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Abstract

Neoclassical theory suggests that stocks exposed to common pricing factors must face

common production risks. We estimate firm-level productivity shocks and decompose

them into six aggregate risk components via asymptotic principal component analysis.

We find that fundamental risks drive 13 of 15 prevailing pricing factors. First, we show

that the fundamental shocks capture most factors proposed in the Fama-French six-

factor model (Fama and French, 2018), the q-factor model (Hou et al., 2015), except the

expected investment growth factor in the q5 model (Hou et al., 2018). Second, we find

that fundamental shocks explain most mispricing and behavioral factors (Stambaugh

and Yuan, 2017; Daniel et al., 2018), except the post-earnings-announcement-drift

factor. Third, we identify an important fundamental risk, the first principal component

of productivity shocks, is missed in all of these empirical factor models. We interpret

this missing factor as the labor risk. Overall, the productivity-based model performs

at least as well as the prevailing factor models.

JEL classification: E22, E23, E24, G11, G12

Keywords: productivity shocks, pricing factors, empirical asset pricing models

∗Corresponding author: Zhanhui Chen, Division of Banking & Finance, Nanyang Business School,
Nanyang Technological University, 50 Nanyang Avenue S3-B1B-72, Singapore 639798. Tel.: +65-6790-6133;
Fax: +65-6791-3236; E-mail: chenzh@ntu.edu.sg.
†Division of Banking & Finance, Nanyang Business School, Nanyang Technological University, Singapore

639798. E-mail: baekchun001@e.ntu.edu.sg.

mailto:chenzh@ntu.edu.sg
mailto:baekchun001@e.ntu.edu.sg


Motivated by the failures of the Fama-French three-factor and Carhart four-factor models

to account for many anomalies, several new factor models are suggested in the literature,

from the risk or behavioral perspectives (Fama and French, 2015, 2018; Hou et al., 2015, 2018;

Stambaugh and Yuan, 2017; Daniel et al., 2018). These models use asset prices to construct

15 pricing factors, based on various characteristics, and empirically perform well. However,

often it is difficult to distinguish them. In this paper, we start with the common fundamental

risks in firm productions and explore their asset pricing implications. This helps to trace the

systematic risks behind prevailing pricing factors and also identify the factors missed in the

existing models. Empirically, we identify six principal components of aggregate productivity

shocks, which captures 13 of 15 prevailing factors. We show that the size factor, profitability

factor, and investment factor used in Fama and French (2015), Fama and French (2018), Hou

et al. (2015), and Hou et al. (2018), correspond to the second to fourth productivity factors,

respectively. We find that the momentum factor is captured by the fifth productivity factor

while the sixth productivity factor captures the mispricing factor in Stambaugh and Yuan

(2017) and the long-horizon behavioral factor in Daniel et al. (2018). But, the productivity

factors fail to capture the expected investment growth factor in Hou et al. (2018) and the

short-horizon behavioral factor in Daniel et al. (2018). Moreover, we find that an important

productivity factor, the first principal component, contain information not captured by the

existing factors, e.g., a missing factor. We show that this missing factor captures the labor

risks in the economy. Overall, the productivity-based model prices various test assets well

and performs similarly to the q5 model (Hou et al., 2018) and the behavioral model Daniel

et al. (2018).

Why cares about fundamental risk sources? For example, given the large literature on

empirical asset pricing models which propose various pricing factors and compute factor

returns from asset prices, one might suggest we bypass fundamental risks and use those

factor returns directly. The advantage of using fundamental risks is that the true system-

atic risks are from macroeconomic sources and asset risks arise endogenously from these
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fundamental risks. For example, this explains why stocks with similar characteristics like

investment or profitability comove together. Also, fundamental risks help us distinguish dif-

ferent return-based factors, which are often hard to differentiate among competing models.

In fact, different exposures to the multiple fundamental risks generate cross-sectional return

variations.

Empirically, we identify the fundamental risk sources and their mimicking factor returns

in three steps. We first estimate firm-level total factor productivity, following Olley and

Pakes (1996) and İmrohoroğlu and Tüzel (2014). Second, we apply the asymptotic princi-

pal component analysis (Connor and Korajczyk, 1987; Chen et al., 2018) to estimate the

systematic TFP components across all firms to identify fundamental risks. We identify six

principal components of productivity shocks, which explain about 52% of total factor pro-

ductivity across firms. We also validate such decompositions by showing that the systematic

productivity factors predict stock returns while the idiosyncratic productivity is not priced.

We find that the second productivity component traces the size factor in Fama and French

(2015) and Hou et al. (2015), with a correlation coefficient of -0.24 and -0.25, respective-

ly. The third productivity component captures the profitability factor in Fama and French

(2015) and Hou et al. (2015), with a correlation coefficient of -0.48 and -0.42, respective-

ly. The fourth productivity component captures the investment factor in Fama and French

(2015) and Hou et al. (2015), with a correlation coefficient of 0.50 and 0.43, respectively.

The fifth productivity component captures the momentum factor in Fama and French (2018),

with a correlation coefficient of 0.35. The mispricing factor in Stambaugh and Yuan (2017)

and the short-horizon behavioral factor in Daniel et al. (2018) are highly correlated with the

sixth productivity component, with a correlation coefficient of -0.35 and -0.48, respectively.

Third, we construct the mimicking productivity factors for these six components, follow-

ing Adrian et al. (2014). Then we test whether the productivity factors can explain the pre-

vailing 15 pricing factors, as follows: (1) six factors used in Fama and French (2018), including

the market factor (MKT ), the size factor (SMB), the value factor (HML), the investment
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factor, (CMA), the profitability factor (RMW ), and the momentum factor (MOM); (2)

four factors used in Hou et al. (2018), including the size factor (QME), the investment factor

(QIA), the profitability factor (QROE), and the expected investment growth factor (EG);

(3) three mispricing factors used in Stambaugh and Yuan (2017), including the univariate

mispricing measure (MIS), a component related to firms’ management (MGMT ), and a

component related to firms’ performances (PERF ); (4) two behavioral factors used in Daniel

et al. (2018), including a factor related to long-horizon behavioral bias (FIN), and a factor

related to short-horizon behavioral bias (PEAD). We find that 13 out of 15 pricing factors

can be explained by the productivity factors, except the expected investment growth fac-

tor (EG) and the short-horizon behavioral bias factor (PEAD). The mispricing factors in

Stambaugh and Yuan (2017), though constructed from 11 anomalies, indeed capture the fun-

damental risks. We also show that productivity factors well explain more broad test assets,

including 25 size and book-to-market sorted portfolios, 25 size and operating profitability

sorted portfolios, 25 size and investment sorted portfolios, 25 size and momentum sorted

portfolios, 25 size and idiosyncratic volatility portfolios, and 30 Fama-French industry port-

folios. We further show that the productivity-based model provides the highest maximum

squared Sharpe ratio among competing models. The productivity-based model delivers sim-

ilar performance to that of the q5 model (Hou et al., 2018) or the behavioral model Daniel

et al. (2018).

On the other hand, we find that these prevailing 15 pricing factors can explain the second

to sixth productivity factors. But the first productivity factor is missed by these pricing

factors. We dig deeply to understand this missing factor. Empirically, we first show that

labor productivity is an important part of total factor productivity and captured by the first

productivity factor. Then, we construct the labor share portfolios, following Donangelo et al.

(2018). We find that this labor sorted portfolios are not explained by the prevailing pricing

factors as they capture mainly returns to the installed capital. But, the first productivity

factor fully explains the labor sorted portfolios. Therefore, returns to installed labor appear
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to be missing in existing factor models while the first productivity factor tacks such labor

risks.

This paper follows the tradition of production-based asset pricing literature, e.g., Cochrane

(1991), Berk et al. (1999), Carlson et al. (2004), Zhang (2005), and Hou et al. (2015). Neo-

classical theory links real investment returns to the stock returns and suggests that pro-

duction shocks drive the stock return volatilities. This implies that rational pricing factors

could be derived from various systematic productivity shocks. Our paper contributes to the

literature by empirically constructing a productivity-based model.

Recently, several asset pricing models have been proposed in the empirical literature.

The first type of models are based on rational risk factors. For example, motivated by

the dividend discount model/surplus clean accounting, Fama and French (2015) construct

a five-factor model, including a market factor (MKT ), a size factor (SMB), a value factor

(HML), an investment factor (CMA), and a profitability factor (RMW ). Fama and French

(2018) further add the momentum factor (UMD) to the five-factor model, i.e., a six-factor

model. Motivated by the neoclassical q-theory of investment, Hou et al. (2015) propose

a q-factor model, including a market factor (MKT ), a size factor (QME), an investment

factor(QIA), and a profitability factor (QROE), where the investment and profitability fac-

tors are constructed differently from those in Fama and French (2015). Hou et al. (2018)

add the expected investment growth factor (EG) to the q-factor model, i.e., a q5 model.

The second type of factor models suggests using mispricing or behavioral factors. For ex-

ample, Stambaugh and Yuan (2017) suggest a four-factor model, which includes a market

factor, a size factor, and two mispricing factors. They construct two mispricing factors by

aggregating over six anomalies which are related to firms’ management (MGMT factor) and

five anomalies that are related to firms’ performances (PERF factor). Daniel et al. (2018)

propose a three-factor model, including a market factor, a factor related to long-horizon be-

havioral bias (FIN), and a factor related to short-horizon behavioral bias (PEAD). FIN

is based on security issuance and repurchase, which measures managerial responses to the
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long-horizon behavioral bias. PEAD derives limited attention and underreaction to earnings

information, e.g., post-earnings announcement drift. Overall, these factor models enjoy some

success in explaining more anomalies. But, often it is difficult to evaluate these factors.1 Our

paper explores the fundamental risks possibly embedded or missed in these pricing models

to understand these pricing factors. In a similar vein, Belo et al. (2018) show that factors

other than installed physical capital are important determinants of firm values, suggesting

the importance of recognizing the multiple risk sources in stock returns.

This paper also adds to the recent asset pricing literature on labor risks. Besides installed

capital, installed labor affects firm value when labor market frictions are present. Important

labor frictions include labor adjustment costs (Merz and Yashiv, 2007; Belo et al., 2014),

wage rigidity (Favilukis and Lin, 2016a,b), and search frictions in labor markets (Petrosky-

Nadeau et al., 2018). For asset pricing purpose, labor can increase equity risks through

the labor leverage channel (Danthine and Donaldson, 2002; Donangelo, 2014; Donangelo

et al., 2018), or the insurance provided by the shareholders to workers (Marfè, 2016, 2017;

Hartman-Glaser et al., 2017; Lettau et al., 2018). Different from the literature, our paper

considers the labor risk embedded in the productivity shocks and estimates the labor factor

without directly considering the labor market frictions.

The rest of the paper proceeds as follows. Section 1 describes the data and empirical

procedures of estimating systematic productivity factors. Section 2 presents the empirical

estimates of productivity factors. Section 3 tests the pricing power of productivity factors

over other prevailing pricing factors and test assets. Section 4 examines the explanatory

power of productivity factors over mispricing portfolios in details. Section 5 identifies a

productivity factor missed in the prevailing models and relates it to the labor risk. Finally,

Section 6 concludes.

1Hou et al. (2018) provide some thoughtful discussions on the traditional covariance view, behavioral view,
and investment CAPM perspective of factors. Empirically, Hou et al. (2018b) show that many seemingly
different factor models are closely related. For example, they find that the q-factor and q5 models subsume
the Fama-French five- and six-factor premiums, and the mispricing factors in Stambaugh and Yuan (2017),
but not the PEAD factor in Daniel et al. (2018).
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1. Estimating systematic productivity shocks

Production-based asset pricing models directly relate stock returns with real investment

returns, i.e., returns on investment of physical capital and labor. This implies that stock

risks are inherited from production risks. Therefore, if stock returns depend on multiple

rational pricing factors, firms’ production must be subject to multiple systematic productiv-

ity shocks reflected in the pricing factors, and vice versa (See Appendix A for illustrations

in a motivating model). In this section, we first estimate firm-level productivity. Then we

identify systematic productivity shocks across firms and construct mimicking productivity

factors.

1.1. Estimating firm-level total factor productivity

We follow Olley and Pakes (1996) to estimate TFP. Compared with the Sorrow residuals,

Olley and Pakes (1996) address two issues. First, there is an endogeneity problem in the

estimation of TFP because input factors such as labor and capital stock are contempora-

neously correlated with TFP. They estimate the production function parameters separately

to avoid the simultaneity problem. Second, there is a selection issue. Firms with very low

(high) TFP exit (enter) the markets. Olley and Pakes (1996) mitigates this issue by spec-

ifying TFP as a function of the survival probability. Olley and Pakes (1996) assume: (1)

productivity is a first-order Markov process; (2) capital is predetermined after productivity

is observed; (3) investment contains the information on productivity. Recently, İmrohoroğlu

and Tüzel (2014) apply Olley and Pakes (1996) to estimate firm level TFP. We follow their

approach with some modifications.2

2Levinsohn and Petrin (2003) suggest another often used approach to estimate TFP. Both Olley and
Pakes (1996) and Levinsohn and Petrin (2003) address the endogeneity concern of the correlation between
the unobserved productivity and factor inputs. Olley and Pakes (1996) assume that investment contains the
information on productivity. Levinsohn and Petrin (2003) assume that intermediate inputs (like materials
and electricity) contain information on productivity. Intermediate inputs could be a better proxy for pro-
ductivity than investment because investment is often lumpy. However, the firm level data of intermediate
inputs (e.g., in Compustat) are often missing.
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Assume the simple Cobb-Douglas production function:

Yit = LβLit K
βK
it Zit (1)

where Yit, Lit, Kit, and Zit are value-added, labor, capital stock, and productivity of a firm i

at time t, respectively. The productivity shocks include both some systematic productivity

shocks and an idiosyncratic component. Next, we scale the production function by its capital

stock and take the logarithm at both sides. We scale the production function by the capital

stock for several reasons. First, since TFP is the residual term, it is often highly correlated

with the firm size. Second, this avoids estimating the capital coefficient directly. Third,

there is an upward bias in labor coefficient, without scaling. Eq. (1) can be rewritten as

Log
Yit
Kit

= βLLog
Lit
Kit

+ (βK + βL − 1)LogKit + LogZit (2)

Denote Log Yit
Kit

, Log Lit

Kit
, LogKit, and LogZit as ykit, lkit, kit, and zit. Also, let βL and

(βK + βL − 1) be βl and βk. Rewriting the above equation as follows:

ykit = βllkit + βkkit + zit (3)

We can estimate the labor coefficient (βl) and capital coefficient (βk) using linear regressions.

Then, the logarithmic TFP (zit) can be computed as ykit−βllki,t−βkkit. We estimate TFP

with a 5-year rolling window. TFP shocks can be computed as first-order autoregressive

residuals by running regression of TFP in year t against TFP in year t− 1.

We use annual Compustat data to estimate the total factor productivity (TFP) for all

common stocks from NYSE/Amex/Nasdaq, applying the above procedures. We only include

firms with four-digit SIC code lower than 4900. These firms are in agriculture, mining, man-

ufacturing, construction, and transportation, which well fit the Cobb-Douglas production

function. Also, we drop firms with asset or sales below $1 million or stock price lower than
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$1 at the end of each year. The sample starts from 1966, the rolling-window estimates are

available from 1972 to 2015. See Appendix B for more details about TFP estimation.

1.2. Estimating systematic productivity factors

Next, we estimate the systematic TFP components across all firms to identify common

risk sources. Similar to Herskovic et al. (2016), we estimate common risk sources via asymp-

totic principal component analysis, following Connor and Korajczyk (1987). The time-series

estimates of TFP for N firms over time T , denoted as TFPNT , are decomposed into k

principal components, as follows:

TFPNT = BNk ∗ PCkT + εNT (4)

where TFP is an N × T matrix, PC is a k × T matrix of aggregate TFP shocks, B is an

N × k matrix of the sensitivities to aggregate TFP shocks, and ε is an N × T matrix of the

idiosyncratic TFP shocks. We calculate Ω = 1
N
TFP TTFP and estimate the eigenvector of

Ω. Then, we multiply 1√
T

with each element of the eigenvectors to have the unit standard

deviation.

Two issues remain while applying the asymptotic principal component over the TFP

matrix (TFP ). First, TFP matrix is unbalanced due to missing observations. Connor and

Korajczyk (1987) address this issue by replacing those missing observations to zero. They

prove that if the missing observations follow the same approximate factor structure, the

estimated principal components are close to the true factors. Chen et al. (2018) show that

the main finding of Connor and Korajczyk (1987) is robust by using simulations. We require

the sample firms to have at least 11 years of TFP estimates to be included in the principal

component analysis. This is similar to the requirement in Chen et al. (2018). Second, we

need to decide the number of principal components. In this paper, we choose six principal
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components, based on the model fit and empirical implications.3 First, we show that the

first six components capture about 52% of TFP across firms. Second, we find that there is

a positive contemporaneous relationship between stock return and systematic TFP shocks.

Third, we find that the volatility of systematic TFP growth positively predicts stock return.

Fourth, we further show that the residual TFP, idiosyncratic TFP, has no predictability over

stock returns. This validates the TFP decomposition.

1.3. Estimating mimicking productivity factors

We construct the mimicking portfolios to track the principal components of TFP. One

difficulty is that the frequency of TFP is annual. To construct the monthly mimicking

portfolios, we follow Adrian et al. (2014). First, we project TFP principal component n,

PCn, onto a set of annual base asset returns:

PCn = κ0,n + κ′x,nX
a
t,n + ut, n = 1, 2, ..., 6 (5)

where Xa
t,n denotes the annual returns of some base assets in year t, κ0,n and κ′x,n are the

coefficients. We use 9 base assets for each productivity component. First, the excess market

return (MKT ) and the univariate mispricing factor (MIS) are included in the base asset-

s. Second, to extract the information of productivity components as much as possible, we

consider 18 portfolios used in Hou et al. (2015), which are from a triple 2-by-3-by-3 inde-

pendent sort on size, investment, and profitability. However, since using all 18 portfolios

causes the multicollinearity problem, we only use 7 of these 18 portfolios. To choose the

certain portfolios, we start to project each principal component onto all 18 portfolios, mar-

ket portfolio, and the mispricing factor. Then, we choose portfolios which have significant

coefficients. Ideally, we want to use the same base assets across all principal components to

avoid arbitrariness, but using the same base assets causes the multicollinearity issues. To

3Bai and Ng (2002) suggest the statistical criteria to determine the optimal number of factors. However,
their is inapplicable to the unbalanced panel data.
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avoid multicollinearity and to capture productivity-specific information, we change some of

base assets for each principal component. The base assets for each principal component are

as follows:

• Xt,1 = [MKT, MIS, SSL, BLM, BLH, BMH, BSL, SMH, BSH]

• Xt,2 = [MKT, MIS, SSL, BLM, BLH, BLL, BMH, BSL, SMH]

• Xt,3 = [MKT, MIS, SSL, BLM, BLL, BSL, SMH, BSH, SSH]

• Xt,4 = [MKT, MIS, SSL, BLM, BLH, BLL, BMH, BSL, SLM]

• Xt,5 = [MKT, MIS, SSL, BLM, BLH, BLL, BSL, SLM, SMH]

• Xt,6 = [MKT, MIS, SSL, BLM, SSM, BLH, BLL, BSL, SML].

For 7 portfolios other than the excess market return (MKT) and the mispricing factor (MIS),

the first letter describes the size group, i.e., small (S) or big (B). The second letter describes

the investment group, i.e., low (L), medium (M), or high (H). The third letter describes

the profitability group, low (L), medium (M), and high (H). For example, SSL denotes

the portfolio of stocks with small size, low investment, and low profitability. Overall, 4

base assets are common across all productivity factors and the rest of them are different.

Each annual mimicking productivity portfolio tracks its productivity principal component

very well. On average, annual correlation coefficient between each productivity principal

component and its mimicking portfolio is about 0.53.

After we estimate κ′x,n at annual frequency, we normalize those coefficients: κ̃′x,n = κx,n
|Σκx,n| .

The denominator is the sum of absolute value of 9 coefficients for each principal component.

The last step is to compute the mimicking productivity portfolios at monthly frequency, by

multiplying the normalized coefficients and the monthly base asset returns,

PCn,t = κ̃′x,nX
m
t (6)

where Xm
t is the monthly returns of base assets in month t. In this paper, we will use the

monthly mimicking portfolios for the time-series and the cross-sectional tests.
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When we construct the mimicking productivity portfolios, two look-ahead bias emerge.

First, look-ahead bias occurs when we apply the principal component analysis over TFP

matrix using the full sample. Second, look-ahed bias also occurs when constructing mimick-

ing portfolios since the portfolio weights (κ′x,n) are estimated in full sample. To avoid the

look-ahead biases, we also construct the mimicking productivity portfolios with an extending

window as a robustness check. That is, both principal component analysis and the mimicking

portfolio weights are computed with data up to year t. The extending window starts from

2001 to allow for enough number of observations. In other words, the principal components

and their portfolio weights are estimated from 1972 to 2001 first, and then extended to 2015.

Also, to estimate the weights with enough degree of freedom for the extending-window case,

we use 6 base assets only, as follows:

• Xt,1 = [MKT, MIS, BLL, BMH, SMH, BSH]

• Xt,2 = [MKT, MIS, BLL, BSL, SMH, BLM]

• Xt,3 = [MKT, MIS, SSL, BSL, SMH, BLM]

• Xt,4 = [MKT, MIS, SSL, BLH, SLM, BLM]

• Xt,5 = [MKT, MIS, BLL, BSL, SLM, SMH]

• Xt,6 = [MKT, MIS, SSL, BLM, BLL, BSL].

2. Productivity factors

In this section, we first describe our TFP estimates and its principal components. Then

we show that these principal components reasonably capture firms’ productivity shocks.

2.1. Productivity estimates and the mimicking portfolios

We first examine the production function estimated from Olley and Pakes (1996) and

İmrohoroğlu and Tüzel (2014). The labor coefficients, (βl), is 0.62 and the capital coefficient,

(βK), is 0.34. These numbers are very similar to those reported in Olley and Pakes (1996).
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Also, these estimates are consistent with the neoclassical models. For example, Zhang (2005)

use 0.30 as the capital coefficient. The production function is slightly decreasing return to

scale over the sample period.

Panel A of Table 1 shows that log TFP growth (∆TFP ) has a mean of 0.01 and a

standard deviation of 0.19. There are large variations of TFP growth in both time-series

and cross-section. The average first-order autocorrelation coefficient is only 0.07. Panel A

presents the summary statistics for six principal components (PC1 to PC6). By construction,

the standard deviations are normalized as one. R2 shows how much principal components

explain TFP growth. For each firm, we run the time-series regression of log TFP growth on

principal components. We estimate the fitted value of log TFP growth and its explanatory

power. We report the average R2 in Panel A. For example, the first principal component

(PC1) explains 15% of log TFP growth on average. When we add the second principal

component (PC2), the average R2 increases to 24%. The first six principal components

explain 52% of log TFP growth and the marginal increment of R2 decreases by adding more

principal components.

In Panel B of Table 1, we report the annual correlation coefficients between productivity

components and other pricing factors. In the main context, we consider 15 prevailing pring

factors, either risk based and behavioral based: (1) six factors used in Fama and French

(2018), including the market portfolio (MKT), the size factor (SMB), the value factor (HML),

the investment factor (CMA), the profitability factor (RMW), and the momentum factor

(UMD). We download these factors and the corresponding portfolios from Kenneth French’s

website. (2) five factors used in Hou et al. (2018) including the market portfolio (MKT),

the size factor (QME), the investment factor (QIA), the profitability factor (QROE), and the

expected investment growth factor (EG). We follow Hou et al. (2018) to construct these

factors. (3) three mispricing factors used in Stambaugh and Yuan (2017). Stambaugh and

Yuan (2017) construct the mispricing factors from 11 mispricing anomalies. They categorize

these anomalies into two types of mispricing. One mispricing is related to the management,
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MGMT. Another mispricing is related to the firm performance, PERF. They also construct

a univariate mispricing factor (MIS), including both MGMT and PERF information. We

download two mispricing factors (MGMT and PERF) from Robert Stambaugh’s website and

construct the univariate mispricing factor (MIS) by using their mispricing score.4 (4) two

behavioral factors used in Daniel et al. (2018). Daniel et al. (2018) suggest two different

behavioral factors, i.e., the short-horizon behavioral factor (post earnings announcement

drift, PEAD), and the long-horizon behavioral factor (financing, FIN). PEAD derives limited

attention and underreaction to earnings information. FIN is based on security issuance and

repurchase, which measures managerial responses to the long-horizon behavioral bias.5

First, we note that none of pricing factors have strong correlation with the first pro-

ductivity component (PC1) except for the momentum factor (UMD) and the short-horizon

behavioral factor (PEAD). However, the correlation between PC1 and UMD is -0.28 while

the correlation between PC1 and PEAD is -0.22. These two correlations are driven by one

extreme observation in 2009.6 When we exclude the observation in 2009, the correlations

become 0.17 and 0.16.7. Given the fact that the first productivity component is the most

important factor in capturing the aggregate productivity shocks, it is surprising that all

pricing factors do not capture this component. Second we see that PC2 to PC5 have strong

correlations with those prevailing pricing factors. The second productivity component (PC2)

is negatively correlated with the size factor (SMB and QME), with a correlation coefficient

of -0.24 and -0.25, respectively. It also has similar relationship with the expected investment

growth factor (EG). The third productivity component (PC3) has the pronounced pattern

with the profitability factors (RMW and QROE). The correlation coefficient between PC3

and RMW (QROE) is -0.48 (-0.42). The fourth productivity component (PC4) is positively

correlated with the investment factors (CMA and QIA). The magnitude of its correlation

with CMA (QIA) is 0.50 (0.43). The fifth productivity principal component (PC5) and the

4http://finance.wharton.upenn.edu/ stambaug/
5We thank them for providing the factor data. The sample period is from July 1972 to December 2014.
6In 2009, PC1 increases dramatically because of the financial crisis.
7We exclude the observation in 2009 for other productivity factors but their correlations are stable.
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momentum factor (UMD) are positively correlated, with a correlation coefficient of 0.35. The

sixth productivity component has significant correlation with the mispricing factor (MIS)

and long-horizon behavioral factor (FIN). The correlations are -0.35 and -0.48, respectively.

Overall, Panel B shows that PC2-PC4 are highly correlated with the risk-based factors while

PC5 and PC6 seem to capture the mispricing and behavioral factors.

Panel C of Table 1 reports the mean, standard deviation (S.D.), Sharpe ratio (SR),

and the pairwise correlations among mimicking portfolios. The first mimicking productivity

portfolio (PC1) has an average return of 1.31% per month and a standard deviation of 7.38%

per month. Its monthly Sharpe ratio is 0.18. Other mimicking portfolios also have sizable

mean returns and Sharpe ratios. Since the the pairwise correlation coefficients across the

mimicking factors are not very sizable, this alleviates the multicollinearity concern.

2.2. Validating productivity decomposition

Table 2 further validates the productivity decomposition. We compute the systematic

and idiosyncratic parts of TFP, using the six principal components. For each firm, we run the

time-series regression of TFP growth on six principal components. Then, we use the predicted

TFP growth as the systematic TFP growth and the residuals as the idiosyncratic TFP

growth. İmrohoroğlu and Tüzel (2014) find that the contemporaneous correlation between

stock returns and TFP is significantly positive. If TFP and its decomposition are estimated

correctly, then both TFP and its systematic part should have positive correlations with

contemporaneous stock returns. At the end of each June, we construct the quintile portfolios,

sorted on either log TFP growth (∆TFP ) or the systematic TFP growth (∆TFPsys). The

contemporaneous value-weighted portfolio returns are calculated and reported in the Panel

A of Table 2. We see portfolio returns increase with both the total TFP and its systematic

part. Also, the long-short portfolios (high minus low, H-L) generate sizable return spreads,

1.47% for log TFP growth and 0.83% for systematic TFP growth.

Next, we examine whether the idiosyncratic productivity shocks are priced to further
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validate our productivity decomposition. From the asset pricing perspective, we expect

that only systematic productivity shocks are priced because firms cannot hedge against the

systematic uncertainty. We compute the standard deviation of log TFP growth (σ∆TFP ),

systematic TFP growth (σ∆TFPsys), and the idiosyncratic TFP growth (σ∆TFPidio
) over the

last 5 years. We exclude stocks with a price lower than $5 and industry-month observations

fewer than 5 firms. In Panel B of Table 2, Models (1) - (3) present the coefficients from Fama-

MacBeth regressions of excess stock returns against the total TFP volatilities, systematic

TFP volatilities, and idiosyncratic TFP volatilities, together with other control variables. We

take logrithm on the standard deviations. Model (1) shows that the total TFP volatilities

are positively correlated with stock returns. In model (2) we decompose the total TFP

volatilities into systematic and idiosyncratic parts. We see that systematic TFP volatility is

positively correlated with stock returns while the idiosyncratic TFP volatility is marginally

significant only. We further control for asset growth (AG) and cashflow (CF/K) in model

(3). Asset growth is defined as ATt−ATt−1

ATt−1
, where AT is total asset. Cashflow is computed

as IBt+DPt

PPENTt−1
, where IB is the income before extraordinary item, DP is the depreciation

and amortization, and PPENT is the net property, plant, and equipment. We see that

idiosyncratic TFP volatility becomes insignificant while systematic TFP volatility remains

significantly positive in Model (3). Turning to the return volatilities, in Models (4) and (5),

we run panel regression of return volatilities against the absolute value of log TFP growth,

systematic TFP growth, and idiosyncratic TFP growth, with both firm and month fixed

effects. Return volatilities are computed by using daily returns over the last year. Models

(4)-(5) show that TFP volatilities are positively related to the stock return volatilities. Bloom

et al. (2018) also find that the absolute size of TFP shocks is positively related to stock

return volatilities. Overall, the results in Table 2 confirm that our TFP estimate and its

decomposition reasonably captures common risk sources.
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3. Asset pricing tests

3.1. Using productivity factors to explain other pricing factors: Time-series

regressions

Panel B of Table 1 shows that PC2-PC5 are highly correlated with those prevailing

pricing factors. In this subsection, we formally test whether productivity factors can capture

those pricing factors. We use the six mimicking productivity factors and the empirical asset

pricing model is as follows:

Ri,t = αi+βPC1,iPC1t+βPC2,iPC2t+βPC3,iPC3t+βPC4,iPC4t+βPC5,iPC5t+βPC6,iPC6t+εi,t

(7)

where Ri,t is the excess return of asset i in month t, PC1 to PC6 are the returns of the

mimicking productivity factors at month t. If the mimicking productivity factors correctly

capture the common risk sources, this model should explain those pricing factors. We run

the time-series regressions of each pricing factor on our mimicking productivity portfolios.

Table 3 presents the intercept, factor loadings, R2, and Newey-West adjusted t-statistics

with 6-month lags.

Panel A reports the results using full-sample estimation. First, 13 of 15 pricing factors

have insignificant pricing errors after controlling for six mimicking productivity portfolios.

This suggests that these 13 pricing factors share common fundamental risk sources. There

are only 2 pricing factors having the significant alphas. The expected investment growth

factor (EG) in Hou et al. (2018) has an alpha of 0.32% per month. The alpha is significantly

positive (t=2.79), but its magnitude is about 43% of the factor return after controlling

for the six productivity factors. The post-earnings-announcement-drift (PEAD) also has a

significantly positive alpha of 0.46% per month, and our productivity-based model captures

about 30% of its factor return.8

8Hou et al. (2018b) also find that the q-factor and q5 models fail to capture the PEAD factor in Daniel
et al. (2018).

16



Turning to the factor loadings, we recognize that our mimicking portfolios track their

principal components very well. Specifically, two size factors (SMB andQME) have significant

factor loadings on the second mimicking productivity factor (PC2). βPC2 of SMB is -0.52 (t=-

11.84) and that of QME is -0.62 (t=-14.64). The third mimicking productivity factor loadings

(βPC3) are negatively significant for the profitability factors, -0.11 (t=-4.72) for RMW and

-0.21 (t=-9.21) for QROE. Investment factors (CMA and QIA) and the value factor (HML)

are significantly correlated with the fourth mimicking productivity factor. βPC4 of CMA,

QIA, and HML are 0.14 (t=5.55), 0.16 (t=25.03), and 0.14 (t=20.50), respectively. Therefore,

Fama-French factors and q-factors are quite similar.9 The fifth mimicking productivity factor

is significantly priced for the momentum factor (UMD), with a factor loading of 1.07 (t=7.75).

Also, market portfolio is significantly priced on the sixth mimicking productivity portfolio.

Moreover, as we observe in Panel B of Table 1, the sixth productivity component has

a significant correlation with the univariate mispricing factor (MIS), with a factor loading

of -0.30 (t=-9.44). The two components, MGMT and PERF, have significantly negative

coefficients on the sixth mimicking productivity factor, -0.13 (t=-3.67) and -0.42 (t=-5.55),

respectively. We also can see that MGMT and MISC are highly correlated with the fourth

productivity factor (PC4), which suggest that they capture a lot of investment factor as well.

This is consistent with findings in Hou et al. (2018), where they argue that MGMT (PERF)

is a different investment or profitability measure. Given the fact that our fourth mimicking

productivity factor is strongly correlated with the investment factor, the significance of βPC4

is consistent with the finding of Hou et al. (2018). The long-horizon behavioral factor (FIN)

is fully captured by our productivity-based model.

To avoid the look-ahead bias, we use the extending-window estimation as a robustness

check and report results in Panel B of Table 3. One caveat for the extending window

approach is that the principal components are not as clear as those from the full-sample esti-

mation because the principal components change with the estimation windows. Nonetheless,

9Hou et al. (2018b) show that q-factor model subsumes the Fama-French five-factor premiums.
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extending-window estimation shows qualitatively similar results. Overall, our model fully

explains 14 of 15 pricing factors, except that PEAD remains marginally significant.

Overall, Table 3 shows that although various pricing factors are constructed in different

ways, they really capture the same set of fundamental risks.

3.2. Using productivity factors to explain test portfolios: Time-series regres-

sions

Next, we apply our productivity-based model to many test portfolios. Specifically, since

the productivity factors are able to explain many pricing factors, we expect that they explain

broad test portfolios as well. We report the alphas from time-series regressions of each test

asset in Table 4, using full sample.10 Our playing fields include 25 size and book-to-market

sorted portfolios (Panel A), 25 size and operating profitability sorted portfolios (Panel B),

25 size and investment sorted portfolios (Panel C), 25 size and momentum sorted portfolios

(Panel D), 25 size and idiosyncratic volatility portfolios (Panel E), and 30 Fama-French

industry portfolios (Panel F). The test portfolios are from Kenneth French’s website.

Generally, the productivity-based model explains the test portfolios very well. In Panel

A, all of 25 size and book-to-market sorted portfolios have insignificant alphas. In Panel B,

all of 25 size and operating profitability sorted portfolios have insignificant abnormal returns.

The highest alpha is 0.28% per month only, fairly low. We see similar results in Panel C

for 25 size and investment sorted portfolios. In Panel D and E, the abnormal returns are

generally small and only 2 of 50 portfolios are marginally significant. In Panel F, we see

that 27 of 30 Fama-French industry portfolios have insignificant abnormal returns. Only

industries like smoke (0.72%), the drugs (0.55%), and gold (1.07%), have significant alphas.

These results suggest that even though TFP and its principal components are estimated

from manufacturing industry only, the principal components reflect the aggregate risks across

different industries.

10We tabulate the complete regression results in Appendix Table C1.
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3.3. Using productivity factors to explain test portfolios: Fama-MacBeth

regressions

Lastly, we examine the ability of productivity factors to explain the cross-sectional return

variations by using Fama-MacBeth two-pass regressions. Test assets are 155 portfolios used

in Table 4. Following Lewellen et al. (2010), we also add the pricing factors of the tested

factor model to the test assets in order to restrict the price of risk to be equal to the average

factor return.

We compare the productivity-based model (TFP) with other factor models, including

Fama and French (1993) three-factor model (FF3), Carhart (1997) four-factor model (F-

F4), Fama and French (2015) five-factor model (FF5), Fama and French (2017) six-factor

model (FF6), Hou et al. (2015) q-factor model (HXZ), Hou et al. (2018) q5-factor model (H-

MXZ), Stambaugh and Yuan (2017) mispricing factor model (SY), and Daniel et al. (2018)

behavioral factor model (DHS), as follows:

• TFP: Rit = γ0 + γPC1β̂PC1,i + γPC2β̂PC2,i + γPC3β̂PC3,i + γPC4β̂PC4,i + γPC5β̂PC5,i +

γPC6β̂PC6,i + εit

• FF3: Rit = γ0 + γMKT β̂MKT,i + γSMBβ̂SMB,i + γHMLβ̂HML,i + εit

• FF4: Rit = γ0 + γMKT β̂MKT,i + γSMBβ̂SMB,i + γHMLβ̂HML,i + γUMDβ̂UMD,i + εit

• FF5: Rit = γ0+γMKT β̂MKT,i+γSMBβ̂SMB,i+γHMLβ̂HML,i+γCMAβ̂CMA,i+γRMW β̂RMW,i+

εit

• FF6: Rit = γ0+γMKT β̂MKT,i+γSMBβ̂SMB,i+γHMLβ̂HML,i+γCMAβ̂CMA,i+γRMW β̂RMW,i+

γUMDβ̂UMD,i + εit

• HXZ: Rit = γ0 + γMKT β̂MKT,i + γQME
β̂QME ,i + γQIA

β̂QIA,i + γQROE
β̂QROE ,i + εit

• HMXZ:Rit = γ0+γMKT β̂MKT,i+γQME
β̂QME ,i+γQIA

β̂QIA,i+γQROE
β̂QROE ,i+γEGβ̂EG,i+εit

• SY: Rit = γ0 + γMKT β̂MKT,i + γMISME
β̂MISME ,i + γMGMT β̂MGMT,i + γPERF β̂PERF,i + εit

• DHS: Rit = γ0 + γMKT β̂MKT,i + γFIN β̂FIN,i + γPEADβ̂PEAD,i + εit.

In the first stage, we run the time-series regressions of each model to estimate the factor
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loadings for each test asset, using full sample. Second, we run the cross-sectional regression of

all test assets against the estimated factor loadings in each month and report the time-series

average of the price of risk in Table 5. Table 5 also reports t-statistics adjusted for the errors-

in-variables problem (Shanken, 1992). We also compute the adjusted R2 as in Jagannathan

and Wang (1996). Following Lewellen et al. (2010), we construct a sampling distribution

of adjusted R2. Specifically, we bootstrap the time-series data of returns and factors by

sampling with replacement to estimate the adjusted R2. We repeat these procedures 10,000

times and report the 5th and 95th percentiles of the sampling distribution. The sample period

is from January 1972 to December 2015, except for DHS model, which is from July 1972 to

December 2014, as limited by data availability.

Table 5 presents the price of risk of each factor across the tested factor models. First, we

see that FF3, FF6, and DHS have a significant intercept, γ0, which are 0.51%, -0.07%, and

0.30%, respectively. Other models, e.g., FF5, HXZ, HMXZ, SY, and TFP, have insignificant

intercepts. That is, these models explain almost all return variations among test portfolios.

Next, we check the price of risk for each pricing factor. The price of risk should be equal

to the mean excess return of the corresponding factor. Mimicking productivity factors have

significant prices of risks and their magnitudes are close to the average of mimicking produc-

tivity factors. For FF5, even though the intercept is insignificant, the price of risk for HML,

γHML, is insignificant and its magnitude (0.07%) is quite different from the average return

of HML (0.36%). Also, the price of risk for SMB, γSMB = 0.22, is marginally significant

only (t=1.65). Factors from HXZ, HMXZ, and SY models have about similar size of their

average factor returns.

Finally, we compare the explanatory power (adjusted R2) across different models. Al-

though FF5, HXZ, HMXZ, SY, and TFP models have insignificant intercepts, TFP model

has the highest adjusted R2, 0.78. Even the 5th percentile of adjusted R2, 0.59, is compa-

rable to R2 of FF5, HMXZ, and SY models. This suggests the strong explanatory power of

productivity factors.
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3.4. Comparing different models

Previously, we use the left-hand-side (LHS) approach to examine the pricing power of

the productivity-based model and compare it with other factor models. That is, we use a

set of test assets as the LHS variables to test whether unexplained average returns from

competing models are significant (see, e.g., Fama and French, 1996, 2015, 2016, 2017; Hou

et al., 2015, 2018,b). However, this approach is often sensitive to the choice of LHS portfolios.

Alternatively, following Barillas and Shanken (2017) and Fama and French (2018), in this

subsection, we use the right-hand-side approach to compare different factor models. If the

goal is to minimize the max squared Sharpe ratio of the intercepts for all LHS portfolios,

Barillas and Shanken (2017) suggest we rank competing models on the maximum squared

Sharpe ratio for model factors.

To test a factor model i with factors fi, let’s consider the time-series regressions of test

assets (Πi), which include nonfactor test assets and factors from other competing models,

on model i’s factors fi. The maximum squared Sharpe ratio of the intercepts is

Sh2(ai) = a′iΣ
−1
i ai, (8)

where (Sh2(·)) denotes the maximum squared Sharpe ratio, ai is the vector of intercepts from

the time-series regressions of Πi on model i’s factors (fi) and Σi is the residual covariance

matrix. Gibbons et al. (1989) further show that the maximum squared Sharpe ratio of the

intercepts is the difference between the maximum squared Sharpe ratio constructed by Πi

and model i’s factors and that constructed by model i’s factors only:

Sh2(ai) = Sh2(Πi, fi)− Sh2(fi). (9)

Since Πi and fi together include all competing factors, Sh2(Πi, fi) does not depend on i.

Therefore, to minimize the max squared Sharpe ratio of the intercepts, it is sufficient to
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find the maximum squared Sharpe ratio for model factors fi, i.e., Sh2(fi). The maximum

squared Sharpe ratio can be computed from the tangent portfolio formed by model factors.

Panel A of Table 6 presents the maximum squared Sharpe ratios for various factor mod-

els. Limited by data availability, we compare FF3, FF4, FF5, FF6, HXZ, HMXZ, DHS,

and TFP models.11 Among all competing models, the productivity-based model delivers a

highest maximum squared Sharpe ratio of 0.32. The HMXZ and DHS models have a similar

maximum squared Sharpe ratio of 0.26 and 0.27, respectively. But, other models have much

lower maximum squared Sharpe ratios, which are below 0.15. One concern about this right-

hand-side approach is that there are sampling errors when estimating tangent portfolios,

which are larger for models with more factors. This becomes an issue when we compare

non-nested models. Following Fama and French (2018), we use bootstrap simulations to

provide the distribution of the maximum squared Sharpe ratios. Specifically, we bootstrap

the time-series data of factors by sampling with replacement. Then we estimate the maxi-

mum squared Sharpe ratio. We repeat these procedures 10,000 times and report the 5th and

95th percentiles of the maximum squared Sharpe ratios from competing models in Panel A

of Table 6. We see that even the 5th percentile of the maximum squared Sharpe ratio from

the productivity-based model (which is 0.26) is higher than or close to that of other models.

Next,we run spanning regressions to examine the marginal contribution of each produc-

tivity factor. We regress each productivity factor against the rest productivity factors. Panel

B reports the intercept (α), its t-statistic, loadings, R2, residual standard error (s(e)), and

each productivity factor’s marginal contribution to the model Sh2(f), i.e., ( α2

s(e)2
). The t-

statistic for the intercept measures if a factor statistically contributes to the model Sh2(f).

We see that except PC2, all other productivity factors have a significant intercept, with a

t-statistic above 3. Examining the marginal contribution to the model Sh2(f), we see that

PC5, PC3, and PC4 contribute most, followed by PC6 and PC1, but the contribution from

PC2 is negligible.

11We can’t compute Sh2(f) for SY model as we only have data of spread factors but not the corresponding
portfolios.
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Overall, this right-hand-side approach further confirms that the productivity-based fac-

tors span the largest space of asset returns. We close this section by concluding that the

productivity-based model explains most of pricing factors and test assets in both time-series

and cross-section tests. These findings support that the idea that productivity factors cap-

tures fundamental risks embodied in most pricing factors.

4. Explaining Mispricing portfolios

It is surprising to see that in Table 3, the productivity-based model explains Stambaugh

and Yuan (2017) mispricing factors (MGMT, PERF, and MIS). Stambaugh and Yuan (2017)

construct the mispricing factors by using 11 mispricing anomalies, which they attribute to

behavioral bias and market frictions. But, Table 3 seems to suggest that fundamental risks

explain most of the mispricing. In this section, we dig this deeply by investigating the 11

mispricing portfolios, the building blocks for mispricing factors, to see if the productivity-

based model is able to explain these 11 anomalies. The 11 mispricing anomalies are the net

equity issuance (ISS, Ritter, 1991), the composite equity issuance (CI, Daniel and Titman,

2006), the accrual (ACC, Sloan, 1996), the net operating assets (NOA, Hirshleifer et al.,

2004), the asset growth (AG, Cooper et al., 2008), the investment-to-asset (InvA, Titman

et al., 2004), the financial distress (DIST, Campbell et al., 2008), O-score (OSCO, Ohlson,

1980), the momentum (Mom, Jegadeesh and Titman, 1993), the gross profitability (GP,

Novy-Marx, 2013), and the return on asset (ROA, Fama and French, 2006). Stambaugh and

Yuan (2017) cluster the first six anomalies (which are more related to managerial decisions)

as MGMT and the next five anomalies (which are more related to firm performance) as

PERF . We obtain portfolio return data for 11 anomalies from Robert Stambaugh’s website

and use the long-short portfolio returns of 11 anomalies. Due to data limitation, the sample

period is from January 1972 to December 2015, except for the distress risk, which is from

October 1973 to December 2015.
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We present the time-series regression coefficients of these 11 anomaly portfolios on mim-

icking productivity factors in Panel A of Table 7. First, Panel A shows that 9 of 11 anomaly

portfolios do not have significant abnormal returns after controlling for the productivity fac-

tors. The accrual portfolio (ACC) and the O-score portfolio (OSCO) have only marginally

significant abnormal returns. The accrual portfolio has an intercept of 0.23% per month

(t=1.78) and the O-score portfolio has an intercept of 0.31% per month (t=1.67). It seems

that the mimicking productivity factors capture almost all of information from 11 mispric-

ing portfolios. Second, these anomaly portfolios show significant exposure to the fourth

productivity factor, which captures firm investment. All 6 anomalies clustered in MGMT

have significant coefficients on PC4. For example, the accrual portfolio has a loading of 0.14

(t=7.07) on PC4. The asset growth portfolio has a very significant loading on PC4, 0.23

(t=15.58). Also, 3 of 5 anomalies clustered in PERF have significant loadings on PC4. Only

the distress and momentum anomalies have insignificant exposures to PC4. Third, 7 of 11

anomalies have significant loadings on PC3, which captures profitability. Fourth, momentum

is strongly related with PC5 as PC5 captures the momentum effect.

As we use the mispricing factor as part of the base assets in constructing mimicking

productivity factors in our benchmark case, this might mechanically relate mispricing port-

folios with the productivity factors. To alleviate this concern, we reconstruct the mimicking

productivity factors without using the mispricing factor and present the results in Panel B.

Again, we see that the productivity-based models explains 9 of 11 anomalies. The accrual

(ACC) and the gross profitability (GP) anomalies have significant abnormal returns. Except

the momentum anomaly, all other anomalies have significant exposures to the investment

factor (PC4). 9 of 11 anomalies are highly correlated with PC3, the profitability factor.

Overall, Table 7 demonstrates that most anomalies used in Stambaugh and Yuan (2017)

can be traced back to the fundamental risks. This echoes Hou et al. (2018), where they show

that MGMT (PERF) has strong correlation with the investment (profitability) factor.
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5. Identifying a missing factor

So far, we show that productivity factors explain most pricing factors and test portfolios.

In this section, we further explore if the mimicking productivity portfolios can be explained

by other pricing factors. If the mimicking productivity portfolios have the same risk sources

as other pricing factors, those mimicking productivity portfolios should also be explained

by other pricing factors. We show that the first productivity factor is not captured by

other prevailing factors. Next, we further examine what kind of risk is captured by the first

productivity factor. We argue that this missing risk factor is related to the labor risk.

5.1. Identifying a missing factor

If productivity factors and other pricing factors share the common fundamental risks, they

should capture similar risk prices. We test whether productivity factors can be explained

by prevailing pricing factors. The benchmark models include the CAPM, Fama and French

(1993) three-factor model (FF3), Carhart (1997) four-factor model (FF4), Fama and French

(2015) five-factor model (FF5), Fama and French (2018) six-factor model, Stambaugh and

Yuan (2017) mispricing factor model (SY), Daniel et al. (2018) behavioral model (DHS),

Hou et al. (2015) q-factor model (HXZ), and Hou et al. (2018) q5 model (HMXZ). We run

time-series regressions for each productivity factor. Table 8 reports the intercept (αmodel)

and R2 from each model. Panel A uses the full sample, while Panel B uses the extending

window.

Examining Panel A, we see that all of six mimicking productivity portfolios have sizable

and significant raw excess returns, similar to those shown in Table 1. Except PC1, all

other productivity factors (PC2-PC6) can be explained by some benchmark models. That

is, PC2-PC6 share common fundamental risks with other pricing factors. For example, the

abnormal return of the second mimicking productivity factor (PC2) loses its significance

when we apply SY mispricing factor model or DHS behavioral model, i.e., αSY =0.15%
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(t=1.28) and αDHS=-0.08% (t=-0.48), respectively. PC2 has a high correlation with the

size factor. The unreported results show that size factor of SY explains most of PC2 return

variations. The third mimicking productivity factor (PC3), which captures the profitability,

has insignificant abnormal returns for HXZ model. αHXZ is -0.11% per month (t=-0.37). The

coefficient on the profitability factor (QROE) is -0.69 (t=-6.19). FF5 can partially explain

PC2, which brings the excess returns from -0.95% to -0.59% per month. But, QROE from

the q-factor model seems to have stronger explanatory power than RMW from Fama-French

five-factor model. Abnormal returns of the fourth mimicking productivity factor (PC4)

disappear when we control for the mispricing factor. Coefficients on both size factor and

MGMT are very significant, 2.28 (t=7.54) and 1.33 (t=5.93) respectively. This suggests

that MGMT contains information about the investment factor (Hou et al., 2018). The fifth

mimicking productivity factor (PC5) is fully captured by SY or DHS model. Also, HMXZ

model generates a marginally significant alpha for PC5. These insignificant alphas are mainly

driven by PERF, PEAD, and EG which are highly correlated with the momentum factor

(UMD). FF4 and FF6 explain more than half of the abnormal returns but alphas remain

significant. Lastly, the sixth mimicking productivity factor (PC6) is explained by FF6, DHS,

HXZ, and HMXZ models.

Importantly, Panel A shows that the first mimicking productivity factor (PC1) is missed

by prevailing factors. PC1 has significant alphas after controlling for those prevailing pricing

factors.12 Its raw return is 1.30% per month (t=4.71). Across 9 factor models, the mag-

nitudes of their alphas are similar. The lowest alpha is 0.91% per month (t=3.04) from

Stambaugh and Yuan (2017) model. This can be inferred from Panel B of Table 1, where

PC1 only has a moderate correlation with momentum factor but very low correlations with

all other pricing factors. Overall, the explanatory power (R2) is fairly low, ranging from 0 to

0.12. The low R2 further suggests that the first mimicking productivity factor is a missing

factor from the prevailing factor models.

12Appendix C shows more regression details of PC1 on various factor models. We see that PC1 has
significant exposures to the size factors (SMB, QME , and MISME), RMW, and momentum factor (UMD).
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Turning to the extending-window results in Panel B, we see similar results. That is,

PC1 has significant alphas from various benchmark models. The sign of abnormal returns

is different from that in Panel A because the first principal component in extending window

is negatively correlated with the first principal component from the full-sample estimation.

The raw returns of PC1 is about -1.85% per month. The abnormal returns vary from -0.92%

to -1.51% per month. PC2 and PC4 have significant raw returns but their intercepts become

insignificant once we control for other pricing factors.

5.2. Interpreting the missing factor

We interpret the missing factor, PC1, as a labor factor, for two theoretical reasons.

First, total factor productivity in Eq. (2) contains labor factor. For example, total factor

productivity can be decomposed into the labor productivity and the capital productivity:

Log TFPit = Log Yit − βLLog Lit − βKLog Kit

= βL(Log Yit − Log Lit) + βK(Log Yit − Log Kit) + (1− βL − βK)Log Yit

= βL Log
Y

L it︸ ︷︷ ︸
Labor productivity

+βK Log
Y

K it︸ ︷︷ ︸
Capital productivity

+(1− βL − βK)Log Yit.

(10)

Therefore, by construction, TFP measures labor productivity as well as capital productivity

when we estimated TFP following Olley and Pakes (1996). However, prevailing pricing

factors, like investment or profitability factors in Fama and French (2017), Hou et al. (2015),

and Hou et al. (2018), capture mainly the capital productivity, and not specifically designed

to capture the labor productivity. This suggests that the missing factor, PC1, likely captures

the labor risk.

Second, recent literature suggests that labor risks are important sources to the equity

premium. Installed labor affects firm value when there exist some labor market frictions.

Current literature considers several sources of labor frictions: costly to hire and fire employees
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(Merz and Yashiv, 2007; Belo et al., 2014), wage rigidity (Favilukis and Lin, 2016a,b) , search

frictions (search and matching) in labor markets (Petrosky-Nadeau et al., 2018). Installed

labor can increase equity risks because labor leverage plays a role similar to the operating

leverage (Danthine and Donaldson, 2002; Donangelo, 2014; Donangelo et al., 2018), or due to

the fact that shareholders provide insurance to workers (Marfè, 2016, 2017; Hartman-Glaser

et al., 2017; Lettau et al., 2018).

Moreover, we empirically establish the connection between PC1 and labor risk in four

steps. First, we explore how labor productivity and capital productivity contribute to the

total productivity at firm level. In the first column of Panel A of Table 9, we report Fama-

MacBeth regression of log TFP growth on the labor productivity growth, the capital pro-

ductivity growth, and the output growth. The labor productivity growth is the log growth of

labor productivity, Log Yit
Lit

, the capital productivity is the log growth of capital productivity,

Log Yit
Kit

, and the output growth is the log growth of output. The coefficient on the labor

productivity growth is 0.39 (t=44.50), which is larger than that on the capital productivity

growth is 0.22 (t=23.19). Hence, labor productivity is an important part of total factor

productivity.

Second, we link the first productivity principal component (PC1) with aggregate labor

productivity, by running time-series regressions of either PC1, or its mimicking productivity

portfolio, labeled as RPC1, on the aggregate labor growth and capital growth. The aggregate

labor growth and capital growth data are from Federal Reserve Bank of San Francisco.13

The second and third columns of Panel A of Table 9 show that both PC1 and RPC1 have

significant coefficients on the aggregate labor growth, but not aggregate capital growth.

Therefore, PC1 mainly captures the labor productivity.

Third, we investigate the asset pricing implications of labor risk. Following Donangelo

et al. (2018), we construct the labor share portfolios. Labor share is defined as the ratio of

the labor expense over the value-added. Value-added (Yit) is Salesit−Materialsit
GDP deflator

. Material cost

13https://www.frbsf.org/economic-research/indicators-data/total-factor-productivity-tfp/
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(Materialsit) is total expenses minus labor expense. Total expense is sales minus operating

income before depreciation and amortization (oibdp). Labor expense is the staff expense

(xlr). Only a small number of firms report the staff expense in Compustat. We replace those

missing observations with the interaction of industry average labor expense ratio and total

expense. Specifically, we first calculate the labor expense ratio, xlrit
salesit−oibdpit , for each firm.

Next, in each year we estimate the industry average of the labor expense ratio at 4-digit SIC,

with at least three firms available in the industry. Otherwise, we estimate the average of the

labor expense ratio at 3-digit SIC. In the same manner, we estimate the industry average of

labor expense ratio at 2-digit and 1-digit SIC code. Then, we back out the staff expense by

multiplying the industry average labor expense ratio and total expense. If the labor expense

is still missing, we interpolate those missing observations with the interaction of annual wage

from the Bureau of Labor Statistics and the number of employees. We exclude financial and

utility firms. Also, we exclude firms with a stock price below $5, total assets below 12.5

million dollars, the number of employees below 100, or the sales growth or the asset growth

above 100%. Finally, we trim the labor share at 0.5th and 99.5th percentiles. We sort all

stocks at the end of June at year t based on the labor share into 5 portfolios and compute

equally-weighted portfolio returns in the next 12 months.

We report returns of 5 labor sorted portfolios and the long-short portfolio in Panel B

of Table 9. Consistent with Donangelo et al. (2018), the portfolio returns monotonically

increase with labor share. As the labor share increases, the labor risk increases because the

wage is sticky (Belo et al., 2014; Donangelo et al., 2018). The long-short portfolio of the

labor share, REX , is 0.47% per month (t=2.98). The long-short portfolio generates significant

alphas across different models except for the productivity-based model. This suggests that

the prevailing factors cannot explain the labor risk. But the six productivity factors track

the labor risk well.

Fourth, we check whether the first productivity component is related to the labor risk.

In Panel C of Table 9, we presents the annual correlation coefficients between the annual
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long-short labor share portfolio return (LS factor) and the six productivity components

(PC1 to PC6). LS factor is highly correlated with the first productivity principal component

(PC1), with a correlation coefficient of 0.43, while its correlations with other productivity

components are very minor. This further confirms that PC1 captures the labor risk.

If the labor share factor and the first productivity factor capture similar labor risks, we

expect that the productivity-based model explains other pricing factors when we replace the

first productivity factor with the labor share factor. We run the time-series regressions of

each pricing factors on the labor share factor and the second to sixth mimicking productivity

factors and present the intercepts and the coefficients of each factor in Panel A of Table 10.

The labor factor, LS, is significantly priced among most pricing factors, except for HML and

PEAD. Similar to the productivity-based model, this labor share augmented productivity

model explains most of pricing factors. However, it cannot fully explain the profitability

factors (RMW and QROE), the investment factors (CMA and QIA), expected investment

growth factor (EG), and PEAD. Overall, it performs worse than the productivity-based

model. This is not surprising, as the labor-augmented productivity model can’t fully explain

PC1 as well, which suggests PC1 may better capture labor risk than LS measure.

Lastly, we run Fama-MacBeth regression using the prevailing factor models augmented

with the first mimicking productivity portfolio (PC1) or the labor share factor (LS). If

the labor risk is missed by the prevailing factor models, adding the missing factor should

improve their empirical performances. In Panel B of Table 10, we report the Fama-MacBeth

regression results, using the 155 portfolios from Table 5 as test assets. First, we see that

PC1 is significantly priced in all models while LS is priced in FF6, HMXZ, and DHS models.

Adding the labor factor (PC1 or LS) improves the model performances, especially for FF6

and DHS models. For example, after adding PC1, FF6 model has an insignificant intercept

(t=-1.41). Also, the adjusted R2 increases by 0.04. When the DHS model adds the LS

factor, the intercept becomes insignificant (t=-0.03) and the adjusted R2 increases from

0.18 to 0.51. Overall, the missing factor (PC1 or LS) helps to reduce the intercepts of
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various models. Also, even though some factor models, such as FF5 or HXZ, already have

insignificant intercepts, the missing factor increases their explanatory power. Therefore, the

labor risk helps other factor models to explain the stock returns.

6. Conclusions

Inspired by the neoclassical theory, we start with productivity shocks in firms’ production

to identify multiple systematic productivity risks and explore their asset pricing implications.

We find that the first six productivity factors well explain lots of test assets and the prevailing

pricing factors, including Fama and French (2018) six factors, Hou et al. (2015) q factors, the

mispricing factors in Stambaugh and Yuan (2017), and the long-horizon behavioral factor in

Daniel et al. (2018). This indicates the common risk sources behind these seemingly different

factors. In particular, we find an important productivity factor missed in these empirical

asset pricing models, which we interpret as the labor risk. This suggests the importance

of recognizing labor risk in asset pricing models. Overall, we show the productivity-based

model performs at least as well as the prevailing factor models.
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Table 1. TFP growth factors: Descriptive statistics and relations with other
factors

Panel A summarizes the annual log TFP growth and six principal components (PC1 to PC6), including
the mean, standard deviation, and percentiles. Full-sample data are used in estimating principal compo-
nents. AR(1) denotes the first-order autocorrelation. R2 denotes the average explanatory power of principal
components at firm-level. Panel B reports the annual time-series correlation coefficients between principal
components and other pricing factors. The pricing factors include Fama and French (2015) market factor
(MKT), size factor (SMB), value factor (HML), investment factor (CMA), and profitability factor (RMW),
Carhart (1997) momentum factor (UMD), Hou et al. (2015) size factor (QME), investment factor (QIA),
and profitability factor (QROE), Hou et al. (2018) expected investment growth factor (EG), and Stambaugh
and Yuan (2017) mispricing factor (MIS), and Daniel et al. (2018) long-horizon behavioral factor (FIN) and
short-horizon behavioral factor (PEAD). Panel C presents the monthly mean (% per month), standard devi-
ation (% per month, S.D.), Sharpe ratio (SR), and correlations for the mimicking portfolios of six principal
components. The sample period is from January 1972 to December 2015, but Daniel et al. (2018) factors
are from July 1972 to December 2014.

Panel A: TFP and its 6 principal components
Mean S.D. Min Max 10% 25% 50% 75% 90% AR(1) R2

∆TFP 0.01 0.19 -1.35 1.26 -0.20 -0.08 0.01 0.10 0.22 0.07
PC1 -0.08 1.01 -3.54 3.38 -0.76 -0.46 -0.15 0.25 0.74 -0.03 0.15
PC2 -0.06 1.01 -3.51 2.55 -1.15 -0.57 0.01 0.38 1.18 0.20 0.24
PC3 0.05 1.01 -2.77 3.32 -0.88 -0.46 -0.03 0.63 1.07 0.24 0.32
PC4 0.17 1.00 -1.54 3.86 -1.08 -0.41 0.24 0.55 0.87 0.45 0.39
PC5 0.03 1.01 -3.57 2.87 -0.82 -0.35 0.12 0.51 0.82 0.45 0.46
PC6 0.12 1.00 -2.15 3.11 -1.02 -0.40 0.11 0.62 1.30 0.25 0.52

Panel B: Correlations between 6 TFP components and pricing factors
MKT SMB HML CMA RMW UMD QME QIA QROE EG MIS FIN PEAD

MKT 1.00
SMB 0.15 1.00
HML -0.27 0.17 1.00
CMA -0.36 0.17 0.71 1.00

RMW -0.30 -0.13 0.21 0.04 1.00
UMD -0.21 -0.26 -0.16 -0.11 0.02 1.00
QME 0.10 0.99 0.20 0.17 -0.08 -0.20 1.00
QIA -0.38 0.05 0.68 0.93 0.09 -0.05 0.07 1.00

QROE -0.27 -0.38 -0.08 -0.13 0.72 0.52 -0.30 0.00 1.00
EG -0.26 -0.10 0.10 0.23 0.29 0.36 -0.06 0.21 0.37 1.00

MIS -0.52 -0.39 0.11 0.31 0.31 0.61 -0.33 0.33 0.52 0.66 1.00
FIN -0.56 -0.22 0.67 0.57 0.55 0.16 -0.19 0.59 0.35 0.36 0.57 1.00

PEAD 0.00 -0.07 -0.06 -0.02 -0.27 0.55 -0.03 0.01 0.18 0.29 0.43 -0.04 1.00
PC1 -0.01 0.01 -0.07 -0.14 0.11 -0.28 0.01 -0.14 -0.08 0.14 -0.01 -0.05 -0.22
PC2 0.12 -0.24 -0.14 -0.12 -0.16 0.17 -0.25 0.00 0.05 -0.24 0.09 0.05 0.20
PC3 0.19 0.06 -0.15 -0.07 -0.48 -0.06 0.01 -0.23 -0.42 -0.02 -0.18 -0.27 0.11
PC4 -0.14 0.28 0.21 0.50 0.00 -0.13 0.26 0.43 -0.22 0.12 0.03 0.17 -0.12
PC5 0.09 -0.10 0.01 -0.04 -0.09 0.35 -0.09 -0.07 0.13 0.09 0.17 -0.04 0.19
PC6 0.34 -0.14 -0.23 -0.29 -0.44 -0.17 -0.18 -0.26 -0.29 -0.27 -0.35 -0.48 -0.07

Panel C: Statistics of monthly mimicking productivity portfolios
Mean SD SR PC2 PC3 PC4 PC5 PC6

PC1 1.31 7.38 0.18 0.36 0.05 0.22 -0.03 -0.27
PC2 0.39 3.55 0.11 -0.21 -0.38 0.26 -0.07
PC3 -0.95 5.67 -0.17 0.15 0.21 0.20
PC4 1.59 10.25 0.16 -0.30 -0.24
PC5 0.70 2.12 0.33 -0.39
PC6 -0.99 4.85 -0.20
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Table 2. Validating TFP decompositions

Panel A tabulates the contemporaneous excess value-weighted returns (% per month) and t-statistics (in
parentheses) of portfolios sorted by total TFP growth (∆TFP ) and systematic TFP growth (∆TFPsys).
Systematic TFP growth is the predicted TFP growth from the regression of total TFP growth on 6 principal
components for each firm. Panel B regresses the monthly excess returns or annual return volatility on
TFP and its components. Annual return volatility is the standard deviation of daily returns over the last
year. Models (1)-(3) use logarithmic total TFP volatility (σ∆TFP ), logarithmic systematic TFP volatility
(σ∆TFP,sys), logarithmic idiosyncratic TFP volatility (σ∆TFP,idio), asset growth (AG), and logarithmic cash
flow (CF/K) as regressors. Total TFP volatility is the standard deviation of last 5 year TFP growth.
Systematic TFP volatility is the standard deviation of last 5 year systematic TFP growth. Idiosyncratic
TFP volatility is the standard deviation of last 5 year idiosyncratic TFP growth, which is total TFP growth
- systematic TFP growth. Asset growth is ATt−ATt−1

ATt−1
where AT is total asset. Cash flow is IBt+DPt

PPENTt−1
. IB is

the income before extraordinary item. DP is the depreciation and amortization. PPENT is the net property,
plant, and equipment. Models (1)-(3) are Fama-MacBeth regressions with industry fixed effects (4-digit
SIC). Newey-West adjusted t-statistics with 6-month lags are reported in parentheses. Models (4)-(5) are
panel regressions of logarithmic return volatility on absolute value of TFP growth (|∆TFP |), systematic
TFP growth (|∆TFPsys|), and idiosyncratic TFP growth (|∆TFPidio|) with firm and month fixed effects.
The standard errors are clustered by both firm and month. All coefficients are multiplied by 100. The sample
period is from January 1972 to December 2015.

Panel A: Contemporaneous returns of TFP sorted portfolios
Low 2 3 4 High H-L

∆TFP 0.16 0.74 0.95 1.20 1.63 1.47
(0.66) (3.27) (4.95) (6.23) (7.36) (9.49)

∆TFPsys 0.65 0.79 0.84 1.14 1.48 0.83
(2.58) (3.86) (4.35) (5.78) (6.27) (4.88)

Panel B: Predicting return and volatility with TFP and its components
Model (1) Model (2) Model (3) Model (4) Model (5)

Excess returns Return volatilities
σ∆TFP 0.22

(3.61)
σ∆TFP,sys 0.15 0.14

(2.44) (2.35)
σ∆TFP,idio 0.09 0.08

(1.78) (1.63)
AG -0.84

(-4.46)
CF/K -0.11

(-1.51)
|∆TFP | 0.20

(7.49)
|∆TFPsys| 0.11

(2.76)
|∆TFPidio| 0.22

(7.37)
Firm FE No No No Yes Yes
Ind. FE Yes Yes Yes No No

Time FE No No No Yes Yes
R2 0.36 0.37 0.37 0.67 0.67
N 177416 177416 177416 28138 28138
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Table 4. Explaining various test portfolios with productivity factors

This table presents the intercepts (α, % per month) and their t-statistics from time-series regressions of
various portfolios on productivity factors. Test portfolios include 25 size and book-to-market sorted portfo-
lios (Panel A), 25 size and operating profitability sorted portfolios (Panel B), 25 size and investment sorted
portfolios (Panel C), 25 size and momentum sorted portfolios (Panel D), 25 size and idiosyncratic volatility
sorted portfolios (Panel E), and 30 Fama-French industry portfolios (Panel F). Factors include the 6 mim-
icking productivity portfolios constructed from the full sample. Newey-West t-statistics with 6-month lags
are provided. The sample period is from January 1972 to December 2015.

α (% per month) t-statistic
Panel A: 25 size and book-to-market (BM) sorted portfolios

Low BM 2 3 4 High BM Low BM 2 3 4 High BM
Small -0.19 0.30 0.14 0.33 0.43 -0.55 1.03 0.48 1.21 1.31

2 0.03 0.12 0.19 0.18 0.11 0.09 0.46 0.70 0.73 0.35
3 0.20 0.18 0.17 0.22 0.26 0.69 0.69 0.70 0.85 0.82
4 0.33 0.08 0.10 0.23 0.07 1.27 0.30 0.40 0.91 0.23

Big 0.22 0.08 -0.01 -0.19 0.07 1.10 0.40 -0.05 -0.73 0.29
Panel B: 25 size and operating profitability (Op) sorted portfolios

Low Op 2.00 3.00 4.00 High Op Low Op 2 3 4 High Op
Small 0.06 0.24 0.13 0.17 0.03 0.19 0.86 0.45 0.54 0.08

2 0.06 0.00 0.12 0.25 0.19 0.21 0.02 0.46 0.89 0.62
3 0.19 0.15 0.15 0.11 0.28 0.66 0.62 0.62 0.44 0.99
4 0.24 0.17 0.12 0.23 0.15 0.89 0.72 0.51 0.92 0.56

Big 0.07 0.00 0.05 0.20 0.17 0.27 0.01 0.23 0.97 0.90
Panel C: 25 size and investment (Inv) sorted portfolios

Low Inv 2 3 4 High Inv Low Inv 2 3 4 High Inv
Small 0.38 0.37 0.29 0.13 -0.19 1.15 1.26 1.02 0.47 -0.58

2 0.12 0.13 0.21 0.21 0.02 0.39 0.50 0.89 0.79 0.05
3 0.24 0.20 0.18 0.23 0.22 0.87 0.82 0.74 0.94 0.79
4 0.09 0.10 0.14 0.26 0.35 0.32 0.40 0.62 1.11 1.32

Big 0.08 -0.04 0.02 0.13 0.37 0.34 -0.21 0.13 0.70 1.69
Panel D: 25 size and momentum sorted portfolios

Loser 2 3 4 Winner Loser 2 3 4 Winner
Small 0.24 0.19 0.32 0.40 0.49 0.54 0.60 1.10 1.42 1.58

2 0.38 0.31 0.25 0.23 0.26 0.93 1.00 0.94 0.87 0.97
3 0.63 0.33 0.21 0.03 0.14 1.59 1.12 0.77 0.12 0.54
4 0.66 0.37 0.24 0.15 0.04 1.70 1.29 0.93 0.63 0.14

Big 0.49 0.40 0.04 -0.04 -0.13 1.38 1.70 0.18 -0.23 -0.57
Panel E: 25 size and idiosyncratic volatility (Ivol) sorted portfolios

Low Ivol 2 3 4 High Ivol Low Ivol 2 3 4 High Ivol
Small 0.48 0.48 0.46 0.46 -0.29 1.93 1.56 1.26 1.12 -0.64

2 0.29 0.26 0.30 0.29 -0.05 1.36 0.94 1.02 0.83 -0.12
3 0.17 0.21 0.21 0.23 0.08 0.83 0.85 0.73 0.75 0.24
4 0.18 0.16 0.17 0.18 0.29 0.91 0.74 0.67 0.63 0.89

Big -0.02 -0.02 -0.04 0.10 0.42 -0.11 -0.12 -0.18 0.43 1.56
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α (% per month) t-statistic
Panel F: 30 Fama-French industry portfolios

Agric Food Soda Beer Smoke Agric Food Soda Beer Smoke
0.08 0.13 0.19 0.10 0.72 0.24 0.51 0.52 0.38 2.05
Toys Fun Books Hshld Clths Toys Fun Books Hshld Clths
-0.19 0.59 -0.08 0.02 0.06 -0.49 1.30 -0.24 0.11 0.16
Hlth MedEq Drugs Chems Rubbr Hlth MedEq Drugs Chems Rubbr
-0.16 0.33 0.55 0.08 -0.02 -0.37 1.41 2.57 0.25 -0.04
Txtls BldMt Cnstr Steel FabPr Txtls BldMt Cnstr Steel FabPr
0.07 -0.07 -0.16 0.13 0.00 0.15 -0.19 -0.42 0.36 0.00

Mach ElcEq Autos Aero Ships Mach ElcEq Autos Aero Ships
0.35 0.18 0.09 0.23 -0.10 1.09 0.65 0.21 0.63 -0.24

Guns Gold Mines Coal Oil Guns Gold Mines Coal Oil
0.20 1.07 0.50 0.32 0.11 0.57 2.29 1.26 0.51 0.41
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Table 7. Explaining mispricing portfolios with productivity factors

Panel A reports the intercepts (in % per month) and factor loadings from full-sample time-series regressions of
11 mispricing portfolios from Stambaugh and Yuan (2017) against productivity factors. Mispricing portfolios
cluster in either mispricing related to the management (MGMT) or mispricing related to the performance
(PERF). Panel B tabulates the similar results but the mimicking portfolios of productivity factors are
constructed with base assets excluding the mispricing factor. Acc denotes the accruals, following Sloan
(1996). AG denotes the asset growth, following Cooper et al. (2008). CI denotes the composite equity
issuance, following Daniel and Titman (2006). InvA denotes the investment-to-asset, following Titman et al.
(2004). NOA denotes the net operating assets, following Hirshleifer et al. (2004). ISS denotes the net equity
issuance, following Ritter (1991). DIST denotes the financial distress, following Campbell et al. (2008).
GP denotes the gross profitability, following Novy-Marx (2013). Mom denotes the momentum following
Jegadeesh and Titman (1993). OSCO denotes O-score, following Ohlson (1980). ROA denotes the return on
asset, following Fama and French (2006). Factors include 6 mimicking productivity portfolios constructed
from the full-sample estimation. Newey-West t-statistics (t-stat) with 6-month lags are provided. R2 and
standard errors of residuals (s(e), %) are reported. The sample period is from January 1972 to December
2015 except for DIST (October 1973 to December 2015).

Panel A: Including mispricing factor as base assets
MGMT PERF

Acc AG CI InvA NOA ISS DIST GP Mom OSCO ROA
α 0.23 -0.14 0.08 0.04 0.18 0.05 -0.26 0.22 -0.27 0.31 0.18

t-stat 1.78 -1.06 0.55 0.29 1.34 0.45 -0.77 1.25 -0.76 1.67 1.04
βPC1 -0.13 -0.18 -0.21 -0.08 0.02 -0.13 -0.04 0.01 0.19 -0.05 0.07
t-stat -4.64 -8.03 -7.45 -2.54 0.63 -6.90 -0.67 0.38 3.07 -1.26 2.70
βPC2 0.50 0.25 0.42 0.14 -0.02 0.25 -0.10 0.02 -0.38 0.30 -0.21
t-stat 8.06 4.93 7.44 2.21 -0.31 5.56 -0.68 0.19 -2.18 4.13 -3.71
βPC3 0.02 -0.14 -0.10 -0.12 -0.12 -0.12 -0.12 0.19 -0.07 0.03 -0.19
t-stat 0.76 -3.77 -2.47 -2.88 -2.68 -4.35 -1.03 4.44 -0.73 0.75 -4.66
βPC4 0.14 0.23 0.14 0.18 0.08 0.08 -0.06 -0.09 0.08 -0.12 -0.19
t-stat 7.07 15.58 6.60 9.13 3.39 5.93 -0.99 -3.74 1.29 -5.63 -10.11
βPC5 -0.09 0.22 0.00 0.24 0.35 0.18 0.33 -0.15 1.48 -0.41 0.16
t-stat -0.93 2.36 0.02 2.57 2.58 2.68 1.13 -1.03 7.14 -2.74 1.61
βPC6 0.04 -0.10 -0.22 0.05 0.15 -0.18 -0.63 -0.42 -0.19 -0.20 -0.38
t-stat 0.88 -2.39 -5.10 1.25 3.45 -4.82 -4.74 -6.05 -1.37 -4.51 -8.51
R2 0.22 0.50 0.38 0.27 0.07 0.37 0.31 0.25 0.31 0.20 0.46

s(e) 2.89 2.33 2.67 2.49 2.79 2.14 5.19 3.19 5.48 3.27 2.99
Panel B: Excluding mispricing factor as base assets

MGMT PERF

Acc AG CI InvA NOA ISS DIST GP Mom OSCO ROA
α 0.44 -0.01 0.12 0.14 0.21 0.11 -0.20 0.45 0.50 0.05 -0.03

t-stat 2.97 -0.08 0.94 1.18 1.41 0.92 -0.48 2.20 1.17 0.28 -0.22
βPC1 -0.01 -0.02 -0.03 -0.01 0.00 -0.01 0.00 0.03 0.03 0.00 0.01
t-stat -2.95 -4.35 -4.67 -2.40 0.42 -2.57 -0.15 4.97 1.84 -0.30 1.75
βPC2 0.08 0.04 0.07 0.03 -0.01 0.02 -0.10 -0.05 -0.16 0.03 -0.08
t-stat 6.06 2.94 6.18 2.22 -0.85 2.16 -2.58 -3.08 -3.94 2.13 -6.67
βPC3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
t-stat -0.22 -2.57 -2.00 -2.26 -3.57 -5.20 -2.90 0.89 -2.22 -1.96 -9.39
βPC4 0.11 0.23 0.16 0.18 0.05 0.06 -0.15 -0.14 -0.11 -0.10 -0.22
t-stat 4.73 14.32 6.63 7.88 2.09 2.97 -2.79 -5.13 -1.57 -3.35 -10.27
βPC5 -0.02 0.09 0.06 0.08 0.07 0.04 0.01 -0.08 0.13 -0.03 0.01
t-stat -0.68 4.45 2.78 4.71 3.36 2.20 0.20 -2.59 2.17 -0.92 0.39
βPC6 0.01 -0.06 -0.10 -0.01 0.06 -0.04 -0.12 -0.06 -0.01 -0.01 -0.05
t-stat 0.68 -3.33 -5.52 -0.66 2.96 -2.87 -2.05 -2.44 -0.22 -0.70 -2.89
R2 0.18 0.46 0.37 0.29 0.08 0.27 0.24 0.20 0.18 0.16 0.49

s(e) 2.97 2.42 2.70 2.46 2.76 2.32 5.44 3.29 5.98 3.36 2.9045



Table 8. Explaining productivity factors with other pricing factors

This table presents the excess returns (REX) and alphas of productivity factors, using full-sample estimation
in Panel A and extending-window estimation in Panel B. Alphas are computed from various factor models,
including CAPM (αCAPM ), the Fama and French (1993) three-factor model (αFF3), Carhart (1997) four-
factor model (αFF4), Fama and French (2015) five-factor model (αFF5), Fama and French (2018) six-factor
model (αFF6), Stambaugh and Yuan (2017) mispricing factor model (αSY ), Daniel et al. (2018) behavioral
model (αDHS), Hou et al. (2015) q-factor model (αHXZ), and Hou et al. (2018) q5 model (αHMXZ). Panel B
presents similar results from the extending-window estimation. R2 is reported. All returns are multiplied with
100. Newey-West adjusted t-statistics with 6-month (4-month for Panel B) lags are provided in parentheses.
The sample period is from January 1972 to December 2015, but Daniel et al. (2018) factors are from July
1972 to December 2014. The testing period for panel B is from January 2001 to December 2015, but it is
from January 2001 to December 2014 for Daniel et al. (2018) factors.

Panel A: Full-sample estimation
PC1 PC2 PC3 PC4 PC5 PC6

REX 1.31 (4.71) 0.39 (2.78) -0.95 (-3.13) 1.59 (3.29) 0.70 (7.40) -0.99 (-4.30)
αCAPM 1.29 (4.41) 0.32 (2.26) -1.17 (-3.94) 1.93 (4.18) 0.62 (6.87) -1.20 (-5.53)

R2 0.00 0.03 0.11 0.08 0.13 0.13
αFF3 1.37 (4.82) 0.34 (2.89) -0.96 (-3.28) 1.32 (3.28) 0.63 (7.15) -1.05 (-5.52)
R2 0.06 0.41 0.34 0.47 0.14 0.20

αFF4 1.17 (3.79) 0.32 (2.82) -1.00 (-4.08) 1.10 (2.60) 0.38 (4.53) -0.57 (-3.11)
R2 0.08 0.42 0.34 0.48 0.43 0.39

αFF5 1.31 (4.27) 0.27 (2.08) -0.59 (-2.03) 1.08 (3.67) 0.46 (4.15) -0.40 (-2.49)
R2 0.09 0.43 0.43 0.71 0.28 0.53

αFF6 1.15 (3.53) 0.25 (2.09) -0.67 (-2.56) 0.96 (3.26) 0.27 (3.26) -0.09 (-0.65)
R2 0.10 0.43 0.43 0.71 0.52 0.65
αSY 0.91 (3.04) 0.15 (1.28) -0.95 (-3.79) 0.28 (0.72) 0.06 (0.81) 0.26 (1.82)
R2 0.12 0.39 0.27 0.50 0.63 0.66

αDHS 1.27 (3.60) -0.08 (-0.48) -0.73 (-2.42) 2.09 (3.64) 0.15 (1.28) -0.34 (-1.56)
R2 0.02 0.16 0.28 0.09 0.33 0.28

αHXZ 1.35 (4.20) 0.45 (3.59) -0.11 (-0.37) 1.22 (3.41) 0.38 (3.29) -0.15 (-0.94)
R2 0.04 0.50 0.53 0.75 0.38 0.54

αHMXZ 1.16 (3.90) 0.41 (3.34) -0.42 (-2.01) 0.74 (2.68) 0.21 (1.95) 0.06 (0.34)
R2 0.05 0.50 0.56 0.77 0.44 0.56

Panel B: Extending-window estimation
PC1 PC2 PC3 PC4 PC5 PC6

REX -1.71 (-3.53) 3.36 (1.89) 0.18 (0.74) 1.98 (2.29) -0.63 (0.92) 0.19 (0.14)
αCAPM -1.85 (-3.84) 4.42 (2.28) 0.08 (0.29) 1.65 (1.80) -0.37 (-0.68) -0.36 (-0.24)

R2 0.04 0.13 0.10 0.07 0.11 0.06
αFF3 -1.51 (-3.50) 3.32 (2.25) 0.03 (0.13) 1.79 (1.74) -0.31 (-0.56) -0.18 (-0.12)
R2 0.23 0.32 0.20 0.08 0.13 0.06

αFF4 -1.39 (-3.24) 2.76 (1.94) 0.00 (0.00) 1.53 (1.49) -0.49 (-0.79) -0.27 (-0.19)
R2 0.27 0.40 0.22 0.13 0.20 0.07

αFF5 -1.08 (-2.41) 0.81 (0.73) 0.08 (0.33) 1.16 (1.04) -0.17 (-0.31) -0.09 (-0.05)
R2 0.27 0.46 0.21 0.10 0.14 0.07

αFF6 -1.11 (-2.63) 0.97 (0.93) 0.10 (0.41) 1.26 (1.17) -0.07 (-0.15) -0.05 (-0.03)
R2 0.29 0.49 0.23 0.14 0.23 0.07
αSY -0.92 (-2.19) 1.43 (1.09) -0.01 (-0.03) 0.70 (0.68) -0.73 (-0.83) 0.36 (0.20)
R2 0.30 0.38 0.20 0.13 0.14 0.07

αDHS -1.19 (-2.68) 1.93 (1.49) 0.25 (0.91) 0.70 (1.03) -0.53 (-0.78) 0.28 (0.15)
R2 0.13 0.32 0.18 0.11 0.14 0.07

αHXZ -1.04 (-2.86) 1.11 (0.99) 0.12 (0.48) 0.86 (0.78) -0.60 (-0.87) 0.17 (0.10)
R2 0.33 0.52 0.16 0.18 0.17 0.09

αHMXZ -0.96 (-2.64) 0.93 (0.82) 0.15 (0.56) 0.61 (0.55) -0.47 (-0.74) 0.58 (0.34)
R2 0.33 0.52 0.16 0.20 0.18 0.10
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Table 9. Interpreting the missing factor as labor risk factor

In Panel A, the first column presents Fama-MacBeth regression of total TFP growth (∆TFP ) on labor pro-
ductivity growth (∆Labor productivity), capital productivity growth (∆Capital productivity), and output
growth (∆Output). The second and third columns report the time-series regressions of first productivity
component (PC1) and its mimicking portfolio (RPC1) against aggregate labor growth (∆LaborAgg) and
capital growth (∆CapitalAgg). Panel A reports the coefficients, t-statistics, and R2. Panel B reports the
monthly quintile portfolios and long-short portfolio returns sorted on the labor share, in percentage. Newey-
West adjusted t-statistics (t-stat) with 6-month lags are provided. Panel C tabulates the annual time-series
correlation coefficients between labor share factor and productivity components. The sample period is from
January 1972 to December 2015.

Panel A: Productivity and labor risk
∆TFP PC1 RPC1

∆Labor 0.39
productivity (44.50)

∆Capital 0.22
productivity (23.19)

∆Output 0.04
(4.50)

∆LaborAgg -0.20 -3.70
(-2.67) (-3.39)

∆CapitalAgg 0.18 2.34
(1.04) (0.92)

R2 0.70 0.24 0.14
Panel B: Portfolios sorted by labor share

Low 2 3 4 High H-L t-stat
REX 0.55 0.52 0.64 0.71 1.02 0.47 (2.98)

αCAPM 0.08 -0.05 0.06 0.10 0.41 0.33 (2.18)
αFF3 0.14 -0.02 0.01 0.04 0.38 0.24 (1.88)
αFF4 0.19 0.14 0.17 0.18 0.51 0.32 (2.46)
αFF5 0.09 -0.05 -0.02 0.03 0.38 0.29 (2.09)
αFF6 0.14 0.09 0.11 0.15 0.49 0.35 (2.59)
αSY 0.14 0.08 0.09 0.11 0.42 0.28 (2.09)

αDHS 0.10 0.11 0.16 0.27 0.61 0.51 (2.82)
αHXZ 0.15 0.04 0.04 0.08 0.47 0.31 (2.07)

αHMXZ 0.08 0.09 0.14 0.19 0.55 0.47 (3.11)
αTFP 0.28 0.28 0.33 0.25 0.58 0.30 (1.58)

Panel C: Correlation between labor share factor and the first productivity factor
PC1 PC2 PC3 PC4 PC5 PC6

LS factor 0.43 -0.11 0.14 0.15 -0.11 0.09
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Online Appendices

A. Productivity shocks and stock returns: A motivating model

Consider a one-period setting where an all-equity firm uses physical capital and labor to

generate outputs. Assume the simple Cobb-Douglas production function:

Yit = LβLit K
βK
it Zit (1)

where Yit, Lit, Kit, and Zit are value-added, labor, capital stock, and productivity of a firm

i at time t, respectively. Suppose the capital depreciation rate is δ and the labor separation

rate is ψ. The capital installation equation is

Kit+1 = Iit + (1− δ)Kit (2)

where Iit is capital investment at time t. Capital adjustment is subject to a cost of G(Iit, Kit).

Similarly, the labor evolves as

Lit+1 = Hit + (1− ψ)Lit (3)

where Hit is labor hiring at time t. The labor hiring costs are φ(Hit, Lit). Given a one-period

pricing kernel of Mt,t+1, this firm optimally chooses capital investment and labor hiring to

maximize the firm value, as follows:

max
Iit,Hit

Yit − Iit −G(Iit, Kit)−WtLit − φ(Hit, Lit) (4)

+Et{Mt,t+1[Yit+1 + (1− δ)Kit+1 −Wt+1Lit+1]}

s.t. Kit+1 = Iit + (1− δ)Kit (5)

Lit+1 = Hit + (1− ψ)Lit, (6)
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where Wt is exogenously given wage.14

The Lagragian function is

L =Yit − Iit −G(Iit, Kit)−WtLit − φ(Hit, Lit) (7)

+ Et{Mt,t+1[Yit+1 + (1− δ)Kit+1 −Wt+1Lit+1]}

− qKit [Kit+1 − Iit − (1− δ)Kit]

− qLit[Lit+1 −Hit − (1− ψ)Lit].

where qKit and qLit are the Lagragian multipliers associated with capital installation and labor

hiring constraints in Eqs. (5) and (6), respectively. GIit , YKit+1
, φHit

, and YLit+1
indicate the

partial derivatives of the corresponding functions.

The first order conditions give the optimal investment and hiring decisions, as follows:

qKit − 1−GIit = 0 (8)

Et{Mt,t+1[YKit+1
+ (1− δ)]} − qKit = 0 (9)

qLit − φHit
= 0 (10)

Et{Mt,t+1[YLit+1
−Wt+1]} − qLit = 0. (11)

Therefore, the marginal costs and benefits of adding one additional unit of physical capital

is given by

qKit = 1 +GIit = Et{Mt,t+1[YKit+1
+ (1− δ)]}. (12)

The marginal costs and benefits of labor hiring is given by

qLit = φHit
= Et{Mt,t+1[YLit+1

−Wt+1]}. (13)

14For simplicity, we don’t consider wage bargaining process here.
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The ex-dividend stock price is

Pit = Et{Mt,t+1[Yit+1 + (1− δ)Kit+1 −Wt+1Lit+1]}. (14)

If the production function is homogenous of degree one with respect to capital and labor,

then the stock price can be simplified as

Pit = qKitKit+1 + qLitLit+1. (15)

That is, firm value equals the summation of current values of physical capital and labor,

which can be computed from their marginal q directly. The cash flows at time t + 1 is

Yit+1 + (1− δ)Kit+1 −Wt+1Lit+1. Therefore, the stock return is

Rit,t+1 =
Y (Zit+1, Kit+1, Lit+1) + (1− δ)Kit+1 −Wt+1Lit+1

Et{Mt,t+1[Y (Zit+1, Kit+1, Lit+1) + (1− δ)Kit+1 −Wt+1Lit+1]}
. (16)

Suppose the productivity is governed by some systematic components, as follows

log Zit = biXt + εit, (17)

where Xt is a vector consisting the systematic productivity components, bi is firm i’s exposure

to the systematic productivity shocks, εit is the idiosyncratic productivity shocks. Then Eq.

(16) says that the expected stock returns are affected by these systematic risks. In other

words, if the expected stock returns are governed by multiple pricing factors, these factors

should correspond to the common productivity components in firms’ production. Moreover,

if we attribute the total factor productivity to capital productivity and labor productivity,

then we see common shocks to both capital productivity and labor productivity affect stock

returns.
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B. TFP estimation

(1) Data

In order to estimate the total factor productivity (TFP), we use two main datasets:

annual Compustat and CRSP files. By matching Compustat and CRSP, we estimate TFP

for public firms in the United States. Sample period starts from 1965 to 2015. Compustat

items used include total assets (at), net PPE (ppent), sale (sale), operating income before

depreciation (oibdp), depreciation (dp), capital expenditure (capx), depreciation, depletion

and amortization (dpact), employees (emp), and staff expense (xlr).

We apply several filters to estimate coefficients of labor and capital. We include common

stocks listed at NYSE/Amex/Nasdaq with 4-digit SIC codes less than 4900. This corresponds

to agriculture, mining, construction, manufacturing, and transportation industries. Also,

firms with sales or total assets less than $1 millions, or with negative employees, capital

expenditure, and depreciation are excluded. Firms with value-added and material costs less

than 0.01 are excluded as well. Stock price of each firm must be greater than $1 at the end

of a year. The labor expense ratio, which we will describe below, should be between 0 and

1. Finally, the sample firms should report their accounting information more than 2 years

to avoid the survivorship bias.

To calculate real values, we use GDP deflator (NIPA Table 1.1.9 qtr line1) and price

index for nonresidential private fixed investment(NIPA Table 5.3.4 qtr line2). We obtain

employees’ earnings data from Bureau of Labor Statistics (CES0500000030). Because this

table reports weekly earnings for each month, we calculate annual earnings.

(2) Input variables

We calculate value-added, employment, physical capital, and investment to estimate TFP.

Value-added (Yit) is Salesit−Materialsit
GDP deflator

. Material cost (Materialsit) is total expenses minus

labor expense. Total expense is sales minus operating income before depreciation and amor-

tization (oibdp). Labor expense is the staff expense (xlr). However, only a small number of

firms report the staff expense. We replace those missing observations with the interaction
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of industry average labor expense ratio and total expense. To be specific, we calculate the

labor expense ratio, xlrit
salesit−oibdpit , for each firm. Next, in each year we estimate the industry

average of the labor expense ratio at 4-digit SIC. In each 4-digit SIC code, the number of

firms should be greater than 3. Otherwise, we estimate the industry average of the labor

expense ratio at 3-digit SIC. In the same manner, we estimate the industry average of labor

expense ratio at 2-digit and 1-digit SIC code. Then, we back out the staff expense by mul-

tiplying the industry average labor expense ratio and total expense. If the labor expense is

still missing, we interpolate those missing observations with the interaction of annual wage

from the Bureau of Labor Statistics and the number of employees.

Capital stock (Kit) is net property, plant, and equipment divided by the capital price

deflator. We calculate the capital price deflator by following İmrohoroğlu and Tüzel (2014).

First, we compute the age of capital in each year. Age of capital stock is dpactit
dpit

. Further, we

take a 3-year moving average to smooth the capital age. Then, we match the current capital

stock with the the price index for private fixed investment at current year minus capital age.

Finally, we take one-year lag for the capital stock to measure the available capital stock at

the beginning of the period.

Investment (Iit) is capital expenditure deflated by current fixed investment price index.

Labor (Lit) is the number of employees.

(3) TFP estimation

We follow Olley and Pakes (1996) to estimate the total factor productivity (TFP) because

this is one of the robust ways of measuring production function parameters by solving the

simultaneity problem and selection bias. Olley and Pakes (1996) estimate the labor coefficient

and the capital coefficient separately to avoid the simultaneity problem. Also, they include

the exit probability in TFP estimation to avoid the selection bias. İmrohoroğlu and Tüzel

(2014) show how to estimate Olley and Pakes (1996) TFP using annual COMPUSTAT and

share their codes.15 Our TFP estimation process is based on İmrohoroğlu and Tüzel (2014)

15http://www-bcf.usc.edu/ tuzel/TFPUpload/Programs/
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with some modifications.

We start from the simple Cobb-Douglas production technology.

Yit = LβLit K
βK
it Zit, (18)

where Yit, Lit, Kit, and Zit are value-added, labor, capital stock, and productivity of a firm

i at time t. We scale the production function by its capital stock, for several reasons. First,

since TFP is the residual term, it is often highly correlated with the firm size. Second, this

avoids estimating the capital coefficient directly. Third, there is an upward bias in labor

coefficient, without scaling. After being scaled by the capital stock and transformed into

logarithmic values, Eq. (18) can be rewritten as

Log
Yit
Kit

= βLLog
Lit
Kit

+ (βK + βL − 1)LogKit + LogZit. (19)

We define Log Yit
Kit

, Log Lit

Kit
, LogKit, and LogZit as ykit, lkit, kit, and zit. Also, denote βL and

(βK + βL − 1) as βl and βk. Rewrite Eq. (19) as

ykit = βllkit + βkkit + zit. (20)

When facing the productivity shock (zit) at t, a firm decides the optimal labor and capital

investment. Because the productivity (zit) is a state variable, the optimal capital investment

(ik∗it) is a function of the productivity (zit). Olley and Pakes (1996) assume a monotonic

relationship between the investment and productivity, so the productivity is a function of

investment, i.e., zit = h(ikit). We assume that the function h(ikit) is 3rd-order polynomials

of ikit.

Specifically, we estimate the following cross-sectional regression at the first stage:

yit = βllkit + βkkit + β0 + βikikit + βik2ik
2
it + βik3ik

3
it + ηj + εit, (21)
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where h(ikit) = β0 + βikikit + βik2ik
2
it + βik3ik

3
it and ηj is 4-digit SIC code to capture the

differences of industrial technologies. From this stage, we estimate the labor coefficients, β̂l.

Second, the conditional expectation of y/ki,t+1 − β̂ll/ki,t+1 − ηj on information at t and

survival of the firm is following:

Et(yki,t+1 − β̂llki,t+1 − ηj) = βkki,t+1 + Et(zi,t+1|zi,t, survival) (22)

= βkki,t+1 + g(zit, P̂survival,t),

where P̂survival,t is the probability of a firm survival from t to t + 1. The probability is

estimated with the probit regression of a survival indicator variable on the 3rd-order poly-

nomials of investment rate. When we run the probit regression, we include all firms with-

out financial industry and regulated industry to have enough number of observations and

use this exit probability to estimate TFP for manufacturing industry. zit is computed as

β0 + βikikit + βik2ik
2
it + βik3ik

3
it. The function g is the polynomials of the survival probability

(P̂survival,t) and lagged TFP (zit). At this step, we estimate the coefficient of capital, β̂k,

which gives β̂K .

From the second stage, total factor productivity (TFP) can be computed as follows:

TFPit = exp(ykit − β̂llki,t − ̂(βK + βl − 1)kit − ηj). (23)

We estimate TFP growth as the innovations of logarithmic TFP from the first-order autore-

gressions, using a 5-year rolling window. TFP estimates are available from 1972 to 2015.

C. Explaining the first mimicking productivity factor

D. Alternative test assets
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Table B1. Explaining the first productivity factor with other pricing factors:
Identifying a missing factor

Panel A presents the abnormal returns and the factor loadings of the first productivity factor from various
factor models, using the full sample. Panel B shows similar results from the extending-window estima-
tion. Factor models include the market model (CAPM), Fama and French (1993) three-factor model (FF3),
Carhart (1997) four-factor model (FF4), Fama and French (2016) five-factor model (FF5), Fama and French
(2018) six-factor model (FF6), Stambaugh and Yuan (2017) model (SY), Daniel et al. (2018) model (DHS),
Hou et al. (2015) q-factor model (HXZ), and Hou et al. (2018) q5 model (HMXZ). All returns are multiplied
with 100. Newey-West adjusted t-statistics (t-stat) with 6-month (4-month) lags are provided in Panel A
(Panel B). R2 denotes the explanatory power of the corresponding factor model. The sample period is from
January 1972 to December 2015. The testing period for panel B is from January 2001 to December 2015.

Panel A. Full-sample estimation
CAPM α MKT R2

Coeff 1.29 0.04 0.00
t-stat 4.41 0.45

FF3 α MKT SMB HML R2

Coeff 1.37 -0.10 0.54 -0.30 0.06
t-stat 4.82 -1.05 3.38 -1.98

FF4 α MKT SMB HML UMD R2

Coeff 1.17 -0.06 0.54 -0.23 0.21 0.08
t-stat 3.79 -0.59 3.14 -1.39 2.14

FF5 α MKT SMB HML CMA RMW R2

Coeff 1.31 -0.11 0.67 -0.14 -0.45 0.44 0.09
t-stat 4.27 -1.17 5.25 -0.78 -1.42 2.36

FF6 α MKT SMB HML CMA RMW UMD R2

Coeff 1.15 -0.08 0.66 -0.01 -0.56 0.39 0.22 0.10
t-stat 3.53 -0.81 5.24 -0.04 -1.59 2.00 2.18

SY α MKT MIS ME MGMT PERF R2

Coeff 0.91 -0.02 0.64 -0.20 0.43 0.12
t-stat 3.04 -0.18 4.54 -1.17 3.77
DHS α MKT FIN PEAD R2

Coeff 1.27 -0.03 -0.19 0.34 0.02
t-stat 3.60 -0.30 -1.57 1.25
HXZ α MKT QME QIA QROE R2

Coeff 1.35 -0.09 0.42 -0.45 0.19 0.04
t-stat 4.20 -0.93 3.15 -1.80 1.34

HXMZ α MKT QME QIA QROE EG R2

Coeff 1.16 -0.05 0.43 -0.55 0.06 0.38 0.05
t-stat 3.90 -0.58 3.04 -1.92 0.29 1.22
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Panel B. Extending-window estimation
CAPM α MKT R2

Coeff -1.85 0.32 0.04
t-stat -3.84 2.10

FF3 α MKT SMB HML R2

Coeff -1.51 0.49 -0.86 -0.60 0.23
t-stat -3.50 4.82 -4.64 -3.29

FF4 α MKT SMB HML UMD R2

Coeff -1.39 0.33 -0.86 -0.59 -0.28 0.27
t-stat -3.24 2.92 -4.98 -4.18 -2.36

FF5 α MKT SMB HML CMA RMW R2

Coeff -1.08 0.25 -0.98 -0.32 -0.31 -0.71 0.27
t-stat -2.41 1.90 -5.63 -1.75 -1.24 -2.72

FF6 α MKT SMB HML CMA RMW UMD R2

Coeff -1.11 0.20 -0.95 -0.41 -0.19 -0.52 -0.20 0.29
t-stat -2.63 1.52 -5.76 -2.27 -0.81 -1.84 -1.88

SY α MKT MISME MGMT PERF R2

Coeff -0.92 0.26 -1.25 -0.51 -0.21 0.30
t-stat. -2.19 1.82 -6.60 -3.54 -1.85

DHS α MKT FIN PEAD R2

Coeff -1.19 -0.05 -0.56 -0.57 0.13
t-stat -2.68 -0.42 -3.03 -1.81
HXZ α MKT QME QIA QROE R2

Coeff -1.04 0.21 -1.13 -0.72 -0.65 0.33
t-stat -2.86 1.60 -6.31 -3.95 -3.10

HXMZ α MKT QME QIA QROE EG R2

Coeff -0.96 0.18 -1.16 -0.55 -0.54 -0.36 0.33
t-stat -2.64 1.34 -6.46 -2.52 -2.27 -1.72
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Table C1. Alternative test assets: 25 Size and Book-to-market sorted portfolios

This table reports the intercepts (α, in % per month) and factor loadings from the full-sample time-series
regressions of 25 size and book-to-market sorted portfolios. Factors include six productivity factors. The
Newey-West t-statistics with six months lags are provided. The sample period is from January 1972 to
December 2015. R2 and standard errors of residuals (s(e), %) are reported.

Low BM 2 3 4 High BM Low BM 2 3 4 High BM
α(% per month) t-statistic

Small -0.19 0.30 0.14 0.33 0.43 -0.55 1.03 0.48 1.21 1.31
2 0.03 0.12 0.19 0.18 0.11 0.09 0.46 0.70 0.73 0.35
3 0.20 0.18 0.17 0.22 0.26 0.69 0.69 0.70 0.85 0.82
4 0.33 0.08 0.10 0.23 0.07 1.27 0.30 0.40 0.91 0.23

Big 0.22 0.08 -0.01 -0.19 0.07 1.10 0.40 -0.05 -0.73 0.29
PC1 loading t-statistic

Small 0.40 0.32 0.26 0.22 0.20 7.00 6.92 6.28 5.86 4.67
2 0.39 0.26 0.20 0.17 0.19 7.52 6.28 4.71 4.46 4.23
3 0.36 0.20 0.14 0.09 0.11 7.69 4.82 3.34 2.26 2.41
4 0.28 0.15 0.09 0.05 0.07 6.32 3.43 2.13 1.31 1.47

Big 0.12 0.08 0.03 -0.01 0.04 4.57 2.34 0.81 -0.29 0.93
PC2 loading t-statistic

Small -0.77 -0.68 -0.50 -0.48 -0.36 -5.34 -5.84 -4.42 -4.61 -2.68
2 -0.67 -0.44 -0.32 -0.27 -0.34 -4.83 -3.54 -2.66 -2.49 -2.87
3 -0.57 -0.26 -0.12 -0.05 -0.04 -4.83 -2.26 -1.07 -0.45 -0.26
4 -0.34 -0.08 0.06 0.08 0.11 -3.24 -0.69 0.48 0.81 0.88

Big 0.06 0.09 0.17 0.28 0.29 0.77 1.01 2.05 2.91 2.43
PC3 loading t-statistic

Small 0.31 0.28 0.14 0.12 0.12 4.98 4.87 2.06 1.93 1.41
2 0.23 0.14 0.06 0.03 0.04 3.66 2.08 0.85 0.48 0.53
3 0.23 0.09 0.02 0.00 0.00 4.01 1.56 0.33 -0.03 -0.05
4 0.23 0.02 0.00 -0.02 -0.06 4.88 0.32 -0.06 -0.32 -0.68

Big 0.11 -0.03 -0.11 -0.14 -0.10 3.05 -0.77 -2.43 -2.29 -1.65
PC4 loading t-statistic

Small 0.08 0.12 0.11 0.13 0.15 1.67 3.00 2.60 3.20 3.19
2 -0.02 0.04 0.05 0.08 0.13 -0.31 0.93 1.19 1.98 2.68
3 -0.05 0.01 0.03 0.06 0.11 -1.23 0.26 0.71 1.45 2.14
4 -0.06 -0.01 0.04 0.08 0.10 -1.35 -0.14 0.76 2.01 1.97

Big -0.08 -0.01 0.02 0.08 0.11 -2.20 -0.26 0.72 1.99 2.48
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PC5 loading t-statistic

Small 1.64 1.55 1.42 1.37 1.28 6.66 7.74 6.29 6.12 4.72
2 1.67 1.52 1.34 1.38 1.56 7.61 7.58 6.22 6.33 5.88
3 1.55 1.46 1.23 1.20 1.33 8.04 7.60 5.77 6.11 5.40
4 1.44 1.34 1.24 1.22 1.40 9.17 6.79 5.91 6.90 6.24

Big 1.16 1.28 1.26 1.28 1.23 8.05 7.78 7.59 5.78 5.71

PC6 loading t-statistic

Small 0.90 0.70 0.58 0.51 0.52 11.40 9.42 6.43 5.75 4.76
2 0.79 0.57 0.46 0.48 0.57 9.71 6.61 5.13 5.08 4.58
3 0.74 0.52 0.45 0.43 0.47 10.57 5.79 5.15 4.55 4.51
4 0.68 0.51 0.48 0.51 0.60 10.92 6.14 4.69 5.56 5.20

Big 0.52 0.53 0.52 0.58 0.67 9.68 8.16 7.09 4.79 5.99

R2 s(e)

Small 0.48 0.49 0.37 0.36 0.29 5.71 4.95 4.67 4.49 5.06
2 0.45 0.36 0.27 0.27 0.27 5.38 4.82 4.62 4.44 5.21
3 0.48 0.33 0.24 0.21 0.19 4.84 4.51 4.35 4.38 5.10
4 0.48 0.30 0.25 0.26 0.24 4.40 4.38 4.41 4.15 4.96

Big 0.50 0.41 0.39 0.35 0.29 3.35 3.53 3.46 3.87 4.63
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Table C2. Alternative test assets: 25 Size and Profitability sorted portfolios

This table reports the intercepts (α, in % per month) and factor loadings from the full-sample time-series
regressions of 25 size and operating profitability sorted portfolios. Factors include six productivity factors.
The Newey-West t-statistics with six months lags are provided. The sample period is from January 1972 to
December 2015. R2 and standard errors of residuals (s(e), %) are reported.

Low Op 2 3 4 High Op Low Op 2 3 4 High Op
α(% per month) t-statistic

Small 0.06 0.24 0.13 0.17 0.03 0.19 0.86 0.45 0.54 0.08
2 0.06 0.00 0.12 0.25 0.19 0.21 0.02 0.46 0.89 0.62
3 0.19 0.15 0.15 0.11 0.28 0.66 0.62 0.62 0.44 0.99
4 0.24 0.17 0.12 0.23 0.15 0.89 0.72 0.51 0.92 0.56

Big 0.07 0.00 0.05 0.20 0.17 0.27 0.01 0.23 0.97 0.90
PC1 loading t-statistic

Small 0.31 0.24 0.24 0.26 0.32 6.77 5.85 5.66 5.67 6.26
2 0.30 0.24 0.22 0.25 0.29 6.25 6.01 5.49 6.00 6.19
3 0.24 0.15 0.18 0.20 0.25 5.43 4.09 4.79 4.93 5.57
4 0.15 0.13 0.12 0.15 0.20 3.79 3.36 3.07 3.59 4.51

Big 0.11 0.04 0.09 0.09 0.09 3.20 1.27 3.04 3.14 3.73
PC2 loading t-statistic

Small -0.61 -0.49 -0.44 -0.48 -0.52 -5.03 -4.12 -3.50 -3.52 -3.38
2 -0.51 -0.36 -0.37 -0.41 -0.45 -4.03 -3.10 -3.46 -3.46 -3.10
3 -0.28 -0.24 -0.21 -0.25 -0.32 -2.49 -2.50 -2.22 -2.25 -2.37
4 -0.04 -0.05 -0.04 -0.09 -0.20 -0.40 -0.44 -0.38 -0.84 -1.78

Big 0.14 0.19 0.15 0.12 0.06 1.61 2.25 1.79 1.64 0.82
PC3 loading t-statistic

Small 0.32 0.08 0.04 0.02 0.09 5.10 1.08 0.48 0.28 1.11
2 0.25 0.08 0.04 0.07 0.06 3.54 1.18 0.54 1.00 0.75
3 0.25 0.07 0.05 0.03 0.07 3.82 1.36 0.97 0.48 0.98
4 0.19 0.08 0.03 0.03 0.06 3.62 1.71 0.56 0.54 1.02

Big 0.04 0.00 0.00 0.03 0.04 0.92 0.05 -0.07 0.82 1.04
PC4 loading t-statistic

Small 0.17 0.09 0.06 0.04 0.05 3.96 1.93 1.34 0.88 1.03
2 0.10 0.06 0.04 0.01 -0.01 2.10 1.38 0.98 0.12 -0.17
3 0.09 0.04 0.03 0.00 -0.04 2.16 1.05 0.76 -0.02 -0.92
4 0.10 0.06 0.01 -0.01 -0.03 2.40 1.49 0.21 -0.36 -0.76

Big 0.04 0.05 0.02 -0.04 -0.05 1.05 1.45 0.58 -1.30 -1.51
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PC5 loading t-statistic

Small 1.47 1.38 1.37 1.41 1.61 6.23 5.60 5.49 5.83 6.70
2 1.64 1.51 1.42 1.35 1.53 7.15 7.01 7.02 5.90 6.60
3 1.45 1.36 1.33 1.38 1.44 7.32 7.49 7.73 6.68 7.16
4 1.34 1.33 1.25 1.32 1.45 8.07 8.39 6.62 7.26 8.40

Big 1.33 1.23 1.26 1.14 1.22 7.88 8.19 7.89 7.96 8.69

PC6 loading t-statistic

Small 0.78 0.50 0.46 0.48 0.58 9.77 4.98 4.33 4.55 5.89
2 0.82 0.54 0.48 0.45 0.51 9.43 5.63 5.09 4.23 5.20
3 0.85 0.49 0.49 0.47 0.47 12.02 5.79 6.55 4.95 5.20
4 0.83 0.60 0.49 0.49 0.52 12.11 7.58 5.34 5.83 6.90

Big 0.87 0.64 0.63 0.55 0.47 11.33 10.33 8.96 9.75 8.43

R2 s(e)

Small 0.49 0.31 0.28 0.26 0.31 5.22 4.71 4.64 4.97 5.43
2 0.44 0.32 0.29 0.28 0.29 5.35 4.66 4.45 4.74 5.14
3 0.45 0.31 0.31 0.29 0.31 5.00 4.24 4.13 4.43 4.81
4 0.43 0.35 0.30 0.32 0.34 4.61 4.13 4.14 4.18 4.41

Big 0.48 0.44 0.47 0.48 0.47 4.09 3.46 3.30 3.25 3.24
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Table C3. Alternative test assets: 25 Size and Investment sorted portfolios

This table reports the intercepts (α, in % per month) and factor loadings from the full-sample time-series
regressions of 25 size and investment sorted portfolios. Factors include six productivity factors. The Newey-
West t-statistics with six months lags are provided. The sample period is from January 1972 to December
2015. R2 and standard errors of residuals (s(e), %) are reported.

Low Inv 2 3 4 High Inv Low Inv 2 3 4 High Inv
α(% per month) t-statistic

Small 0.38 0.37 0.29 0.13 -0.19 1.15 1.26 1.02 0.47 -0.58
2 0.12 0.13 0.21 0.21 0.02 0.39 0.50 0.89 0.79 0.05
3 0.24 0.20 0.18 0.23 0.22 0.87 0.82 0.74 0.94 0.79
4 0.09 0.10 0.14 0.26 0.35 0.32 0.40 0.62 1.11 1.32

Big 0.08 -0.04 0.02 0.13 0.37 0.34 -0.21 0.13 0.70 1.69
PC1 loading t-statistic

Small 0.29 0.22 0.26 0.27 0.34 6.58 5.59 6.14 6.27 7.03
2 0.24 0.19 0.21 0.23 0.36 5.16 4.79 5.53 5.79 7.67
3 0.19 0.12 0.15 0.20 0.31 4.17 3.16 4.10 5.38 6.80
4 0.12 0.10 0.12 0.15 0.27 2.84 2.60 3.08 4.20 5.75

Big 0.05 0.03 0.01 0.09 0.25 1.44 1.15 0.43 3.54 8.56
PC2 loading t-statistic

Small -0.60 -0.47 -0.51 -0.52 -0.62 -4.99 -4.56 -4.91 -4.55 -4.38
2 -0.40 -0.28 -0.38 -0.37 -0.60 -3.29 -2.35 -3.95 -3.22 -4.65
3 -0.16 -0.16 -0.18 -0.30 -0.45 -1.25 -1.70 -1.68 -3.00 -3.91
4 0.11 0.08 -0.08 -0.19 -0.31 0.99 0.70 -0.82 -2.12 -2.87

Big 0.25 0.17 0.14 0.07 -0.01 2.56 2.57 1.97 0.92 -0.10
PC3 loading t-statistic

Small 0.30 0.12 0.09 0.11 0.24 4.93 1.99 1.33 1.66 3.02
2 0.14 0.04 0.07 0.09 0.22 2.03 0.62 1.23 1.36 2.92
3 0.10 0.04 0.03 0.11 0.20 1.46 0.71 0.45 2.00 3.02
4 0.03 -0.03 0.01 0.07 0.26 0.41 -0.58 0.28 1.43 4.96

Big -0.07 -0.08 -0.03 0.03 0.18 -1.87 -2.39 -0.92 0.78 3.96
PC4 loading t-statistic

Small 0.22 0.12 0.10 0.10 0.07 4.91 2.96 2.38 2.37 1.50
2 0.15 0.06 0.09 0.04 -0.01 3.17 1.40 2.31 0.77 -0.22
3 0.10 0.09 0.04 0.01 -0.05 2.08 2.67 0.88 0.28 -1.26
4 0.09 0.06 0.04 -0.01 -0.05 2.07 1.38 1.19 -0.23 -1.22

Big 0.09 0.05 0.01 -0.04 -0.14 2.20 1.82 0.47 -1.10 -3.88
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PC5 loading t-statistic

Small 1.53 1.32 1.42 1.46 1.54 6.43 5.97 5.96 6.14 6.67
2 1.60 1.35 1.45 1.47 1.64 6.73 6.35 8.07 6.64 7.33
3 1.34 1.36 1.32 1.41 1.48 6.22 7.52 7.30 7.53 7.28
4 1.36 1.27 1.33 1.35 1.43 6.53 7.62 8.31 8.36 8.43

Big 1.29 1.28 1.29 1.24 1.08 7.79 8.87 9.12 8.88 7.13

PC6 loading t-statistic

Small 0.78 0.51 0.52 0.56 0.73 9.14 5.67 5.53 6.13 9.01
2 0.70 0.45 0.51 0.52 0.76 7.06 4.78 6.01 5.01 9.84
3 0.58 0.47 0.47 0.52 0.71 6.54 6.16 5.50 5.98 9.84
4 0.61 0.52 0.53 0.52 0.74 7.26 6.17 7.31 6.75 11.18

Big 0.59 0.54 0.51 0.55 0.66 7.84 9.70 8.15 8.44 11.92

R2 s(e)

Small 0.49 0.35 0.35 0.36 0.42 5.23 4.49 4.53 4.64 5.39
2 0.37 0.26 0.34 0.32 0.43 5.15 4.48 4.28 4.65 5.26
3 0.28 0.29 0.29 0.35 0.43 4.92 4.11 4.08 4.32 4.91
4 0.28 0.28 0.32 0.35 0.48 4.69 4.14 3.92 4.05 4.63

Big 0.34 0.43 0.46 0.48 0.56 3.87 3.10 3.10 3.29 3.73
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Table C4. Alternative test assets: 25 Size and Momentum sorted portfolios

This table reports the intercepts (α, in % per month) and factor loadings from the full-sample time-series
regressions of 25 size and momentum sorted portfolios. Factors include six productivity factors. The Newey-
West t-statistics with six months lags are provided. The sample period is from January 1972 to December
2015. R2 and standard errors of residuals (s(e), %) are reported.

Loser 2 3 4 Winner Loser 2 3 4 Winner
α(% per month) t-statistic

Small 0.24 0.19 0.32 0.40 0.49 0.54 0.60 1.10 1.42 1.58
2 0.38 0.31 0.25 0.23 0.26 0.93 1.00 0.94 0.87 0.97
3 0.63 0.33 0.21 0.03 0.14 1.59 1.12 0.77 0.12 0.54
4 0.66 0.37 0.24 0.15 0.04 1.70 1.29 0.93 0.63 0.14

Big 0.49 0.40 0.04 -0.04 -0.13 1.38 1.70 0.18 -0.23 -0.57
PC1 loading t-statistic

Small 0.25 0.20 0.18 0.21 0.32 3.9466 4.26 4.097 5.0426 7.2253
2 0.24 0.20 0.19 0.22 0.37 3.7063 4.3079 4.5071 5.5312 8.3135
3 0.16 0.15 0.16 0.17 0.32 2.665 3.3855 3.8717 4.5031 8.1938
4 0.11 0.11 0.11 0.11 0.29 1.7179 2.0177 2.4484 3.02 7.5045

Big 0.08 0.05 0.06 0.07 0.21 1.4937 1.1795 1.8459 2.2366 6.4268
PC2 loading t-statistic

Small -0.35 -0.32 -0.33 -0.38 -0.59 -1.54 -2.12 -2.49 -3.29 -5.08
2 -0.28 -0.27 -0.30 -0.34 -0.65 -1.39 -1.90 -2.73 -3.27 -6.75
3 -0.10 -0.14 -0.20 -0.17 -0.46 -0.48 -1.00 -1.74 -1.59 -5.25
4 0.09 0.03 -0.01 -0.02 -0.35 0.49 0.19 -0.06 -0.22 -4.22

Big 0.22 0.13 0.08 0.06 -0.12 1.36 1.09 0.93 0.88 -1.81
PC3 loading t-statistic

Small 0.29 0.10 0.08 0.11 0.17 2.50 1.10 1.00 1.79 3.22
2 0.25 0.10 0.06 0.08 0.13 2.37 1.13 0.89 1.19 2.52
3 0.20 0.08 0.02 0.01 0.13 2.06 1.00 0.26 0.21 2.74
4 0.18 0.00 -0.01 0.01 0.11 1.92 -0.03 -0.16 0.20 2.25

Big 0.09 -0.03 -0.04 -0.07 0.03 1.14 -0.57 -0.83 -1.76 0.58
PC4 loading t-statistic

Small 0.10 0.10 0.09 0.09 0.12 1.33 1.84 1.88 2.28 3.34
2 0.03 0.04 0.03 0.06 0.06 0.41 0.61 0.71 1.50 1.56
3 -0.01 -0.01 0.01 0.03 0.04 -0.19 -0.14 0.29 0.67 1.24
4 -0.04 -0.01 -0.01 0.00 0.03 -0.54 -0.21 -0.20 0.05 0.85

Big -0.07 -0.03 -0.02 0.00 0.00 -1.19 -0.71 -0.56 -0.13 0.00
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PC5 loading t-statistic

Small 0.69 1.09 1.19 1.30 1.81 2.08 4.24 4.94 5.30 7.59
2 0.82 1.08 1.29 1.50 2.04 2.78 4.53 6.04 7.00 9.99
3 0.62 1.01 1.22 1.42 2.05 2.50 4.74 5.72 6.73 10.79
4 0.60 0.98 1.12 1.37 1.92 2.33 4.55 5.72 8.16 11.16

Big 0.65 0.81 1.12 1.34 1.84 2.55 4.46 6.45 8.17 11.64

PC6 loading t-statistic

Small 0.86 0.54 0.45 0.45 0.66 5.51 4.31 4.27 4.99 9.07
2 0.87 0.53 0.46 0.48 0.71 5.18 4.18 4.61 5.41 10.38
3 0.83 0.54 0.49 0.44 0.64 6.16 4.85 4.62 4.85 9.85
4 0.87 0.60 0.49 0.44 0.59 5.72 5.29 5.11 5.98 9.99

Big 0.84 0.59 0.54 0.49 0.58 5.68 5.65 7.18 8.66 11.26

R2 s(e)

Small 0.32 0.25 0.26 0.31 0.44 6.69 5.04 4.56 4.45 4.97
2 0.30 0.22 0.27 0.33 0.46 6.69 5.24 4.53 4.39 4.95
3 0.29 0.24 0.25 0.29 0.47 6.33 4.89 4.43 4.20 4.60
4 0.32 0.24 0.26 0.33 0.46 6.23 4.91 4.24 3.94 4.35

Big 0.36 0.32 0.39 0.41 0.49 5.66 4.15 3.49 3.38 3.81
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Table C5. Alternative test assets: 25 Size and Idiosyncratic volatility sorted
portfolios

This table reports the intercepts (α, in % per month) and factor loadings from the full-sample time-series
regressions of 25 size and idiosyncratic volatility sorted portfolios. Factors include six productivity factors.
The Newey-West t-statistics with six months lags are provided. The sample period is from January 1972 to
December 2015. R2 and standard errors of residuals (s(e), %) are reported.

Low Ivol 2 3 4 High Ivol Low Ivol 2 3 4 High Ivol
α(% per month) t-statistic

Small 0.48 0.48 0.46 0.46 -0.29 1.93 1.56 1.26 1.12 -0.64
2 0.29 0.26 0.30 0.29 -0.05 1.36 0.94 1.02 0.83 -0.12
3 0.17 0.21 0.21 0.23 0.08 0.83 0.85 0.73 0.75 0.24
4 0.18 0.16 0.17 0.18 0.29 0.91 0.74 0.67 0.63 0.89

Big -0.02 -0.02 -0.04 0.10 0.42 -0.11 -0.12 -0.18 0.43 1.56
PC1 loading t-statistic

Small 0.12 0.20 0.24 0.29 0.32 3.57 4.16 4.32 4.72 4.67
2 0.11 0.19 0.24 0.28 0.39 3.42 4.30 4.80 4.93 6.38
3 0.06 0.14 0.17 0.24 0.36 2.06 3.62 3.86 4.58 6.46
4 0.01 0.08 0.12 0.18 0.30 0.33 2.16 2.62 3.66 5.51

Big -0.01 0.05 0.10 0.14 0.24 -0.37 1.82 3.10 4.26 5.58
PC2 loading t-statistic

Small -0.23 -0.36 -0.41 -0.47 -0.49 -2.37 -2.58 -2.43 -2.36 -2.25
2 -0.19 -0.28 -0.37 -0.44 -0.58 -2.22 -2.22 -2.81 -2.71 -3.56
3 -0.06 -0.15 -0.18 -0.28 -0.47 -0.77 -1.24 -1.39 -1.91 -3.02
4 0.09 0.03 0.00 -0.07 -0.29 1.05 0.30 -0.02 -0.57 -2.04

Big 0.19 0.14 0.13 0.03 -0.04 2.90 2.04 1.71 0.31 -0.33
PC3 loading t-statistic

Small -0.01 0.02 0.09 0.21 0.42 -0.13 0.21 0.92 2.03 4.31
2 -0.02 0.00 -0.01 0.07 0.31 -0.37 0.00 -0.09 0.85 3.65
3 -0.06 -0.04 0.00 0.07 0.27 -1.17 -0.52 0.02 0.97 3.72
4 -0.09 -0.06 -0.02 0.04 0.31 -1.87 -0.96 -0.27 0.58 4.48

Big -0.06 -0.06 -0.05 0.04 0.27 -1.85 -1.82 -1.06 1.02 5.32
PC4 loading t-statistic

Small 0.06 0.06 0.07 0.10 0.17 1.51 1.16 1.22 1.51 2.53
2 0.04 0.04 0.02 0.01 0.07 1.13 0.79 0.37 0.16 1.17
3 0.03 0.01 0.00 -0.01 0.02 0.92 0.24 0.08 -0.19 0.32
4 0.03 -0.01 -0.02 -0.02 0.00 0.92 -0.19 -0.40 -0.32 0.07

Big 0.00 -0.02 -0.01 -0.02 -0.03 0.15 -0.53 -0.18 -0.53 -0.75
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PC5 loading t-statistic

Small 0.95 1.27 1.31 1.28 1.10 4.67 5.10 4.59 3.95 2.97
2 1.11 1.36 1.48 1.60 1.61 6.04 6.02 5.96 6.07 6.04
3 1.07 1.30 1.37 1.53 1.55 6.43 6.37 6.06 6.52 6.80
4 1.03 1.18 1.31 1.40 1.48 6.66 6.89 6.75 6.76 6.81

Big 1.13 1.29 1.34 1.35 1.30 10.61 9.21 9.24 7.76 6.60

PC6 loading t-statistic

Small 0.31 0.46 0.59 0.77 0.98 3.23 4.04 4.57 5.44 7.13
2 0.32 0.41 0.50 0.63 1.03 3.64 3.79 4.47 4.78 8.91
3 0.32 0.42 0.45 0.54 0.94 4.16 4.40 4.18 4.96 10.19
4 0.34 0.40 0.48 0.57 0.93 4.77 5.11 5.21 5.70 10.22

Big 0.42 0.49 0.56 0.65 0.86 8.55 9.45 8.36 7.91 10.75

R2 se

Small 0.18 0.21 0.24 0.32 0.42 3.79 4.98 5.63 6.24 6.86
2 0.22 0.22 0.23 0.27 0.44 3.64 4.70 5.22 5.81 6.37
3 0.23 0.24 0.24 0.29 0.43 3.39 4.26 4.79 5.24 5.85
4 0.26 0.27 0.28 0.30 0.46 3.34 3.92 4.46 4.86 5.53

Big 0.48 0.47 0.43 0.43 0.52 2.70 3.10 3.52 3.90 4.53
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Table C6. Alternative test assets: Fama-French 30 industry portfolios

This table reports the intercepts (α, in % per month) and factor loadings from the full-sample time-series
regressions of Fama-French 30 industry portfolios. Factors include six productivity factors. The Newey-West
t-statistics (t-stat) with six months lags are provided. The sample period is from January 1972 to December
2015. R2 and standard errors of residuals (s(e), %) are reported.

Agric Food Soda Beer Smoke Toys Fun Books Hshld Clths
α 0.08 0.13 0.19 0.10 0.72 -0.19 0.59 -0.08 0.02 0.06

t-stat 0.24 0.51 0.52 0.38 2.05 -0.49 1.30 -0.24 0.11 0.16
βPC1 0.13 -0.02 -0.01 -0.02 -0.07 0.13 0.17 0.11 -0.01 0.16
t-stat 3.72 -0.68 -0.17 -0.77 -1.98 2.42 4.06 3.22 -0.34 3.73
βPC2 0.42 0.19 0.23 0.21 -0.01 0.28 0.27 0.17 0.12 0.20
t-stat 3.91 2.03 1.76 2.12 -0.10 1.71 1.82 1.65 1.42 1.31
βPC3 0.03 -0.04 -0.03 -0.05 -0.04 0.05 0.07 0.03 -0.03 0.04
t-stat 1.74 -2.70 -1.49 -2.01 -2.57 1.55 2.31 1.59 -2.49 1.25
βPC4 -0.14 -0.05 -0.12 -0.10 -0.16 -0.18 -0.26 -0.12 -0.18 -0.18
t-stat -2.15 -1.22 -1.64 -1.91 -2.61 -2.07 -3.66 -2.11 -3.80 -2.47
βPC5 0.64 0.64 0.56 0.64 0.35 0.58 0.44 0.65 0.42 0.69
t-stat 3.04 4.50 2.35 4.16 1.78 2.43 1.84 3.55 3.05 3.29
βPC6 -0.53 -0.57 -0.65 -0.66 -0.48 -0.66 -0.82 -0.68 -0.65 -0.52
t-stat -5.12 -7.42 -5.33 -7.60 -3.54 -4.80 -5.89 -7.14 -8.48 -3.93
R2 0.06 0.00 -0.08 -0.16 -0.41 -0.09 -0.01 0.04 -0.31 0.03

s(e) 0.33 -0.02 -0.39 -1.19 -2.36 -0.37 -0.03 0.26 -2.38 0.18
Hlth MedEq Drugs Chems Rubbr Txtls BldMt Cnstr Steel FabPr

α -0.16 0.33 0.55 0.08 -0.02 0.07 -0.07 -0.16 0.13 0.00
t-stat -0.37 1.41 2.57 0.25 -0.04 0.15 -0.19 -0.42 0.36 0.00
βPC1 0.13 0.08 0.00 0.10 0.12 0.11 0.10 0.19 0.19 0.20
t-stat 2.23 2.38 -0.05 2.53 3.27 2.38 2.86 4.15 4.53 5.24
βPC2 0.42 0.24 0.18 0.03 0.35 0.15 0.14 0.25 -0.02 0.26
t-stat 2.47 3.42 2.51 0.31 3.07 1.02 1.11 2.00 -0.11 1.94
βPC3 0.04 0.01 -0.05 0.00 0.06 0.06 0.02 0.04 0.10 0.08
t-stat 1.03 0.50 -3.33 0.08 3.11 1.75 0.82 1.75 4.63 3.07
βPC4 -0.15 -0.29 -0.30 -0.16 -0.09 -0.03 -0.13 -0.22 -0.19 -0.24
t-stat -1.68 -5.31 -5.40 -2.39 -1.44 -0.36 -1.94 -3.05 -2.57 -3.07
βPC5 0.91 0.27 0.18 0.54 0.74 0.63 0.65 0.66 0.29 0.26
t-stat 3.70 1.98 1.45 3.00 3.78 2.18 3.19 2.98 1.34 1.12
βPC6 -0.54 -0.70 -0.79 -0.67 -0.64 -0.52 -0.69 -0.71 -0.78 -0.48
t-stat -4.69 -7.89 -10.77 -6.97 -5.11 -3.00 -5.82 -5.74 -7.11 -3.62
R2 0.03 -0.35 -0.42 -0.04 0.06 0.11 -0.08 -0.04 -0.02 -0.05

s(e) 0.14 -3.10 -3.68 -0.20 0.40 0.44 -0.45 -0.23 -0.10 -0.27
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Mach ElcEq Autos Aero Ships Guns Gold Mines Coal Oil

α 0.35 0.18 0.09 0.23 -0.10 0.20 1.07 0.50 0.32 0.11
t-stat 1.09 0.65 0.21 0.63 -0.24 0.57 2.29 1.26 0.51 0.41
βPC1 0.17 0.16 0.09 0.08 0.15 0.08 0.08 0.12 0.14 0.05
t-stat 4.90 4.82 2.38 1.69 2.80 1.52 1.04 2.28 1.76 1.28
βPC2 0.13 0.17 -0.02 0.18 0.22 0.12 -0.41 -0.08 0.12 0.08
t-stat 1.09 1.65 -0.13 1.31 1.72 0.95 -2.22 -0.57 0.55 0.69
βPC3 0.06 0.03 0.03 0.01 0.01 0.01 0.06 0.04 0.06 -0.03
t-stat 2.68 1.41 1.15 0.25 0.33 0.58 1.90 1.46 1.43 -1.78
βPC4 -0.30 -0.26 -0.11 -0.15 -0.18 -0.09 -0.37 -0.24 -0.25 -0.08
t-stat -4.41 -4.64 -1.56 -2.54 -2.36 -1.20 -2.89 -2.89 -1.73 -1.19
βPC5 0.26 0.55 0.37 0.64 0.65 0.70 -0.76 0.08 0.18 0.51
t-stat 1.39 3.31 1.51 3.23 2.68 3.36 -2.40 0.32 0.51 2.71
βPC6 -0.70 -0.90 -0.62 -0.69 -0.64 -0.35 -0.03 -0.51 -0.71 -0.66
t-stat -5.82 -10.92 -4.08 -6.00 -4.73 -2.76 -0.20 -4.25 -4.05 -6.60
R2 -0.17 -0.11 0.01 -0.05 -0.07 -0.05 -0.93 -0.31 -0.21 0.08

s(e) -1.03 -0.75 0.07 -0.30 -0.36 -0.26 -3.21 -1.42 -0.59 0.50
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