Financial Technology Adoption

Sean Higgins UC Berkeley

May 28, 2019

Motivation

New financial technologies are rapidly changing the way that households shop, save, borrow, and make other financial decisions

Motivation

New financial technologies are rapidly changing the way that households shop, save, borrow, and make other financial decisions

Payment technologies can benefit both sides of the market

- Consumers benefit from lower transaction costs
 - Costs of traveling to a bank (Bachas, Gertler, Higgins, Seira 2018)
 - Crime risks of carrying cash (Economides & Jeziorski 2017)
- Retail firms
 - Reduce risk of cash theft (Rogoff 2014)
 - Attract consumers who prefer these payment technologies

How supply side responds to consumer financial technology adoption; **spillovers** on other consumers

• Spillovers may be large due to indirect network externalities

How supply side responds to consumer financial technology adoption; **spillovers** on other consumers

• Spillovers may be large due to indirect network externalities

Research question: How do the supply and demand sides of the market respond to consumers' financial technology adoption?

How supply side responds to consumer financial technology adoption; **spillovers** on other consumers

• Spillovers may be large due to indirect network externalities

Research question: How do the supply and demand sides of the market respond to consumers' financial technology adoption?

Exploit natural experiment that shocked financial technology adoption on one side of market

Mexico distributed 1 million debit cards to cash transfer beneficiaries

How supply side responds to consumer financial technology adoption; **spillovers** on other consumers

• Spillovers may be large due to indirect network externalities

Research question: How do the supply and demand sides of the market respond to consumers' financial technology adoption?

Exploit natural experiment that shocked financial technology adoption on one side of market

• Mexico distributed 1 million debit cards to cash transfer beneficiaries

Combine administrative data on debit card rollout with rich collection of microdata on consumers and retail firms

- 1. Increased financial technology adoption by small retailers (corner stores)
 - No effect among supermarkets, which already had high adoption

- 1. Increased financial technology adoption by small retailers (corner stores)
 - No effect among supermarkets, which already had high adoption
- 2. Spillovers to other consumers not directly affected by shock:
 - Other consumers adopt cards (21% ↑)
 - Richer shift 12% of supermarket consumption to corner stores

- 1. Increased financial technology adoption by small retailers (corner stores)
 - No effect among supermarkets, which already had high adoption
- 2. Spillovers to other consumers not directly affected by shock:
 - Other consumers adopt cards (21% ↑)
 - Richer shift 12% of supermarket consumption to corner stores
- 3. Corner store sales \uparrow 3%

- 1. Increased financial technology adoption by small retailers (corner stores)
 - No effect among supermarkets, which already had high adoption
- 2. Spillovers to other consumers not directly affected by shock:
 - Other consumers adopt cards (21% ↑)
 - Richer shift 12% of supermarket consumption to corner stores
- 3. Corner store sales \uparrow 3%
- 4. Consumer gains
 - - Half as large as if Walmart enters municipality
 - Nearly half of total consumer gains are spillovers

- 1. Technology adoption is endogenous
 - Exploit plausibly exogenous variation in consumers' adoption of financial technology from rollout of cards by government

- 1. Technology adoption is endogenous
 - Exploit plausibly exogenous variation in consumers' adoption of financial technology from rollout of cards by government
- 2. May need large local shock to induce response by supply side
 - Shock is large: 18 pp \uparrow in households with cards (on base of 36%)

- 1. Technology adoption is endogenous
 - Exploit plausibly exogenous variation in consumers' adoption of financial technology from rollout of cards by government
- 2. May need large local shock to induce response by supply side
 - Shock is large: 18 pp \uparrow in households with cards (on base of 36%)
- 3. To isolate demand-side spillovers, need shock to subset of consumers
 - Cost of adoption only reduced for cash transfer beneficiaries

- 1. Technology adoption is endogenous
 - Exploit plausibly exogenous variation in consumers' adoption of financial technology from rollout of cards by government
- 2. May need large local shock to induce response by supply side
 - Shock is large: 18 pp \uparrow in households with cards (on base of 36%)
- 3. To isolate demand-side spillovers, need shock to subset of consumers
 - Cost of adoption only reduced for cash transfer beneficiaries
- 4. Data on firm technology adoption; outcomes for firms and other consumers
 - Combine nine data sets, both administrative and survey

Administrative data

- 1. Administrative data on debit card rollout
 - Number of beneficiaries and payment method \times locality \times month
 - Provided by Prospera (cash transfer program)
 - All card transactions by cash transfer recipients who receive card
 - Provided by Bansefi (government bank administering accounts)

Administrative data

- 1. Administrative data on debit card rollout
 - Number of beneficiaries and payment method \times locality \times month
 - Provided by Prospera (cash transfer program)
 - All card transactions by cash transfer recipients who receive card
 - Provided by Bansefi (government bank administering accounts)
- 2. Financial technology adoption and use by retail firms
 - <u>Universe</u> of point-of-sale (POS) terminal adoptions
 - Universe of card transactions by all cardholders (7 billion transactions)
 - Accessed on-site at Mexico's Central Bank

Administrative data

- 1. Administrative data on debit card rollout
 - Number of beneficiaries and payment method \times locality \times month
 - Provided by Prospera (cash transfer program)
 - All card transactions by cash transfer recipients who receive card
 - Provided by Bansefi (government bank administering accounts)
- 2. Financial technology adoption and use by retail firms
 - <u>Universe</u> of point-of-sale (POS) terminal adoptions
 - <u>Universe</u> of card transactions by <u>all</u> cardholders (7 billion transactions)
 - Accessed on-site at Mexico's Central Bank
- 3. Consumer card adoption
 - Quarterly number of debit cards \times issuing bank \times municipality
 - Provided by National Banking and Securities Commission

Survey data

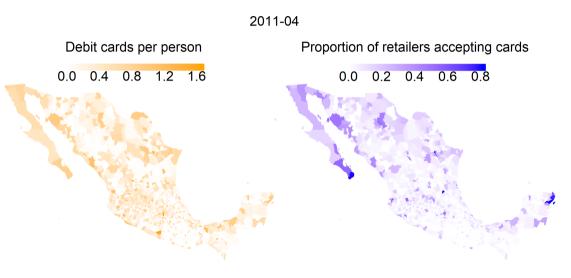
1. Income-expenditure survey: nationally representative household sample

- <u>All</u> consumption including cash
- Includes type of store at which each item purchased
 - Census tract identifiers accessed on-site at National Statistical Institute

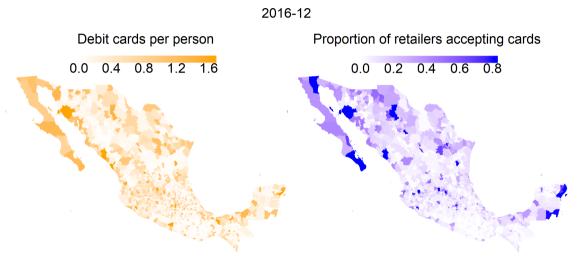
Survey data

1. Income-expenditure survey: nationally representative household sample

- <u>All</u> consumption including cash
- Includes type of store at which each item purchased
 - Census tract identifiers accessed on-site at National Statistical Institute
- 2. Economic census: panel on sales and costs of universe of retailers
 - All sales including cash
 - Accessed on-site at National Statistical Institute


Survey data

1. Income-expenditure survey: nationally representative household sample


- <u>All</u> consumption including cash
- Includes type of store at which each item purchased
 - Census tract identifiers accessed on-site at National Statistical Institute
- 2. Economic census: panel on sales and costs of universe of retailers
 - All sales including cash
 - Accessed on-site at National Statistical Institute
- 3. High-frequency price data
 - 10 million price quotes at barcode-level product \times store \times week level
 - Accessed on-site at National Statistical Institute

Debit cards and point-of-sale terminals over time (Mexico)

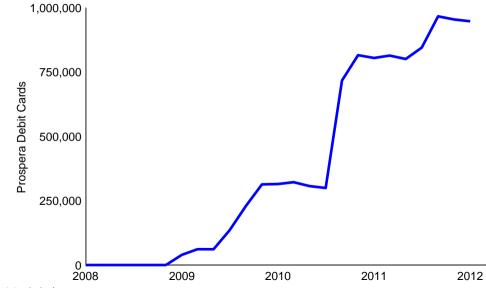
Debit cards and POS over time and space (Mexico)

Debit cards and POS over time and space (Mexico)

Natural experiment from debit card rollout

Over 2009–2012, Mexico's conditional cash transfer program Prospera distributed about 1 million debit cards

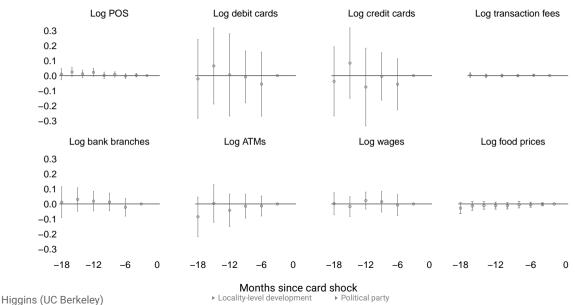
In urban localities (population > 15,000)


Pre-intervention: Urban recipients of government cash transfer program

- Receive transfers in a Bansefi bank account
- Paid every two months (\$150 average)

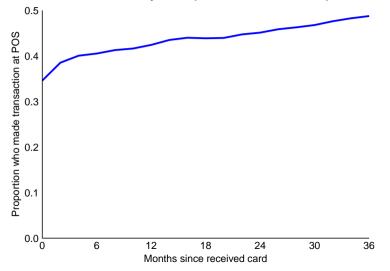
Intervention: Visa debit cards attached to accounts

- Can withdraw funds from any bank's ATM
- Use as debit cards at stores accepting Visa


Debit card rollout over time

Debit card rollout over time and space

Balanced pre-trends in financial and other variables



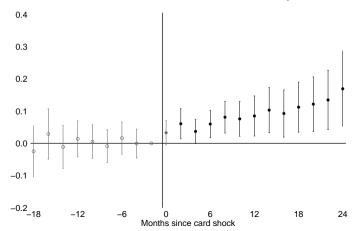
New cardholders make purchases at POS

Data: All transactions made by Prospera beneficiaries (Bansefi, 2007–2015)

New cardholders make purchases at POS

Data: All transactions made by Prospera beneficiaries (Bansefi, 2007–2015)

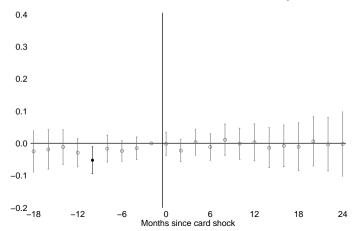
Higgins (UC Berkeley)


Corner stores increase adoption of POS

Data: Universe of point-of-sale terminal "contract changes" (adoptions, cancellations, etc.), 2006–2017 log Number of $POS_{jt} = \xi_j + \delta_t + \sum_k \phi_k D_{jt}^k + \varepsilon_{jt}$

Corner stores increase adoption of POS

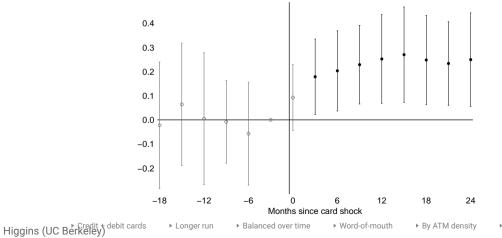
Data: Universe of point-of-sale terminal "contract changes" (adoptions, cancellations, etc.), 2006–2017


log Number of POS_{jt} = $\xi_j + \delta_t + \sum_k \phi_k D_{jt}^k + \varepsilon_{jt}$

Supermarkets do not change adoption of POS

Data: Universe of point-of-sale terminal "contract changes" (adoptions, cancellations, etc.), 2006–2017

log Number of POS_{jt} = $\xi_j + \delta_t + \sum_k \phi_k D_{jt}^k + \varepsilon_{jt}$



Spillovers to other consumers' card adoption

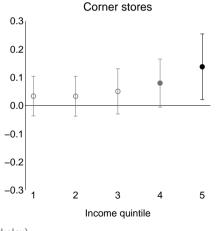
Data: Total debit cards by bank by municipality by quarter, 2008–2014 log Number of Debit Cards_{jt} = $\lambda_j + \delta_t + \sum_k \phi_k D_{it}^k + \varepsilon_{jt}$

Spillovers to other consumers' card adoption

Data: Total debit cards by bank by municipality by quarter, 2008–2014 log Number of Debit Cards_{jt} = $\lambda_j + \delta_t + \sum_k \phi_k D_{it}^k + \varepsilon_{jt}$

Bank response

Increased consumption at corner stores


Data: Consumption module of repeated cross-section survey, 2006–2014 log Spending^s_{it} = $\lambda_{j(i)} + \theta_{q(i)t} + \gamma D_{j(i)t} + \sum_{q=2}^{5} \psi_q \mathbb{I}(quintile = q)_{it} \times D_{j(i)t} + \varepsilon_{it}$

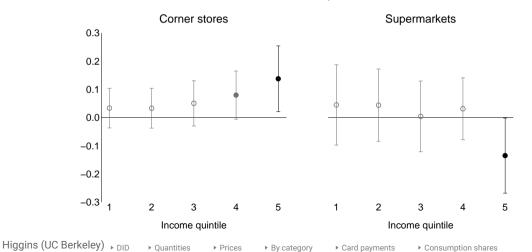
Prices
 By category

ory Card payments

Increased consumption at corner stores

Data: Consumption module of repeated cross-section survey, 2006–2014 log Spending^s_{it} = $\lambda_{j(i)} + \theta_{q(i)t} + \gamma D_{j(i)t} + \sum_{q=2}^{5} \psi_q \mathbb{I}(quintile = q)_{it} \times D_{j(i)t} + \varepsilon_{it}$

Higgins (UC Berkeley) , DID


Ouantities

Prices By category

ory Card payments

Increased consumption at corner stores

Data: Consumption module of repeated cross-section survey, 2006–2014 log Spending^s_{it} = $\lambda_{j(i)} + \theta_{q(i)t} + \gamma D_{j(i)t} + \sum_{q=2}^{5} \psi_q \mathbb{I}(quintile = q)_{it} \times D_{j(i)t} + \varepsilon_{it}$

17

Driven partly by changing number of trips

Data: Consumption module of repeated cross-section survey, 2006–2014 Weekly trips^s_{it} = $\lambda_{j(i)} + \theta_{q(i)t} + \gamma D_{j(i)t} + \sum_{q=2}^{5} \psi_q \mathbb{I}(quintile = q)_{it} \times D_{j(i)t} + \varepsilon_{it}$

Higgins (UC Berkeley)

Corner store sales and profits increase

Data: Mexico's Economic Census (panel)

- Includes all sales (including cash) for universe of retailers
- 1.7 million retailers in 2008 and 1.9 million in 2013

$$\mathbf{y}_{it} = \gamma_i + \delta_t + \beta \mathbf{D}_{\mathbf{j}(\mathbf{i})t} + \varepsilon_{\mathbf{i}t}$$

Corner store sales and profits increase

Data: Mexico's Economic Census (panel)

- Includes all sales (including cash) for universe of retailers
- 1.7 million retailers in 2008 and 1.9 million in 2013

	(1) Log Merchandise Sales	(2) Log Merchandise Costs	(3) Log Wage Costs	(4) Log Rent	(5) Number Employees	(6) asinh Profits	(7) Supermarket asinh Profits
	0.034**	0.027*	-0.011	-0.013	0.006	0.139***	-0.254
	(0.017)	(0.016)	(0.010)	(0.013)	(0.013)	(0.050)	(2.39)
Number of firms	532,374	532,374	532,374	532,374	532,374	532,374	13,873
Firm fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Time fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes
► By period	Prices • Wages	Fired ► T	ransaction fees	▶ Consum	ption ► Size	► Owners ►	Churning

$$\mathbf{y}_{it} = \gamma_i + \delta_t + \beta \mathbf{D}_{j(i)t} + \varepsilon_{it}$$

Goals

- Estimate welfare effects for three types of consumers
 - 1. Prospera beneficiaries who receive cards
 - 2. Existing cardholders (gain from shock-induced retail POS adoption)
 - 3. New adopters (adopt in response to shock-induced retail POS adoption)
- Quantify what proportion of total consumer gains are spillovers to other consumers

Estimate a demand model that combines features of

- Atkin, Faber, Gonzalez-Navarro (2018)
- Björnerstedt & Verboven (2016)
- Einav et al. (2017)

For each shopping trip, consumer makes discrete-continuous choice

For each shopping trip, consumer makes discrete-continuous choice

Discrete choice over which store

For each shopping trip, consumer makes discrete-continuous choice

Discrete choice over which store

Continuous choice over goods at store

- Cobb-Douglas preferences over goods
- Preferences for store characteristics enter utility

$$u_{ist} = \left(\prod_{g} x_{igst}^{\phi_{a(i)gst}}\right)^{\alpha_{k(i)}} \cdot \exp\left(\theta_{k(i)} POS_{ist} + \xi_{a(i)k(i)st} + \varepsilon_{ist}\right)$$

for consumer *i* of type *k* in census tract *a* at store type *s* at time *t*; *g* indexes goods

Plug in Marshallian demand $x_{igst} = \phi_{a(i)gst}(y_{it}/p_{a(i)gst})$

Integrate over ε_{ist} assuming extreme value 1 and integrate over POS_{ist}

Subtract off outside option s = 0 (open air markets)

Leads to equation for difference in log expenditure shares (at census tract \times consumer type \times store type \times time):

 $\log \phi_{akst} - \log \phi_{ak0t} = -\alpha_k (\log P_{ast} - \log P_{a0t}) + \theta_k \overline{POS}_{z(a)kst} + \eta_{j(a)ks} + \delta_{kst} + \nu_{akst}$ where $\log P_{ast} = \sum_g \phi_{agst} \log p_{agst}$ (Stone price index)

$$\log \phi_{\mathsf{akst}} - \log \phi_{\mathsf{ak0t}} = -\alpha_{\mathsf{k}} (\log \mathsf{P}_{\mathsf{ast}} - \log \mathsf{P}_{\mathsf{a0t}}) + \theta_{\mathsf{k}} \overline{\mathsf{POS}}_{\mathsf{z}(\mathsf{a})\mathsf{kst}} + \eta_{\mathsf{j}(\mathsf{a})\mathsf{ks}} + \delta_{\mathsf{kst}} + \nu_{\mathsf{akst}}$$

Estimate using data from existing cardholders only

• θ_k only identified for this group

Endogeneity of demand

- Hausman instrument for prices
- Debit card shock as instrument for POS adoption

 $-\theta_k/\alpha_k$ is price-equivalent value of no stores with POS \rightarrow all stores with POS

 $-(\theta_k/\alpha_k)\Delta POS_{ks}$ is value to consumers of supply-side response to shock

Consumer surplus derivation

Dependent variable: log share of expenditures at store type s minus lo	og share at ou (1)	utside option (2)
Log price difference ($-lpha$)	-3.23**	-3.76
	(1.56)	(4.33)
Log price difference $ imes \mathbb{I}(Income > median)$		1.56
		(3.94)
Share of stores with POS (θ)	0.93***	0.80***
	(0.27)	(0.33)
Share of stores with POS $ imes \mathbb{I}(Income > median)$		0.01
		(0.36)
First-stage joint F-test	26.80	25.64
Number of observations	6,454	8,190
Locality $ imes$ store type fixed effects	Yes	
Locality $ imes$ store type $ imes \mathbb{I}(Income > median)$ fixed effects		Yes
Store type $ imes$ time fixed effects fixed effects	Yes	
Store type \times time fixed effects $\times \mathbb{I}(\text{Income} > \text{median})$ fixed effects		Yes

Beneficiaries: 2.7% \uparrow consumer surplus on average

• About half as large as effect of Walmart coming to municipality (Atkin, Faber, Gonzalez-Navarro 2018)

Existing cardholders: 0.4% \uparrow consumer surplus

New card adopters: depends on cost of adoption

- Bounds: 0−0.6% ↑ consumer surplus
- 43–47% of total $\triangle CS$ is spillovers to non-beneficiaries
 - Intuition:
 - Twice as many existing cardholders as beneficiaries
 - Existing cardholders richer, and absolute spending enters CS formula

Conclusion

Network externalities and adoption costs constrain adoption of financial technologies

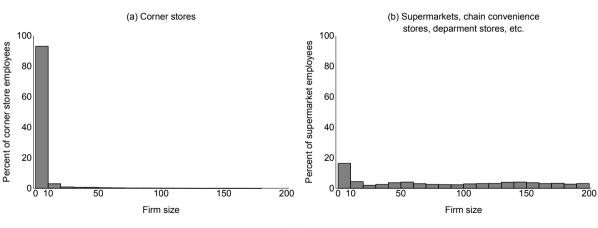
Large spillovers of an adoption subsidy targeted to a subset of consumers

• Nearly half of consumer welfare benefits of policy shock to financial technology adoption accrue to other consumers

Policies to increase financial technology adoption can target subset of consumers

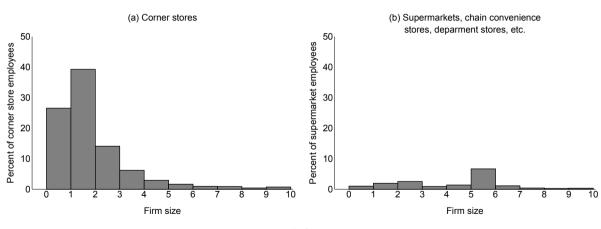
- Much less costly
- Can start feedback loop of adoption between supply and demand
- Seems to be ApplePay's current strategy in US

Appendix

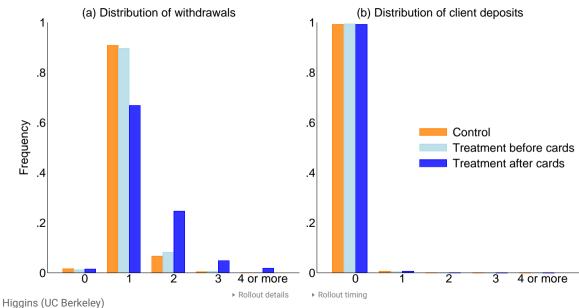

Related literature

- 1. Direct impacts of FinTech adoption on consumer behavior
 - Borrowing (Bartlett, Morse, Stanton, Wallace 2018)
 - Saving (Blumenstock, Callen, Ghani 2018)
 - Risk sharing and resilience to shocks (Jack & Suri 2014)
- 2. Supply side of FinTech markets
 - Online lenders (Buchak, Matvos, Piskorski, Seru 2018; Fuster, Plosser, Schnabl, Vickery 2018)
 - Retail FinTech adoption (Agarwal et al. 2018; Crouzet, Gupta, Mezzanotti 2018)
 - Initial coin offerings (Howell, Niessner, Yermack 2018)
- This paper studies supply-side response to consumer adoption and spillovers back onto demand side

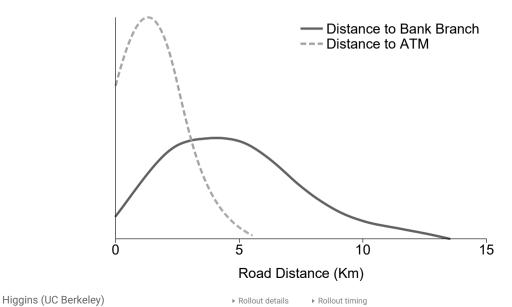
Related literature


- 3. Constraints to technology adoption
 - Upfront costs (Basker, 2012; Bryan, Chowdhury, Mobarak 2014)
 - Learning externalities (Conley & Udry 2010; Banerjee, Chandrasekhar, Duflo, Jackson 2013)
 - This paper studies a different constraint: network externalities
- 4. Adoption of goods with network externalities (Katz & Shapiro 1985)
 - ATMs (Saloner & Shepard 1995)
 - Payment technologies (Rysman 2007)
 - Mobile phones (Björkegren 2018)
 - ► This paper exploits exogenous variation in cost of adoption for a <u>subset</u> of consumers ⇒ can isolate spillovers onto other consumers

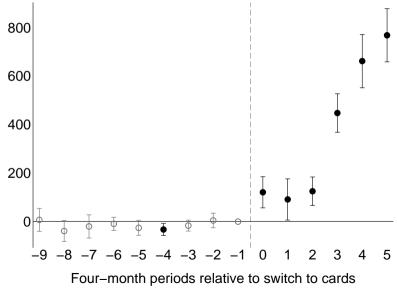
Distribution of retail employment share by firm size


Profits

Employment share distribution of retailers with < 10 **employees**

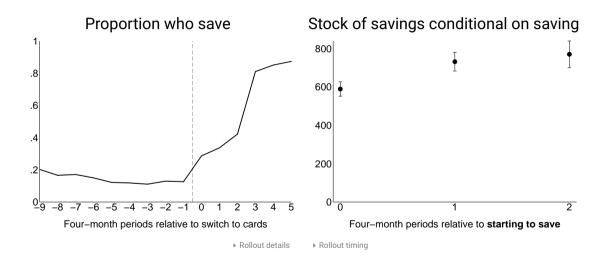


Profits


Transactions at branch or ATM

Travel distance to access money \downarrow

Increased savings by beneficiaries



Higgins (UC Berkeley)

Rollout details

Rollout timing

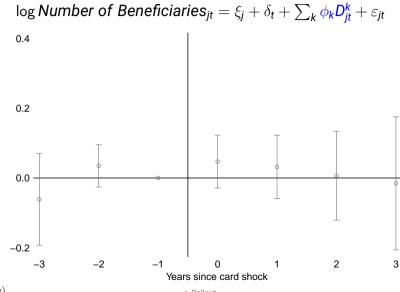
Decomposition of increased savings by beneficiaries

Calendar of transfer dates

)port <u>unidad</u> es	Calendario Fij de Apoyos M		Ì		
Entidad: 15 MEXICO		Folio Titular:			
Zona de Atención: 1	50303	Nombre Titular:			
Municipio: 33 ECATI	PEC DE MORELOS	lentificador de Familia:			
Localidad: 1 ECATE	PEC DE MORELOS	Fase de Incorporación: 35			
		Esquema de Apoyos: Urbano 1			
AGEB:	Código Postal: 55450	Esquema de Apoyos: Urbano 1			
AGEB:		Esquema de Apoyos: Urbano 1 Colonia:			
Domicilio: Estimada Titular:		Colonia	1		
Domicilio: Estimada Titular: Los apo		Colonia	-		
Domicilio: Estimada Titular: Los apo	yos del bimestre de corresponsabilida	d los puede retirar a partir del	-		
Domicilio: Estimada Titular: Los apo	yos del bimestre de corresponsabilida viembre - Diciembre del 2008	d los puede retirar a partir del Lunes 20 de Abril del 2009	- - -		
Domicilio: Estimada Titular: Los apo	yos del bimestre de corresponsabilida oviembre - Diciembre del 2008 Enero - Febrero del 2009	d tos puede retirar a partir del Lunos 20 de Abril del 2009 Lunes 1 de Junio del 2009			
Domicilio: Estimada Titular: Los apo	yos del bimestre de corresponsabilida vviembre - Diciembre del 2008 Enero - Febrero del 2009 Marzo - Abril del 2009	Celonia d Ios puede retirar a partir del Lunes 20 de Abril del 2009 Lunes 1 de Junio del 2009 Lunes 13 de Julio del 2009	-		

Titular beneficiaria: Usted podrá retirar sus apoyos con su Tarjeta de Débito a partir de la fecha indicada en cajeros automáticos ó establecimientos autorizados (que aceptan tarjetas VISA).

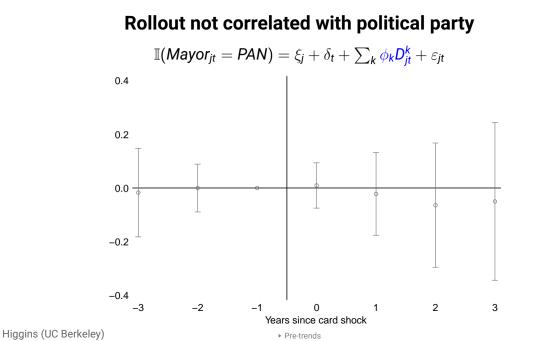
Recuerde que en cajeros automáticos podrá realizar dos operaciones (retiros ó consultas) gratuitas al bimestre, también puede utilizar su Tarjeta para comprar en establecimientos que aceptan Tarjetas de Débito VISA.

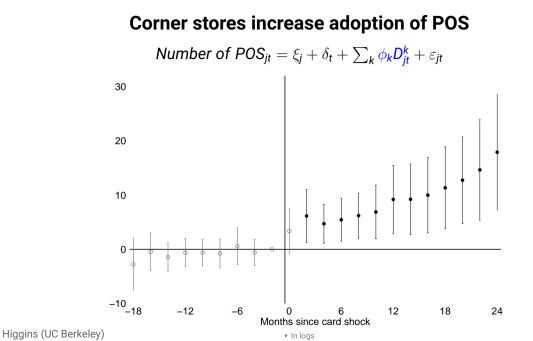

Pamphlet provided with debit card

Higgins (UC Berkeley)

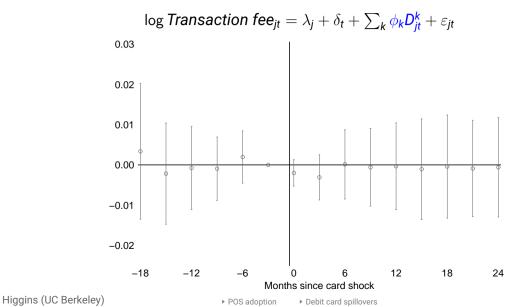
Rollout details

No change in number of beneficiaries

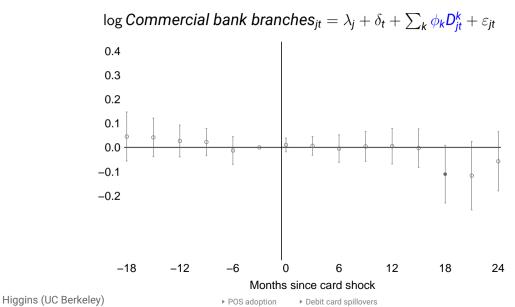



Rollout not correlated with observables

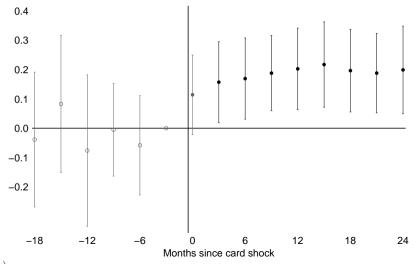
Test using discrete time hazard


	(1)	(2)	(3) (4) Discrete Time Hazard	
Variable	Mean	Standard Deviation	Linear Probability	Proportional Hazard
Log point-of-sale terminals	4.47	2.11	0.0002	0.0043
			(0.0095)	(0.0842)
Δ Log point-of-sale terminals	0.81	0.38	-0.0260	-0.2360
			(0.0185)	(0.1601)
Log bank accounts	9.27	3.27	0.0061	0.0537
			(0.0052)	(0.0435)
△ Log bank accounts	1.78	3.61	0.0049	0.0495
			(0.0065)	(0.0558)
Log commercial bank branches	2.58	1.42	-0.0225	-0.2160
A to a constant of the set the set of the	0.64	0.05	(0.0187)	(0.1508)
△ Log commercial bank branches	0.61	0.95	-0.0215	-0.2267
Les Des Charleberghan	0.50	0.44	(0.0240)	(0.2178)
Log Bansefi bank branches	0.58	0.41	0.0033	0.0420
Les commercial bank ATM	0.15	174	(0.0241)	(0.2001)
Log commercial bank ATMs	3.15	1.74	0.0130	0.1203
Les servieties	11.06	104	(0.0103)	(0.0997)
Log population	11.26	1.24	0.0117	0.1072
N THE PART	10 50	00.77	(0.0159)	(0.1317)
% mayor = PAN	19.58	39.77	-0.0003	-0.0027
A W HEAVER DAN	10.00	57 (7	(0.0003)	(0.0023)
Δ % mayor = PAN	-12.08	57.67	0.0002	0.0021
			(0.0002)	(0.0016)

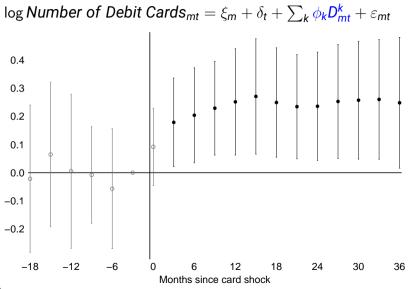
	(1)	(2)	(3) (4) Discrete Time Hazard	
Variable	Mean	Standard Deviation	Linear Probability	Proportional Hazard
% illiterate (age 15+)	6.14	3.69	0.0004	0.0049
			(0.0048)	(0.0417)
% not attending school (age 6-14)	4.15	1.65	0.0003	0.0063
			(0.0094)	(0.0848)
% without primary education (age 15+)	40.98	9.59	0.0018	0.0145
			(0.0019)	(0.0169)
% without health insurance	45.68	16.15	-0.0011	-0.0099
Or we data with the flow of the	5.00	4.00	(0.0008)	(0.0066)
% with dirt floor	5.28	4.83	0.0051**	0.0513**
Or so data so the U.S.	F 00	0.60	(0.0024)	(0.0209)
% without toilet	5.89	3.60	-0.0063	-0.0526
			(0.0040)	(0.0335)
% without water	6.45	9.12	-0.0007	-0.0058
			(0.0010)	(0.0094)
% without plumbing	3.94	6.39	0.0021	0.0180
			(0.0015)	(0.0122)
% without electricity	4.29	2.24	0.0052	0.0430
			(0.0048)	(0.0394)
% without washing machine	33.64	14.33	-0.0006	-0.0071
			(0.0010)	(0.0098)
% without refrigerator	16.80	9.73	0.0010	0.0068
			(0.0017)	(0.0153)

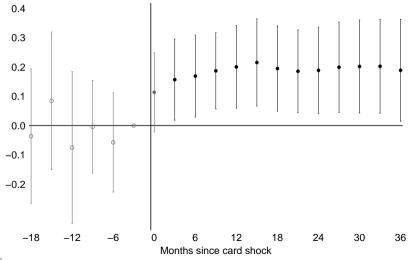


Banks do not appear to respond to shock



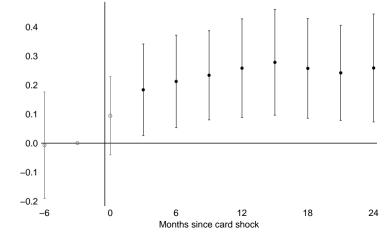
Banks do not appear to respond to shock


Spillovers to other consumers' card adoption

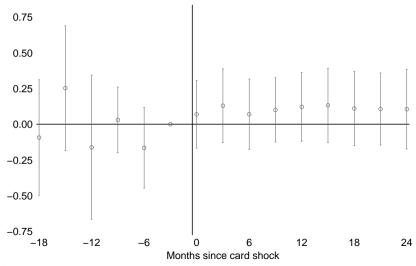

Higgins (UC Berkeley)

Spillovers to other consumers' card adoption (longer run)

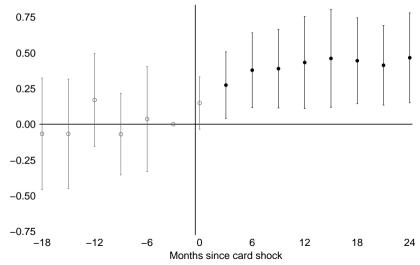
Spillovers to other consumers' card adoption (longer run)


log Number of Credit and Debit Cards_{mt} = $\xi_m + \delta_t + \sum_k \phi_k D_{mt}^k + \varepsilon_{mt}$

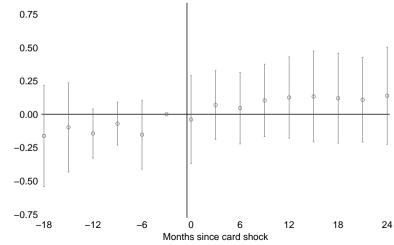
Spillovers to other consumers' card adoption (balanced over time)


All 255 municipalities in rollout:

log Number of Debit Cards_{mt} = $\xi_m + \delta_t + \sum_k \phi_k D_{mt}^k + \varepsilon_{mt}$

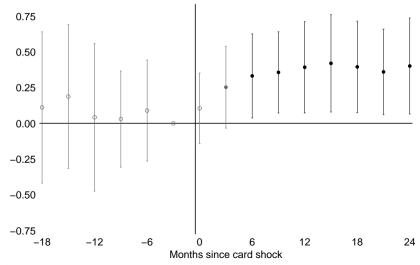


Higgins (UC Berkeley)


Municipalities where beneficiaries prefer supermarkets

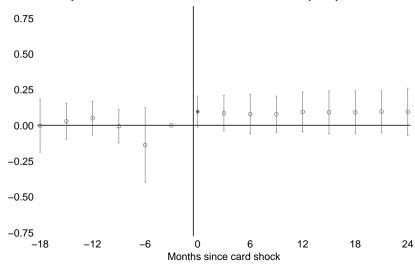
Municipalities where beneficiaries prefer corner stores

Municipalities where beneficiaries prefer supermarkets, below median baseline card adoption



	(1) Municipalities with < 6 month delay in POS response	(2) Municipalities with 6 month–1 year delay in POS response	(3) p-value of difference
First 6 months after card shock	0.102** (0.049)	-0.020 (0.034)	0.043**
Subsequent periods	0.234 [*] (0.136)	0.124 (0.147)	0.583
N (municipality \times 6-month periods)	2,127	288	
Number of municipalities	146	21	
Municipality fixed effects	Yes	Yes	
Time fixed effects	Yes	Yes	

►


By ATM density

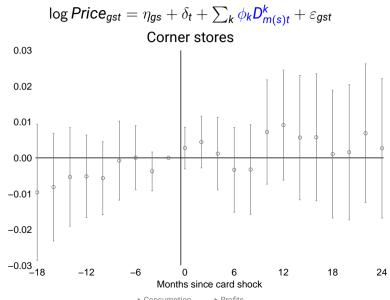
Municipalities with below-median ATMs per person

By ATM density

Municipalities with above-median ATMs per person

Prices

Data: High-frequency store by product by week price data, 2002-2014


- Microdata used to construct Mexico's Consumer Price Index
- \sim 10 million price quotes
- Product codes are barcode-equivalent (e.g., 600ml Coca-Cola bottle)
- Restrict to food, drink, tobacco categories

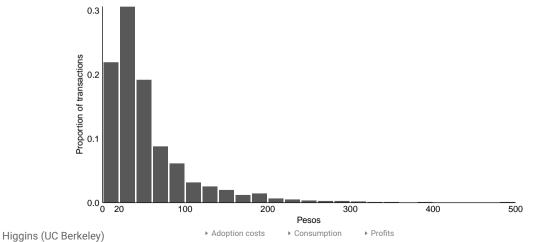
Specification: Event study difference-in-differences

$$\log Price_{gst} = \eta_{gs} + \delta_t + \sum_k \phi_k D_{m(s)t}^k + \varepsilon_{gst}$$

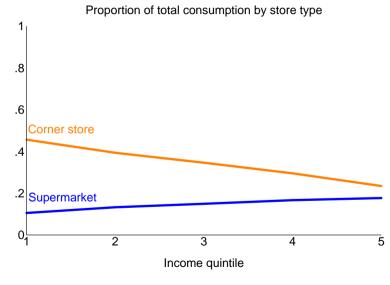
- η_{gs} are barcode-level-good by store fixed effects
- $D_{m(s)t}^{k} = 1$ if municipality *m* received the card shock *k* periods ago
- As before, aggregated to 2-month periods

No price effect

No price effect $\log Price_{gst} = \eta_{gs} + \delta_t + \sum_k \phi_k D_{m(s)t}^k + \varepsilon_{gst}$ Supermarkets 0.03 0.02 0.01 0.00 ф ф -0.01 -0.02 -0.03 -18 -12 -6 0 6 12 18 24 Months since card shock


Higgins (UC Berkeley)

Consumption
 Profits


Transaction sizes

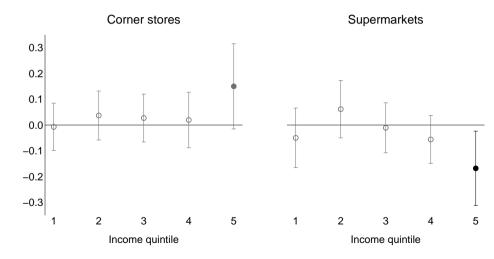
Data: universe of transactions at corner stores (by all cardholders)

Result: >20% less than US\$2, >50% less than US\$4

Consumption shares by store type (control)

Higgins (UC Berkeley)

Consumption

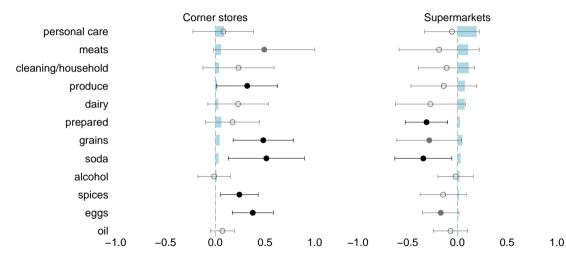

Consumption across stores

$$\begin{split} \log \textit{Spending}_{it}^{s} &= \lambda_{j(i)} + \delta_{t} + \gamma \textit{D}_{j(i)t} + \varepsilon_{it} \\ & \text{and} \\ \log \textit{Spending}_{it}^{s} &= \xi_{j(i)\textit{Card}(i)} + \theta_{q(i)\textit{Card}(i)t} + \delta_{t} + \gamma \textit{D}_{j(i)t} + \omega \textit{D}_{j(i)t} \times \mathbb{I}(\textit{Card})_{it} + \varepsilon_{it} \end{split}$$

	(1)	(2)	(3)	(4)	(5)	(6)
	Dependent variable: log spending at					
	Corner	stores	Superm	arkets	Tot	al
Diff-in-diff	0.067**	0.049	-0.018	0.011	0.029	0.031
	(0.032)	(0.033)	(0.043)	(0.047)	(0.030)	(0.030)
Diff-in-diff $ imes$ has credit card	, ,	0.071*	, ,	-0.043	, ,	0.009
		(0.040)		(0.059)		(0.034)
P-value diff-in-diff + (diff-in-diff $ imes$ has credit card)		0.006)***		[0.457]		[0.140]
Number of households	49,810	49,810	49,810	49,810	49,810	49,810
Number of localities	220	220	220	220	220	220
Locality fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Time fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Locality by credit card fixed effects		Yes		Yes		Yes
Income quintile by credit card by time fixed effects		Yes		Yes		Yes

▹ Consumption ▷ Profits ▷ Quantities

Consumption across stores: quantity of food (kg and liters) log Quantity^s_{it} = $\lambda_{i(i)} + \theta_{q(i)t} + \gamma D_{i(i)t} + \sum_{a=2}^{5} \psi_{q} \mathbb{I}(quintile = q)_{it} \times D_{i(i)t} + \varepsilon_{it}$



Higgins (UC Berkeley)

Simple diff-in-diff
 Consumption

Consumption across stores: by product category

Results for richest quintile

Higgins (UC Berkeley)

▶ Consumption

Consumption across stores: quantity of food (kg and liters)


$$\log Quantity_{it}^{s} = \lambda_{j(i)} + \delta_{t} + \gamma D_{j(i)t} + \varepsilon_{it}$$

and

 $\log Quantity_{it}^{s} = \xi_{j(i)Card(i)} + \theta_{q(i)Card(i)t} + \delta_{t} + \gamma D_{j(i)t} + \omega D_{j(i)t} \times \mathbb{I}(Card)_{it} + \varepsilon_{it}$

	(1)	(2) Dependent va	(3) ariable: log q	(4) uantity purcl	(5) hased at…	(6)
	Corner	stores	Superm	arkets	Tot	al
Diff-in-diff	0.048	0.026	-0.046	-0.029	0.030	0.028
	(0.038)	(0.038)	(0.035)	(0.033)	(0.025)	(0.030)
Diff-in-diff $ imes$ has credit card		0.078		-0.069	. ,	-0.003
		(0.053)		(0.066)		(0.042)
P-value diff-in-diff + (diff-in-diff $ imes$ has credit card)		[0.069]*		[0.110]		[0.529]
Number of households	49,810	49,810	49,810	49,810	49,810	49,810
Number of localities	220	220	220	220	220	220
Locality fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Time fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Locality by credit card fixed effects		Yes		Yes		Yes
Income quintile by credit card by time fixed effects		Yes		Yes		Yes

Consumption
 Profits

Corner store owners evenly distributed by income

▶ Profits

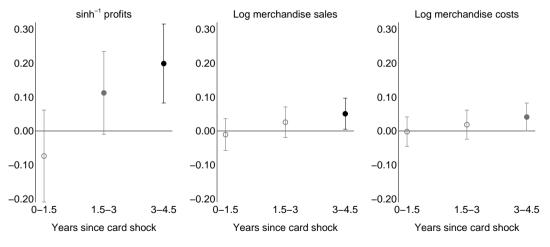
Corner store churn

$$\mathbf{y}_{jt} = \lambda_j + \delta_t + \beta \mathbf{D}_{jt} + \varepsilon_{jt}$$

	(1) (2)		(3)	(4)
	Only 2008 stores		All	stores
	Number	Log Number	Number	Log Number
	of Corner	of Corner	of Corner	of Corner
	Stores	Stores	Stores	Stores
	-3.056***	-0.048	0.076	0.006
	(1.171)	(0.040)	(0.642)	(0.056)
Number of localities	250	250	250	250
Locality fixed effects	Yes	Yes	Yes	Yes
Time fixed effects	Yes	Yes	Yes	Yes

POS use

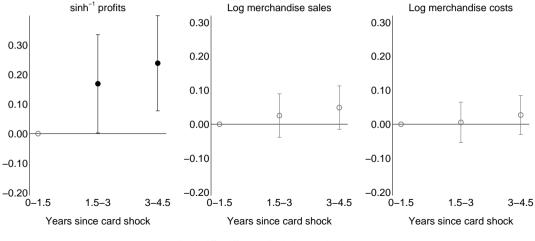
Data: From Mexico's Central Bank:


- Transactions-level data on universe of debit and credit card transactions at POS terminals
 - 2007-2017
 - \sim 2 million transactions per day on average
 - \sim 7 billion transactions in total
- For analysis, aggregate to store type \times locality \times 2-month period

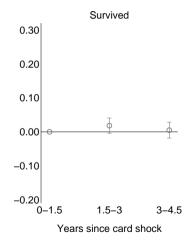
\uparrow card use at corner stores, \downarrow at supermarkets

Diff-in-diff: $y_{jt} = \xi_j + \delta_t + \beta D_{jt} + \varepsilon_{jt}$					
	(1)	(2)			
	Log #	Log pesos			
	transactions	transacted			
Corner stores	0.295*	0.472			
	(0.179)	(0.301)			
Supermarkets	-0.339**	-0.616**			
	(0.145)	(0.267)			
N (locality by period)	2025	2025			
Locality fixed effects	Yes	Yes			
2-month period fixed effects	Yes	Yes			

Corner store profits increase


 $y_{it} = \gamma_i + \delta_t + \sum_k \gamma_k \mathbb{I}(\text{received cards at } k)_{j(i)} \times D_{j(i)t} + \varepsilon_{it} \text{ with never-treated}$

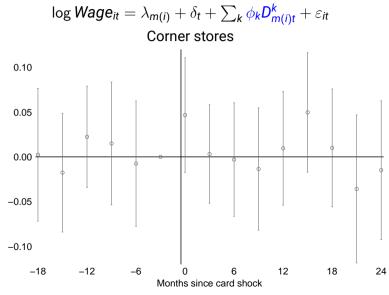
▹ Simple diff-in-diff
▶ Conclusion


Corner store profits increase

 $y_{it} = \gamma_i + \delta_t + \sum_k \gamma_k \mathbb{I}(\text{received cards at } k)_{j(i)} \times D_{j(i)t} + \varepsilon_{it}$

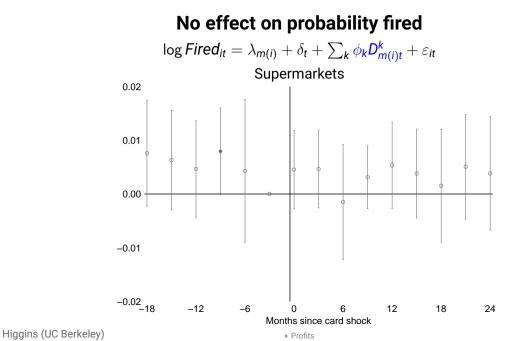
Corner store survival

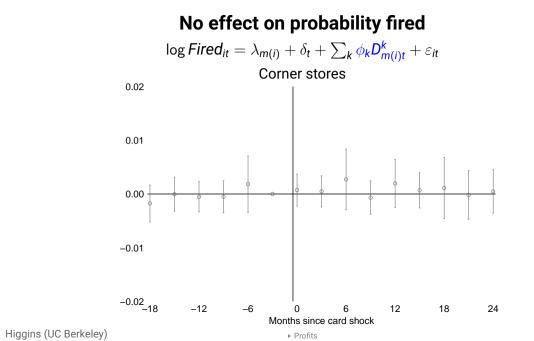
 $y_{it} = \gamma_i + \delta_t + \sum_k \gamma_k \mathbb{I}(\text{received cards at } k)_{j(i)} \times D_{j(i)t} + \varepsilon_{it}$

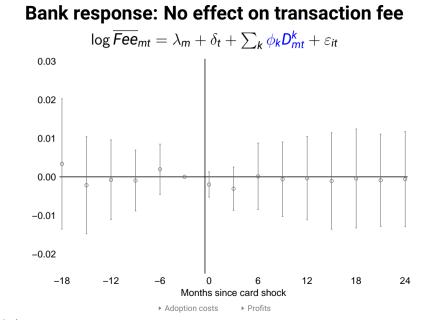

Profits For Conclusion

No wage effect $\log Wage_{it} = \lambda_{m(i)} + \delta_t + \sum_k \phi_k D^k_{m(i)t} + \varepsilon_{it}$ Supermarkets 0.10 0.05 0.00 -0.05 -0.10 -18 -12 -6 6 12 18 24 0 Months since card shock

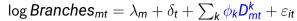
Higgins (UC Berkeley)

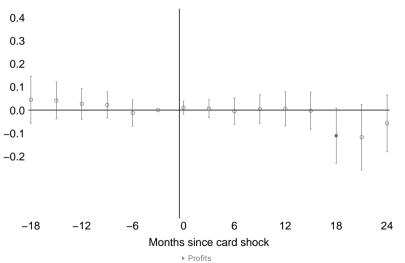



No wage effect



Higgins (UC Berkeley)





Higgins (UC Berkeley)

Bank response: No change in banking infrastructure

Consumer gains from supply-side POS adoption

 $-\theta/\alpha$ is price-equivalent value of no stores with POS \rightarrow all stores with POS:

$$-\frac{\theta}{\alpha} = \frac{d \log \phi_{ast} / d\overline{POS}_{ast}}{d \log \phi_{ast} / d \log P_{ast}}$$
$$= \frac{d \log P_{ast}}{d\overline{POS}_{ast}}$$

 $-(\theta/\alpha)\Delta POS_s$ is value to consumers of supply-side response to card shock

- ΔPOS_s is observed change in adoption in response to shock
- $-(\theta/\alpha)\Delta POS_s = -0.015$, i.e. equivalent to $1.5\% \downarrow$ prices

Next: plug in $-\frac{\theta}{\alpha}\Delta POS_s$ for $d \log P_s$ in standard consumer surplus formula

Approximating welfare effects

First-order approximation of compensating variation:

$$CV = e(P^0, U^0) - e(P^1, U^0)$$

First-order Taylor expansion of $e(P^0, U^0)$ around P^1 :

$$\approx \left[\mathsf{e}(\mathsf{P}^1, \mathsf{U}^0) + \sum_s \frac{\partial \mathsf{e}(\mathsf{P}^1, \mathsf{U}^0)}{\partial \mathsf{P}_s} (\mathsf{P}^0_s - \mathsf{P}^1_s) \right] - \mathsf{e}(\mathsf{P}^1, \mathsf{U}^0)$$

Shephard's lemma and duality:

$$\approx -\sum_{s} x_{s}^{1} (P_{s}^{1} - P_{s}^{0}) \approx -\sum_{s} P_{s}^{1} x_{s}^{1} \left(\frac{P_{s}^{1} - P_{s}^{0}}{P_{s}^{1}} \right) \approx \sum_{s} P_{s}^{1} x_{s}^{1} \left(\frac{\theta}{\alpha} \Delta POS_{s} \right)$$

Proportional Δ consumer surplus $\approx \sum_{s} \phi_{s}^{1}(\theta/\alpha) \Delta POS_{s}$