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1 Introduction

Academic research on the cross-section of equity returns has been extremely successful, and has

fundamentally changed the way practitioners invest in stocks. Against this backdrop, there is a

growing trend in the literature to apply identical portfolio formation methods originally developed

for stocks to less liquid, infrequently traded assets such as corporate bonds. Does the verbatim

application of these portfolio construction methodologies lead to an accurate description of the

performance of corporate bond investment strategies and factors? Our answer is no.

With illiquid assets, an investor cannot immediately execute buy and sell orders to build a

portfolio of securities after observing a set of investment signals. Instead, she must wait for her

order to be executed due to search costs, dealer inventory constraints and bargaining frictions.

This creates delays and drags down the performance of her portfolio as the investment signal

becomes outdated. Even worse, the order may not be executed over the period for which the signal

was intended (and valid) for, in which case she misses the investment opportunity and incurs the

opportunity cost of capital. In addition, the delay in one leg of a long-short strategy relative to

another creates basis risk and reduces the intended hedging benefit. Therefore, ignoring these costs

severely distorts the assessment of the profitability of factor investing in illiquid assets. In essence,

the immediate order execution assumption implicit in equity-based portfolio construction does not

apply to corporate bonds or any asset which is infrequently traded. This key friction has been

overlooked within the context of forming realistic corporate bond factors and portfolios.

In this paper, we impose empirical realism to the construction of corporate bond portfolios

by explicitly taking into account the nuanced relationship between trading costs and delays. Our

strategy considers an investor’s preference for early order execution. An impatient investor is willing

to pay higher bid-ask spreads in exchange for quick execution, while a patient investor waits for a

trading opportunity with a tight bid-ask spread. To implement this idea, we exploit a key feature

of corporate bonds pointed out by Edwards, Harris, and Piwowar (2007), where observed bid-ask

spreads are a decreasing function of trade size. While we do not attempt to explain why bid-ask

spreads depend negatively on size, we take this empirical fact as given and describe the key trade-off
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between delays and bid-ask spreads.

Consider an investor who receives a buy signal in a month. Given her portfolio size, she needs

to buy $2 million of the bond. She has the choice of placing a large $2 million order and waiting for

the execution, which could take a month or more. Or she can break the order into smaller pieces

and execute it more quickly. In the latter case, unlike in the equity market, she will have to pay

a higher price because of the costs charged by a dealer.1 This fundamental tension, between trade

size and the cost of delaying the trade has yet to be explored within the context of corporate bonds

or other assets that trade infrequently.

To render this idea operational, we no longer assume that the trade occurs at the end of the

month and compute the exact return of a bond from the day it is bought to the day it is sold. For

each date, we compute transaction prices using only transactions above the trade size threshold.

As the threshold increases, the bid-ask spreads tighten while the number of eligible transactions

declines, delaying the trade.

The key to our method is to allow a monthly return to exist even if there is no transaction for

a bond in that month. Instead of treating such an observation as missing, our method treats it as

a trade execution failure. Consider a case in which an investor intends to buy a bond but there

are no transactions above her size threshold in a month. Since the investor does not know when

or if her order will be executed, the capital tied up in this long position cannot be used to buy

other bonds and thus earns the risk-free rate of return. The difference between the corporate bond

returns she would have earned by buying other bonds and the risk-free rate contributes to the cost

of delay. If, on the other hand, she wants to unwind the existing position but is unable to do so

due to delays or lack of trades, she will earn a mark-to-market return based on quoted prices, but

will pay the cost of carry to finance the additional unwanted positions.

We show that the cost of delay is substantial. Consider a simple example in which the investor

1This analysis is reminiscent of the trade-off in the stock market. When trading stocks, a trader must consider the
benefit of breaking large trades into smaller pieces that are executed over a longer period of time. The key question
there is how to reduce the price impact by swallowing longer delays. Since equity trades are anonymous, a liquidity
provider learns the informativeness of the order by its size and charges a high spread for a large trade. The key
problem for the investor is how to overcome this adverse selection problem. Therefore, even though the size-cost
relationship is the opposite in the equity market, there is still a trade-off. Jacobsen and Venkataraman (2023) argues
that in the bond market, investors do not necessarily split a large trade because dealers knows their identity and thus
splitting does not help hide private information.

2



Figure 1: Effect of Transaction Costs: Example of Credit Spread-Sorted Portfolio
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This figure plots the bond CAPM alphas of the long-short strategies based on corporate bonds’ credit spreads

before and after accounting for transaction costs (left panel). The transaction costs are decomposed into

the bid-ask spread costs and delay costs (right panel). Values on the x-axis are the trade size in thousand

dollars.

purchases bonds with the top 20% highest credit spreads and sells short those with the bottom

20% lowest spreads. The left panel of Figure 1 plots the bond CAPM alpha on this long-short

strategy before and after transaction costs as a function of trade size. We observe a hump-shaped

pattern in net returns, implying our cost estimates are a U-shaped function of transaction size.

This transaction cost can be decomposed into half spreads and delay costs.

The right panel plots the cost of half spreads, capturing both the portfolio turnover rate and

the difference between bid and ask prices, for each trade size. Consistent with Edwards, Harris, and

Piwowar (2007), there is a strong negative relationship between half spreads and size, indicating a

significant benefit to being patient and trading in large volumes. However, insisting on trading in

large volumes causes delays in order execution. As a result, the cost of execution delays increases

as the trade size increases. In this example, as the trade size becomes larger than $2 million, the

increased cost of the trade delay outweighs the reduced half-spread. Therefore, the optimal trade

size that maximizes net profit is $2 million.

To quantify the importance of delay costs, we use the latest machine learning (ML) algorithms

to generate trading signals with 200 bond and equity-based characteristics. We use ML-based

strategies for two reasons: First, the cost of delay becomes more important the more valuable the
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signal is. Thus, to emphasize our point about the importance of delay, it is appropriate to use

strategies that perform optimally before transaction costs are taken into account. Second, there

is a growing literature on how to assess the profitability of factor investing in corporate bonds.

By using ML-based strategies, we can directly provide a method to adjust for realistic transaction

costs for the most popular strategies today.

Our ML algorithms reflect the state-of-the-art models tested in the recent literature (e.g., Gu,

Kelly, and Xiu 2020). We estimate a large set of models using a wide array of bond and stock

characteristics.2 These encompass linear models with penalization, regression tree ensembles (in-

cluding extreme randomized trees and random forests) and feed forward neural networks. We use

the machine learning implied model predictions of bond returns to form long-short portfolios that

purchases bonds with high expected returns and short-sells bonds with low expected returns. All

of the long-short ML strategy portfolios generate out-of-sample gross returns that are economically

large and statistically significant (Newey-West adjusted t-statistics greater than 3). Importantly,

the alphas of these strategies computed with the single-factor bond CAPM (CAPMB) remain large

and significant. Individually, only a handful (∼10 %) of the stock and bond characteristics gen-

erate meaningful high-low gross return spreads, which highlights the importance of combining the

characteristics to form predictions through the various ML methods we employ.

Our methodology allows us to calculate transaction costs under optimal execution. We choose

the trade size that maximizes the net CAPM alpha of each strategy and find that the optimum

is reached between $2 million and $10 million per trade. For example, the ensemble (‘ENS’)

strategy which averages the expected returns of all ML strategies generates an alpha of 0.48%

before transaction costs and 0.07% after costs at the optimum. Of the 0.41% cost, 0.19% is due

to delays, while 0.22% is due to bid-ask spreads paid to the dealer. Thus, quantitatively, the

cost of delay is substantial, and ignoring it leads to an incorrect assessment of the profitability

of ML strategies and other corporate bond anomalies. Importantly, the techniques that have high

predictive power tend to move swiftly and thus incur high transaction costs. Net of costs, even when

trading at the optimal volume threshold, which captures the trade-off between reduced half-spreads

2The characteristics comprise 27 bond characteristics and 173 equity-based characteristics.
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and trading delays, all of the strategies generate a single-factor alpha of close to zero.

To guide future research, and in the spirit of Harvey, Liu, and Zhu (2016), we provide a set of

gross alpha “cut-offs” at various levels of portfolio turnover rates that represent the level of alpha

the factor should achieve to remain profitable after costs. For example, to achieve a net alpha of

0.2% per month, a strategy with a monthly turnover rate of 10%, 20%, 30% needs to earn a gross

alpha of 0.36%, 0.47%, and 0.61%, respectively. These cutoffs serve as a simple heuristic, allowing

researchers to quickly check whether their gross factor alpha would remain significant at various

levels of turnover after accounting for transaction costs. Because we compute transaction costs

under the assumption of optimal trade size, the researcher no longer has the freedom to choose

the trade size to achieve the desired results. Instead, the net profit of the strategy we compute is

disciplined by the realized trade size and frequency in the data.

One potential concern about our negative findings on the performance of ML strategies is that

the particular algorithms and bond characteristics we use may not be the best available in practice.

To address this criticism, we turn to an analysis of mutual fund returns. We obtain the actual

returns earned by corporate bond mutual funds over our sample period. We show that, on average,

only 8.5% of all “corporate bond” classified mutual funds (42 funds) generated an after-cost alpha

that is statistically significant at the 5% nominal level. The magnitude of the statistically significant

alpha is small at 0.18% per month.

Even more discouraging, from the perspective of an active bond mutual fund investor, is the

dollar “value-add” of investing in active funds relative to a passive benchmark bond market port-

folio. On average, bond mutual fund investors are worse off to the value of $396,000 per month

relative to simply holding a corporate bond ETF that tracks the market. The cumulative loss that

is accrued by active investors relative to simply holding the bond market portfolio is close to $55

million. These results support the validity of our assessment of ML-based corporate bond strategies

and other corporate bond anomaly portfolios.

In summary, this paper contributes to the literature on two fronts: First, we introduce a novel

methodology for computing portfolio returns that explicitly conditions on realized trade sizes and

accounts for trading delays induced by attempting to transact in large volumes. These methods can
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be applied to any infrequently traded asset and allow researchers to identify the optimal execution,

striking a balance between bid-ask spreads and delays. Second, we contribute to the assessment of

market efficiency and the profitability of factor investing in the corporate bond market. Overall, our

results suggest that, even when using state-of-the-art portfolio construction techniques, generating

alpha from systematic bond strategies is an extremely challenging task once market frictions are

properly accounted for.

Our paper contributes to the rapidly growing literature that evaluates (and re-evaluates) the

performance of factor investing in the corporate bond market (e.g., Bali et al. 2020; Kelly et al.

2021; Sandulescu 2022; Binsbergen et al. 2023; Dickerson et al. 2023; Dick-Nielsen et al. 2023).

The paper closest to ours is Ivashchenko and Kosowski (2023), who study the performance of nine

factors after accounting for transaction costs. Our paper differs from Ivashchenko and Kosowski

(2023) in that we highlight the novel trade-off between half spreads and delays faced by investors

and employ the latest machine learning techniques in testing the performance of factor models.

This paper also relates to the extensive literature measuring illiquidity and transaction costs

in the corporate bond market (e.g., Edwards et al. 2007; Chen et al. 2007; Feldhütter 2010; Bao

et al. 2011; Schestag et al. 2016; Dick-Nielsen and Rossi 2018; Pinter et al. 2021; Choi et al. 2023b).

In particular, Bao et al. (2018), Bessembinder et al. (2018), and Wu (2022) examine the role of

post-crisis regulations on the liquidity of corporate bonds.3 More closely related papers include

O’Hara et al. (2018), who examine the market power in determining corporate bonds’ half spreads,

as well as Goldstein and Hotchkiss (2020) and Reichenbacher and Schuster (2022), who argue that

observed transaction costs strongly depends on transaction size and dealers’ strategic inventory

management. However, none of these papers quantify the impact of trading delays in evaluating

trading strategies.4

Our paper aims to provide the best practice in accounting for transaction costs in the study of

3More broadly, there is a strand of literature that studies the role of liquidity and dealer inventory in explaining
credit spreads and bond risk premiums. This body of research includes Lin et al. (2011); Friewald and Nagler (2019);
He et al. (2019); Goldberg and Nozawa (2021); Eisfeldt et al. (2023).

4Goldstein and Hotchkiss (2020) note the trade-off similar to the one we propose in the paper. In particular,
they write “dealers will offer customers a trade-off between pricing and immediacy (liquidity). However, ... Dealers
provide little immediacy when there are few trading opportunities. For example, for a bond that trades at best
once a month, investors retain price risk while dealers search for a counterparty to offset their trade,...”. Our results
empirically support the significance of their statement from the perspective of factor investing.
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the cross-section of corporate bond returns. Table 1 lists recent papers on this topic. The papers are

classified into two groups: the first group of papers does not consider net returns after transaction

costs and the second group does so. However, even among the papers in the second group, there is

substantial heterogeneity in the transaction cost estimates. For example, Bali et al. (2020), Jostova

et al. (2013), and Kelly et al. (2021) report significant trading profits arising from anomalies after

accounting for transaction costs while Chordia et al. (2017), Bartram et al. (2023), and Nozawa

et al. (2023) report anomalous returns largely disappear net of costs.

The discrepancy arises because there is substantial room for researchers to make judgments on

how to estimate half spreads. For example, Cao et al. (2023) reports the profit from their trading

strategy is significant if they assume each transaction is of size $1 million but not significant if

the transaction size is smaller. To avoid the subjective selection of trade size, we provide an

exogenously-specified trade size that captures the reality to discipline the estimated transaction

costs.5

The remainder of the paper is organized as follows: Section 2 provides detailed methods for

calculating portfolio returns net of transaction costs; Section 3 describes our data set; Section 4

provides the evaluation of the ML-based strategies; Section 5 examines the performance of corporate

bond mutual funds; and Section 6 provides concluding remarks.

2 Trade-Offs in the Corporate Bond Transactions

In this section, we revisit the previous finding that a transaction cost declines with trade size.

There can be two explanations for this pattern. First, Duffie et al. (2005) argue that trade size is a

proxy for the investor’s size. Since a large investor has better outside trading options, she can trade

with a dealer with a lower cost. Second, the declining pattern is the reflection of bond dealers’

strategic behavior which leads to bias in the data. In this explanation, dealers act as brokers for

large transactions but take small transactions in their inventory with a charge. As a result, realized

large transactions appear to have lower costs than small ones.

5The importance of transaction costs in other asset classes, such as stocks and options, are documented in Novy-
Marx and Velikov (2015), Novy-Marx and Velikov (2019), Chen and Velikov (2023), Detzel et al. (2023), and Avramov
et al. (2023).
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To dissect into these drivers of transaction costs, we examine insurance firms’ transactions in

eMAXX. We follow O’Hara and Zhou (2021) to compute the half spread for each trade. Let P̄

denote the transaction price of the latest interdealer trade that occurred before a customer-dealer

trade. Then, the cost of the customer-dealer trade for bond k is

ci,k,t = (logPi,k,t − log P̄k,t)× 1i,t (1)

where 1i,t is 1 if the trade is customer buy and -1 if the trade is customer sell. We allow the reference

trade to occur within 5-business-day window preceding the trade. If there are no interdealer trades

within this window, the half spread for the trade is treated as missing. We winsorize the half

spreads at the 0.5 and 99.5 percentiles to attenuate the influence of outliers. We add to the data

set the information about the insurance firm’s size for each trade. Using EMAXX’s firm id, we

aggregate all corporate bond holdings in quarter q and merge the data to all transactions by the

firm in quarter q + 1.

We begin the analysis by reporting the average and median half spreads by trade size and

investor size category. For trade size, we classify trades into four groups, including (0,100,000],

(100,000,500,000], (500,000, 1M], (1M,∞]. For investor size, we use the 20, 40, 60, and 80 percentiles

of the size distribution for the cutoff.

Table 2 reports the mean and median half spreads in each category. We find that the half

spreads decline in both investor and trade sizes. Controlling for trade size, the average and median

spread declines as we move from the small investor category to the large investor category. This

finding is consistent with O’Hara et al. (2018) and confirms the prediction of Duffie et al. (2005).

However, controlling for investor size, the spreads also decline from small to large trades.

The number of observations shows that investor size and trade size are positively correlated,

as expected. However, there are plenty of observations in which large investors trade with a small

size. For example, there are 17,489 observations where the top 20% insurance firms trade with a

size less than $100K. The smallest insurance firms still trade with a size of more than $1 million:

there are 55, 636 of such instances in our data.
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To estimate the impact of trade size more precisely, we follow Pinter et al. (2021) and estimate

the following trade-level panel regression:

ci,k,t = βv × log(Volume)i,t + τ t + αi + λb +Y′
k,tδC + εv, (2)

where ci,k,t is the trading cost as computed in Equation 1 for client i trading bond k on day

t, log(Volume)i,k,t is the natural logarithm of the given trade’s notional, τ t are trade-day fixed

effects, αi (λb) are client (broker) fixed effects respectively. The vector Yk,t captures bond-level

characteristics that we use as controls including bond rating, coupon, maturity and the log of the

issue size (amount outstanding). The key coefficient of interest is the estimated value of βv: if the

half-spread continues to decrease after controlling for the client base, we would expect βv to remain

negative and statistically different from zero.

In columns (1) and (4), we confirm the results from prior research documenting a negative

relationship between half-spreads and trade size (volume) without and with bond-level controls.

In columns (2) and (5), after including client-level fixed effects, the sign and magnitude of the βv

coefficient remains unchanged, reinforcing our results from the double sort above. It would appear

that the ‘Size Penalty’ does not exist in the U.S. corporate bond market. As an additional test, we

also include broker fixed effects in columns (3) and (6). βv remains robustly negative.

The economic significance of the size premium (captured by βv) is sizeable. A one standard

deviation increase in the log of trading volume decreases half-spreads by about 0.104% in column

(1).6 Relative to the average half-spread of 0.179%, this change is economically large. Once

including client fixed effects in column (2), the effect remains sizeable and results in a 0.07%

decrease in half-spreads.

The evidence from the U.S. insurance firms’ transactions shows that both investors’ bargaining

power and dealers’ strategic behavior are at work in explaining the observed transaction costs. The

second channel suggests that for an investor, there is a hidden cost of trading with a large size that

is missed by the observed half spread. To capture this cost, we turn to the frequency of trades in

6The standard deviation of the log of trading volume is 1.73.
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the data. We show that large trades occur infrequently, suggesting that investors bear the cost of

delayed or missed trades if they desire to buy or sell a large quantity.

3 Methodology

We develop a methodology to compute net returns for bonds that explicitly accounts for half

spreads and execution delays. The core idea behind this method is that, when trade executions are

delayed, an investor may end up with unintended positions or may not initiate the trade at all. We

carefully treat each case by studying which positions must be financed through risk-free lending

and borrowing and by keeping track of inventory positions each month.

At the end of month t, an investor receives signals and decides which bonds to go long on and

which bonds to short. She tries to execute the trade as soon as a trade opportunity with her target

volume arrives. At the earliest, she executes at the end of month t, but more typically she would

trade in month t + 1 or later. For computational simplicity, we separately consider delays within

a month and delays beyond a month. The delay beyond a month is considered as a part of her

inventory, and this affects her action at the end of t+ 1.

Delays directly affect the return computation. If she executes the trade, she pays the half

spreads and starts earning returns from the position. Before she does so, her position earns the

risk-free rate of returns. Our method below explicitly accounts for the delay using daily transaction

prices.

3.1 Returns with Execution Delays

This section explains our return construction. Suppose an action is taken at the end of month

t and we want to measure the monthly return of a strategy from month t to t+ 1. The investor’s

possible actions in month t for each bond are buy, hold, or sell. If she buys, then she trades on the

ask side and if she sells, then she trades on the bid side. If she holds, her position is marked to

market using quotes. In such cases, a return on the bonds in her long positions can be described

by one of the following patterns:
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• Hold-Hold (hh): Rhh

• Buy-Hold (bh): Rb(v)h

• Hold-Sell (hs): Rhs(v)

• Buy-Sell (bs): Rb(v)s(v)

where b(v) is the buy order with a minimum volume v, s(v) is the sell order with a minimum

volume v, and h indicates that she holds the position. The first of two superscripts for R describes

the investor’s action in month t and the second one describes her intended action in month t+ 1.

These actions are taken when an opportunity with the minimum volume v arrives.

If an investor already holds a bond and maintains her position throughout month t + 1, then

her return can be measured using a standard formula,

Rhh
t+1 =

(
P h
t+1 +AIt+1 + Ct+1

P h
t +AIt

)
− 1, (3)

where P h
t+1 and P h

t are the end-of-month quotes in months t + 1 and t, respectively. AIt is the

accrued interest at the end of month t and Ct+1 is any coupon paid in month t+ 1. Since there is

no trade, it does not take half spreads into account when measuring the return. When we compute

gross returns and alphas of a strategy, we use this return for all bonds in all months.

If an investor initiates a new long position, then she has to pay an ask price. In addition, if

there is a delay in a buy order, then she earns a risk-free rate on cash while waiting for her order

to be executed. Suppose she wants to buy a bond in month t and hold it until month t + 1, and

she buys the bond on the d-th day in month t+ 1, then her return is

R
b(v)h
t+1 =

(
1 +Rf

t+1 ×
d

Dayst+1

)P h
t+1 +AIt+1 + Ct+1,d

P
b(v)
t+1,d +AIt+1,d

− 1, (4)

where P
b(v)
t+1,d is the ask price on either the last business day of month t or day d in month t + 1.

Dayst+1 is the number of days in month t+ 1 and Ct+1,d is any coupon paid after day d in month

t + 1. We use subscript d for the observation on a specific day in a month. If a variable does not
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have a d subscript, then the variable is measured at the end of a month. If there are multiple daily

prices for Pt+1,d, we use the first available day, capturing the idea that an investor is trying to

implement the strategy as soon as possible.

Since we explicitly take into account which side of the market the investor is trading, the return

in (4) measures the net return after transaction costs. This return is not only influenced by a half

spread (i.e. the difference between ask price P
b(v)
t+1,d and mid quote on the same day) but also by

when the trade to initiate the position is executed. Until the corporate bond is bought, the cash

is invested in risk-free asset, incurring an opportunity cost. If the delay becomes extreme and no

transaction price is available in month t + 1, then she cannot execute the trade and her return is

the risk-free rate (i.e., R
b(v)h
t+1 = Rf

t+1).

To illustrate the idea, consider an example where an investor receives a buy signal for a bond on

September 30. At this point, she commits cash to the position and waits for a trading opportunity

to arrive. Suppose that an opportunity of the size $100,000 arrives on September 30, that of

$500,000 arrives on October 10, and that of $1 million arrives on November 10. If her target trade

volume v is $100,000, then she buys the bond on September 30 and the bond’s October return is

the one-month return on the bond less the half spread paid to enter the position.

If, instead, her target trade size is $500,000, then she waits for her order to be executed until

October 10. Her October return is the product of the risk-free rate of return for the first ten

days and the 21-day returns on the corporate bond. If her target size is $1 million, she does not

execute the trade and the October return is the risk-free rate. If the updated signal on October

31 is still a buy signal, then she would buy the bond on November 10, which contributes to the

November return. If, on the other hand, the October signal is ‘not buy’, then she misses this buying

opportunity entirely.

Similarly, when the investor unwinds the long position she already has, she executes the sell

order on the d-th day of month t+ 2 or the end of month t+ 1, if possible. Then, the return is

R
hs(v)
t+1 =

P
s(v)
t+2,d +AIt+2,d + Ct+1 + Ct+2,d

P h
t +AIt

÷
(
1 +Rf

t+2 ×
d

Dayst+2

)
− 1, (5)
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where P
s(v)
t+2,d is the bid price on either the last business day of month t+1 or day d in month t+2,

and Ct+2,d is any coupon paid before day d in month t + 2. We divide this return by the month

t + 2 risk-free rate because the investor must finance her extra long position by borrowing cash

until she unloads it. If the sales does not occur, then her return is R
hs(v)
t+1 = Rhh

t+1 and the bond is

added to month t+ 1 inventory.

Continuing on the example, consider that the investor bought a bond in October and the

October signal is ‘buy’ and thus she keeps the long position. Suppose further that the November

signal is ‘not buy’. The sell opportunity with a size of $100,000 arrives on November 30, but that

of $500,000 arrives on December 10, and that of $1 million arrives on January 10 next year. Then,

for an investor with a target size of $100,000, the bond’s November return is a one-month return on

the bond adjusted for a half spread. If her target size is $500,000, then she earns a 40-day return

on the corporate bond minus the 10-day risk-free rate in December. If her target is $1 million, her

November return is the buy-and-hold one-month return on the bond, creating an extra inventory

influencing her portfolio choice at the end of December.

Finally, if an investor buys a bond in month t and sells it in month t+1, then her net return is

R
b(v)s(v)
t+1 =

(
1 +Rf

t+1 ×
d1

Dayst+1

)P
s(v)
t+2,d2

+AIt+2,d2 + Ct+1,d1 + Ct+2,d2

P
b(v)
t+1,d1

+AIt+1,d1

÷
(
1 +Rf

t+2 ×
d2

Dayst+2

)
− 1.

(6)

If the purchase does not occur in month t+1 (i.e., a delay of more than a month), then R
b(v)s(v)
t+1 =

Rf
t+1. If the purchase occurs but the sales is delayed by more than a month, then R

b(v)s(v)
t+1 = R

b(v)h
t+1 .

In our main results, we allow an investor to short bonds. Her net return for short positions can

be described similarly using −Rhh
t+1, −R

s(v)h
t+1 , −R

hb(v)
t+1 , and −R

s(v)b(v)
t+1 .

Our method avoids the two problems that have plagued the literature studying corporate bond

returns. The first is the martingale approximation of bond prices, as pointed out by Bartram et al.

(2023). Previous research using TRACE data treats a transaction price near the end of a month as

the month-end price. Since this is an approximation, there is no guarantee that real-time investors

can trade a bond at this month-end price. Furthermore, the noise in prices tends to inflate the

13



average returns due to Jensen’s inequality (Blume and Stambaugh 1983).

Second is the censoring of returns. Typically, if there is no month t+ 1 return in TRACE due

to a lack of transactions, one assumes that investors do not consider these bonds as trading targets

and do not include the observation in the analysis. This creates a look-ahead bias because the

real-time investor receiving the time-t signal does not know whether the bond will be traded in the

next month or not. In addition, this censoring biases the sample towards liquid bonds by omitting

illiquid bonds from the computation. In our framework, all bonds with a valid signal are considered

for trading and the investor commits capital to take positions. If the trade does not occur, she

earns or pays the risk-free rate or mark-to-market return, which allows us to closely replicate the

real-time investor’s trading profits.

3.2 Inventory and Round-Trip Transactions Over Months

In this section, we introduce inventory to account for the delays beyond one month. If there

is no eligible trade in a month, an investor cannot execute the intended trade as suggested by a

signal, creating a gap between the signal and the position. This gap, in turn, affects her actions in

the next month. To illustrate the idea, we continue with the previous example of buying a bond at

the end of September and selling it at the end of December. In Appendix A, we perform a formal

analysis and provide a complete set of scenarios for both long and short positions.

Panel A of Figure 2 illustrates a base case with no delays. The investor earns the returns over

the three consecutive months (October, November, and December), and the month-end inventory

changes accordingly. The key here is that at the end of October, the investor has a bond in her

inventory (the ‘Y’ sign for ‘Inventory’). Thus, if she receives a buy signal, she can hold the bond

and earn a mark-to-market return (Rhh) in November. Therefore, the half spread is charged only

in October (when she buys) and in December (when she sells).

Now consider the case where the investor cannot buy the bond in October due to the trade

failure, as shown in Panel B. Then her end-of-month inventory is ‘No’ (inventory), and she must buy

a new bond in November. Due to the change in her action, her return in November is Rbh, incurring

a half spread. Comparing Panels A (no delay) and B (purchase delay), there is no difference in the
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signals. The difference is the inventory dynamics due to the delay, and this changes the November

return of the strategy.

Finally, Panel C of Figure 2 explains the case of delayed sales. In this example, the intended

sale does not occur in December, creating an unwanted inventory at the end of December (the ‘Y’

sign). Since the signal at the end of December is still ‘N’, the investor sells the bond at the end of

January. In this case, her return is Rhs −Rf . She pays not only a half spread to execute the sale,

but also the risk-free rate to finance the additional position.

In our algorithm, we keep track of the inventory of each bond, decide the investor’s action in

the next month, and select the appropriate type of return. This method allows us to calculate the

returns of a trading strategy without approximation.

3.3 Portfolio Formation

To measure the performance of a trading strategy net of costs, we must explicitly account

for changing compositions in a portfolio. This is a challenging task because a standard portfolio

construction prescribes a constantly changing portfolio weight for each security. To see this, consider

three bonds as potential buy targets: A, B, and C. They have market values of $80 million, $40

million, and $20 million, respectively. Suppose in a month a signal suggests that an investor should

buy A and B. Then her portfolio weight is 66.7% for A and 33.3% for B. Suppose also that the next

month, the signal suggests that she should instead buy B and C. Then the weight for B increases

to 66.7% from 33.3% the previous month. Thus, even though the signal for B has not changed,

she must buy a fraction of B to increase its weight, incurring a transaction cost. This adjustment

results in different cost-adjusted returns for the same bond in the same month, because some of

the positions in B incur zero transaction costs, while others require her to pay a half spread when

she enters a new position.

One way to overcome this problem is to set a constant fraction of the market value, rather

than a constant number of bonds, for the long and short positions in each month. Typically, one

would divide N bonds into P portfolios so that each portfolio has approximately the same number

of bonds, N/P . This is achieved by categorizing bonds based on their signal percentile rankings.
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To avoid trading a fraction of bonds, one can instead define a strategy by dividing bonds into P

portfolios so that each portfolio has the same total market value. In this case, the cutoff is set

by the value-weighted percentile rankings. In this way, each bond in the long position always has

the same weight as long as it is in the portfolio. For example, if the total market value of the

long position is set to $1 billion and the investor receives a buy signal for Bond A, then the bond

will always have a portfolio weight of 8% in the long position, regardless of the other bonds in the

portfolio. This method allows us to describe a position on each bond as a simple binary choice

between ‘Y’ and ‘N’, obviating the need to adjust the existing position by a small amount. It not

only reduces the complexity in portfolio return computation but matches the reality that bond

investors won’t adjust their positions from, say, $1 million to $1.05 million simply because it is too

costly to make such adjustments.

4 Data

4.1 Data for the Machine Learning Return Predictions

Our datasets include daily bond data from Enhanced TRACE (TRACE) and the constituent

bonds from the Bank of America (BAML) Investment Grade and High Yield indices as made

available via the Intercontinental Exchange (ICE). We source equity and accounting data from

CRSP and COMPUSTAT. We filter the data using standard approaches as prescribed by the

literature which is explicitly described in Internet Appendix A. To train the machine learning

models, we construct commonly used bond and equity variables used in the literature and then

merge these to the equity-based characteristics from Chen and Zimmermann (2022).7 This data

combines several monthly bond and stock-based characteristics that have been shown the predict

one-month ahead future corporate bond excess returns. Our data includes 200 characteristics of

which 27 are bond-based characteristics and 173 are equity-based.

Detailed descriptions of the construction of these variables are provided in Table A3 of the

Appendix. Missing characteristic data is set to its cross-sectional median at each month t. All

7openassetpricing.com. We thank Andrew Chen and Tom Zimmermann for making their data publicly available.
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characteristics are cross-sectionally rank demeaned to lie in the interval [−1,1]. Overall, the data

used to train the ML models with the 200 stock and bond characteristics comprises 17,815 bonds

issued by 1,913 firms over the sample period from January 1998 to December 2022 (T = 288).

4.2 Data for Net Returns

To compute the net returns of the strategies, we combine daily data from both the TRACE and

ICE data sets. We use dealer-customer trades in the TRACE data, filtered as described in Internet

Appendix A. We then compute the simple average of transaction prices separately for bids (P
s(v)
t,d )

and asks (P
b(v)
t,d ) on a day, using only transactions with volume above the cutoff, v. We use the size

cutoff of $0, $5,000, $10,000, $20,000, $50,000, $100,000, $200,000, $500,000, $1 million, $2 million,

$5 million, $10 million, and $20 million. The eleven cutoff values between $5,000 and $10 million

are set following Edwards et al. (2007) and we add $0 and $20 million as the minimum and the

maximum. Since v is a lower bound, a higher value of v leads to a smaller number of transactions

included in the averages.

We then merge the daily transaction prices in TRACE to the quote prices in ICE. If there

is no observation for a bond in a month in TRACE but there is one in ICE, then we treat

it as the trade not happening in that month and still compute returns as described in Sec-

tion 3.1. In the end, by combining TRACE and ICE, we calculate six types of net returns

(Rb(v)h,Rhs(v),Rb(v)s(v),Rs(v)h,Rhb(v),Rs(v)b(v) ) and gross returns (Rhh).

Using both TRACE and ICE databases allows us to pin down the effect of half spreads and

delays, but forces us to use a smaller sample to compute the net returns on the strategies than

estimating the ML models. Focusing on this intersection between the two databases, we have

854,216 bond-month observations from August 2002 to November 2022 (T = 244).

Table 4 reports the summary statistics of the panel data for selected transaction sizes of $10,000,

$100,000, $1 million, and $10 million. The average returns on the six types of net returns and gross

returns are quite different from each other. For example, for the volume of $100,000, the average

returns for the long positions are -0.29%, 0.33%, and -0.31% for Rbh, Rhs, and Rbs, respectively.

The average for short positions are higher and 0.15%, 0.77%, and 0.52% for Rsh, Rhb, and Rsb,
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respectively.8 The difference among various net returns reflects bid-ask spreads and delays.

ICE provides bid quotes for all prices, not mid-prices. However, when we mark to market, we

use these quotes. As a result, Rbh, where the investor pays an ask price and marks the bond at

bids, tends to be low on average. In contrast, Rhb tends to be high because the position starts at

a bid quote and ends at an ask, with Rhs and Rsh in between. The gap in average returns is more

pronounced for small transactions, as their bid-ask spreads are larger.

To understand the sample across trade sizes, we plot the mean and median returns for by trade

size in Panel A, Figure 3. As the volume threshold increases, Rbh, Rbs, Rsh, and Rsb converge to

the risk-free rate because if there is no trade, investors do not initiate the position and earn the

risk-free rate. In contrast, Rhs and Rhb converge to the mark-to-market return, Rhh, because delays

prevent investors from unwinding the existing positions. Panel B shows that the percentage of the

observations with no trade increases significantly with trade size. As size increases, the bid-ask

spreads shrink, but the proportion of trades which are not executed increases. This explains the

net return’s convergence to either the gross return or the risk-free rate.

Table 5 reports the same statistics using duration-adjusted corporate bond returns, which sub-

tract duration-matched Treasury returns from the corporate bond returns. We later study the

model performance using these alternative measures of excess returns.

Figure 4 shows the distribution of trade sizes in the corporate bond market over time. Through-

out the sample period, more than 50% of realized transactions are $50,000 or less, and trades above

$1 million account for less than 20% of the number of trades. Interestingly, the share of small trades

increases during the 2008 financial crisis, suggesting the increasing importance of adverse selection.

In the post-Volcker periods, dealers use their inventory capacity less frequently and increase the

share of pre-arranged trades (Bessembinder et al. 2018; Wu 2022), leading to the declining share of

small trades in the 2020 pandemic crisis. This pattern confirms the increasing importance of trade

delays.9

8The returns for short positions are higher as the trade starts from a bid price (as an investor sells) and concludes
with an ask price (as an investor buys).

9In Internet Appendix D, we study institutional investors’ quarterly position changes in eMAXX to confirm the
validity of trade size estimates. In addition, in Figure 4 Panel B, we plot the distribution of insurance company
trade sizes using NAIC data. As expected, their trade size is generally larger than that shown in Panel A, with a
cross-sectional median of around $1 million throughout the sample period. More than 10% of trades are above $5
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5 Performance of the Machine Learning Models

5.1 Estimating the Machine Learning Models

Following the notation in Gu, Kelly, and Xiu (2020), we describe a corporate bond’s return in

excess of T-bill rates as an additive prediction error model:

Ri,t+1 = Et(Ri,t+1) + ϵi,t+1, (7)

where,

Et(Ri,t+1) = g∗(zi,t). (8)

Bonds are indexed as i = 1, . . . , N and months by t = 1, . . . , T . Our objective is to isolate a

representation of Et(Ri,t+1) as a function of predictor variables that maximizes the out-of-sample

explanatory power for realized Ri,t+1. We denote those predictors as the K-dimensional vector

zi,t, and assume the conditional expected return g∗(·) is a flexible function of these predictors. All

of our model estimates minimize the mean squared prediction errors (MSE). In total, we consider

six linear and non-linear machine learning models including penalized linear regression techniques:

Lasso (LASSO), Ridge (RIDGE) and Elastic Net (ENET); non-linear regression tree ensemble

methods including random forests (RF), and extreme trees (XT); and feed forward neural networks

(NN). In addition, we form the linear ensemble model (LENS), the nonlinear ensemble model

(NENS) and the ensemble across all models (ENS), which is the equally-weighted average across

the respective models one-month ahead predictions (Rapach, Strauss, and Zhou, 2010).

For the first estimation as of July 2002, we source the last 55 months of data back to Jan-

uary 1998, and estimate the respective ML model. We measure excess returns at t and the 200-

dimensional vector of bond characteristics at t − 1. We perform cross-validation using a 70:30

training-validation split which preserves the temporal ordering of the panel data. We then use the

vector of characteristics available at time t to produce a forecast of bond excess returns for t + 1.

These forecasts (expected returns) are available to the bond portfolio manager at time t, mean-

million.
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ing they can trade on them at the end of the month. Thereafter, all models are re-trained every

12-months and cross-validated every 5-years with an expanding window.10 We provide additional

details related to the cross-validation and training of the respective models in Section B of the

Internet Appendix.

5.2 Portfolio Performance Before Transaction Costs

Before considering the machine learning-based long-short portfolios, we pin down which anomaly

characteristics are individually useful in forming profitable long-short bond portfolios. For each one

of the 200 characteristics, we form quintile portfolios and initiate a long position in the fifth quintile

and a short position in the first quintile. We use the ICE data and perform a preliminary analysis

to create value-weighted quintiles to see if the long-short strategy has positive or negative bond

CAPM alphas. We then sign the raw characteristics so that the long position has higher alphas

than the short position.

We estimate the bond CAPM (CAPMB) alpha by running time series regressions of the strate-

gies’ returns on the corporate bond market factor:

Re
t = α+ βMKTBNet,t + εt, (9)

where MKTBNet,t is the excess returns of BlackRock’s corporate bond exchange-traded funds

(ETFs), averaged between the investment-grade ETF (Ticker: LQD) and the high-yield ETF

(Ticker: HYG) using the total market value of corporate bonds in each respective rating category as

the weights. We use the ETF returns because they reflect the cost of buying and holding the bond

market portfolios. Therefore, ETF returns provide a fair benchmark to evaluate the performance of

trading strategies net of costs. The detailed construction method of the market factor is provided in

Appendix B. We find that the average excess returns on our ETF-based market factor is 0.32% per

month, while the corresponding value for the value-weighted market bond portfolio of Dickerson

et al. (2023) is 0.36% over the same period. The lower value of the ETF returns suggests that even

10This gives the models an advantage in that they are re-trained and re-cross-validated multiple times over our
sample.
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holding the market portfolio is somewhat costly for investors. To account for autocorrelation in

the returns, we adjust the standard errors using Newey and West (1987) 12 lags.

We first examine the CAPMB alphas before transaction costs, shown in Table 6. In Panel A,

we sort the characteristics by the information ratio, which is the ratio of alpha to the standard

deviation of the residual term in (9) multiplied by the square root of 12. We report the top 15

characteristics in the table and relegate the rest to the Internet Appendix Table A.1.

We find that quite a few characteristics generate significant CAPMB alphas before transaction

costs. In terms of the information ratio, the best performers are the past one-month stock returns

(strev) of Chordia et al. (2017), stock returns on earnings announcement days (pead) of Nozawa

et al. (2023), and 6-month increase in credit spreads (mom6mspread)11 of Kelly et al. (2021), which

have ratios of 1.38, 1.23, and 0.88, respectively. Most of the significant characteristics are based on

past returns for bonds, stocks, and options.

Next, we combine the information in each signal and examine the performance of the machine

learning algorithms. Each month, we sort corporate bonds into value-weighted quintiles based on

the month-end expected returns generated by the machine learning algorithms. We then take a

long position on the top quintile and a short position on the bottom quintile, calculate the excess

return of the long-short strategy, and estimate the CAPMB alphas.

The second and fourth columns of Table 7 report the average excess returns and CAPMB

alphas of the machine learning-based strategies. We find that the ML algorithms are successful in

combining signals into return predictions that work well out of sample. All nine strategies generate

significant CAPMB alphas, led by Ridge (0.50%, t=3.77), the average of linear models (LENS;

0.48%, t=3.18), and the average of all models (ENS; 0.48%, t=2.90). They also exhibit a high

annualized information ratio, ranging from 0.60 to 1.37. These values are economically significant

given that the Sharpe ratio for the bond market portfolio over the same period is 0.65 before

transaction costs.

Binsbergen et al. (2023) find that adjusting for corporate bond duration significantly affects

11Kelly et al. (2021) report that mom6mspread, defined as a decrease in credit spreads over the previous 6 months,
negatively predicts bond returns. We find the same as they do and thus reverse the sign of the characteristic to
represent an increase in credit spreads. In effect, the results show that corporate bond returns exhibit a return
reversal rather than momentum.
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the test of asset pricing models. Thus, we replace corporate bond returns with the difference

between corporate bond returns and duration-matched Treasury returns (computed by ICE) and

compute the duration-adjusted returns of the strategies. Table 8 shows the average duration-

adjusted returns and the CAPMB alphas. Using duration-adjusted returns slightly improves the

performance of the model after adjusting for market exposure. The information ratio ranges from

0.83 to 1.38, confirming the value of combining multiple signals to generate reliable return forecasts.

5.3 Impact of Transaction Costs

In this section, we evaluate the impact of transaction costs on the performance of the ML

strategies. Although transaction costs depend on trade size, we first focus on the optimal value

that maximizes the net CAPMB alpha.

The ninth column of Table 7 reports the optimal trade size for each ML algorithm. We find

that the optimal size is mostly $2 million except for NN ($5 million), LASSO ($5 million), and RF

($10 million). These values are larger than the typical “institutional trade” size of $100,000 used in

the literature (e.g., Bessembinder et al. 2008), reflecting the lower bid-ask spreads for larger trades.

The third and fifth columns of Table 7 show the net returns and alphas at the optimal trade

size. At the optimum, the CAPMB alpha ranges from -0.03% to 0.12%. After costs, none of

the algorithms produce economically and statistically significant net alphas. Figure 5 visualizes

these estimates. The panels on the left, which show the performance before costs, show a striking

contrast with those in the middle, which show the performance after costs: The average returns

and alphas are well below the counterparts before costs, suggesting that it is a challenge for the

ML algorithm to perform well net of costs. Using duration-adjusted returns, reported in Table 8,

leads to a similar conclusion.

The right-most panels of Figure 5 show the net returns and alphas for the long-short strategies

based on ML algorithms with the $100,000 threshold. Clearly, the net alphas are negative for all

strategies, and seven of them have significantly negative net alphas. The difference between the

middle and right panels of Figure 5 suggests that the choice of trade size is crucial in evaluating

the performance of trading strategies.
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Transaction costs are also significant for long-short portfolios based on individual signals. In

Table 6 Panel B, we sort the characteristics by the net information ratio with the optimal trade

size. When we cannot not find the optimum because the gross alpha is low, we use $2 million as

the trade size. Now, the rankings change dramatically from Panel A because characteristics with

high gross alphas tend to have high turnover and their net alphas are much lower. For example,

the net information ratio for the previous one-month stock return (strev) is 0.34, down from 1.38

before costs.

Figure 6 plots the number of significant characteristics before and after transaction costs. Trans-

action costs reduce the number of significant variables significantly, from 26 to 7 before adjusting

for the CAPMB (the left panel), and from 20 to 4 after adjusting for the CAPMB (the right panel).

Thus, without transaction cost adjustments, one reaches dramatically different conclusions as to

the profitability of factor investing in the bond market.

The key to the above results is the inclusion of delay costs in the calculation of transaction costs.

Without it, the half-spreads shrink to zero as trade size increases, and we would incorrectly conclude

that the ML algorithm generates profitable strategies after costs. To illustrate the key mechanism,

Figure 7 plots the CAPMB alphas of the long-short strategies before and after transaction costs as

a function of trade size. For example, the left panel of Panel A plots gross and net CAPMB alphas

using Neural Networks. Before costs, this signal generates an alpha of 0.43%. The net alphas, on

the other hand, are a hump-shaped function of the target trading volume, with a maximum at $2

million.

We decompose the difference between gross and net alphas into the component explained by

half spreads and the component explained by delays. To do this, we compute alternative net

returns using ICE’s quotes on the transaction dates provided by TRACE. Specifically, for each

bond in each month, we compute hypothetical net returns by replacing P
b(v)
t,d and P

s(v)
t,d with P h

t,d

in Equations (4), (5), and (6) as well as the corresponding returns for short positions. Thus, this

net return reflects the cost of delays but not half spreads. We then compute the delay-only net

returns on portfolios using these hypothetical returns and the associated CAPM alpha, denoted

αNetDelay. The difference between the gross alphas and delay-only alphas gives us the pure effect
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of delays, and the remainder is accounted for by the half spreads between ICE quotes and TRACE

transaction prices on the same day. More formally, the total cost is decomposed into:

αGross − αNet = αGross − αNetDelay︸ ︷︷ ︸
=Delay Cost

+αNetDelay − αNet︸ ︷︷ ︸
=Half-Spread Cost

(10)

The right panels of Figure 7 show the decomposition of costs. Continuing with the Neural

Network example, the effect of half-spreads falls from 1.2% at the volume of $0 to near zero at the

maximum trade size of $20 million, reflecting the standard spread-volume relationship. Note that

our half-spread cost takes into account the wedge between transaction prices and quotes as well as

portfolio turnover. For example, if the price wedge is 1% and portfolio turnover is 30%, then our

half-spread cost is approximately 0.3%.

On the other hand, the delay effect increases as the target volume increases from near zero at the

$0 volume threshold to 0.40% at the $20 million threshold, reflecting the cost of missing trading

opportunities. As a result, the sum of the two costs exhibits a U-shaped pattern with respect

to volume. As trade size increases beyond $2 million, the increase in delay costs dominates the

decrease in half-spread costs. Thus, it is impossible to argue that ML strategies provide profitable

trading opportunities when investors trade with very large volumes. We observe the U-shaped

transaction costs for other ML strategies in other panels of Figure 7.

Table 9 reports the decomposition of the trading costs for a trade size of $100,000 and the

optimal size for each ML strategy. With the transaction size of $100,000, the cost due to half

spread ranges from 0.51% to 0.62% while the delay cost ranges from 0.06% to 0.11%. With the

optimal trade size, the half-spread cost is lower, ranging from 0.06% to 0.22%, reflecting the cost

savings for large transactions. On the other hand, the delay cost is now higher, ranging from 0.16%

to 0.25%. This pattern highlights the key trade-off between half spreads and delays.

Next, we compare our cost estimates with those provided in other papers. In the standard
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setup, the trading costs and net returns for portfolio p are calculated by

cp,t+1 =
∑
i∈Nt

∣∣∣∣∣wi,p,t+1 −
1 +Rc

i,t+1

1 +Rc
p,t+1

wi,p,t

∣∣∣∣∣ si,t+1, (11)

RNet
p,t+1 = RGross

p,t+1 + 1pcp,t+1 (12)

where Rc is a clean price return, si,t+1 is a half spread for bond i in month t+1, wi,p,t is its weight

in portfolio p, 1p is an indicator function that equals one if p is a short position and minus one if

p is a long position. Essentially, the position changes are derived from changes in portfolio weights

that are not due to the bond’s or portfolio’s returns, and the transaction costs are the product of

the position change and an estimate of the half spread. For example, Kelly et al. (2021) use the

constant spread by setting si,t+1 = 0.19% for all i and t.12

The last column in Table 9 reports this standard calculation of transaction costs. To be specific,

we compute the CAPMB alphas using the gross and net returns in (12) and report the difference.

We find that this alternative method underestimates the transaction costs when compared to the

costs with optimal trade size. For example, for the ENS strategy, the alternative method leads to a

cost estimate of 0.23%, which is lower than the total cost at the optimal trade size of 0.41%. This

alternative cost is close to the bid-ask spread component of the total cost (0.22%) and thus Kelly

et al. (2021)’s method correctly captures the cost of half spreads. However, they do not account for

the cost of delays in implementing the strategy, which explains the substantial gap between their

cost estimates and our approach.

The dashed line in the left column of Figure 7 shows the net alphas based on the alternative

cost adjustments. In all panels, our net alphas are always below this alternative, further confirming

the significance of the cost of delays.

One might ask whether it is realistic to always trade in the fixed dollar amount or whether the

optimal trade size is constant over time. To take a first look at the importance of time-varying

trade size, we split our sample in half, one period from August 2002 to December 2012 and the

12Kelly et al. (2021) use the lagged weight change |wi,t − wi,t−1| times 19 bps instead of (11), which does not
appear to account for organic changes in portfolio weights due to bond and portfolio returns. This procedure slightly
overestimates cost and turnover, as all position changes are considered sales and purchases of a bond.
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other from January 2013 to November 2022. Figure 8 shows the cost decomposition for the ENS

strategy for these two subperiods. In this case, the optimal trade size remains unchanged at $2

million. This is because two forces cancel each other out. On the one hand, the lower average gross

returns in the second period make it optimal to wait longer, thus increasing the optimal trade size.

On the other hand, the lower bid-ask spreads in the second period make it less costly to trade a

small quantity. As a result, investors would not benefit from changing the target trade size between

these two periods.

In the Internet Appendix Section F, we investigate the prospect of dividing large target trade

sizes into smaller portions to determine if this strategy can help minimize transaction costs. Our

findings indicate that splitting a large trade does not reduce trading costs because it increases the

bid-ask spreads, offsetting any benefits from faster execution.

5.4 Are Our Cost Estimates Biased?

We compute the cost of delay by assuming that if we do not observe trades of size at least v

in a month on TRACE, the investor’s order remains unfilled. Although this estimate shows the

actual return net of cost for a real-time investor, it still reflects an equilibrium outcome. The

interpretation of our cost estimates varies depending on how one views off-equilibrium trades. Our

perspective is that liquidity supply (i.e., the need for dealers to pre-arrange a round trip) is the key

driver for the observed trade size and frequency. However, an alternative viewpoint is that liquidity

demand determines them.

For example, one could argue that very large investors always enjoy near-zero half spreads but

choose not to trade often because they do not need to. According to this argument, the rarity of

large trades in TRACE reflects the lack of liquidity demand rather than liquidity supply. However,

the evidence in the prior literature favors the liquidity supply-based explanation. Goldstein and

Hotchkiss (2020) find that for bonds rated BBB and below, large client orders tend to have a

shorter time in dealer inventory.13 This provides direct evidence that dealers pre-arrange trades

for larger trades to avoid inventory risk. If they do not do this, then large trades should remain in

13See their Table 7.
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their inventory longer, not shorter, than small trades. Consistent with this finding, Kargar et al.

(2023) presents direct evidence that customers experience delays using the order-level data on the

electronic trading platform.14

Furthermore, the explanation based on liquidity demand suggests that large investors have a

clear advantage in terms of costs compared to small investors, which leads to their outperformance

and faster growth. However, our analysis of corporate bond mutual funds in Internet Appendix

Figure A.3 and Table A.2 shows no evidence supporting this idea.

If a limit on liquidity supply is the reason for the rarity of large trades, then our cost estimates

are the lower bound of true costs, as deviating from the observed equilibrium would increase the

cost even more.

5.5 Time Variation in Transaction Costs

Unlike Kelly et al. (2021), we do not assume that half spreads are constant over time. Since

we back out transaction costs from differences between gross and net returns, the costs vary every

month. This allows us to study the time-series behavior of costs and check whether the recent

technological development in corporate bond trading (as pointed out by O’Hara and Zhou 2021)

mitigates the cost of delays.

Figure 7 plots the transaction costs due to half spreads and delays for the ENS strategy as an

example. We use the optimal trade size of $2 million. Since the cost of delay is volatile, we also

plot its twelve-month moving averages.15

The plot reveals a familiar counter-cyclical pattern in transaction costs for both components.

Despite the introduction of electronic trading platforms, we do not see a clear decline in transaction

costs in the most recent sample, possibly because the market share of transactions through these

new platforms is still small.

14O’Hara and Zhou (2021) show that the dependence of transaction costs on trade size is weaker on the electronic
platform. However, in Kargar et al. (2023), the market share of the electronic platform is less than 20% of the total
volume and lower for bonds with high transaction costs: i.e., those with large size and higher credit risk.

15The delay cost is volatile because the cost of delay can be positive or negative, depending on the performance of
the signal in the month. For example, if the signal mispredicts a return in a month and the strategy’s gross return
is negative, then delaying the execution to start the trade can be beneficial, leading to a negative delay cost. If the
signal produces a profitable strategy on average, then the cost of delay is positive on average. This does not mean
that the cost of delay is positive every month.
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5.6 Determinants of Optimal Trade Size

Across the 200 characteristics and 9 ML strategies, there is a significant variation in the optimal

trade size. In this section, we take advantage of the observed difference across strategies and

investigate the determinants of optimal trade size. As we have seen in the previous section, the

optimal size depends on how profitable the strategy is, as measured by gross alpha. In addition, it

may depend on how frequently an investor must trade, which is measured by the average turnover

rate of strategy s:

Turnp =
1

T

T∑
t=1

∑
i∈Nt

∣∣∣∣∣wi,p,t+1 −
1 +Rc

i,t+1

1 +Rc
p,t+1

wi,p,t

∣∣∣∣∣ where p ∈ {long, short}, (13)

Turns = 0.5(Turnlong + Turnshort). (14)

In this exercise, we use the turnover rate when the minimum trade size v = 0 so that it captures

the persistence of the signal. A higher size would artificially reduce turnover due to implementation

delays.

To describe optimal v, we classify 114 strategies with optimal trade size into three categories

based independently on their turnover rate and gross CAPM alpha, creating nine bins. From a

total of 209 candidates, we remove 95 strategies for which we cannot find the optimal trade size.16

The cutoff values for alphas are 0.1% and 0.2%, while those for turnover rate are 10% and 19%.

For each of the nine categories, we compute the average across strategies within a bin for optimal

trading volume, total transaction cost (at optimal volume), half-spread cost, and delay cost.

Table 10 shows the averages for nine bins. The value for the high gross alpha/low turnover bin

is missing because no strategy falls into this category. In Panel A, we report the average of the

optimal trade size. For medium and high turnover strategies, the optimal trade size is decreasing in

gross alpha. For the medium turnover category, the optimal trade size is $6.1 million for low alpha

strategies and $2.6 million for high alpha strategies. This is because when the signal is profitable, it

16In Internet Appendix Figure A.4, we plot the net alpha of bond age as an example of the characteristics in which
we do not find an optimal value. Intuitively, when the gross alpha is so low, it is better not to trade on the signal at
all, and it is optimal to choose the infinitely large trade size. This leads to the failure to find an interior solution.
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is better to execute trades as soon as possible and avoid missing the trading opportunity generated

by the signal. On the other hand, the pattern for turnover rate is less clear.

Turning to half spread costs (Panel C), they increase in gross alpha. This is because a highly

profitable signal optimally sets a small trade size, leading to higher bid-ask spreads. For the middle

and high gross alpha strategies, they also increase in turnover rate. The positive relationship

between half spread cost and turnover rate is somewhat mechanical, as the cost increases as investors

trade more frequently. (For the low alpha strategies, the optimal trade size increases significantly

as we increase the turnover rate, offsetting the increase in costs.)

Delay costs are increasing in gross alpha. When gross alpha is high, it is costly to miss a trading

opportunity, and thus delay costs are high. This cost is mitigated by the fact that trading volume

is optimally chosen to reduce delay when gross alpha is high. However, when the turnover rate is

also high (i.e., the signal is moving quickly), this cost mitigation is not as effective, resulting in the

high delay cost. For example, for the bin with the highest gross alpha and turnover rate, the delay

cost is 0.15% on average, while the delay cost is close to zero for the strategies with a low alpha.

The total cost, shown in Panel B, is the sum of the half-spread cost and the delay cost.

5.7 How Much Gross Alpha Do We Need?

We have emphasized the role of transaction costs in evaluating the performance of trading

strategies. In this section, we provide a guide for future research that explores the new signals

that predict corporate bond returns. The goal of this exercise is to present the target level of gross

alpha that achieves the desired level of net alpha under the assumption that trade size is optimally

chosen. This will allow other researchers to calculate the gross alpha of their strategies and quickly

check whether they also generate a positive alpha net of costs.

Since the relationship between gross and net alpha is affected by the persistence of the signal,

we use the 114 strategies and estimate multivariate regressions of net alpha and the associated
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t-statistics on the turnover rate and gross alpha:

αNet,s = −0.079 + 0.040 log Turns + 1.099αGross,s − 0.254 log Turns × αGross,s + εs, (15)

t(αNet,s) = −0.220 + 0.179 log Turns + 13.176αGross,s − 2.976 log Turns × αGross,s + εs. (16)

Let α̂Net(Turn, αGross), t(α̂Net)(Turn, αGross) be the fitted value of the regression evaluated at

(Turn, αGross). Then, we plot the combination of Turn and αGross that satisfies the minimum

level of αNet or t(αNet).

The left panel of Figure 10 shows the combination of Turn and αGross required to achieve net

alpha of 0%, 0.1%, and 0.2% per month. In the figure, a strategy in the northwest region of the

graph generates higher net alpha, while a strategy in the southeast region generates lower net alpha.

The dashed line is the break-even point needed to match the passive ETF returns. To outperform

the ETF by a modest 0.1% per month, a strategy must be above the dotted line. As in the figure,

the cutoff is strongly increasing in turnover rate. To achieve a monthly alpha of 0.1%, it is essential

to keep the turnover rate below 70%.

The right panel plots the bound using the t statistic of the net alpha. To achieve the t value

above the 10% level, a strategy must be above the dashed line, while the 5% significance requires

being above the dotted line. The strongly upward-sloping curve in this figure reinforces the message

that for a strategy to work, it is essential to keep the turnover rate low.

Achieving statistically significant net CAPM alpha requires relatively high values of gross alpha.

For example, consider a hypothetical strategy with a turnover rate of 20%. Then, it must generate

gross alpha of 0.31% and 0.39% to achieve a t-statistic of 1.65 and 1.96, respectively. If the

turnover rate is 30%, the corresponding required gross alpha’s are 0.41% and 0.52%, respectively.

If a strategy’s turnover is higher, then it requires higher levels of gross alpha to be useful in practice.

For future reference, we tabulate the net CAPM alpha as a function of gross alpha and turnover

rate in Table A4 in Appendix.
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5.8 Robustness

In this section, we perform several robustness checks. First, we consider long-only strategies

instead of the long-short strategies used in the main analysis. This analysis is important because

shorting corporate bonds can be quite costly for some investors although Asquith et al. (2013) show

that the cost of borrowing corporate bonds is comparable to that of stocks.

Using the expected returns generated by the ML models, we take a long position in the top 20%

bonds and calculate their gross and net returns over T-bill rates. Table 11 reports the performance

of the long-only strategies. We find that the average gross and net excess returns are higher than

those of the long-short strategies in Table 7. This is to be expected because corporate bond returns

are generally higher than T-bill rates. Once we account for market risk, the CAPM alphas of

the long-only strategies are similar to those of the long-short strategies. For example, using ENS,

the gross and net alphas for the long-short strategy are 0.48% and 0.07%, respectively, while the

corresponding values for the long-only strategy are 0.25% and 0.09%. Eight of the nine long-only

strategies fail to generate significant alphas after transaction costs even at the optimal trade size

with an exception of Ridge, which is marginally significant.

Second, we consider a potential boost for the ML strategies by selecting a smaller number of

bonds for the long and short positions instead of buying and selling all the bonds in the top and

bottom 20%. In our main results, the average number of bonds in the long and short positions for

the ENS strategy is 905 and 776, respectively. In practice, investors may sample a smaller number

of bonds for ease of implementation. For example, Choi, Cremers, and Riley (2023a) find that in

their sample of actively managed corporate bond mutual funds, the average number of bonds held

is 533. In line with this approach, we construct long-short strategies by selecting the top 2% and

bottom 2% of the cross-section of corporate bonds, thereby narrowing the number of bonds in each

position.

Table 12 shows the gross and net returns/alphas for each ML strategy. By construction, the

number of bonds in the long and short positions is smaller. Since we are using the bonds with

extreme signal values, the average gross excess returns are higher than the main results in Table 7.

For example, for ENS, the gross alpha is now 1.21% (t=3.75), higher than the main result using
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quintile portfolios (0.48%, t=2.90). The benefit of higher average returns is partly offset by the

cost of higher volatility, which attenuates the statistical significance (and the Sharpe ratio). In

addition, the monthly turnover of all strategies increases to 69% from 49% in the main results.

The high turnover inflates the transaction costs, which leads to a barely significant net CAPM

alpha for ENS (0.45%, t=1.96). Looking across strategies, four of the nine ML strategies now have

significant net alphas. Nonetheless, the main message of the paper remains unchanged: accounting

for transaction costs significantly reduces the strategy’s alpha. Even for the best performer (NENS),

the net information ratio of 0.64 is less than half of the gross ratio of 1.31.

Lastly, we consider a strategy to reduce the cost of delay by trading a subsample of liquid bonds.

Following Goldstein and Hotchkiss (2020), we classify bonds into two categories based on the trade

counts and the number of non-zero trade days in month t, when we form portfolios. Then, within a

group of liquid bonds (i.e., those with above-median trade frequency), we form a quintile portfolios

based on the signals generated from ML models.

Table 13 reports the performance of the ML strategies using liquid subsample of bonds. The

results are very similar to the main results. Because we use liquid bonds, the strategies’ turnover

rate increases from the main results: For example, for ENS, it is now about 60%, higher than the

main results of 49%. However, the resulting net CAPMB alpha is only 0.11% using bonds with high

trade counts (Panel A) and 0.09% using bonds with high trade days (Panel B). None of the nine

strategies generate significant net CAPMB alphas. Therefore, using a subsample of liquid bonds

does not significantly reduce the transaction costs.

6 Do Corporate Bond Mutual Funds ‘Beat the Market’?

In order to identify whether our net of cost machine learning strategy returns are ‘underper-

forming’ what is being achieved in reality, we investigate the performance of corporate bond mutual

funds over an identical sample period. If many bond mutual funds are indeed beating the market

across a wide variety of fund styles, it would indicate that our strategies could be refined. However,

if most funds underperform relative to a simple passive benchmark, it would corroborate our main
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findings showing that generating net of cost alpha is an immensely challenging task.

6.1 Distribution of Corporate Bond Mutual Fund Alphas

We examine the CRSP mutual fund database. The sample is from July 2002 to November 2022

where the start and end date is set to be the same as our main results. We identify corporate bond

mutual funds by CRSP’s fund classification. In particular, we choose the subcategory ‘Corporate’

among ‘Fixed Income’ funds. Funds with less than 36 monthly observations and total net assets

(TNA) less than $10 million are removed from the sample. We also remove all funds that track an

index or are passively managed, i.e., we focus on actively managed bond funds.

After filtering, we are left with a sample of 485 mutual funds that invest in corporate bonds.

To pin down which funds exhibit alpha, for each fund we estimate a single-factor model of each

fund’s net return in excess of the one-month risk-free rate on the MKTBNet factor.

We present summary statistics in Table 14. Panel A presents fund summary statistics and

B reports cross-sectional fund performance statistics. On average a representative mutual fund

remains in the sample for 109 months, with TNA of US$ 575 million, average annual expense ratios

of 0.90% and annual turnover of 119%. In the cross-section, gross (net) fund alphas are 0.05%

(0.03%) on average, with an average gross (net) return of 0.33% (0.26%) per month. The passive

net of costs bond market factor explains over 70% of the time-series variation of fund returns with

a beta of close to 0.70.

We present the distribution of the funds monthly net alphas and associated t-statistics in Panels

A and B of Figure 11. Of the 485 mutual funds we consider, only 42 of them (8.65% of the sample)

generate risk-adjusted net returns relative to the passive net of costs MKTBNet benchmark. The

average net alpha of these funds is economically small at 0.18% per month. Of the 42 funds that

do generate alpha, 33% invest in investment grade bonds with higher yields (bonds rated closer to

BBB-) and 17% invest in high rated investment grade bonds.17 Noninvestment grade bond funds do

not generate any alpha. For active corporate bond mutual fund investors, these preliminary results

are somewhat discouraging, but are supportive of our findings related to the poor net of cost alphas

17The remaining funds cannot be classified due to a lack of information.
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generated by our machine learning strategies. Relative to the average gross alpha generated by the

mutual funds (0.05%), the machine learning based portfolios perform admirably (average alpha

across the strategies is 0.20%).

Very few mutual funds offer incremental risk-adjusted performance in excess of simply holding

the passive net of cost bond market portfolio. Of funds that do outperform, the economic magnitude

of the outperformance is small. What is perhaps more disheartening, is that 37% of the funds (over

one third of the sample) generate net of cost alphas that are less than zero. The distribution of

the corporate bond mutual fund alphas is not unsurprising given that active portfolio management

is considered a zero (or negative) sum game (Fama and French 2010 and Sharpe 1991). If some

active bond bonds generate alpha, it comes at the expense of other bond funds. However, relying

on alpha as a measurement of skill can be misleading. We now turn to identifying whether active

bond mutual funds ‘add value’ through skillful management to further corroborate our findings

that outperforming a simple passive bond benchmark is a tall order.

6.2 Skill and Manager Value Added

Berk and Binsbergen (2015) show that gross alpha does not measure mutual fund manager

skill, and it also need not be positively correlated with skill. We examine a proxy for skill which

directly measures the ability of the fund manager to extract money from the markets. To do this

we compute the value that the fund offers to an investor over and above a gross return passive

benchmark. Following Berk and Binsbergen (2015), we measure a funds added value (Vi,t) by

multiplying the benchmark adjusted realized gross mutual fund return, Rg
i,t−Rg

MKTB,t, by the real

size of the fund (assets under management scaled by inflation) at the end of the previous month,

Vi,t = TNAi,t−1 · (Rg
i,t −Rg

MKTB,t),

where TNAi,t−1 is the total assets of the fund in the prior month, Rg
i,t is the gross return of fund

i in month t computed as the funds net return plus the monthly management fee, and Rg
MKTB,t is

the gross return of the bond market factor. In this equation, Vi,t represents the monthly ‘value-add’
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from fund manager skill in US$ millions.

The measure of ‘skill’, Si for each fund is the time-series average of each funds value-add. We

then compute the cross-sectional average of Si, using (i) equal-weights (the weights are equal for

each fund in the cross-section), (ii) time-weights (the weights are the number of months each fund

is present in the sample) and (iii) expense ratio weights (the weights are the average fund expense

ratios).

We report the respective cross-sectional averages of Vi in Panel A Table 15 and cross-sectional

percentiles in Panel B. Strikingly, the equally-weighted average monthly value-add of a given fund is

negative $396,000 per month, or negative $4.75 million annually. This value is economically large in

absolute value, and highly statistically significant at the 1% nominal level. The time weighted and

expense weighted estimates are similar in magnitude (negative) and also statistically significant.

In contrast to results presented in Berk and Binsbergen (2015), as opposed to adding value on

average, we show that bond mutual fund managers are value extractors, implying active bond

investors are paying for relatively adverse performance with respect to the passive benchmark. In

Panel B, the variation in value-add is large. Bond funds at the 1st (99th) percentile generated a

negative (positive) value-add of $9.12 ($2.63) million per month. The median fund lost investors

an average of $60,000 per month relative to the passive benchmark, and only 75% of the mutual

funds we consider generated a positive value-add.

6.3 Luck vs. Skill?

Given that a few mutual funds do generate net of costs alpha, we follow the methodology of

Barras, Scaillet, and Wermers (2010) to partition the proportion of funds that exhibit significant

alphas by luck and skill. We first estimate mutual fund alphas and their associated p-values

individually, using net of fee returns and the MKTBNet passive benchmark portfolio. Funds can

be classified as either ‘Unskilled’, implying they have a net alpha shortfall (α < 0), ‘Zero-alpha’,

which means managers have enough skill which is just sufficient to recover trading costs (α = 0),

and ‘Skilled funds’ meaning managers are skilled enough to generate an alpha surplus after costs

(α > 0). Given we cannot observe the true alphas of each fund in the population, we infer the
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prevalence of each of the above skill groups by using the false discovery rate (FDR) as a methodology

for separating skill from luck (See Benjamini and Hochberg 1995 and Barras et al. 2010 for the

estimation details).

We present the results in Panel A and B of Table 16. Of the 485 corporate bond specific mutual

funds we consider, 76.45% (371 funds) are estimated to be zero-alpha funds.18 This implies that,

confirming prior results in the literature, the majority of the funds we consider are run by managers

with enough ability to generate a net alpha that roughly covers their management fees. In other

words, the economic rents extracted from these managers from their clients are about enough to

cover their fees and trading costs. Funds that generate a non-zero alpha amount to 23.55% of our

mutual fund sample (114 funds). Of these funds, and in contrast to results for all mutual funds as

in Barras, Scaillet, and Wermers (2010) and others, only 8.07% of these funds are truly unskilled

with a true alpha less than zero. Skilled funds with true alpha greater than zero comprise 15.48% of

the proportion of non-zero alpha funds.19 In Panel B, we present the proportion of the significant

alphas in the left and right tails of the distribution (denoted as Ŝ−
γ and Ŝ+

γ ) at four significance

levels (γ = 0.05, 0.10, 0.15, 0.20). Focusing first on the right tail, when γ = 0.20, 14.02% (68)

funds generate a positive alpha with a two-sided p-value below 20%. However, of these funds, more

than half (37) of the funds are merely lucky, i.e., the positive alpha is not due to manager skill in a

statistical sense. As we decrease the level of γ (increase the level of significance), this phenomenon

reverses, i.e., fund alphas that have a greater degree of statistical significance are earned by a

greater proportion of skilled managers. The proportion of corporate bond mutual fund managers

who generate statistically significant alpha in the right tail at the 5% nominal level is 6.39% (31

funds). Of these managers, 4.48% (1.91%) are skilled (lucky). Unfortunately (for active bond

mutual fund investors), this result broadly confirms those presented in the prior section on value.

Of the 31 funds that generate positive alpha, only 22 funds (out of 485) generate the positive alpha

through skillful management. Only a tiny fraction of very top performing mutual funds appear to

18Given the critique of the FDR method when applied to mutual funds by Andrikogiannopoulou and Papakon-
stantinou (2019), our results are robust to changing the FDR parameters which generates the ‘Zero-alpha’ fund
percentage.

19This is in contrast to estimates from the CRSP Mutual Fund database that uses all funds. In Barras et al. (2010)
the percentage of skilled funds is estimated to be 0.60% (statistically indifferent to zero).
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outperform a passive bond market ETF net of costs.

Overall, when synthesizing the results from both of the methods we use to analyze corporate

bond mutual fund returns, two salient results are worth emphasizing. First, a representative investor

is, on average, better off simply purchasing a portfolio of low cost, passive bond market ETFs.

Second, the probability of selecting an active bond portfolio manager who is able to generate

statistically significant net of fees alpha through skill is extremely unlikely.

7 Conclusion

In this paper, we present delayed trade execution as a key cost in the evaluation of trading

strategies using illiquid assets. When transactions are infrequent, the standard portfolio approach of

Fama and French (1992) no longer provides a realistic performance benchmark for trading strategies,

even after adjusting for bid-ask spreads. The cost of missing trading opportunities is particularly

severe when the signal contains valuable information and moves quickly.

In our framework, investors face a trade-off between tighter bid-ask spreads and execution

speeds. As a result, total transaction costs are a U-shaped function of trade size, as opposed to the

monotonically decreasing function described in Edwards et al. (2007). This allows us to identify

an optimal trade size and ties our hands in selecting a trade size for net return calculations. We

show that the optimal size decreases as the gross alpha of the strategy increases.

Our methodology applies to a broader set of illiquid assets other than corporate bonds. The

key is to find a proxy for the bid-ask spreads on which investors can condition their orders. In the

stock market, the relationship between trade size and bid-ask spreads is positive. However, the

basic tension remains: the trading opportunity at tight bid-ask spreads is limited, and thus one has

to wait longer for order execution if one insists on a tight spread. In the corporate bond market,

trade size is negatively correlated with bid-ask spreads and serves as an excellent proxy for trading

opportunity, but we can use different proxies in different markets.

To underscore the importance of delay costs, we estimate the ML models to generate out-

of-sample forecasts of corporate bond returns. Consistent with previous research, the long-short

37



strategy based on these forecasts generates significant CAPM alphas before transaction costs. How-

ever, after adjusting for transaction costs and trading delays, the net alphas are essentially zero.

We confirm the difficulty of developing profitable strategies after transaction costs by examining

the returns of corporate bond mutual funds. Consistent with the unimpressive performance of ML

strategies, most corporate bond mutual funds have insignificant alphas relative to passive net of

cost ETF returns. Taken together, these results suggest that generating factor investing strategies

in corporate bonds is a challenge for researchers and practitioners alike.
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Figure 2: Delays and Inventory Dynamics
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Panel A. No Delays Over A Month
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Panel B. Purchase Delays
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Panel C. Sales Delays
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This figure illustrates a sequence of trades based on a trading signal. Panel A shows the types of returns

used for a long position when there is no trading beyond one month. The two superscripts of a return R

denote the action taken at the beginning and end of a month, respectively. The superscripts b indicate that

the investor buys, s that the investor sells, and h that the investor holds the existing position. For inventory,

Y indicates that the investor has a bond in inventory and N indicates that he does not. Panel B shows the

case where there is a delay in purchasing a bond. Panel C shows the case where there is a delay in selling a

bond.
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Figure 3: Summary Statistics For Different Trade Size

Panel A. Mean and Median Returns By Size
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Panel B. Percentage of Observations with No Trade
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Panel A plots the mean and median net returns for different trade sizes. Panel B plots the percentage of

observations where there is no trade to calculate a return in the month. Values on the x-axis are in thousand

dollars. 45



Figure 4: Distribution of Trade Size: July 2002-December 2022
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This figure plots the cumulative frequency of trade size observed in the corporate bond market (Panel A)

and for insurance firms’ trade size only (Panel B). For example, the area below 10K represents the number

of transactions with a size below $10,000. The sample is from July 2002 to December 2022 and includes only

dealer-customer trades.
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Figure 5: Average Excess Returns and CAPMB Alphas of the ML Strategies: Optimal
Volume
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This figure shows the point estimates and associated two standard error bars for the long-short portfolios

based on the expected returns generated by the machine learning algorithms. Gross returns and alphas are

before transaction costs, and net returns and alphas are after costs. In the middle panels, transaction costs

are calculated using the optimal threshold that maximizes the net alpha. In the right panels, transaction

costs are calculated using trades with a size above $100,000.
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Figure 6: t-Statistics of Individual Signals
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This figure characterizes the distribution of the t-statistics of the performance of 200 individual signals. In

the left panel, we compute t-statistics of the average excess returns of the long-short portfolios based on

each signal. In the right panel, we compute t-statistics of the CAPM alphas of the long-short portfolios.

The bar chart shows the number of characteristics with a t-value greater than 1.96. The point shows the

median t-value. Gross is the value before accounting for transaction costs and net is the value after costs at

the optimal trade size. Standard errors are adjusted for serial correlation using Newey and West (1987) 12

lags.
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Figure 7: Effect of Transaction Costs: ML Strategies

Panel A. Neural Networks
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Panel B. Extreme Trees
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Panel C. Random Forests
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This figure plots the bond CAPM alphas on the long-short strategies before and after accounting for transac-

tion costs (left panels). The transaction costs are decomposed into bid-ask spreads and delays (right panels).

Values on the x-axis are in thousand dollars.
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Figure 7, Continued
Panel D. Elastic Net
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Panel E. Ridge
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Panel F. Lasso
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Figure 7, Continued
Panel G. Ensemble Across All Models
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Panel H. Ensemble Across Linear Models
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Panel I. Ensemble Across Nonlinear Models
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Figure 8: Subperiod Analysis for ENS

0 5 10 20 5010
0
20

0
50

0
10

00
20

00
50

00

10
00

0

20
00

0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p
e

rc
e

n
t

2002.8-2012.12

0 5 10 20 5010
0
20

0
50

0
10

00
20

00
50

00

10
00

0

20
00

0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2013.1-2022.11

Total

Bid-Ask Spread

Delay

Gross Return

This figure shows the decomposition of transaction costs for the ENS strategy using the two subperiods. In

this figure, total costs are the difference between gross and net average returns. The bid-ask spread cost is

the difference between the gross average return and an alternative net average return in which transaction

prices are replaced by quotes on the day of the transaction. Values on the x-axis are in thousand dollars.
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Figure 9: Time-Variation in Transaction Costs for ENS
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The figure plots the transaction costs for the ENS strategy with a trade size of $2 million, decomposed into

the cost due to bid-ask spreads and portfolio turnover and the cost due to delays. Delay Cost (Moving Avg.)

plots the 12-month moving average of the delay costs.
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Figure 10: Turnover Rate, Gross and Net CAPM α
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The figures plot the combination of gross CAPMB α and portfolio turnover rate that matches the target

values of net CAPMB α and the associated t-statistics. The boundaries are estimated by regressing the

net CAPMB α’s and t-statistics on gross α, log portfolio turnover rate, and the product of the two. The

regression uses 114 strategies for which we can find an optimal trade size.
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Figure 11: Mutual Fund Alphas

This figure plots the cross-sectional distribution of the corporate bond net of costs single-factor MKTBNet

alphas and associated t-statistics. The dashed red lines indicate the mean values for the alphas (t-statistics).

The dashed blue line represents the cut-off value for the 95% level of significance (t = 1.96). The sample

includes 540 corporate bond mutual funds over the sample period 2002:07–2022:11.
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Table 1: List of Papers on the Cross-Section of Corporate Bonds

Article Cost Estimates

Panel A. Papers Without Transaction Costs
Bai, Bali, and Wen (2019)
Bai, Bali, and Wen (2021)
Bali, Subrahmanyam, and Wen (2021a)
Bali, Subrahmanyam, and Wen (2021b)
Ceballos (2023)
Chen, Wang, and Wu (2022)
Chung, Wang, and Wu (2019)
Dang, Hollstein, and Prokopczuk (2023)
Dick-Nielsen, Feldhütter, Pedersen, and Stolborg
(2023)
Duan, Li, and Wen (2021)
Friewald and Nagler (2016)
Gebhardt, Hvidkjaer, and Swaminathan (2005a)
Gebhardt, Hvidkjaer, and Swaminathan (2005b)
Haesen, Houweling, and Zundert (2017)
Huang, Qin, and Wang (2013)
Li, Yuan, and Zhou (2023)
Lin, Wang, and Wu (2011)
Tao, Wang, Wang, and Wu (2022)

Panel B. Papers Incorporating Transaction Costs
Bali et al. (2020) Roll measure of Bao et al. (2011)
Bali, Beckmeyer, and Goyal (2023) Fixed at 35bps
Bartram, Grinblatt, and Nozawa (2023) Portfolio-level bid-ask spreads
Bredendiek, Ottonello, and Valkanov (2023) Round-trip transaction costs
Cao et al. (2023) Estimates following Edwards et al. (2007)
Choi and Kim (2018) Considers transaction costs as characteristics
Chordia et al. (2017) Portfolio-level bid-ask spreads
He, Feng, Wang, and Wu (2024) Fixed at 20 to 80bps
Houweling and Zundert (2017) Maturity-rating, following Chen et al. (2007)
Israel, Palhares, and Richardson (2017) Maturity-rating, following Chen et al. (2007)
Ivashchenko (2023) Average 12m moving average of bond bid-ask

spreads
Ivashchenko and Kosowski (2023) Estimates following Kyle and Obizhaeva (2016)
Jostova et al. (2013) Estimates following Edwards et al. (2007)
Kelly, Palhares, and Pruitt (2021) Fixed at 19bps
Lin, Wu, and Zhou (2017) Break-even transaction costs
Nozawa, Qiu, and Xiong (2023) Bond-level bid-ask spreads
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Table 2: Average and Median Half Spreads (Percent) of Insurance Firms’ Bond Trade

Investor Size Category

Trade Size Category Small 2 3 4 Large

(0,100K] mean 0.486 0.354 0.405 0.268 0.237
(100K,500K] mean 0.461 0.170 0.228 0.157 0.131
(500K,1M] mean 0.312 0.113 0.116 0.083 0.086
(1M,∞] mean 0.223 0.095 0.084 0.072 0.088

(0,100K] median 0.199 0.130 0.168 0.087 0.090
(100K,500K] median 0.233 0.060 0.078 0.048 0.041
(500K,1M] median 0.151 0.047 0.044 0.032 0.031
(1M,∞] median 0.119 0.040 0.021 0.017 0.025

(0,100K] n 26,173 13,224 17,119 19,474 17,489
(100K,500K] n 68,185 37,586 36,437 40,139 36,044
(500K,1M] n 31,427 22,981 20,327 21,536 17,743
(1M,∞] n 55,636 98,332 96,935 95,836 100,222

This table reports the summary statistics of half spreads for insurance firms’ transaction of corporate bonds in

TRACE. For each trade, a half spread is computed as the difference in price between the transaction and the latest

interdealer transaction. Then, the spread is classified into bins based on their trade size and the insurance firm’s

total bond holding in the preceding quarter. The sample is from July 2002 to December 2022.
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Table 3: Trading Costs and Trade Size in the Corporate Bond Market.

(1) (2) (3) (4) (5) (6)

Log(Volume) −0.06*** −0.04*** −0.05*** −0.05*** −0.03*** −0.05***
(−14.45) (−13.14) (−14.14) (−14.59) (−12.09) (−14.26)

Day FE Yes Yes Yes Yes Yes Yes
Client FE No Yes No No Yes No
Broker FE No No Yes No No Yes

Controls No No No Yes Yes Yes
Obs. 881,504 881,474 881,369 731,080 731,042 730,960
R2 0.039 0.088 0.059 0.055 0.090 0.067

This table regresses trading costs on trade size, various fixed effects and bond-level control variables. The
bond level control variables include bond rating, coupon, maturity and the log of the issue size (amount
outstanding). t-statistics in parentheses are based on two-way clustered standard errors at the day and
client level. Asterisks denote significance levels (* p <0.1, ** p <0.05, *** p <0.01).

58



Table 4: Summary Statistics for Returns: Volume of $10K, $100K, $1M, and $10M

Variable N Mean Std. p1 p10 p50 p90 p99 NoTrade(%)

Rhh 854,250 0.30 3.71 -9.70 -2.36 0.29 2.89 9.49

Panel A. $10K
Rbh 854,250 -0.31 3.45 -10.08 -2.91 -0.04 1.97 7.62 6.24
Rhs 854,250 0.31 4.19 -10.81 -2.82 0.28 3.47 10.74 5.80
Rbs 854,250 -0.56 3.76 -11.28 -3.44 -0.18 1.88 7.94 9.76
Rsh 854,250 0.59 3.69 -8.43 -1.90 0.36 3.25 10.12 5.27
Rhb 854,250 1.20 4.28 -9.14 -1.86 0.87 4.57 13.03 6.73
Rsb 854,250 1.33 4.12 -7.77 -1.38 0.94 4.48 12.75 9.54

Panel B. $100K
Rbh 854,250 -0.11 3.36 -8.81 -2.35 0.01 1.92 7.32 13.08
Rhs 854,250 0.50 4.27 -10.67 -2.58 0.40 3.67 11.41 12.63
Rbs 854,250 -0.13 3.74 -9.81 -2.66 0.01 2.13 8.34 20.19
Rsh 854,250 0.34 9.12 -7.97 -1.80 0.18 2.57 8.65 12.00
Rhb 854,250 0.95 4.32 -9.68 -2.09 0.69 4.21 12.56 13.70
Rsb 854,250 0.84 9.33 -7.94 -1.54 0.49 3.51 10.97 19.75

Panel C. $1M
Rbh 854,250 0.06 2.97 -7.05 -1.48 0.03 1.57 6.69 32.65
Rhs 854,250 0.50 4.33 -10.89 -2.56 0.40 3.63 11.59 32.33
Rbs 854,250 0.10 3.44 -8.19 -1.74 0.06 1.89 8.08 46.90
Rsh 854,250 0.22 2.88 -6.76 -1.25 0.09 1.86 7.17 31.73
Rhb 854,250 0.68 4.32 -10.34 -2.35 0.51 3.85 12.06 33.30
Rsb 854,250 0.47 3.40 -7.40 -1.20 0.15 2.57 9.13 45.89

Panel D. $10M
Rbh 854,250 0.10 1.74 -2.80 0.00 0.02 0.36 3.18 84.62
Rhs 854,250 0.33 4.12 -10.39 -2.46 0.31 3.09 10.26 82.59
Rbs 854,250 0.10 2.03 -3.22 0.00 0.02 0.37 3.60 93.78
Rsh 854,250 0.14 1.79 -2.69 0.00 0.03 0.40 3.60 82.51
Rhb 854,250 0.36 4.11 -10.23 -2.42 0.32 3.12 10.33 84.74
Rsb 854,250 0.16 2.14 -2.98 0.00 0.03 0.41 4.20 93.37

This table shows the summary statistics of the panel data used in the study. The sample spans from August

2002 to November 2022. Panels A, B, C, and D correspond to the statistics with volume thresholds of $10K,

$100K, $1M, and $10M, respectively. NoTrade(%) is the percentage of monthly observations in which there

is no trade in TRACE above the volume threshold.
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Table 5: Summary Statistics for Returns: Volume of 10K,100K, $1M, and $10M:
Duration-Adjusted Returns

Variable N Mean Std. p1 p10 p50 p90 p99 NoTrade(%)

Rhh 854,216 0.20 3.51 -9.66 -1.47 0.13 2.05 8.95

Panel A. $10K
Rbh 854,216 -0.48 3.51 -10.36 -3.09 -0.18 1.72 7.89 6.24
Rhs 854,216 0.09 4.36 -13.15 -2.89 0.12 3.22 10.44 5.80
Rbs 854,216 -0.75 4.08 -13.27 -3.96 -0.32 2.01 8.54 9.76
Rsh 854,216 0.41 3.73 -8.49 -2.02 0.21 2.96 10.40 5.27
Rhb 854,216 0.97 4.38 -10.79 -1.86 0.67 4.24 12.80 6.73
Rsb 854,216 0.97 4.34 -9.45 -1.96 0.58 4.28 13.16 9.54

Panel B. $100K
Rbh 854,216 -0.29 3.37 -8.90 -2.44 -0.05 1.53 7.48 13.08
Rhs 854,216 0.33 4.34 -12.47 -2.42 0.25 3.34 10.95 12.63
Rbs 854,216 -0.31 3.91 -11.29 -2.92 0.00 2.03 8.66 20.19
Rsh 854,216 0.15 9.12 -8.15 -1.87 0.08 2.16 8.80 12.00
Rhb 854,216 0.77 4.36 -11.03 -1.96 0.53 3.86 12.13 13.70
Rsb 854,216 0.52 9.39 -9.37 -1.96 0.25 3.19 11.05 19.75

Panel C. $1M
Rbh 854,216 -0.10 2.95 -7.16 -1.52 0.01 1.02 6.59 32.65
Rhs 854,216 0.38 4.31 -11.60 -2.32 0.28 3.27 11.17 32.33
Rbs 854,216 -0.05 3.48 -8.71 -1.80 0.01 1.47 8.11 46.90
Rsh 854,216 0.06 2.87 -6.96 -1.25 0.03 1.29 7.14 31.73
Rhb 854,216 0.57 4.30 -11.03 -2.11 0.40 3.50 11.62 33.30
Rsb 854,216 0.24 3.44 -8.18 -1.34 0.09 2.00 9.06 45.89

Panel D. $10M
Rbh 854,216 0.06 1.72 -2.78 0.00 0.02 0.32 2.61 84.62
Rhs 854,216 0.31 4.11 -10.42 -2.37 0.28 2.98 10.16 82.59
Rbs 854,216 0.07 2.02 -3.09 0.00 0.02 0.32 3.06 93.78
Rsh 854,216 0.09 1.76 -2.65 0.00 0.02 0.34 3.03 82.51
Rhb 854,216 0.34 4.10 -10.27 -2.34 0.30 3.01 10.21 84.74
Rsb 854,216 0.11 2.11 -2.90 0.00 0.02 0.36 3.54 93.37

This table reports the summary statistics of the panel data used for the study. The sample is from August

2002 to November 2022. Panels A, B, C, and D corresponds to the statistics with the volume threshold of

$10K, $100K, $1M, and $10M, respectively. NoTrade(%) is the percentage of monthly observations where

there is no trade in TRACE that is above the volume threshold.
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Table 6: Performance of Top 15 Signals

CAPMB α Info. Ratio CAPM α Info. Ratio

Signal Gross Net Gross Net Signal Gross Net Gross Net

Panel A. Sort By Gross IR Panel B. Sort By Net IR
strev 0.478 0.068 1.375 0.340 bondkurtosis 0.276 0.178 0.783 0.696

(3.18) (1.08) (2.69) (2.36)
pead 0.192 0.063 1.232 0.429 coskewacx 0.182 0.108 0.800 0.644

(5.50) (1.90) (3.54) (2.78)
mom6mspread¶ 0.454 0.178 0.884 0.554 mom6mspread¶ 0.454 0.178 0.884 0.554

(2.93) (1.67) (2.93) (1.67)
trendfactor 0.275 0.345 0.879 0.292 skew¶ 0.215 0.121 0.623 0.472

(2.53) (1.30) (1.72) (1.38)
dvolcall¶ 0.243 -0.127 0.852 -0.574 duration¶ 0.158 0.163 0.368 0.454

(4.44) (-3.38) (1.69) (2.04)
dvolput 0.217 -0.148 0.823 -0.743 mrreversal 0.060 0.082 0.221 0.451

(4.18) (-4.07) (0.87) (1.62)
coskewacx 0.182 0.108 0.800 0.644 pead 0.192 0.063 1.232 0.429

(3.54) (2.78) (5.50) (1.90)
bondkurtosis 0.276 0.178 0.783 0.696 tmt¶ 0.139 0.140 0.361 0.418

(2.69) (2.36) (1.71) (1.91)
returnskew¶ 0.121 -0.165 0.731 -1.176 exchswitch 0.130 0.222 0.271 0.408

(2.94) (-5.66) (1.14) (1.70)
chtax 0.117 0.028 0.711 0.198 lrreversal 0.077 0.091 0.269 0.395

(2.48) (0.70) (0.98) (1.53)
mom3mspread¶ 0.320 0.069 0.668 0.336 dnoa 0.058 0.046 0.436 0.375

(2.47) (1.04) (1.31) (1.22)
skew¶ 0.215 0.121 0.623 0.472 cheq 0.051 0.054 0.282 0.375

(1.72) (1.38) (1.34) (1.78)
mom12off 0.208 0.055 0.590 0.197 volsd¶ 0.080 0.107 0.214 0.373

(2.61) (0.92) (1.46) (2.22)
deltarecomd 0.079 -0.214 0.548 -1.921 divomit 0.380 0.510 0.283 0.369

(1.90) (-8.41) (1.45) (1.79)
mom6yrseas 0.116 -0.135 0.517 -0.893 strev 0.478 0.068 1.375 0.340

(1.74) (-3.33) (3.18) (1.08)

This table reports the CAPMB alphas of the long-short portfolios built on bond characteristics. Bond

characteristics are defined in Table A3. ¶ indicates that we multiply the characteristic by minus one. Each

month, we select the top and bottom 20% of bonds in terms of bond characteristics and form a long-short

strategy. Gross alphas are before transaction costs and net alphas are after costs. The costs are calculated

using the optimal trade size which maximizes the net alpha. If we fail to find the optimum, then we use

the size of $2 million. Values in parentheses are t-statistics adjusted for Newey and West (1987) 12 lags.

Annualized IR is the information ratio defined by the ratio of alpha to the standard deviation of the CAPM

regression residuals times square root of 12. The sample period is August 2002 through November 2022.
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Table 7: Performance of ML Strategies

Excess Returns CAPMB α Information Ratio

Signal Gross Net Gross Net Gross Net Optimal Turnover
Optimal Optimal Optimal Volume (%)

NN 0.531 0.110 0.430 0.039 1.192 0.177 5000 49.10
(3.69) (1.71) (2.97) (0.67)

XT 0.548 0.166 0.393 0.042 0.901 0.118 2000 39.71
(3.40) (1.39) (2.48) (0.40)

RF 0.387 0.056 0.239 -0.033 0.595 -0.125 10000 32.58
(3.33) (0.78) (2.16) (-0.49)

ENET 0.535 0.129 0.422 0.041 0.980 0.121 2000 48.67
(3.82) (1.40) (2.75) (0.44)

RIDGE 0.567 0.177 0.504 0.122 1.371 0.425 2000 46.22
(4.07) (1.86) (3.77) (1.41)

LASSO 0.517 0.093 0.414 0.019 0.981 0.071 5000 49.92
(3.08) (1.04) (2.21) (0.20)

ENS 0.592 0.162 0.476 0.068 1.152 0.215 2000 49.32
(3.60) (1.52) (2.90) (0.68)

LENS 0.575 0.159 0.479 0.077 1.226 0.258 2000 49.46
(3.76) (1.56) (3.18) (0.83)

NENS 0.562 0.142 0.421 0.029 1.038 0.092 2000 47.67
(3.45) (1.33) (2.58) (0.30)

This table reports the average excess returns and CAPMB alphas of the long-short portfolios built on the

expected returns generated by the machine learning algorithms. Each month, we select the top and bottom

20% of bonds in terms of expected returns and form a long-short strategy. Gross returns and alphas are

before transaction costs and net returns and alphas are after costs. Net costs are calculated using the optimal

trade size reported in the “Optimal Volume” column. Information ratio is the ratio of the CAPM alpha to

the standard deviation of the residual of the regression times the square root of 12. Optimal Volume is the

transaction size is in thousand dollars. Turnover is the monthly turnover rate averaged over the two legs of

the strategy. Values in parentheses are t-statistics adjusted for Newey and West (1987) 12 lags. The sample

period is August 2002 to November 2022.
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Table 8: Performance of ML Strategies: Duration-Adjusted Returns

Dur-Adj. Returns CAPMB α Information Ratio

Signal Gross Net Gross Net Gross Net Optimal Turnover
Optimal Optimal Optimal Volume (%)

NN 0.495 0.102 0.449 0.063 1.241 0.229 2000 56.00
(3.76) (1.34) (3.38) (0.83)

XT 0.542 0.144 0.469 0.077 1.073 0.214 2000 39.74
(3.72) (1.37) (3.27) (0.76)

RF 0.394 0.071 0.330 0.021 0.825 0.082 10000 32.61
(4.36) (1.33) (3.60) (0.36)

ENET 0.490 0.102 0.445 0.060 1.025 0.171 2000 48.71
(3.96) (1.26) (3.27) (0.67)

RIDGE 0.514 0.162 0.497 0.139 1.379 0.471 2000 46.27
(3.79) (1.70) (3.88) (1.59)

LASSO 0.493 0.101 0.454 0.065 1.143 0.220 2000 57.06
(3.30) (1.08) (2.84) (0.67)

ENS 0.552 0.139 0.507 0.097 1.242 0.296 2000 49.36
(3.64) (1.38) (3.38) (0.97)

LENS 0.529 0.145 0.492 0.105 1.268 0.337 2000 49.51
(3.63) (1.45) (3.49) (1.11)

NENS 0.553 0.133 0.490 0.074 1.221 0.234 2000 47.71
(3.84) (1.43) (3.43) (0.82)

This table reports the average duration-adjusted returns and CAPMB alphas of the long-short portfolios

built on the expected returns generated by the machine learning algorithms. Each month, we select the

top and bottom 20% of bonds in terms of expected returns and form a long-short strategy. Gross returns

and alphas are before transaction costs and net returns and alphas are after costs. Net costs are calculated

using the optimal trade size reported in the “Optimal Volume” column. Information ratio is the ratio of the

CAPM alpha to the standard deviation of the residual of the regression times the square root of 12. Optimal

Volume is the transaction size is in thousand dollars. Turnover is the monthly turnover rate averaged over

the two legs of the strategy. Values in parentheses are t-statistics adjusted for Newey and West (1987) 12

lags. The sample period is August 2002 to November 2022.
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Table 9: Decomposition of Transaction Costs

$100K Optimal Volume KPP

Signal Total BidAsk Delay Total BidAsk Delay Cost

NN 0.689 0.582 0.107 0.390 0.144 0.246 0.258
XT 0.539 0.463 0.076 0.351 0.188 0.163 0.174
RF 0.678 0.620 0.058 0.272 0.065 0.208 0.185
ENET 0.651 0.552 0.098 0.381 0.213 0.168 0.223
RIDGE 0.614 0.507 0.108 0.382 0.195 0.187 0.209
LASSO 0.724 0.615 0.109 0.395 0.147 0.248 0.262
ENS 0.672 0.559 0.114 0.408 0.218 0.191 0.225
LENS 0.663 0.554 0.110 0.402 0.215 0.187 0.226
NENS 0.638 0.539 0.099 0.393 0.210 0.183 0.216

This table reports the two components of transaction costs: BidAsk costs and Delay costs. The total costs

are the difference between gross α and net α. To measure delay costs, we compute an alternative version

of net returns using quote prices on TRACE transaction dates to compute all returns. Delay costs are the

difference between gross returns and the alternative net returns. Bid-ask costs are the difference between

the alternative net returns and the (original) net returns. KPP costs are computed following Kelly et al.

(2021) assuming the half spread of 19 bps.
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Table 10: Optimal Volume and Transaction Costs

Gross α Gross α Avg.

Low Middle High Low Middle High Turnover

Panel A. Optimal Vol. ($ mil.) Panel B. Total Cost (%)
Turnover Low 3.93 6.75 0.014 0.003 6.67

Middle 6.13 4.78 2.60 0.012 0.060 0.106 12.44
High 7.43 5.33 4.80 -0.001 0.058 0.284 46.83

Panel C. Half-Spread Cost (%) Panel D. Delay Cost (%)
Turnover Low 0.021 0.016 -0.007 -0.013 6.67

Middle 0.020 0.044 0.058 -0.008 0.016 0.049 12.44
High 0.008 0.052 0.129 -0.009 0.006 0.155 46.83

Average α 0.049 0.136 0.354 0.049 0.136 0.354

This table reports the average of optimal transaction volume (Panel A), the total cost at the optimum (Panel

B), the half-spread cost (Panel C), and the delay cost (Panel D) using the 114 strategies for which we can

find an optimal trade size. The signals/strategies are classified into three groups based independently on

their turnover rate (calculated using the minimum trade size) and gross CAPMB α. The cutoff value of

gross α is [0,0.1), [0.1,0.2), [0.2,∞) for low, middle, and high, respectively.

65



Table 11: Robustness: Long-Only Strategies

Excess Returns CAPM α Information Ratio

Signal Gross Net Gross Net Gross Net Optimal Turnover
Optimal Optimal Optimal Volume (%)

NN 0.558 0.342 0.234 0.087 1.128 0.575 2000 55.96
(2.91) (2.29) (2.65) (1.61)

XT 0.593 0.405 0.227 0.085 0.891 0.390 1000 42.03
(2.86) (2.20) (2.79) (1.29)

RF 0.501 0.338 0.145 0.044 0.609 0.224 2000 41.23
(2.61) (2.09) (2.32) (0.80)

ENET 0.564 0.360 0.236 0.083 1.012 0.473 1000 52.21
(3.02) (2.31) (2.91) (1.44)

RIDGE 0.561 0.369 0.246 0.113 1.170 0.708 2000 46.22
(2.96) (2.40) (3.07) (2.00)

LASSO 0.547 0.325 0.220 0.065 0.921 0.352 2000 57.02
(2.83) (2.11) (2.14) (0.98)

ENS 0.594 0.371 0.251 0.093 1.066 0.550 2000 49.32
(2.93) (2.29) (2.73) (1.51)

LENS 0.572 0.356 0.245 0.091 1.100 0.574 2000 49.46
(2.95) (2.29) (2.87) (1.59)

NENS 0.598 0.391 0.241 0.085 1.047 0.464 1000 51.04
(2.90) (2.24) (2.66) (1.34)

This table reports the average excess returns (in excess of T-bill rates) and CAPMB alphas of the long-only

portfolios built on the expected returns generated by the machine learning algorithms. Each month, we

select the top 20% of bonds in terms of expected returns and form a long-only strategy. Gross returns and

alphas are before transaction costs and net returns and alphas are after costs. Net costs are calculated

using the optimal trade size reported in the “Optimal Volume” column. Information ratio is the ratio of the

CAPM alpha to the standard deviation of the residual of the regression times the square root of 12. Optimal

Volume is the transaction size is in thousand dollars. Turnover is the monthly turnover rate averaged over

the two legs of the strategy. Values in parentheses are t-statistics adjusted for Newey and West (1987) 12

lags. The sample period is August 2002 to November 2022.
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Table 12: Robustness: Smaller Number of Bonds

Excess Returns CAPM α Information Ratio

Signal Gross Net Gross Net Gross Net Optimal Turnover
Optimal Optimal Optimal Volume (%)

NN 1.104 0.393 0.962 0.296 1.541 0.619 2000 68.59
(4.75) (2.73) (4.16) (2.09)

XT 1.290 0.505 1.154 0.389 1.002 0.407 1000 73.11
(3.85) (1.94) (3.92) (1.53)

RF 1.171 0.446 1.149 0.406 1.284 0.553 1000 63.63
(4.47) (2.36) (3.98) (2.17)

ENET 0.923 0.282 0.772 0.154 1.007 0.278 2000 68.02
(4.36) (1.69) (3.92) (1.05)

RIDGE 1.206 0.510 1.072 0.408 1.204 0.628 2000 62.95
(3.66) (2.06) (3.62) (1.91)

LASSO 1.145 0.303 1.043 0.186 1.072 0.272 1000 74.30
(3.24) (1.24) (2.57) (0.77)

ENS 1.365 0.574 1.214 0.450 1.256 0.612 1000 69.06
(3.94) (2.21) (3.75) (1.96)

LENS 1.208 0.497 1.046 0.374 1.215 0.596 2000 65.76
(3.81) (2.09) (3.57) (1.80)

NENS 1.388 0.592 1.259 0.486 1.310 0.644 2000 66.74
(4.19) (2.61) (4.18) (2.32)

This table reports the average excess returns and CAPMB alphas of the long-short portfolios built on the

expected returns generated by the machine learning algorithms. Each month, we select the top and bottom

2% of bonds in terms of expected returns and form a long-short strategy. Gross returns and alphas are before

transaction costs and net returns and alphas are after costs. Net costs are calculated using the optimal trade

size reported in the “Optimal Volume” column. Information ratio is the ratio of the CAPM alpha to the

standard deviation of the residual of the regression times the square root of 12. Optimal Volume is the

transaction size is in thousand dollars. Turnover is the monthly turnover rate averaged over the two legs of

the strategy. Values in parentheses are t-statistics adjusted for Newey and West (1987) 12 lags. The sample

period is August 2002 to November 2022.
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Table 13: Robustness: Subsample of Liquid Bonds

Excess Returns CAPM α Information Ratio

Signal Gross Net Gross Net Gross Net Optimal Turnover
Optimal Optimal Optimal Volume (%)

Panel A. Above-Median Trade Counts
NN 0.543 0.172 0.434 0.073 1.038 0.206 2000 66.87

(4.04) (1.77) (3.49) (0.88)
XT 0.559 0.219 0.413 0.081 0.853 0.191 2000 50.36

(3.49) (1.66) (2.69) (0.70)
RF 0.409 0.093 0.293 0.003 0.668 0.008 10000 40.38

(3.51) (1.10) (2.38) (0.03)
ENET 0.572 0.210 0.450 0.101 0.943 0.233 2000 58.41

(4.19) (1.91) (3.26) (0.95)
RIDGE 0.561 0.213 0.508 0.162 1.110 0.396 2000 55.25

(4.06) (2.01) (3.59) (1.61)
LASSO 0.561 0.162 0.453 0.060 0.928 0.147 2000 66.93

(3.40) (1.32) (2.64) (0.51)
ENS 0.603 0.204 0.503 0.106 1.065 0.263 2000 59.40

(4.00) (1.82) (3.26) (1.03)
LENS 0.586 0.199 0.502 0.118 1.081 0.292 2000 58.99

(4.03) (1.83) (3.35) (1.15)
NENS 0.596 0.213 0.462 0.091 1.008 0.228 2000 57.59

(3.81) (1.75) (3.05) (0.84)

Panel B. Above-Median Number of Trade Days
NN 0.518 0.156 0.404 0.052 0.984 0.150 2000 67.84

(3.87) (1.56) (3.33) (0.63)
XT 0.530 0.203 0.381 0.062 0.795 0.147 2000 51.31

(3.34) (1.54) (2.50) (0.54)
RF 0.392 0.098 0.274 0.012 0.632 0.039 10000 41.61

(3.50) (1.21) (2.34) (0.16)
ENET 0.552 0.198 0.430 0.086 0.917 0.208 2000 59.34

(4.08) (1.83) (3.11) (0.84)
RIDGE 0.534 0.197 0.477 0.140 1.059 0.347 2000 56.39

(3.80) (1.79) (3.34) (1.36)
LASSO 0.541 0.155 0.432 0.052 0.891 0.128 2000 67.82

(3.32) (1.28) (2.56) (0.45)
ENS 0.579 0.192 0.476 0.090 1.019 0.227 2000 60.36

(3.81) (1.67) (3.09) (0.87)
LENS 0.559 0.162 0.472 0.098 1.036 0.324 10000 47.55

(3.87) (1.80) (3.20) (1.12)
NENS 0.573 0.201 0.434 0.071 0.960 0.183 2000 58.71

(3.66) (1.63) (2.91) (0.68)

This table reports the average excess returns and CAPMB alphas of the long-short portfolios built on the

expected returns generated by the machine learning algorithms. Each month, we first divide bonds into

two categories based on the trade counts and the number of trade days in the previous month. Within the

bonds in the high category, we select the top and bottom 20% of bonds in terms of expected returns and

form a long-short strategy. The definitions of each column can be found in the notes to Table 7. Values in

parentheses are t-statistics adjusted for Newey and West (1987) 12 lags. The sample period is August 2002

to November 2022.



Table 14: Summary Statistics for Corporate Bond Mutual Funds

N Mean Std. p1 p10 p50 p90 p99

Panel A: Fund Characteristics

Fund TNA ($ millions) 53,213 574.6 1574 11.15 19.17 125.1 1283 6525
Fund NAV ($ millions) 53,213 11.17 5.483 3.396 6.658 10.46 14.57 32.80
(Annual) expense ratio (%) 44,684 0.903 0.434 0.200 0.455 0.807 1.590 1.903
(Annual) turnover (%) 44,695 119.0 116.6 10.73 21.92 79.96 255.4 530.3

Panel B: Cross-Section of Fund Performance

(Monthly) Excess gross return (%) 485 0.33 0.26 -0.17 0.06 0.31 0.57 1.18
(Monthly) Excess net return (%) 485 0.26 0.26 -0.24 0.01 0.24 0.50 1.06
(Monthly) Gross alpha (%) 485 0.05 0.25 -0.31 -0.11 0.04 0.16 1.23
(Monthly) Net alpha (%) 485 0.03 0.24 -0.33 -0.14 0.02 0.15 1.14
MKTBNet beta 485 0.67 0.30 -0.23 0.39 0.64 0.97 1.47
MKTBNet R

2 485 0.76 0.19 0.00 0.51 0.80 0.94 0.98

This table reports time-series averages of cross-sectional summary statistics for various fund characteristics in
Panel A. Panel B reports average fund performance statistics for the cross-section of corporate bond mutual
funds. The monthly gross (net) alpha is computed from time-series regressions of each funds excess gross
(net) return on the gross and net of fees bond market factor, MKTGross (MKTNet). The sample period is
August 2002 through to December 2022 (245 Months) consisting of 485 bond mutual funds.

Table 15: Corporate Bond Value Added (Ŝi)

Panel A: Cross-Sectional Weighted Value-Add

Equal weights Time weights Expense weights

Value-add (Ŝi) -0.396 -0.300 -0.341
Standard error 0.104 0.113 0.077
t-statistic (-3.83 ) ( -2.66) (-4.44)

Panel B: Cross-Sectional Percentiles

p1 p10 p50 p90 p99 % Ŝi < 0

Value-add (Ŝi) -9.122 -1.125 -0.060 0.141 2.634 75.05

This table reports the average monthly value-add, Ŝi, defined as the total lagged inflation adjusted assets

of each fund multiplied by the difference between the funds gross return and the gross return of the passive

benchmark. The average cross-sectional mean of the value-add is computed with equal weights (Column

1), time weights (Column 2) and expense ratio weights (Column 3). We report standard errors and the

associated t-statistic below the mean. Panel B reports the percentiles of the cross-sectional distribution of

Ŝi and the percentage of funds that generate a negative value-add. Numbers are reported in US$ millions

per month. The sample period is August 2002 through to December 2022 (245 Months) consisting of 485

bond mutual funds.
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Table 16: Impact of Luck on Performance

Panel A. Proportion of Unskilled and Skilled Funds

Zero alpha (π̂0) Non-zero alpha Unskilled (π̂−
A) Skilled (π̂+

A)

Proportion (%) 76.45 [3.49] 23.55 8.07 [2.49] 15.48 [2.24]
Number 371 114 39 75

Panel B. Impact of Luck in the Left and Right Tails

Left tail Right tail

Signif. level (γ) 0.05 0.10 0.15 0.20 0.20 0.15 0.10 0.05 Signif. level (γ)

Signif. Ŝ−
γ (%) 7.01 7.84 9.07 10.93 14.02 12.37 9.90 6.39 Signif. Ŝ+

γ (%)

[1.16] [1.22] [1.30] [1.42] [1.58] [1.50] [1.36] [1.11]

Unlucky F̂−
γ (%) 1.91 3.82 5.73 7.64 7.64 5.73 3.82 1.91 Lucky F̂+

γ (%)

[0.09] [0.17] [0.26] [0.35] [0.35] [0.26] [0.17] [0.09]

Unskilled T̂−
γ (%) 5.10 4.01 3.34 3.28 6.38 6.64 6.07 4.48 Skilled T̂+

γ (%)

[1.19] [1.28] [1.41] [1.57] [1.61] [1.57] [1.46] [1.25]

Alpha (% year) -1.99 -1.94 -1.96 -1.97 2.03 2.06 2.17 2.30 Alpha (% year)

This table reports the estimated proportions of zero-alpha, unskilled and skilled funds (π̂0,π̂
−
A,π̂

+
A) for the

population of our ‘Corporate Bond’ specific mutual funds (N = 485) from August 2002 through to December

2022 (245 Months). The fund alphas are computed for each fund using net of fees excess returns and the

single-factor MKTBNet bond market factor. Panel B counts the proportions of significant funds in the left

and right tails of the cross-sectional distribution of fund alphas (Ŝ−
γ ,Ŝ+

γ ) at four pre-defined significance levels

(γ = 0.05, 0.10, 0.15, 0.20). The columns on the left decompose the proportion of significantly negative fund

alphas into unlucky and unskilled funds (F̂−
γ ,T̂−

γ ). The columns on the right decompose the proportion of

significantly positive fund alphas into lucky and skilled funds (F̂+
γ ,T̂+

γ ). The final row of the table present

the average alpha in the left and right tail of the cross-sectional distribution of fund alphas. Standard errors

are presented in square brackets.
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A Inventory and Dynamic Portfolio Choice

Because the choice of a return depends on the investor’s past bond holdings, we must keep track

of her inventory. To do this, introducing some notation is useful. A month t+ 1 return on a bond

is characterized by the investor’s actions at the end of months t and t+ 1. Let It be the inventory

(or existing short position) at the end of month t, xt be the signal which is either Y (i.e., take a

position on the bond) or N (i.e., do not take a position), f(It, xt) = {b, h, s} be an action function

at the end of month t to start the trade, and g(xt+1) = {b, h, s} be the function in t+1 to close it.

Thus, the selected returns based on these actions are expressed as Rf ·g
t+1.

The trading process is shown in Figure 12. It can be summarized as follows:

1. At the end of month t, the investor receives the signal xt and receives the inventory It. She

then decides whether to take a position on a bond (Y) or not (N) using the function f(xt, It).

2. Her order is sent to the dealers and executed if possible.

3. At the end of the month t + 1, she receives the signal xt+1. After observing it, she decides

whether or not to keep the existing position, as encoded by the function g(xt+1).

4. Her order is sent to the dealers and executed if possible. The result determines her return for

month t+ 1, Rf ·g
t+1.

5. The result of the previous two order executions determines her inventory level It+1. Given

xt+1 and It+1, we return to step 1 to compute a return in month t+ 2.

This procedure explicitly accounts for delays in order execution. The action f(xt, It) is executed

either at the end of month t or sometime in month t + 1. If the trade does not occur, the return

and inventory are adjusted accordingly at the end of t+1. Similarly, the action g(xt+1) is executed

either at the end of month t+1 or sometime in month t+2. As long as the execution occurs during

this period, the bond is recorded in the inventory record It+1 as if the transaction were executed at

the end of month t+ 1. We adjust for any excess holding costs by charging the risk-free rate until

the action in month t+ 2 is taken. If the trade is not executed in month t+ 2, it is added to It+1
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as unintended inventory. Therefore, the result of the order execution in both months t and t + 1

together determines the inventory level in t + 1. This in turn influences the next month’s action

f(xt+1, It+1).

Figure 12: Flow Chart To Compute Net Returns

Signal xt Inventory It

Action f(xt, It) End of Month t

Execution P
f(xt,It)
t

Signal xt+1 Inventory It+1

Action g(xt+1)

Execution P
g(xt+1)
t+1

Action f(xt+1, It+1) End of Month t+ 1

Execution P
f(xt+1,It+1)
t+1

Rf ·g
t+1

To concretely describe the set of actions in each month, we consider seven bonds as shown

in Table A1. Panel A describes the action function f(It, xt) and g(xt+1) for a long position. In

this case, a possible action in month t is either to maintain the previous long position (h) or to

buy a bond (b). The action depends not only on the month-t signal, but also on the inventory of

bonds held from the previous months. If the signal is ‘Y’ and the inventory is also ‘Y’ (bonds A
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and B), the action is to maintain the existing position (h). On the other hand, if the signal and

the inventory pair is (Y, N), as for bonds D and E, the action is to buy the bond (b). There are

cases (bonds F and G) where the signal is ‘N’ but the inventory is ‘Y’ because the sales were not

executed in month t. In this case, the investor’s initial action is to hold the long position (h). It

is important to realize that month-t action depends only on the signal at that time and inventory,

not how the investor ended up with the inventory (intentional or unintentional). The distinction

between intentional and unintentional inventory only affects the return calculation at the end,

because unintended inventory must be financed individually by risk-free lending and borrowings.

Table A1: Return Computation

Panel A: Long Position

Time (end of month) A B C D E F G

Inventory It Y Y N N N Y Y
Unintended inventry? Yes Yes

t Buy signal xt Y Y N Y Y N N
Action f(It, xt) h h - b b h h

t+ 1 Buy signal xt+1 Y N Y N N Y
Action g(xt+1) h s h s s h

Return in t+ 1 Rhh Rhs 0 Rbh Rbs Rhs −Rf Rhh −Rf

Panel B: Short Position

Time (end of month) A B C D E F G

Existing position It Y Y N N N Y Y
Unintended position? Yes Yes

t Sell signal xt Y Y N Y Y N N
Action f(It, xt) h h - s s h h

t+ 1 Sell signal xt+1 Y N Y N N Y
Action g(xt+1) h b h b b h

Return in t+ 1 −Rhh −Rhb 0 −Rsh −Rsb −Rhb +Rf −Rhh +Rf

At the end of month t+ 1, the investor tries to either close the long position (s) or hold it (h).

This intended action function g(xt+1) is simple in that it depends only on the signal of month t+1.
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For a long position, signal Y corresponds to no action (h), while signal N corresponds to intended

sales (s). If the intended purchases and sales did not materialize due to excessive delays, they are

reflected in the month t+ 1 inventory, It+1, and influence the next month’s action.

Panel B of Table A1 describes the same descriptions for short positions. These actions can be

obtained by simply replacing b in Panel A with s.

B Net of Fees Corporate Bond Market Factor

We risk-adjust our net of cost strategies with a realistic corporate bond market factor that com-

bines tradable passively managed investment grade and high yield exchange traded funds (ETFs).

We source the BlackRock iShares iBoxx Investment Grade (ticker: LQD) and High Yield (ticker:

HYG) ETF net returns from the CRSP Mutual Funds database as provided by WRDS. The LQD

ETF has an inception date of 2002:06 which spans the full length of our out-of-sample period. The

HYG inception date is 2007:03. To address the shorter sample period for HYG, we source high

yield gross return data from the Bloomberg-Barclays (BB) High-Yield bond index. Thereafter, we

estimate a simple OLS regression of the HYG net returns on the BB gross returns such that we

can extrapolate values for HYG before 2007:03,

RHY G,t = β0 + βBB ·RBB,t + εt,

R̂HY G,t = −0.095
(−2.010)

+ 0.883
(60.13)

·RBB,t,

where RHY G,t and RBB,t are the net of cost and gross returns of the HYG ETF and BB High-Yield

bond index over the sample period 2007:03–2023:06 (T = 251). The intercept, β0 is estimated at

−9.5 basis points (statistically significant from zero at the 5% nominal level), which captures the

fact that HYG is adversely impacted by trading costs and ETF fees. From the OLS estimation

above, we set the net return value of the HYG index to R̂HY G before 2007:03 and to the actual net

return of the HYG index thereafter. We denote this return RHY G.

To generate the MKTBNet factor, we require appropriate weights for the representative in-

vestor to apportion their funds between HYG and LQD. To do this, we source all bonds that are
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included in the Bank of America Merrill Lynch Investment Grade (C0A0) and High Yield (H0A0)

corporate indices and compute their respective market capitalizations (Clean Price × Units Out-

standing). The weight for each index for each month is simply the sum of the respective index

market capitalization at month t divided by the total market capitalization. On average, over the

sample period, the investor apportions 19.90% to the high yield index and 80.10% to the investment

grade index. Finally, the MKTBNet factor is computed as,

RNet
MKTB,t+1 = (RHY G,t+1 · ωHY G,t +RLQD,t+1 · ωLQD,t)−Rf,t+1,

where ωHY G,t is the weight in the HYG ETF, ωLQD,t is the weight in the LQD ETF and Rf,t+1 is

the one-month risk-free rate of return from Kenneth French’s webpage.

We report summary statistics for the MKTBNet, MKTBGross (computed using the same

weights as above with the Bloomberg-Barclays Investment Grade and High Yield index gross re-

turns) and MKTB available from openbondassetpricing.com.
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Table A2: Summary statistics for the corporate bond market factor.

Panel A: Corporate bond market factor statistics

MKTBNet MKTBGross MKTB

Mean 0.316 0.367 0.364
(2.14) (2.36) (2.32)

SD 2.06 1.95 1.91
SR 0.53 0.65 0.66

Panel B: Pairwise correlations

MKTBNet MKTBGross MKTB

MKTBNet 1
MKTBGross 0.982 1
MKTB 0.973 0.992 1

Panel A reports the monthly factor means (Mean), the monthly factor standard deviations (SD), and the

annualized Sharpe ratios. The MKTBNet factor is constructed as the weighted-average of the BlackRock

iShares iBoxx Investment Grade (ticker: LQD) and High Yield (ticker: HYG) ETF net returns from the

CRSP Mutual Funds database. The MKTBGross factor is constructed as the weighted-average of the

Bloomberg-Barclays Investment Grade and High Yield index gross returns. The MKTB factor is the value-

weighted bond market factor publicly available from openbondassetpricing.com. Panels A and B are based

on the sample period 2002:08 to 2022:12 (245 months). t-statistics are in round brackets computed with the

Newey-West adjustment with 12-lags.
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C Variable Definitions

Table A3: List of the Corporate Bond and Stock Characteristics.

Num. ID Characteristic Name and Description Reference Source

Panel A: Bond Characteristics Computed by the Authors

1 ave12mspread Rolling 12-month moving average of bond option ad-
justed credit spreads skipping the prior month

Elkamhi et al. (2021) BAML/ICE

2 bondage Bond age. The number of years the bond has been in
issuance

Israel et al. (2018) BAML/ICE

3 bondkurtosis Bond kurtosis. Rolling bond excess kurtosis com-
puted with a minimum amount of rolling observations
equalling 12 which then expands up to 60-months

– BAML/ICE

4 bondsize Bond market capitalization. Computed as bond units
amount outstanding multiplied by the clean price of the
bond

Houweling and Van Zun-
dert (2017)

BAML/ICE

5 coupon Bond coupon. The annualised bond coupon payment in
percent (%)

Chung et al. (2019) BAML/ICE

6 dspread First difference in bond option adjusted credit spread – BAML/ICE

7 dts Duration-times-spread. Annualized bond duration mul-
tiplied by the bond option adjusted credit spread

Dor et al. (2007) BAML/ICE

8 duration Bond duration. The derivative of the bond value to the
credit spread divided by the bond value, and is calcu-
lated by ICE

Israel et al. (2018) BAML/ICE

9 faceval Face value. The bond amount outstanding in units Israel et al. (2018) BAML/ICE

10 idiospread Idiosyncratic component of bond credit spread. First,
we run cross-sectional regressions of the log of bond op-
tion adjusted credit spreads onto the 3-month change
in spreads, maturity and credit ratings. Thereafter we
compute the idiosyncratic spread as the difference be-
tween the exponential of the fitted spread and the actual
spread

Houweling and Van Zun-
dert (2017)

BAML/ICE

11 impliedspread Systematic component of bond credit spread. The fit-
ted value from the cross-sectional regression described
above

Houweling and Van Zun-
dert (2017)

BAML/ICE

12 mom3mspread Mom. 3m log(Spread). The log of the spread 3 months
earlier minus current log spread

– BAML/ICE

13 mom6 Corporate bond momentum. The sum of the last 6-
months of bond returns minus the prior month

Gebhardt et al. (2005) BAML/ICE

14 mom6ind Corporate bond portfolio industry momentum. The
sum of the last 6-months of bond portfolio returns mi-
nus the prior month. Portfolios are formed based on the
Fama-French Industry 17 classification

Kelly et al. (2021) BAML/ICE

15 mom6mspread Mom. 6m log(Spread). The log of the spread 6 months
earlier minus current log spread

– BAML/ICE

16 mom6xrtg Corporate bond momentum multiplied by bond rating.
The sum of the last 6-months of bond returns minus the
prior month multiplied by the bond’s numerical rating
AAA = 1, ... , D = 22

Kelly et al. (2021) BAML/ICE

17 rating Bond S&P rating. Bond numerical rating. AAA = 1,
... , D = 22

Kelly et al. (2021) BAML/ICE

18 ratingxspread Bond rating multiplied by credit spread – BAML/ICE

19 skew Bond skewness. The rolling 60-month skewness of bond
total returns. We require a minimum of 12 observations,
once this threshold is hit, the rolling window expands
upward to 60-months

Kelly et al. (2021) BAML/ICE

20 spread Bond option adjusted credit spread. The option ad-
justed spread of the bond provided by ICE

Kelly et al. (2021) BAML/ICE

21 spreadvol Volatility of the first difference of the bond option ad-
justed credit spread. Rolling period of 24-months with
a minimum required observations of 12

– BAML/ICE

22 strevb Short-term bond reversal. Defined as the previous
months bond return

– BAML/ICE

23 tmt Bond time to maturity – BAML/ICE

24 value Bond value. Defined as the percentage difference be-
tween the actual credit spread and the fitted (“fair”)
credit spread for each bond

Houweling and Van Zun-
dert (2017)

BAML/ICE
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25 var Historical 95% value-at-risk. Rolling 36-month bond to-
tal 95% value-at-risk. We require a minimum of 12 ob-
servations, once this threshold is hit, the rolling window
expands upward to 36-months

Bai et al. (2019) BAML/ICE

26 vixbeta VIX beta. Rolling 60-month regression of bond returns
on the Fama French 3-factors (Mkt-RF ,SMB,HML,
the default risk factor DEF , and the interest rate risk
factor, TERM and the first difference in the CBOE VIX
and lagged VIX. The VIX beta in month t is the sum
of the coefficient on VIX and lagged VIX. We require a
minimum of 12 observations, once this threshold is hit,
the rolling window expands upward to 60-months

Chung et al. (2019) BAML/ICE

27 volatility Bond return volatility. Rolling 36-month bond total
return volatility. We require a minimum of 12 obser-
vations, once this threshold is hit, the rolling window
expands upward to 36-months

Kelly et al. (2021) BAML/ICE

Panel B: Equity Characteristics Computed by the Authors

28 booklev Book leverage. Shareholder’s equity and long-/short-
term debt (DLTTQ + DLCQ) and minority interest (MIBTQ)
minus cash and inventories (CHEQ), divided by share-
holder’s equity minus preferred stock

Kelly et al. (2021) COMP

29 bookprc Book-to-price. Firm Book-to-price is the sum of share-
holder’s equity and preferred stock divided by equity
market capitalization for the issuing firm

Kelly et al. (2021) CRSP/COMP

30 chggpat Profitability change. The 5-year change in gross prof-
itability

Asness et al. (2019) COMP

31 d2d Distance-to-default. Computed as in Bharath and
Shumway (2008)

Bharath and Shumway
(2008)

CRSP/COMP

32 debtebitda Debt-to-EBITDA. Total debt (DLTTQ + DLCQ) divided
by EBITDA (SALEQ − COGSQ − XSGAQ)

Kelly et al. (2021) CRSP/COMP

33 eqtyvol Equity volatility defined as the month-end value from a
180-day rolling-period

Campbell and Taksler
(2003)

CRSP

34 gpat Profitability. Sales (REVTQ) minus cost-of-goods-sold
(COGSQ), divided by assets (ATQ)

Choi and Kim (2018) COMP

35 marketcap Equity market capitalization Choi and Kim (2018) CRSP

36 mktlev Market leverage. Market capitalization and long-/short-
term debt (DLTTQ + DLCQ) and minority interest (MIBTQ)
and preferred stock minus cash and inventories (CHEQ),
divided by market capitalization

Kelly et al. (2021) CRSP/COMP

37 nime Earnings-to-price. Net income (NIQ) divided by market
equity

Correia et al. (2012) CRSP/COMP

38 operlvg Operating leverage. Sales (SALEQ) minus EBITDA
(SALEQ − COGSQ − XSGAQ), divided by EBITDA

Gamba and Saretto (2013) COMP

39 ret61 Six month stock momentum. Computed as the sum of
the last 6 months of stock returns minus the prior month

Kelly et al. (2021) CRSP/COMP

40 sprtod2d Spread-to-Distance-to-Default. Spread-to-D2D is the
option-adjusted spread, divided by one minus the CDF
of the distance-to-default

Kelly et al. (2021) CRSP/COMP

41 imsprtod2d Implied (Systematic) Spread-to-Distance-to-Default.
Spread-to-D2D is the fitted (systematic) option-
adjusted spread, divided by one minus the CDF of the
distance-to-default

Kelly et al. (2021) CRSP/COMP

42 totaldebt Total firm debt (DLTTQ + DLCQ) Kelly et al. (2021) COMP

43 turnvol Turnover volatility. Turnover volatility is the quarterly
standard deviation of sales (SALEQ) divided by assets
(ATQ). The volatility is computed over 80 quarters, with
a minimum required period of 10 quarters. Thereafter,
the volatility is averaged (smoothed) over the preceding
4-quarters in a rolling fashion

Kelly et al. (2021) CRSP/COMP

44 strev Stock short-term reversal. Prior months stock return – CRSP

Panel C: Open Source Asset Pricing Equity Characteristics

45 abmaccruals Abnormal Accruals Xie (2001) OSAP

46 accruals Accruals Sloan (1996) OSAP

47 am Total assets to market Fama and French (1992) OSAP

48 analystrevn EPS forecast revision Hawkins et al. (1984) OSAP

49 analystvalue Analyst Value Frankel and Lee (1998) OSAP
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50 aop Analyst Optimism Frankel and Lee (1998) OSAP

51 assetgrowth Asset growth Cooper et al. (2008) OSAP

52 beta CAPM beta Fama and MacBeth (1973) OSAP

53 betafp Frazzini-Pedersen Beta Frazzini and Pedersen
(2014)

OSAP

54 betaliqityps Pastor-Stambaugh liquidity beta Pastor and Stambaugh
(2003)

OSAP

55 betatailrisk Tail risk beta Kelly and Jiang (2014) OSAP

56 bidaskspread Bid-ask spread Amihud and Mendelsohn
(1986)

OSAP

57 bm Book to market, original (Stattman 1980) Stattman (1980) OSAP

58 bmdec Book to market using December ME Fama and French (1992) OSAP

59 bookleverage Book leverage (annual) Fama and French (1992) OSAP

60 bpebm Leverage component of BM Penman et al. (2007) OSAP

61 cash Cash to assets Palazzo (2012) OSAP

62 cashprod Cash Productivity Chandrashekar and Rao
(2009)

OSAP

63 cboperprof Cash-based operating profitability Ball et al. (2016) OSAP

64 cf Cash flow to market Lakonishok et al. (1994) OSAP

65 cfp Operating Cash flows to price Desai et al. (2004) OSAP

66 chassetto Change in Asset Turnover Soliman (2008) OSAP

67 cheq Growth in book equity Lockwood and Prombutr
(2010)

OSAP

68 chinv Inventory Growth Thomas and Zhang (2002) OSAP

69 chinvia Change in capital inv (ind adj) Abarbanell and Bushee
(1998)

OSAP

70 chnncoa Change in Net Noncurrent Op Assets Soliman (2008) OSAP

71 chnwc Change in Net Working Capital Soliman (2008) OSAP

72 chtax Change in Taxes Thomas and Zhang (2011) OSAP

73 compdebtiss Composite debt issuance Lyandres et al. (2008) OSAP

74 compequiss Composite equity issuance Daniel and Titman (2006) OSAP

75 convdebt Convertible debt indicator Valta (2016) OSAP

76 coskewacx Coskewness using daily returns Ang et al. (2006) OSAP

77 coskewness Coskewness Harvey and Siddique
(2000)

OSAP

78 cpvolspread Call minus Put Vol Bali and Hovakimian
(2009)

OSAP

79 dcpvolspread Change in put vol minus change in call vol An et al. (2014) OSAP

80 debtissuance Debt Issuance Spiess and Affleck-Graves
(1999)

OSAP

81 delbreadth Breadth of ownership Chen, Hong and Stein
(2002)

OSAP

82 delcoa Change in current operating assets Richardson et al. (2005) OSAP

83 delcol Change in current operating liabilities Richardson et al. (2005) OSAP

84 delequ Change in equity to assets Richardson et al. (2005) OSAP

85 delfinl Change in financial liabilities Richardson et al. (2005) OSAP

86 dellti Change in long-term investment Richardson et al. (2005) OSAP

87 delnetfin Change in net financial assets Richardson et al. (2005) OSAP

88 deltarecomd Change in recommendation Jegadeesh et al. (2004) OSAP

89 divinit Dividend Initiation Michaely et al. (1995) OSAP

90 divomit Dividend Omission Michaely et al. (1995) OSAP

91 divseason Dividend seasonality Hartzmark and Salomon
(2013)

OSAP

92 divyieldst Predicted div yield next month Litzenberger and Ra-
maswamy (1979)

OSAP

93 dnoa Change in net operating assets Hirshleifer et al. (2004) OSAP

94 dolvol Past trading volume Brennan et al. (1998) OSAP
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95 downrecomm Down forecast EPS Barber et al. (2001) OSAP

96 dvolcall Change in call vol An et al. (2014) OSAP

97 dvolput Change in put vol An et al. (2014) OSAP

98 earnforedisp Long-vs-short EPS forecasts Da and Warachka (2011) OSAP

99 earnstreak Earnings surprise streak Loh and Warachka (2012) OSAP

100 earnsurpise Earnings Surprise Foster et al. (1984) OSAP

101 ebm Enterprise component of BM Penman et al. (2007) OSAP

102 entmult Enterprise Multiple Loughran and Wellman
(2011)

OSAP

103 ep Earnings-to-Price Ratio Basu (1977) OSAP

104 eqtydur Equity Duration Dechow et al. (2004) OSAP

105 exchswitch Exchange Switch Dharan and Ikenberry
(1995)

OSAP

106 exclexp Excluded Expenses Doyle et al. (2003) OSAP

107 feps Analyst earnings per share Cen et al. (2006) OSAP

108 fgr5yrlag Long-term EPS forecast La Porta (1996) OSAP

109 firmage Firm age based on CRSP Barry and Brown (1984) OSAP

110 foredisp EPS Forecast Dispersion Diether et al. (2002) OSAP

111 fr Pension Funding Status Franzoni and Marin (2006) OSAP

112 gp gross profits / total assets Novy-Marx (2013) OSAP

113 grcapx Change in capex (two years) Anderson and Garcia-
Feijoo (2006)

OSAP

114 grcapx3y Change in capex (three years) Anderson and Garcia-
Feijoo (2006)

OSAP

115 grltnoa Growth in long term operating assets Fairfield et al. (2003) OSAP

116 grsaletogrinv Sales growth over inventory growth Abarbanell and Bushee
(1998)

OSAP

117 herf Industry concentration (sales) Hou and Robinson (2006) OSAP

118 herfasset Industry concentration (assets) Hou and Robinson (2006) OSAP

119 herfbe Industry concentration (equity) Hou and Robinson (2006) OSAP

120 high52 52 week high George and Hwang (2004) OSAP

121 hire Employment growth Bazdresch et al. (2014) OSAP

122 idiovol3f Idiosyncratic risk (3 factor) Ang et al. (2006) OSAP

123 idiovolaht Idiosyncratic risk (AHT) Ali et al. (2003) OSAP

124 illiquidity Amihud’s illiquidity Amihud (2002) OSAP

125 indipo Initial Public Offerings Ritter (1991) OSAP

126 indmom Industry Momentum Grinblatt and Moskowitz
(1999)

OSAP

127 intanbm Intangible return using BM Daniel and Titman (2006) OSAP

128 intancfp Intangible return using CFtoP Daniel and Titman (2006) OSAP

129 intanep Intangible return using EP Daniel and Titman (2006) OSAP

130 intansp Intangible return using Sale2P Daniel and Titman (2006) OSAP

131 intmom Intermediate Momentum Novy-Marx (2012) OSAP

132 investment Investment to revenue Titman et al. (2004) OSAP

133 investppeinv Change in ppe and inv/assets Lyandres et al. (2008) OSAP

134 iomomcust Customers momentum Menzly and Ozbas (2010) OSAP

135 iomomsupp Suppliers momentum Menzly and Ozbas (2010) OSAP

136 leverage Market leverage Bhandari (1988) OSAP

137 lrreversal Long-run reversal De Bondt and Thaler
(1985)

OSAP

138 maxret Maximum return over month Bali et al. (2011) OSAP

139 mom11yroff Off season reversal years 11 to 15 Heston and Sadka (2008) OSAP

140 mom11yrseas Return seasonality years 11 to 15 Heston and Sadka (2008) OSAP
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141 mom12m Momentum (12 month) Jegadeesh and Titman
(1993)

OSAP

142 mom12off Momentum without the seasonal part Heston and Sadka (2008) OSAP

143 mom16yroff Off season reversal years 16 to 20 Heston and Sadka (2008) OSAP

144 mom16yrseas Return seasonality years 16 to 20 Heston and Sadka (2008) OSAP

145 mom6yroff Off season reversal years 6 to 10 Heston and Sadka (2008) OSAP

146 mom6yrseas Return seasonality years 6 to 10 Heston and Sadka (2008) OSAP

147 momoffseason Off season long-term reversal Heston and Sadka (2008) OSAP

148 momseason Return seasonality years 2 to 5 Heston and Sadka (2008) OSAP

149 momseasshort Return seasonality last year Heston and Sadka (2008) OSAP

150 momvol Momentum in high volume stocks Lee and Swaminathan
(2000)

OSAP

151 mrreversal Medium-run reversal De Bondt and Thaler
(1985)

OSAP

152 netdebtfin Net debt financing Bradshaw et al. (2006) OSAP

153 neteqtyfin Net equity financing Bradshaw et al. (2006) OSAP

154 netpoyld Net Payout Yield Boudoukh et al. (2007) OSAP

155 noa Net Operating Assets Hirshleifer et al. (2004) OSAP

156 numearnincr Earnings streak length Loh and Warachka (2012) OSAP

157 operprof Operating profits / book equity Fama and French (2006) OSAP

158 operprofrd Operating profitability R&D adjusted Ball et al. (2016) OSAP

159 opleverage Operating leverage Novy-Marx (2011) OSAP

160 optionvolume1 Option to stock volume Johnson and So (2012) OSAP

161 optionvolume2 Option volume to average Johnson and So (2012) OSAP

162 payoutyield Payout Yield Boudoukh et al. (2007) OSAP

163 pctacc Percent Operating Accruals Hafzalla et al. (2011) OSAP

164 pcttotacc Percent Total Accruals Hafzalla et al. (2011) OSAP

165 pead Earnings announcement return Chan et al. (1996) OSAP

166 predictedfe Predicted Analyst forecast error Frankel and Lee (1998) OSAP

167 rankrevgr Revenue Growth Rank Lakonishok et al. (1994) OSAP

168 rdipo IPO and no R&D spending Gou et al. (2006) OSAP

169 rds Real dirty surplus Landsman et al. (2011) OSAP

170 realizedvol Realized (Total) Volatility Ang et al. (2006) OSAP

171 residmom Momentum based on FF3 residuals Blitz et al. (2011) OSAP

172 retconglom Conglomerate return Cohen and Lou (2012) OSAP

173 returnskew Return skewness Bali et al. (2015) OSAP

174 returnskew3f Idiosyncratic skewness (3F model) Bali et al. (2015) OSAP

175 rev6 Earnings forecast revisions Chan et al. (1996) OSAP

176 revsurp Revenue Surprise Jegadeesh and Livnat
(2006)

OSAP

177 rivolspread Realized minus Implied Vol Bali and Hovakimian
(2009)

OSAP

178 roaq Return on assets (qtrly) Balakrishnan et al. (2010) OSAP

179 roe Net income / book equity Haugen and Baker (1996) OSAP

180 saleoverhead Sales growth over overhead growth Abarbanell and Bushee
(1998)

OSAP

181 shareiss1y Share issuance (1 year) Pontiff and Woodgate
(2008)

OSAP

182 shareiss5y Share issuance (5 year) Daniel and Titman (2006) OSAP

183 sharerepo Share repurchases Ikenberry et al. (1995) OSAP

184 shortinterest Short Interest Dechow et al. (2001) OSAP

185 skew1 Volatility smirk near the money Xing et al. (2010) OSAP

186 smileslope Put volatility minus call volatility Yan (2011) OSAP
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187 sp Sales-to-price Barbee et al. (1996) OSAP

188 spinoff Spinoffs Cusatis et al. (1993) OSAP

189 tax Taxable income to income Lev and Nissim (2004) OSAP

190 totalaccruals Total accruals Richardson et al. (2005) OSAP

191 trendfactor Trend Factor Han et al. (2016) OSAP

192 uprecomm Up Forecast Barber et al. (2001) OSAP

193 varcf Cash-flow to price variance Haugen and Baker (1996) OSAP

194 volmkt Volume to market equity Haugen and Baker (1996) OSAP

195 volsd Volume Variance Chordia et al. (2001) OSAP

196 volumetrend Volume Trend Haugen and Baker (1996) OSAP

197 xfin Net external financing Bradshaw et al. (2006) OSAP

198 zerotrade Days with zero trades Liu (2006) OSAP

199 ztradealt1 Days with zero trades Liu (2006) OSAP

200 ztradealt2 Days with zero trades Liu (2006) OSAP

This table presents information on the 200 characteristics we use to form our predictions from the various

machine learning (ML) models we employ. Panel A reports the 27 characteristics which relate to bond -only

characteristics which are constructed using the BAML/ICE corporate bond dataset. Panel B reports the 17

characteristics which relate to equity-and-bond characteristics which are constructed using CRSP and COM-

PUSTAT (COMP). Panel C reports the 156 characteristics which we download from openassetpricing.com

(OSAP). We provide more detailed descriptions for the characteristics we construct from source in Panels A

and B respectively. Additional resources and description notes for the openassetpricing.com-based data

can be downloaded here.
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Table A4: Net CAPM α

Turnover Gross α (%)

Rate (%) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5 0.055 0.124 0.193 0.262 0.331 0.400 0.469 0.538 0.607 0.676
10 0.065 0.116 0.167 0.219 0.270 0.322 0.373 0.424 0.476 0.527
15 0.071 0.112 0.153 0.194 0.235 0.276 0.317 0.358 0.399 0.440
20 0.075 0.109 0.142 0.176 0.210 0.244 0.277 0.311 0.345 0.379
25 0.078 0.106 0.134 0.162 0.190 0.218 0.247 0.275 0.303 0.331
30 0.081 0.104 0.128 0.151 0.174 0.198 0.221 0.245 0.268 0.292
35 0.083 0.102 0.122 0.142 0.161 0.181 0.200 0.220 0.239 0.259
40 0.085 0.101 0.117 0.133 0.149 0.166 0.182 0.198 0.214 0.230
45 0.087 0.100 0.113 0.126 0.139 0.152 0.165 0.179 0.192 0.205
50 0.088 0.099 0.109 0.120 0.130 0.140 0.151 0.161 0.172 0.182
55 0.090 0.098 0.106 0.114 0.122 0.130 0.138 0.146 0.154 0.162
60 0.091 0.097 0.102 0.108 0.114 0.120 0.126 0.132 0.137 0.143
65 0.092 0.096 0.100 0.103 0.107 0.111 0.115 0.118 0.122 0.126
70 0.093 0.095 0.097 0.099 0.101 0.103 0.104 0.106 0.108 0.110
75 0.094 0.094 0.094 0.094 0.095 0.095 0.095 0.095 0.095 0.095
80 0.095 0.093 0.092 0.090 0.089 0.087 0.086 0.085 0.083 0.082
85 0.096 0.093 0.090 0.087 0.084 0.081 0.078 0.075 0.072 0.069
90 0.097 0.092 0.088 0.083 0.079 0.074 0.070 0.065 0.061 0.056
95 0.097 0.092 0.086 0.080 0.074 0.068 0.062 0.056 0.051 0.045
100 0.098 0.091 0.084 0.077 0.070 0.062 0.055 0.048 0.041 0.034

The table reports the net CAPMB α as a function of gross α and portfolio turnover rate. The values are

estimated by regressing the net CAPMB α’s on gross α, portfolio turnover rate, and the product of the

two. The regression uses 114 strategies for which we can find the optimal trade size. All variables are in

percentage per month.
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A Data and Variable Construction

The following sections describe the various databases that we use in the paper. Across all

databases, we filter out bonds which have a time-to-maturity of less than 1-year. Furthermore, for

consistency, across all databases, we define bond ratings as those provided by Standard & Poors

(S&P). We include the full spectrum of ratings (AAA to D), but exclude bonds which are unrated.

For each database that we consider, we (the authors) do not winsorize or trim bond returns in any

way.

A.1 Corporate Bond Databases

Mergent Fixed Income Securities Database (FISD) database

Mergent Fixed Income Securities Database (FISD) for academia is a comprehensive database

of publicly offered U.S. bonds. Research market trends, deal structures, issuer capital structures,

and other areas of fixed income debt research.

We apply the standard filters to the FISD data as they relate to empirical asset pricing in

corporate bonds,

1. Only keep bonds that are issued by firms domiciled in the United States of America,

COUNTRY DOMICILE == ‘USA’.

2. Remove bonds that are private placements, PRIVATE PLACEMENT == ‘N’.

3. Only keep bonds that are traded in U.S. Dollars, FOREIGN CURRENCY == ‘N’.

4. Bonds that trade under the 144A Rule are discarded, RULE 144A == ‘N’.

5. Remove all asset-backed bonds, ASSET BACKED == ‘N’.

6. Remove convertible bonds, CONVERTIBLE == ‘N’.

7. Only keep bonds with a fixed or zero coupon payment structure, i.e., remove bonds with a

floating (variable) coupon, COUPON TYPE != ‘V’.
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8. Remove bonds that are equity linked, agency-backed, U.S. Government, and mortgage-backed,

based on their BOND TYPE.

9. Remove bonds that have a “non-standard” interest payment structure or bonds not caught by

the variable coupon filter (COUPON TYPE). We remove bonds that have an INTEREST FREQUENCY

equal to −1 (N/A), 13 (Variable Coupon), 14 (Bi-Monthly), and 15 and 16 (undocumented

by FISD). Additional information on INTEREST FREQUENCY is available on Page 60 of 67 of

the FISD Data Dictionary 2012 document.

Bank of America Merrill Lynch (BAML) database

The BAML data is provided by the Intercontinental Exchange (ICE) and provides daily bond

price quotes, accrued interest, and a host of pre-computed corporate bond characteristics such as

the bond option-adjusted credit spread (OAS), the asset swap spread, duration, convexity, and

bond returns in excess of a portfolio of duration-matched Treasuries. The ICE sample spans the

time period 1997:01 to 2022:12 and includes constituent bonds from the ICE Bank of America High

Yield (H0A0) and Investment Grade (C0A0) Corporate Bond Indices.

ICE Bond Filters. We follow Binsbergen, Nozawa, and Schwert (2023) and take the last quote

of each month to form the bond-month panel. We then merge the ICE data to the filtered Mergent

FISD database.

The following ICE-specific filters are then applied:

1. Only include corporate bonds, Ind Lvl 1 == ‘corporate’

2. Only include bonds issued by U.S. firms, Country == ‘US’

3. Only include corporate bonds denominated in U.S. Dollars, Currency == ‘USD’

BAML/ICE Bond Returns. Total bond returns are computed in a standard manner in ICE,

and no assumptions about the timing of the last trading day of the month are made because the
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data is quote based, i.e., there is always a valid quote at month-end to compute a bond return. This

means that each bond return is computed using a price quote at exactly the end of the month, each

and every month. This introduces homogeneity into the bond returns because prices are sampled

at exactly the same time each month. ICE only provides bid-side pricing, meaning bid-ask bias

is inherently not present in the monthly sampled prices, returns and credit spreads. The monthly

ICE return variable is (as denoted in the original database), is trr mtd loc, which is the month-to-

date return on the last business day of month t. We use this return specification (in excess of the

one-month risk free rate of return) and the bond returns in excess of a portfolio duration matched

U.S. Treasury bond returns denoted as ex rtn mtd in the ICE dataset as the dependent variables

to train the machine learning models.

Enhanced TRACE Database

TRACE provides data on corporate bond transactions. Since we measure the profitability of fac-

tor investing from an end-user perspective, we use only dealer-customer transactions (cntra mp id

= ’C’). We remove trades that are i) when-issued (wis fl != ’Y’), ii) locked-in (lckd in ind !=

’Y’), iii) with special conditions (sale cndtn cd = ’@’ or sale cndtn cd = ’’).

In addition, we restrict our sample to those with standard settlement days (days to sttl ct =

’’ or days to sttl ct = ’000’ or days to sttl ct = ’001’ or days to sttl ct = ’002’).

However, some transaction records contain prices that appear to reflect clerical/recording errors.

We avoid simply removing outliers in terms of prices and returns because such procedures bias the

standard deviation of returns downward and inflate Sharpe ratios. Furthermore, if we simply

removed very low returns, we would eliminate the bond that defaulted, leading to a spurious

profitability of a strategy. To avoid these problems, we apply the reversal filter of Bessembinder

et al. (2008) with a wider band. That is, we examine the log price changes of a bond using two

consecutive transactions. If a product of two adjacent log price changes is less than -0.25 (i.e., a

50% decline followed by a 50% increase), then we consider the price record in the middle to be an

error and remove it.

After applying these filters, we compute the average price of a bond on a day, separately for
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dealer buys and dealer sells. These daily averages are used to calculate net returns in the main

results of the paper.

A.2 CRSP Mutual Fund Data

Data Filters We identify corporate bond mutual funds by CRSP’s fund classification. In par-

ticular, we choose the subcategory ‘Corporate’ among ‘Fixed Income’ funds. We remove funds

with less than 36 monthly observations and observations with total net assets (TNA) less than $10

million. We are careful to remove index funds (i.e., those which track a market index). Where a

funds expense ratio is missing, we set it value to the cross-sectional mean of the expense ratio in

month t.

Handling Data Errors After filtering, 8 observations (all from different funds) but for the same

date (2022-09-30) have monthly gross returns (mret) greater than +100%. To identify if these

returns are real we impute the funds return using TNA and document that the return is an order of

magnitude smaller. We remove these observations, since they are obviously data errors.

B Machine Learning Model Estimation and Cross-Validation

For all of our machine learning models, we cross-validate the model hyperparameters every five-

years and re-train the model every 12-months with an expanding window. Within each window we

perform the cross-validation with a 70:30 training-validation split. For example, if we have window

of 1,000 temporally ordered observations, 1-700 are used to train the model and the remaining 300

are used for validation. We graphically depict the sample splitting strategy for the training and

cross-validation in Figure A.1. For all models except for the feed forward neural network we utilize

the sklearn Python package (Pedregosa et al., 2011). We use the tensorflow Python package to

estimate the neural network.

We report the respective sets of hyperparameters which we cross-validate over in Table A.3.
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Linear Models with Penalties Panel A reports the hyperparameters for the linear models with

penalties for the Lasso (LASSO), Ridge (RIDGE) and the Elastic Net (ENET). For the LASSO-

style penalty, we cross-validate over 100 possible ℓ1 penalties which change dynamically with the

sample. The 100 potential ℓ1 penalties are set by default with sklearn with a logarithmic scale.

The maximum penalty is set to be the smallest value such that the coefficients are all set to zero.

The minimum penalty is set to be 0.001 scaled by the maximum penalty. The ℓ2 (RIDGE) penalties

are defined as 100 values between 0.0001 and 1 with a logarithmic scale. The elastic net model

hyperparameters are tuned with the 100 possible ℓ1 penalties which change dynamically with the

sample and a set of ℓ1 vs. ℓ2 ratios.

Nonlinear Tree-Based Ensembles Panel B reports the hyperparameters for the tree-based

nonlinear ensemble models which includes the Random Forest (RF) and Extremely Randomized

Trees (XT). For both ensemble models, we use 100 estimators (trees). We also follow Gu et al.

(2020) and set the maximum tree depth to be ∈ [2, 4, 6]. Thereafter, we allow the trees to consider

a maximum of 5,10,15 or 30 features (characteristics) at each split point. Finally, at each end node

of the tree (final leaf), we impose a minimum of 1, 10 or 50 samples (i.e., bond returns) in each

leaf.

Feed Forward Neural Network Ensemble Panel C reports the hyperparameters for the feed

forward neural network (NN). We estimate a shallow network with a single layer and 32 neurons.

Since our sample starts off with a relatively smaller sample size than that of Gu et al. (2020) and

other work which utilizes equity data only, we set the batch size to 1024 (with batch normalization)

and the number of epochs to 100. We cross-validate over the learning rate which is ∈ [0.001, 0.01]

and an ℓ1 penalty ∈ [0.001, 0.01]. We also implement early stopping with the ‘patience’ parameter

set to 5. The prediction variance of each individually estimated neural network is high. In order

to reduce prediction variance across estimated neural network models, at each training date we

estimate 10 models with different randomly assigned initial weights. In doing so, we select the best

performing 5 models based on the smallest mean squared error estimated in the validation sample

at that training date. This means, that at each date t + 1, we produce five predictions from the
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five best performing models estimated at the training date. The overall t + 1 prediction is the

average over these five best performing models. At each training date, we then repeat this process

ten times, yielding ten ensembled predictions. The final NN prediction for each month t+ 1 is the

average over these ten ensembled predictions, i.e., an ensemble over the ensemble.

C Machine Learning Model Explanatory Power

In this section we report the machine learning model out-of-sample R-square values, R2
OS (Panel

A) and Diebold-Mariano t-statistics (Panel B) in Table A.4.

Out-of-sample R-squared In Panel A, the R2
OS ’s are computed as,

R2
OS = 1−

∑
i,t(ri,t+1 −

∑
l r̂i,t+1)

2∑
i,t(ri,t+1)2

,

where ri,t+1 is the excess bond return over t:t+1 and r̂i,t+1 is the machine learning model forecast

available to the investor at month t for the period t:t+ 1.

Overall, the nonlinear ML models outperform the penalized linear regression models. The R2
OS

ranges from −1.71% (RIDGE) to 0.091% for the elastic net (ENET). The linear ensemble (LENS)

delivers a negative R2
OS of −0.14%.

In contract, the nonlinear tree ensembles comprising the extremely randomized trees (XT) and

the random forests (RF) deliver R2
OSs of 0.48% and 0.35% respectively. The shallow feed forward

neural network (NN) marginally outperforms the XT method with an R2
OS of 0.46%. Given the

above, the nonlinear ensemble (NENS) performs the best amongst the considered models with an

R2
OS of 0.69%.

Diebold and Mariano (1995) Tests To compare the out-of-sample predictive power between

two ML models we use a modified version of the Diebold and Mariano (1995) which follows Gu

et al. (2020). We first compute the time-series of average forecast differences between model x and
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y as the cross-sectional average of the differences in each month t+ 1,

dx,y,t+1 =
1

T

N∑
i=1

(
(êxi,t+1)

2 − (êyi,t+1)
2
)

The modified Diebold-Mariano statistic is defined as,

DMx, y =
dx,y
σ̂d

,

where dx,y is the time-series average of the cross-sectional average differences between the forecast

errors of the predictions from the ML model x and y and σ̂d is the Newey-West adjusted standard

error.

In Panel B of Table A.4, we report the t-statistics from the above procedure for the column

vs. row model. Positive t-statistics imply that the column model outperforms the row model.

Confirming the results related to the R2
OS , the NENS nonlinear ensemble outperforms all of the

other models except for the XT and NN. The RIDGE penalized linear model is outperformed by

all other models and ensembles.

D eMAXX Net Quarterly Changes

TRACE does not provide the identity of end-users and thus it is a challenge to identify who is

likely to enjoy lower transaction costs with large trades. As an alternative, we investigate eMAXX

institutional holding data which provides the institutional ownership of corporate bonds at the

quarter end from 1998Q2 to 2021Q2.

If we assume institutions trade each bond only once in a quarter, then the absolute value of

quarterly changes in positions provides information about the transaction size. Clearly, this is a

strong assumption as institutions can trade multiple times spreading trades within a quarter. With

this caveat in mind, we examine quarterly absolute changes in the positions of financial institutions.

In doing so, we discard observations with no changes and treat non-zero changes as transactions.

We also discard any position changes in the quarter in which the bond is issued or matures because
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such changes do not incur transaction costs. For each investor and each quarter, we compute the

average transaction sizes across bonds. Then, we calculate the mean and median across institutions

to arrive at the trade-size statistics.

Panel A of Figure A.2 plots the average and median transaction sizes over time in eMAXX data.

The average spikes in some quarters with no obvious events and are likely to reflect measurement

errors. The median has a downward trend in the period from 1998 to 2004 and remains stable since

then.

Panel B presents the median within institution types, including insurance firms, mutual funds,

and others. After 2004, the median transaction size is nearly unchanged at around $500,000 dollars.

In TRACE data (Figure 4), a transaction with size $500,000 is at roughly the 80 percentile of the

size distribution. Thus, the median eMAXX investors are relatively large and likely to pay lower

transaction costs than the average TRACE investors.

Panel C shows the breakdown by portfolio sizes. Every quarter, we classify investors based on

the total size (in face value) of their corporate bond portfolios at the end of the previous quarter.

We then compute the median transaction size within each size quintile and plot it in Panel C.

The figure shows that, naturally, investors with a large portfolio size tend to have large quarterly

changes in positions. If these position changes are implemented in one trade, then the eMAXX

investors in the top quintile (whose transaction size is around $1.5 million after 2004) enjoy lower

transaction costs than smaller investors.

E CRSP Corporate Bond Mutual Fund Size

In this section, we study summary statistics of the corporate bond mutual funds. In Figure

A.3, we plot the number of corporate bond mutual funds and the Herfindhal index for total net

assets. Neither figure shows a clear trend.
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F Order Splitting

In this section, we depart from the main findings of an investor placing an order with a fixed

trade size. It can be argued, based on intuition in the stock market, that an investor can break

down a large order into smaller pieces to minimize costs. When dealing with bonds, it may be

feasible to decrease the cost of delays by rapidly executing a portion of the order through dividing

a large order, despite higher bid-ask spreads.

In this section, we allow the investor to execute a portion of their trades by following the order

of opportunities that arise within a given month. To achieve this, we sort TRACE transactions

in ascending order according to their trade date and time, grouped by bond, and calculate the

cumulative volume for each month. When the cumulative volume for a particular bond reaches the

target size (for example, $2 million), we utilize all trades conducted up to that point to compute

the net returns. We classify eligible trades into 12 size groups following the same procedure as in

the main analysis. For instance, suppose the target is $2 million. In that case, trades eligible in

a month may include two orders of $500,000 and five orders of $200,000. We then calculate the

volume-weighted average of the net return corresponding to each trade size in that month. For

this example, we take 50% weight on the net return for $500,000 trades and 50% weight on the net

return for $200,000 trades. This method allows us to determine the net return with order splitting.

If the total monthly volume fails to reach the targeted trade size, the observation is considered

a trade failure. While this creates a look-ahead bias, it is a necessary assumption to avoid the

complexity of tracking partial inventory.

Figure A.5 compares the total cost before (x-axis) and after (y-axis) order splitting. We find

that splitting a large order slightly increases transaction costs. As an investor deviates from the

optimal trade size, she pays higher bid-ask spreads and this outweighs the benefit of executing a

part of her order quickly. In summary, our main results are not impacted by order splitting.
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Training Sample Validation Sample

Time

Figure A.1: Sample Splitting for Cross-Validation of Model Hyperparameters.

This figure shows the sample splitting scheme used for cross-validation of the machine learning model hyperparameters
for the various machine learning models we consider. The forecasting exercise involves an expanding window that
starts in January 1998. The initial window spans 1998:01–2002:07 (T = 55), and then expands forward each and
every month until the sample end on 2022:12. The first (last) out-of-sample forecast is made in 2002:07 (2022:11) for
the following month 2002:08 (2022:12). Hence, the out-of-sample ML portfolio returns commence in 2002:08 and end
in 2022:12, T = 245. For each window, the blue area represents the training sample and the grey area represents the
validation sample. The former consists of the first 70% of the observations while the latter consists of the final 30%
of observations. The training and the validation samples are contiguous in time and not randomly selected in order
to preserve the time series dependence of the data.
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Figure A.2: Mean and Median Quarterly Changes in Positions
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Figure A.3: Number of Corporate Bond Mutual Funds
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This figure plots the number of corporate bond mutual funds (top panel) and the Herfindahl index of the

total net assets (bottom panel).
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Figure A.4: Unable to Find the Optimal Trade Size: Example of Bond Age-Sorted
Portfolio
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This figure plots the bond CAPM alphas of the long-short strategies based on corporate bonds’ age before

and after accounting for transaction costs (left panel). The transaction costs are decomposed into the bid-ask

spread costs and delay costs (right panel). Values on the x-axis are the trade size in thousand dollars.
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Figure A.5: Comparison of Total Transaction Costs: Order Splitting
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This chart displays the total cost, which is the disparity between the gross alpha and the net alpha with the

most efficient trade size. The x-axis represents the fixed trade size’s total cost, while the y-axis portrays the

total cost when a trade is broken into pieces for quicker execution.
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Table A.1: Performance of Individual Characteristics

CAPM α Info. Ratio CAPM α Info. Ratio

Signal Gross Net Gross Net Signal Gross Net Gross Net

bondkurtosis 0.276 0.178 0.783 0.696 feps¶ 0.075 0.100 0.189 0.284
(2.69) (2.36) (0.69) (1.08)

coskewacx 0.182 0.108 0.800 0.644 spreadvol 0.228 0.159 0.367 0.277
(3.54) (2.78) (1.53) (1.08)

mom6mspread¶ 0.454 0.178 0.884 0.554 beta 0.109 0.104 0.247 0.269
(2.93) (1.67) (0.86) (0.92)

skew¶ 0.215 0.121 0.623 0.472 nime¶ 0.112 0.058 0.427 0.264
(1.72) (1.38) (1.73) (0.91)

duration¶ 0.158 0.163 0.368 0.454 betatailrisk 0.085 0.084 0.238 0.261
(1.69) (2.04) (0.93) (1.00)

mrreversal 0.060 0.082 0.221 0.451 saleoverhead¶ 0.074 0.049 0.325 0.257
(0.87) (1.62) (1.55) (1.24)

pead 0.192 0.063 1.232 0.429 operprofrd¶ 0.074 0.065 0.284 0.257
(5.50) (1.90) (1.05) (0.93)

tmt¶ 0.139 0.140 0.361 0.418 idiovolaht¶ 0.116 0.113 0.222 0.255
(1.71) (1.91) (0.76) (0.90)

exchswitch 0.130 0.222 0.271 0.408 rev6 0.095 0.050 0.316 0.253
(1.14) (1.70) (1.69) (1.36)

lrreversal 0.077 0.091 0.269 0.395 tax 0.051 0.045 0.276 0.252
(0.98) (1.53) (1.21) (1.15)

dnoa 0.058 0.046 0.436 0.375 mom6ind 0.125 0.047 0.395 0.249
(1.31) (1.22) (1.91) (1.14)

cheq 0.051 0.054 0.282 0.375 eqtyvol 0.132 0.117 0.248 0.243
(1.34) (1.78) (0.92) (0.91)

volsd¶ 0.080 0.107 0.214 0.373 betafp 0.089 0.104 0.186 0.238
(1.46) (2.22) (0.75) (0.98)

divomit 0.380 0.510 0.283 0.369 ebm 0.048 0.323 0.244 0.235
(1.45) (1.79) (0.87) (1.15)

strev 0.478 0.068 1.375 0.340 operprof¶ 0.055 0.047 0.256 0.226
(3.18) (1.08) (1.00) (0.90)

mom3mspread¶ 0.320 0.069 0.668 0.336 spread 0.228 0.119 0.378 0.216
(2.47) (1.04) (1.74) (0.97)

idiospread 0.120 0.082 0.355 0.318 value 0.107 0.051 0.347 0.215
(1.51) (1.26) (1.64) (1.02)

bmdec 0.071 0.076 0.278 0.306 momvol 0.148 0.249 0.434 0.209
(1.02) (1.10) (2.24) (0.97)

roe¶ 0.059 0.080 0.203 0.300 cash 0.077 0.045 0.273 0.209
(0.78) (1.20) (1.49) (1.10)

trendfactor 0.275 0.345 0.879 0.292 delfinl 0.070 0.030 0.506 0.209
(2.53) (1.30) (1.96) (0.76)
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Table A.1, Continued.

CAPM α Info. Ratio CAPM α Info. Ratio

Signal Gross Net Gross Net Signal Gross Net Gross Net

divinit 0.067 0.401 0.060 0.203 sharerepo 0.037 0.032 0.172 0.146
(0.33) (1.00) (0.80) (0.66)

betaliqityps¶ 0.046 0.037 0.221 0.201 neteqtyfin¶ 0.047 0.045 0.136 0.142
(0.96) (0.74) (0.51) (0.53)

chassetto¶ 0.050 0.031 0.304 0.200 totalaccruals 0.044 0.028 0.218 0.136
(1.39) (0.94) (0.91) (0.54)

coupon¶ 0.026 0.054 0.080 0.200 rds 0.054 0.026 0.262 0.130
(0.35) (0.86) (1.22) (0.71)

chtax 0.117 0.028 0.711 0.198 investment¶ 0.027 0.018 0.176 0.130
(2.48) (0.70) (0.66) (0.54)

mom12off 0.208 0.055 0.590 0.197 divyieldst -0.006 0.116 -0.034 0.125
(2.61) (0.92) (-0.11) (0.59)

rating 0.120 0.109 0.206 0.191 strevb 0.029 0.175 0.054 0.124
(0.78) (0.72) (0.38) (0.57)

chinv 0.039 0.026 0.272 0.187 revsurp 0.098 0.025 0.415 0.121
(1.15) (0.77) (1.49) (0.53)

ratingxspread 0.176 0.103 0.301 0.185 pcttotacc¶ 0.027 0.021 0.109 0.117
(1.32) (0.79) (0.44) (0.53)

bookprc 0.039 0.062 0.106 0.182 dts 0.112 0.040 0.287 0.114
(0.45) (0.75) (1.29) (0.51)

idiovol3f¶ 0.106 0.051 0.231 0.177 delcol¶ 0.027 0.020 0.132 0.113
(0.87) (0.60) (0.60) (0.57)

ret61 0.136 0.036 0.391 0.171 firmage 0.036 0.029 0.133 0.111
(1.99) (0.84) (0.50) (0.42)

cashprod¶ 0.045 0.029 0.216 0.170 volumetrend¶ 0.041 0.032 0.123 0.107
(0.77) (0.61) (0.59) (0.51)

sprtod2d 0.236 0.073 0.516 0.170 dcpvolspread¶ 0.034 0.125 0.192 0.107
(1.95) (0.72) (0.62) (0.50)

herf¶ 0.031 0.026 0.176 0.166 illiquidity 0.058 0.047 0.124 0.103
(0.84) (0.84) (0.46) (0.39)

realizedvol¶ 0.100 0.059 0.203 0.163 impliedspread 0.149 0.047 0.281 0.103
(0.75) (0.59) (1.25) (0.47)

assetgrowth 0.054 0.029 0.301 0.161 compdebtiss 0.044 0.017 0.245 0.100
(1.11) (0.56) (1.06) (0.43)

delequ 0.036 0.023 0.221 0.158 volatility 0.074 0.032 0.199 0.099
(0.89) (0.61) (0.94) (0.46)

booklev¶ 0.054 0.029 0.269 0.155 bondsize¶ 0.070 0.033 0.204 0.098
(1.44) (0.82) (0.96) (0.45)

varcf¶ 0.070 0.067 0.148 0.147 operlvg 0.051 0.022 0.207 0.097
(0.55) (0.54) (1.26) (0.54)
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Table A.1, Continued.

CAPM α Info. Ratio CAPM α Info. Ratio

Signal Gross Net Gross Net Signal Gross Net Gross Net

maxret¶ 0.175 0.031 0.403 0.091 gp 0.029 0.006 0.141 0.030
(1.54) (0.32) (0.55) (0.11)

compequiss 0.016 0.015 0.078 0.081 var 0.033 0.011 0.084 0.029
(0.35) (0.36) (0.35) (0.12)

indipo¶ -0.021 0.027 -0.040 0.079 turnvol 0.027 0.009 0.084 0.029
(-0.20) (0.28) (0.55) (0.19)

ave12mspread 0.058 0.042 0.104 0.078 cf¶ 0.091 0.008 0.308 0.028
(0.46) (0.34) (1.50) (0.13)

spinoff¶ 0.061 0.032 0.134 0.074 hire 0.028 0.004 0.179 0.023
(0.40) (0.22) (0.63) (0.08)

bookleverage¶ 0.020 0.022 0.059 0.066 high52 0.196 0.010 0.413 0.023
(0.30) (0.36) (1.46) (0.09)

zerotrade¶ 0.018 0.020 0.045 0.057 mom11yroff 0.054 0.003 0.271 0.021
(0.17) (0.21) (1.16) (0.10)

investppeinv 0.031 0.010 0.171 0.056 cfp¶ 0.071 0.004 0.185 0.011
(0.63) (0.19) (0.73) (0.04)

grltnoa 0.031 0.010 0.119 0.053 residmom 0.090 0.001 0.427 0.008
(0.58) (0.28) (2.00) (0.03)

dellti 0.005 0.007 0.030 0.052 earnstreak 0.069 0.000 0.287 0.001
(0.11) (0.20) (2.22) (0.01)

coskewness 0.006 0.008 0.031 0.051 analystvalue¶ 0.023 -0.002 0.095 -0.008
(0.13) (0.23) (0.40) (-0.04)

predictedfe¶ 0.021 0.008 0.105 0.050 convdebt 0.002 -0.003 0.009 -0.010
(0.46) (0.22) (0.03) (-0.04)

mktlev¶ 0.076 0.016 0.225 0.048 delcoa¶ 0.003 -0.003 0.014 -0.016
(0.83) (0.20) (0.05) (-0.06)

fgr5yrlag 0.002 0.006 0.016 0.047 pctacc¶ 0.022 -0.004 0.071 -0.016
(0.07) (0.19) (0.34) (-0.09)

cboperprof¶ 0.012 0.009 0.059 0.046 herfasset 0.003 -0.003 0.016 -0.018
(0.25) (0.19) (0.07) (-0.08)

chinvia¶ 0.045 0.006 0.265 0.043 accruals¶ 0.004 -0.005 0.015 -0.020
(1.30) (0.24) (0.07) (-0.10)

numearnincr 0.042 0.005 0.240 0.041 opleverage 0.016 -0.009 0.043 -0.025
(1.21) (0.19) (0.28) (-0.16)

noa 0.020 0.014 0.054 0.040 imsprtod2d 0.114 -0.011 0.259 -0.025
(0.30) (0.22) (1.08) (-0.11)

ztradealt2¶ 0.019 0.014 0.049 0.037 netdebtfin 0.030 -0.005 0.154 -0.026
(0.18) (0.14) (0.66) (-0.10)

totaldebt¶ 0.038 0.015 0.086 0.035 earnsurpise 0.084 -0.005 0.472 -0.030
(0.50) (0.20) (1.96) (-0.16)
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Table A.1, Continued.

CAPM α Info. Ratio CAPM α Info. Ratio

Signal Gross Net Gross Net Signal Gross Net Gross Net

xfin 0.032 -0.009 0.120 -0.037 bpebm 0.060 -0.015 0.371 -0.091
(0.59) (-0.18) (1.81) (-0.30)

am¶ 0.035 -0.017 0.074 -0.038 debtebitda¶ -0.005 -0.036 -0.013 -0.096
(0.29) (-0.15) (-0.07) (-0.57)

leverage¶ 0.031 -0.018 0.067 -0.040 debtissuance -0.001 -0.015 -0.004 -0.101
(0.27) (-0.16) (-0.02) (-0.52)

gpat 0.019 -0.013 0.058 -0.041 rankrevgr 0.001 -0.022 0.003 -0.104
(0.26) (-0.19) (0.02) (-0.49)

herfbe -0.002 -0.007 -0.010 -0.042 delbreadth 0.110 -0.023 0.411 -0.104
(-0.05) (-0.20) (1.90) (-0.53)

shareiss5y¶ 0.012 -0.007 0.067 -0.042 earnforedisp 0.053 -0.020 0.241 -0.108
(0.32) (-0.19) (1.10) (-0.48)

chggpat¶ 0.005 -0.005 0.041 -0.043 delnetfin 0.015 -0.019 0.089 -0.109
(0.13) (-0.15) (0.35) (-0.41)

shareiss1y¶ 0.017 -0.010 0.069 -0.043 d2d 0.032 -0.055 0.060 -0.110
(0.32) (-0.19) (0.22) (-0.42)

fr 0.018 -0.011 0.079 -0.052 vixbeta¶ 0.069 -0.027 0.265 -0.119
(0.32) (-0.23) (1.00) (-0.46)

marketcap 0.009 -0.023 0.020 -0.052 grsaletogrinv¶ 0.010 -0.017 0.067 -0.133
(0.07) (-0.19) (0.26) (-0.71)

eqtydur¶ 0.024 -0.014 0.102 -0.057 chnncoa 0.029 -0.022 0.181 -0.134
(0.47) (-0.27) (0.91) (-0.76)

mom12m 0.099 -0.016 0.259 -0.064 bidaskspread 0.081 -0.049 0.182 -0.134
(1.07) (-0.24) (0.74) (-0.51)

bm¶ 0.014 -0.016 0.054 -0.064 chnwc¶ 0.009 -0.022 0.050 -0.136
(0.18) (-0.22) (0.17) (-0.47)

payoutyield 0.012 -0.009 0.085 -0.065 grcapx¶ 0.013 -0.020 0.086 -0.143
(0.39) (-0.28) (0.32) (-0.54)

abmaccruals 0.016 -0.014 0.083 -0.071 volmkt 0.024 -0.061 0.054 -0.144
(0.36) (-0.28) (0.20) (-0.56)

aop 0.004 -0.013 0.023 -0.074 netpoyld¶ 0.015 -0.025 0.090 -0.151
(0.10) (-0.29) (0.42) (-0.68)

entmult¶ 0.036 -0.021 0.121 -0.075 momoffseason 0.011 -0.040 0.041 -0.162
(0.51) (-0.33) (0.17) (-0.68)

dolvol 0.028 -0.030 0.066 -0.076 intancfp¶ 0.044 -0.060 0.121 -0.171
(0.28) (-0.32) (0.57) (-0.81)

shortinterest 0.027 -0.035 0.062 -0.087 roaq -0.002 -0.073 -0.004 -0.187
(0.22) (-0.31) (-0.01) (-0.68)

faceval¶ -0.001 -0.029 -0.002 -0.087 sp¶ 0.007 -0.068 0.017 -0.187
(-0.01) (-0.51) (0.06) (-0.71)
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Table A.1, Continued.

CAPM α Info. Ratio CAPM α Info. Ratio

Signal Gross Net Gross Net Signal Gross Net Gross Net

grcapx3y¶ -0.001 -0.028 -0.003 -0.192 momseason¶ 0.113 -0.128 0.455 -0.631
(-0.01) (-0.89) (2.22) (-3.10)

indmom 0.082 -0.062 0.235 -0.205 iomomcust 0.077 -0.147 0.299 -0.662
(1.16) (-0.99) (1.84) (-4.13)

intansp¶ 0.005 -0.079 0.012 -0.206 dspread 0.085 -0.223 0.199 -0.663
(0.05) (-0.86) (1.06) (-3.26)

ep¶ 0.008 -0.035 0.043 -0.215 retconglom 0.108 -0.127 0.511 -0.734
(0.18) (-0.90) (1.91) (-3.55)

intanbm¶ 0.005 -0.086 0.013 -0.226 dvolput 0.217 -0.148 0.823 -0.743
(0.06) (-0.98) (4.18) (-4.07)

mom6 0.016 -0.126 0.024 -0.241 optionvolume2¶ 0.058 -0.112 0.322 -0.745
(0.11) (-1.13) (1.09) (-2.58)

mom16yroff¶ 0.020 -0.051 0.090 -0.273 mom6yrseas 0.116 -0.135 0.517 -0.893
(0.37) (-1.02) (1.74) (-3.33)

mom6xrtg -0.004 -0.139 -0.007 -0.281 analystrevn 0.085 -0.138 0.503 -0.990
(-0.03) (-1.25) (1.51) (-4.64)

rdipo¶ -0.168 -0.153 -0.295 -0.286 mom16yrseas 0.003 -0.162 0.015 -1.093
(-1.06) (-1.07) (0.07) (-4.63)

ztradealt1 0.013 -0.101 0.035 -0.289 momseasshort¶ 0.011 -0.215 0.041 -1.101
(0.12) (-1.02) (0.20) (-5.08)

foredisp 0.034 -0.109 0.084 -0.299 rivolspread 0.010 -0.234 0.040 -1.111
(0.28) (-1.00) (0.17) (-4.46)

intanep¶ 0.003 -0.097 0.009 -0.304 cpvolspread¶ 0.015 -0.180 0.079 -1.172
(0.04) (-1.31) (0.25) (-4.68)

optionvolume1 0.005 -0.081 0.016 -0.308 returnskew¶ 0.121 -0.165 0.731 -1.176
(0.08) (-1.37) (2.94) (-5.66)

intmom 0.009 -0.099 0.026 -0.345 returnskew3f¶ 0.092 -0.172 0.510 -1.234
(0.10) (-1.16) (1.86) (-5.28)

bondage 0.008 -0.041 0.065 -0.352 skew1 0.034 -0.210 0.142 -1.244
(0.23) (-1.34) (0.49) (-5.20)

mom6yroff 0.026 -0.055 0.162 -0.381 smileslope 0.017 -0.195 0.096 -1.253
(0.83) (-1.77) (0.34) (-5.04)

iomomsupp 0.103 -0.108 0.395 -0.476 mom11yrseas 0.042 -0.202 0.226 -1.410
(2.32) (-2.69) (1.14) (-8.01)

dvolcall¶ 0.243 -0.127 0.852 -0.574 divseason 0.001 -0.202 0.007 -1.413
(4.44) (-3.38) (0.03) (-6.14)

uprecomm 0.013 -0.104 0.119 -0.576 downrecomm 0.027 -0.283 0.279 -1.716
(0.82) (-3.90) (1.36) (-8.01)

exclexp 0.017 -0.075 0.105 -0.583 deltarecomd 0.079 -0.214 0.548 -1.921
(0.38) (-2.11) (1.90) (-8.41)

This table reports the gross and net CAPM α and information ratios of the long-short strategies based on

the underlying characteristics. The results are sorted by net information ratio.
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Table A.2: Average Slope Coefficients of Monthly Risk-Adjusted Returns on Bond
Mutual Funds on Size Decile Dummies

Parameter Estimate (s.e.)

TNA Dummy 1 0.003 (0.02)
2 -0.035 (0.02)
3 -0.017 (0.02)
4 -0.017 (0.02)
5 -0.024 (0.02)
6 -0.006 (0.03)
7 -0.010 (0.02)
8 -0.022 (0.02)
9 -0.019 (0.02)

Intercept 0.068 (0.02)
Number of Funds 1537
R-Squared 0.013

This table reports the average slope coefficients of the regression of mutual fund returns adjusted for the

market risk on ten dummy variables based on the fund TNA in the previous month. The sample is from

August 2002 to November 2022. Values in parentheses are standard errors.
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Table A.3: Hyperparameters Across the Machine Learning Models.

Panel A: Linear models with penalties: LASSO, RIDGE & ENET

Parameter sklearn mnemonic Value

Intercept fit intercept=True True
ℓ1 penalty alphas Variable
ℓ2 penalty alphas ∈ [0.0001, . . . , 1]
Num. Penalties n alphas 100
ℓ1 ratio l1 ratio ∈ [0.001, 0.01,0.99,0.999]

Panel B: Tree-based ensembles: RF and XT

Parameter sklearn mnemonic Value

Num. Trees n estimators 100
Max depth max depth ∈ [2,4,6]
Split features max features ∈ [5,10,20]
Min leaf samples min samples leaf ∈ [1,10,50]

Panel C: Feed forward neural network: NN

Parameter tensorflow mnemonic Value

Layers Dense 1
Neurons Dense 32
Activation activation=‘relu’ ReLu
Epochs epochs 100
Batch size batch size 1024
Batch normalization BatchNormalization True
Optimizer optimizers.Adam Adam
Patience patience 5
Learning rate learning rate ∈ [0.001, 0.01]
ℓ1 penalty regularizers.l1 ∈ [0.001, 0.01]
Ensemble - 10
Grand Ensemble - 10

This table reports the respective hyperparameters that are chosen via a cross-validation scheme with a 70:30

train-validate split that maintains the temporal ordering of the data. The cross-validation is conducted

every 5-years commencing on 2002:07 using an expanding window. The set of hyperparameters are chosen

which yield the smallest mean squared error (MSE) in the validation sample. Panel A reports the hyper-

parameters for the linear models which include Lasso (LASSO), Ridge (RIDGE) and Elastic Net (ENET)

penalties respectively. Panel B reports the hyperparameters for the set of tree-based ensembling nonlinear

models which includes the random forest (RF) and extremely randomized trees (XT). Panel C reports the

hyperparameters for the feed forward neural network (NN). All models except for the NN are estimated with

sklearn. The NN is estimated with tensorflow.
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Table A.4: Out-of-Sample R-Square Values and Diebold-Mariano Tests.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

LASSO RIDGE ENET RF XT NN LENS NENS ENS

Panel A: Out-of-sample R2
OS

R2
OS 0.026 -1.706 0.091 0.348 0.483 0.455 -0.140 0.687 0.461

Panel B: Diebold-Mariano t-statistics

LASSO −2.125 1.324 1.211 1.700 1.268 −0.629 2.758 2.171

RIDGE 2.295 2.477 3.490 2.671 2.572 3.211 3.176

ENET 0.805 1.592 1.111 −1.124 2.543 2.004

RF 0.841 0.596 −1.303 1.882 0.802

XT 0.122 −3.543 1.092 −0.177

NN −1.715 0.620 −0.249

LENS 3.380 4.048

NENS −2.213

This table reports the out-of-sample R-square values (R2
OS) in Panel A and pairwise Diebold-Mariano t-statistics in Panel B. In Panel

A, the out-of-sample R-square for each model is computed as: R2
OS = 1 −

∑
i,t(ri,t+1−

∑
l r̂i,t+1)

2∑
i,t(ri,t+1)2

, where ri,t+1 is the excess bond return

over t:t+ 1 and r̂i,t+1 is the machine learning model forecast available to the investor at month t for the period t:t+ 1. The R2
OS values

are only computed with the out-of-sample data (not including the training data). In panel B, the Diebold-Mariano Newey-West adjusted

t-statistics indicate whether a column model outperforms the row model. Positive t-values greater (smaller) than 1.96 (−1.96) indicates

that the column model outperforms (underperforms) the row model.
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