispriced or not compared to its U.S. counterpart?
- Exploit dual-listings as a benchmark to measure crossmarket mispricing.
- Assume that only one non-US (Japanese) food company ABC has issued both the parent stock traded in the non-US market (Japan) and American Depository Receipts (ADRs) traded in the U.S.,.
 - ABC parent stock and its ADR are probably subject to a similar degree of mispricing thanks to arbitrageurs.

A New Perspective – an example

In Japan: 90% of food stocks is more undervalued than ABC In the US: 20% of food stocks is more undervalued than ABC UnderPricing of the Japanese food industry: 90%-20%=70%

Preview

Introduction

Measure

Data

Return

Flow

- The UnderPricing index positively predicts industry returns at both quarterly and semiannual frequencies.
 - Consistent with the market segmentation argument, we show the differential roles played by foreign and local mutual funds in this sizable return predictability.
 - Dissipation: Foreign mutual funds reshuffle capital into country-industry pairs experiencing undervaluation in the previous period.
 - Formation: Local funds explain the contemporaneous mispricing.

	UnderPricing Measure Construction										
Introduction	 Step one: stock-level mispricing 										
Measure	Follow Rhodes-Kropf et al. 2005 to measure the										
Data	deviation of a firm's market valuation from the one implied by the average industry-quarter specific										
Return	multiples.										
Flow	$log M_{icst} = a_{cst} + \beta 1_{cst} log B_{icst} + \beta 2_{cst} \log(NI)_{icst} + \beta 3_{cst} \log(NI^{+})_{icst} + \beta 4_{cst} \log(NI)_{icst} + \beta 4_{cst} \log(NI^{+})_{icst} + \beta 4_{cst} \log(NI)_{icst} + \beta 4_{cst} \log$										
Conclusion	$p_{cst} < 0 \log(NT) icst + p_{cst} \ln v_{icst} + S_{icst} (1)$										
	$MIS_{icst} = logM_{icst} - lo\widehat{gM_{icst}} $ (2)										
	** <i>i</i> indexes firms, c for countries, s for industries, and <i>t</i> for time.										
7											

Step One – an example

UnderPricing of the foreign food industry: 90%-20%=70%

	UnderPricing Measure Construction										
Introduction	 Step two: stock-level mispricing rankings 										
Measure	Within each country-sector-auarter aroup, we sort all										
Data	stocks by MIS _{icst} , and assign to each stock the mispricing ranking scaled by the number of stocks.										
Return											
Flow	Notice that ADRs and their underlying parent firms receive one ranking in the US and one at home.										
Conclusion											

Step two – an example

UnderPricing of the foreign food industry: 90%-20%=70%

	UnderPricing Measure Construction										
Introduction	 Step three: industry-level UnderPricing 										
Measure	Take the differential of ADR parent stock's relative										
Data	mispricing ranking and ADR's.										
Return	For industries with more than one ADRs (parent										
Flow	stocks), we take the value weighted average rankings across all ADRs (parent stocks).										
Conclusion											
	$UnderPricing_{sct} = \sum w_{icst} * (RankParent_{icst} - RankADR_{kust}) $ (3)										

Step Three – an example

UnderPricing of the foreign food industry: 90%-20%=70%

Sample

Introduction

Measure

Data

Return

Flow

- Datastream, Worldscope, Factset/Lionshares and Morningstar International.
 - We keep all ADRs and the primary major listing of equity shares with sufficient information to calculate essential financial variables introduced below.
 - To ensure the compatibility across countries, we adopt Level 3 of the Global Industry Classification Standard (GICS).
 - The sample of 37 industries from 44 countries from December 1999 to December 2012. 477 country-industry pairs. 2045 ADRs.

Summary Statistics

Table 1											
			Pane	el A· Oua	rterly						
	count mean sd min p25 p50 p75 max										
UnderPricing	14414	0.049	0.223	-0.798	-0.045	0.019	0.143	0.997			
Returns	14414	0.047	0.174	-0 585	-0.051	0.040	0.134	1 1 5 1			
GlobalDGTW	14414	-0.004	0.122	-0.318	-0.075	-0.008	0.060	0 398			
LocalDGTW	14414	-0.014	0.122	-0.331	-0.088	-0.019	0.000	0.390			
Size(log\$)	14414	6 575	3 231	0.072	4 245	7 230	9.029	12 346			
BM	14414	1 548	2 307	0.072	0 474	0.745	1 195	9 791			
Capex	14414	0.044	0.042	0.140	0.474	0.745	0.059	0.223			
L everage	14414	0.044	0.042	0.000	0.014	0.055	0.057	0.639			
	14414	0.200	0.150	0.001	0.070	0.172	0.515	0.057			
			Pane	el B: Sem	iannually						
	count	mean	sd	min	p25	p50	p75	max			
UnderPricing	7133	0.049	0.221	-0.798	-0.045	0.021	0.143	0.997			
Returns	7133	0.098	0.262	-0.728	-0.053	0.081	0.229	1.772			
GlobalDGTW	7133	-0.010	0.185	-0.464	-0.118	-0.019	0.081	0.618			
LocalDGTW	7133	-0.028	0.191	-0.511	-0.139	-0.039	0.067	0.635			
Flow	4626	0.083	0.375	-1.078	-0.041	0.034	0.164	1.808			
FlowFrn	4626	0.205	0.761	-1.079	-0.035	0.055	0.225	5.519			
FlowHome	4626	1.076	5.050	-1.141	-0.109	0.030	0.338	40.221			
Size(log\$)	7133	6.601	3.236	0.068	4.294	7.261	9.051	12.377			
BM	7133	1.561	2.373	0.138	0.471	0.740	1.187	10.104			
Capex	7133	0.044	0.042	0.000	0.014	0.033	0.059	0.223			
Leverage	7133	0.208	0.150	0.001	0.078	0.193	0.314	0.639			

Introduction

Measure

Return

Data

Flow

Return Predictability – Multivariant

Introduction

Measure

Data

Return

Flow

Conclusion

 Gross returns (Returns), returns adjusted for global characteristics (GlobalDGTW), and returns adjusted for local characteristics (LocalDGTW).

• Return_{t+1} = a + β UnderPricing_t + γ_0 Return_t + γ_1 Size_t + γ_2 Leverage_t + γ_3 BM_t + γ_4 Capex_t + s_t (4)

• Panel and Fama-Macbeth regressions.

	Panel A : Global DGTW-adjusted Returns and UnderPricing Index											
Table 2	(1)	(2)	(3)	(4)	(5)	(6)	(7)					
	GlobalDGTW _{t+1}	GlobalDGTW _{t+1}	GlobalDGTW _{t+1}	GlobalDGTW _{t+1}	$GlobalDGTW_{t+1}$	$GlobalDGTW_{t+1}$	GlobalDGTW _{t+1}					
UnderPricing _t	0.020**	0.021**	0.023***	0.020***	0.021***	0.023***	0.018**					
	(3.06)	(3.07)	(3.43)	(3.39)	(3.60)	(3.81)	(2.76)					
$GlobalDGTW_t$	0.034***	0.028**	0.025**	0.034**	0.028**	0.025**	0.040**					
	(3.69)	(2.97)	(2.58)	(3.27)	(2.73)	(2.31)	(2.79)					
Sizet	0.001**	0.001	0.001**	0.001**	0.001	0.001**	0.001*					
	(2.91)	(1.58)	(2.41)	(2.23)	(1.13)	(2.17)	(2.00)					
BM_t	0.001	-0.002	0.007	0.001	-0.002	0.007	0.003					
	(0.19)	(-0.29)	(0.98)	(0.21)	(-0.32)	(1.08)	(0.38)					
$Capex_t$	0.073*	0.070*	0.038	0.073***	0.070***	0.038*	0.022					
	(1.74)	(1.79)	(1.01)	(3.55)	(3.87)	(1.96)	(0.54)					
Leverage t	-0.053***	-0.047***	-0.050***	-0.053***	-0.047***	-0.050***	-0.039**					
	(-4.80)	(-5.20)	(-4.25)	(-5.31)	(-5.45)	(-4.61)	(-2.35)					
FE Time	Y	Y	Y	Y	Y	Y						
FE Industry	Ν	Y	Ν	Ν	Y	Ν						
FE Country	Ν	Ν	Y	Ν	Ν	Y						
Clustering Time	Y	Y	Y	Ν	Ν	Ν						
Clustering Industry	Ν	Ν	Ν	Y	Y	Y						
Clustering Country	Y	Y	Y	Ν	Ν	Ν						
		Panel B : Loc	al DGTW-adjuste	d Returns and Un	derPricing Index							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)					
	LocalDGTW _{t+1}	LocalDGTW _{t+1}	LocalDGTW _{t+1}	LocalDGTW _{t+1}	LocalDGTW _{t+1}	LocalDGTW _{t+1}	LocalDGTW _{t+1}					
Under Pricing _t	0.032***	0.033***	0.032***	0.032***	0.033***	0.032***	0.030***					
	(4.50)	(4.60)	(4.77)	(5.22)	(5.56)	(5.72)	(4.36)					

one standard deviation higher *UnderPricing* index is associated with 46.2 (74.8) bps higher global DGTW-adjusted returns (local DGTW-adjusted returns).

Return Predictability – Portfolio

Introduction

Each quarter, we form zero-investment portfolios which go long in country-industry pairs with top 20% values for *UnderPricing* while shorting those with bottom 20% values.

Table 5									
Raw Return GlobalDGTW Return				TW Return					
t	mean	t	mean	t					
Panel A: Equal Weighted									
1.972	-0.013	-2.966	-0.024	-4.823					
2.347	-0.006	-2.371	-0.018	-5.61					
2.172	-0.009	-2.704	-0.019	-5.356					
3.096	0.002	0.491	-0.006	-1.106					
3.291	-0.001	-0.221	-0.003	-0.744					
11.659	0.012	6.144	0.020	9.759					
F	Panel B: Val	ue Weighte	d						
1.91	-0.012	-2.966	-0.024	-5.019					
2.505	-0.005	-1.518	-0.015	-3.861					
2.078	-0.009	-2.453	-0.02	-5.059					
2.997	0.003	0.604	-0.007	-1.443					
3.221	-0.001	-0.17	-0.004	-0.987					
11.272	0.011	6.001	0.020	9.559					
	Return t 1.972 2.347 2.172 3.096 3.291 11.659 F 1.91 2.505 2.078 2.997 3.221 11.272	Return GlobalDG t mean Panel A: Equ 1.972 -0.013 2.347 -0.006 2.172 -0.009 3.096 0.002 3.291 -0.001 11.659 0.012 Panel B: Val 1.91 -0.012 2.505 -0.005 2.078 -0.009 3.221 -0.001 11.272 0.011	Return GlobalDGTW Return t mean t Panel A: Equal Weighter Panel A: Equal Weighter 1.972 -0.013 -2.966 2.347 -0.006 -2.371 2.172 -0.009 -2.704 3.096 0.002 0.491 3.291 -0.001 -0.221 11.659 0.012 6.144 Panel B: Value Weighter Panel B: Value Weighter 1.91 -0.012 -2.966 2.505 -0.005 -1.518 2.078 -0.009 -2.453 2.997 0.003 0.604 3.221 -0.001 -0.17 11.272 0.011 6.001	Return GlobalDGTW Return LocalDG t mean t mean Panel A: Equal Weighted 1.972 -0.013 -2.966 -0.024 1.972 -0.013 -2.966 -0.024 2.347 -0.006 -2.371 -0.018 2.172 -0.009 -2.704 -0.019 3.096 0.002 0.491 -0.006 3.291 -0.001 -0.221 -0.003 11.659 0.012 6.144 0.020 Panel B: Value Weighted 1.91 -0.012 -2.966 -0.024 2.505 -0.005 -1.518 -0.015 -0.02 2.997 0.003 0.604 -0.007 -2.997 3.221 -0.001 -0.17 -0.004 -0.020					

Return Predictability – Portfolio

	Table 4								
	<u></u>	(1) PortEW	(2) PortEW	(3) PortEW	(4) PortEW	(5) PortVW	(6) PortVW	(7) PortVW	(8) PortVW
ntroduction	$RmRf_t^G$	-0.001 (-0.53)	0.003 (0.63)			-0.002 (-0.81)	0.002 (0.38)		
1easure	SMB_t^G	0.281** (2.46)	0.266** (2.31)			0.284** (2.45)	0.271** (2.30)		
pata	HML_t^G	0.022 (0.26)	-0.007 (-0.07)			0.044 (0.52)	0.020 (0.22)		
eturn	WML_t^G		-0.050 (-0.97)				-0.044 (-0.83)		
ow	RmRf ^L			0.126** (3.21)	0.099** (2.38)			0.130** (3.27)	0.100** (2.40)
	SMB_t^L			0.301** (2.28)	0.345** (2.63)			0.322** (2.42)	0.369** (2.80)
onclusion	HNL_t^L			0.184* (1.83)	0.158 (1.59)			0.233** (2.30)	0.205** (2.05)
	MOM_t^L				-0.108* (-1.82)				-0.115* (-1.93)
	Alpha	0.020*** (4.15)	0.024*** (3.95)	0.017** (3.34)	0.020*** (3.85)	0.019*** (3.85)	0.022*** (3.61)	0.015** (3.00)	0.019*** (3.57)
	$\frac{\text{Obs}}{R^2}$	55 0.1	55 0.186	55 0.237	55 0.284	55 0.184	55 0.195	55 0.260	55 0.312

The equal-weighted hedging portfolio earns global/local Fama-French 3/4 factors adjusted alphas of 2% / 2.4% /1.7% /2% per quarter.

Flows Chasing UnderPricing

Introduction

Measure

Data

Return

Flow

Conclusion

• we construct mutual fund flows as the market capitalization changes of total shares held by all mutual funds, adjusted for the gross returns.

$$Flow_t = \frac{cmv_t}{cmw_{t-1}} - Return_t$$

 we further decompose flows into the foreign and domestic components, based on the headquarter locations of the mutual funds.

Flows Chasing UnderPricing

		Pan	el B : Flow from	Table 6	in foreign cour	ntries	
ntroduction		(1) FlowFrn _{t+1}	$\frac{(2)}{FlowFrn_{t+1}}$	(3) FlowFrn _{t+1}	$\frac{(4)}{FlowFrn_{t+1}}$	(5) <i>FlowFrn</i> _{t+1}	(6) FlowFrn _{t+1}
Measure	Under Pricing _t	0.104**	0.086**	0.088**	0.104**	0.086	0.088*
	FlowFrnt	0.044**	0.037**	0.028*	0.044**	0.037**	0.028
Data		(2.57)	(2.34)	(1.86)	(2.54)	(2.20)	(1.65)
			$\frac{1}{2}$	(2)	$\frac{1}{(4)}$	intry (5)	(6)
Return		(1) FlowHome _{t+1}	(2) FlowHome _{t+1}	(5) FlowHome _{t+1}	(4) FlowHome _{t+1}	(5) FlowHome _{t+1}	FlowHomet+1
	UnderPricing _t	0.254 (0.92)	0.225 (0.96)	0.103 (0.32)	0.254 (0.81)	0.225 (0.81)	0.103 (0.29)
low	<i>FlowHome</i> _t	0.012 (0.57)	0.004 (0.19)	-0.018 (-1.14)	0.012 (0.61)	0.004 (0.20)	-0.018 (-1.06)
	FE Time	Ŷ	Ŷ	Y	Y	Y	Y
Conclusion	FE Industry	Ν	Y	Ν	Ν	Y	Ν
	FE Country	Ν	Ν	Y	Ν	Ν	Y

Mutual funds headquarterd outside the country in question chase the UnderPricing, but domestic ones don't.

One standard deviation higher *UnderPricing* index is associated with 2.3% higher foreign flows.

	UnderPricing Formation											
Introduction	• Why i	s there L	InderPric	cing to be	egin with	ŀŚ						
Measure	• Price • Sugg	 Price pressure from local fund flows? Suggestive evidence : 										
Data		Table 7										
Return		(1) $\Delta UnderPricing_t$	(2) ∆UnderPricing₁	(3) ⊿UnderPricingt	(4) ⊿UnderPricing₁	(5) ⊿UnderPricingt	(6) ⊿UnderPricing₁					
	$\Delta Flow Home_t$	-0.001**	-0.001**	-0.001**	-0.000	-0.000	-0.000					
Flow		(-2.08)	(-2.04)	(-2.37)	(-0.63)	(-0.62)	(-0.69)					
110 W	Ka*∆FlowH t				-0.003**	-0.003**	-0.003**					
					(-2.11)	(-2.06)	(-2.19)					
Conclusion	Ka_t				0.008	0.008	0.015					
					(0.65)	(0.63)	(0.39)					
	$\Delta Flow Frn_t$	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004					
		(-0.99)	(-0.99)	(-1.02)	(-0.97)	(-0.97)	(-0.99)					

Contemporaneously, higher domestic flow increases are correlated with lower underpricing (changes), particularly when local market has stricter capital controls in place.

Conclusion

Introduction

Measure

Data

Return

Flow

Conclusion

Identifying mispricing in the global market

- We propose a novel way to measure cross-market mispricing based on the benchmark of dual listings.
- We characterize its return predictability, implications on funds, and formation.
- We show the role of market segmentation in the underpricing.

22