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Abstract
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1 Introduction

Prospect Theory (Kahneman and Tversky, 1979) captures central features of decision making which
go unremarked upon in expected utility theory. In particular, decision makers often derive utility
(disutility) from outcomes which are better (worse) than a reference outcome and the marginal
utility of a the better outcomes is discontinuously lower than that of the worse outcomes. Kahneman
and Tversky (1979) leave open the identification of the reference point, and no consensus has
emerged regarding its location. Moreover, as originally formulated (and in much of the subsequent
literature) Prospect Theory is about mapping wealth outcomes into utility or welfare levels, as if
wealth were not primarily a tool to obtain consumption rather than an end in itself.

Following a long tradition in the finance literature, the focus in the dynamic model developed
here is on the dependence of welfare (or utility) on consumption, rather than wealth, with the
added twist of a reference point at which marginal utility is discontinuous. Past peak consumption
serves as the reference point. The marginal utility of increasing consumption above its historical
peak is strictly lower than that of decreasing consumption from its peak to a level below it.

The choice of past peak consumption as the reference point has two apparently unrelated mo-
tivations. First, the peak-end rule (Kahneman et al., 1993) suggests that the welfare experienced
over a period of time is affected primarily by the most extreme and by the most recent experience,
whence the choice to identify the reference point with the strongest historical experience. Sec-
ond, past peak consumption is a common reference to define a recession (According to the NBER
(2010) definition, “A recession is a period between a peak and a trough, and an expansion is a
period between a trough and a peak”). Likewise, the branch of explanations of the equity premium
which invokes rare disasters measures them as “peak-to-trough fractional declines that exceed some
threshold amount” (See Barro (2006) and Barro and Ursúa (2008).)

The utility function at the center of the model is a constant relative risk aversion utility of
instantaneous consumption scaled by a power of the historical peak consumption rate. This scaling
reflects shortfall aversion – the derivation of utility from consumption relative to the consumption’s
historical peak. Thus, the choice of historical peak consumption as a reference point is less radical
than it seems. Moreover, it leads to a highly tractable model.

Formally, the utility function is

e−βtU(ct, ht) = e−βt
(cth

−α
t )1−γ

1− γ
, with ht = max

(
h0, max

0≤s≤t
cs

)
, (1)

with h0 some initial value of h, which for simplicity is assumed to be 0. The parameter α (0 ≤ α < 1)
is the degree of shortfall aversion. The assumption α = 0 reduces the model to familiar time-additive
power utility.

The utility specification (1) supports unusual behavior in good times, i.e., when consumption
is close to its historical peak. Reluctant to raise his reference point lest he lower the utility of
future consumption, the model’s representative agent has a stronger desire to save the closer his
consumption rate is to its historical peak. In a market clearing environment this stronger desire
to save translates into higher prices of the savings vehicles – the bonds and the stocks. Therefore
interest rates and expected returns are counter-cyclical in the model. The effect is stronger for the
interest rates.

The consumption rate ct follows geometric Brownian motion in this paper’s continuous time
model,

dct
ct

= µcdt+ σcdW
c
t . (2)
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A: Empirical Market Inputs

Average S.D.

Consumption Growth 1.93 2.13
Dividend Growth 1.15 11.05

Correlation ρ = 0.25

B: Calibrated Preference Parameters

Discount Rate β 0
Risk Aversion γ 4.220
Loss Aversion α 0.498

C: Average S.D.
Data Model Data Model

Equity Premium 5.47 4.72 20.17 12.43
Price/Dividend 31.85 25.25 15.09 0.48
3-Month Real Rate 0.56 0.55 ? ?
Long-Term Real Rate ? 4.83 0 0

Table 1: Directly estimated, calibrated and model-produced parameters. The model’s input
parameters in Panel A, from Beeler and Campbell (2012), govern the consumption and dividend
processes (2) and (3), and their correlation which is assumed to be 0.25, as in Benzoni et al. (2011).
The model’s coefficients of risk aversion γ and shortfall aversion α (Panel B) are calibrated to
minimize the sum of the squared differences between the directly estimated and the model-produced
equity premium, the equity volatility, the three-month safe rate and the average price-dividend ratio.
The time discount rate β is assumed, since calibration perfomance has low sensitivity to its value.
Directly estimated and model-produced parameters are in Panel C.

Equations (1)-(2) jointly deliver the evolution of the pricing kernel which is used to derive
the term structure of the default-free interest rate and the price of the claim on the stock market,
represented by the claim on the stream of dividends Dt whose evolution is governed by the geometric
Brownian motion (cf. Bansal and Yaron (2004); Campbell and Cochrane (1999)),

dDt

Dt
= µDdt+ σD(ρdW c

t +
√

1− ρ2dWD
t ). (3)

The model delivers also the unconditional and state-dependent first two moments of the stock
market’s returns at all horizons as well as its Sharpe ratios.

Table 1 Summarizes the model’s input parameters (Panel A), its calibrated parameters (Panel
B) and the first two moments of the equity premium, the 3-month real rate and price dividend
ratio as estimated and as predicted by the model (Panel C).

The model appears to address well the equity premium and interest rate puzzles with an esti-
mated coefficient of risk aversion of about 4. The model’s glaring failure is in predicting that the
volatility of the price dividend ratio is .48, about 30 times less than its historical average.

To understand the main mechanism driving the results one should consider what happens when
consumption is close to its historical peak. Historically, US consumption has been near or at its
historical peak most of the time. In this region the disincentive to increase consumption is strong
because an increase in consumption above its current historical peak will adversely affect utility
from future consumption. The representative agent will then try to increase his savings, which will
drive prices of the savings instruments higher and expected returns on them lower.
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Figure 1: Left: Dividend yield (solid), stock return (dashes), and three-month rate (dotted), in
percent per annum (vertical axis) against the state variable xt = ct/ht (horizontal axis). Right:
Volatility (solid) and Sharpe ratio (dashed) per annum (vertical axis) against the state variable
xt = ct/ht (horizontal axis).

Figure 1 shows that an increase in the state variable ct/ht near 1 sharply decreases the three
months rate. The rate of decrease in the equity’s expected return appears milder. Consequently
the safe rate is low whereas the equity premium is high. It is also noteworthy that the Sharpe ratio
increases as the state variable approaches 1.

The model studied here suggests that the welfare loss due to variation in consumption is sub-
stantial. This assessment is in sharp contrast with Lucas (2003), who argues that if the Lucas (1978)
environment is a good representation of the modern economy, then the welfare loss associated with
business cycle fluctuations is minimal.

2 Literature Review

Guasoni, Huberman and Ren (2015) study a continuous time model of consumption and portfolio
selection in which the utility function satisfies (1). In addition to the utility specification GHR
assume a fixed safe interest rate and a single risky asset with price that follows a geometric Brownian
motion. They derive the optimal consumption and portfolio rules. The optimizing agent internalizes
the role of the reference point in that he has a region in which he increases his saving rate (and
the weight of the risky asset in his portfolio) to avoid an increase in his reference consumption.
Garleanu, Panageas and Yu (2012), generalizing Abel (1999), posit a similar utility function but
in their model the reference is other people’s peak consumption and the consumer-saver makes
no attempt to influence it.) In contrast, this paper assumes that the consumption rate of the
representative agent follows a geometric Brownian motion and derives implications for asset pricing.

There is a long and rich literature which studies the levels and term structure of interest rates
(e.g., CIR, Vasacek), the equity risk premium (Mehra and Prescott, 1985) and the relation between
the two (Weil, 1989).

The standard way to derive the safe rate and equity premium is to set up the consumption
and investment portfolio problem of an infinitely-lived representative agent, assume that the agent
optimizes and that markets clear. This setup implies properties of asset prices, especially the mo-
ments of their distributions. The starting point is that consumption utility is time-separable and
entails a constant relative risk aversion (CRRA) and consumption itself follows a geometric Brow-
nian motion. The safe rate and equity premium puzzles emerge because empirically reasonable
parametrizations of the utility function and the consumption process deliver empirically unreason-
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able safe rates and equity premiums, the former being empirically too low and the latter being
empirically too high.

A way to reconcile theory with the empirical findings is to modify the assumed preferences or
beliefs of the representative agent. There are three main approaches here.

The rare disaster explanation of the puzzles relies on a modification of the consumption dy-
namics, allowing for a small probability of a big consumption drop. This modification implies
high precautionary savings, whence a low safe rate, and a high equity premium to compensate
for disaster risk. Pioneered by Rietz (1988), this literature has gained momentum with the work
of Barro (2006), who argues that international evidence on frequency and size of rare disasters
is consistent with a high equity premium and a low safe rate with risk aversion below 5. Barro
(2009) finds high welfare costs for rare disasters, in contrast to the small costs of typical economic
fluctuations observed by Lucas (2003). GABAIX (2012) reports that a variable rate of disasters
helps explain time-varying price-dividend ratios and excess volatility among other pricing puzzles.
Tsai and Wachter (2015) survey the literature on rare disasters.

The long-run risks literature, initiated by Bansal and Yaron (2004), emphasizes the persistence
in shocks to consumption growth, introducing a slow moving stochastic component to that growth.
When combined with Epstein-Zin preferences, which separate risk aversion from elasticity of in-
tertemporal substitution and imply a preference for the timing of the resolution of uncertainty,
slow-moving consumption growth is consistent with estimates of the equity premium and the safe
rate for risk aversion of 10 and elasticity of intertemporal substitution of 1.5 figures confirmed by
the updated study of Bansal et al. (2010). Beeler and Campbell (2012) offer a critical discussion
of the long run risk models empirical performance.

Barro and Jin (2016) include rare disasters in the long-run risks setting, and report that the
combined model explains the equity premium and safe rate with risk aversion of 6, while significantly
understating volatility.

Campbell and Cochrane (1999), a forerunner of the present model, maintains the assumption
that consumption follows geometric Brownian motion but assumes that preferences entail constant
relative risk aversion not of consumption but of consumption relative to a dynamic reference called
habit. The habit itself is defined indirectly through surplus consumption, which is stochastic. This
structure renders the representative agent highly risk averse, with higher risk aversion the closer
consumption is to habit. The levels of risk aversion in the Campbell Cochrane model range from
60 (when consumption is high relative to habit, i.e., during expansions) to 80 (when consumption
is close to habit, i.e., during recessions). About a decade ago Cochrane (2008) wrote, ”work
’explaining the equity premium puzzle’ is dying out... No model has yet been able to account for
the equity premium with low risk aversion, and Campbell and Cochrane (1999) offer some reasons
why this is unlikely ever to be achieved. So we may have to accept high risk aversion, at least for
reconciling aggregate consumption with market returns in this style of model.”

Estimates of individuals relative risk aversion (RRA) are available from field data and from
experiments. Most recently Paravisini et al. (2010), studying a sample of peer-to-peer lenders
estimate the average RRA to be 2.81 and that 90% (99%) of their sample have RRA below 7.2
(16.8). Studying choices of insurance deductibles Barseghyan et al. (2013) estimate RRA to be
either .37 or .21, depending on the model. Harrison, List and Towe (2007) compare risk aversion
in the lab and in field experiments. They report that subjects are more risk averse when the
field experiment has stronger background risk but even with the stronger background risk they
estimate RRA to be lower than 6. Harrison, Lau and Rutström (2007) report that the average
RRA is .67 and the vast majority of subjects display RRA well below 3 in controlled experiments
on Danish subjects. Chiappori and Paiella (2011) study RRA based on a panel from the Bank of
Italy-conducted Survey of Household Income and Wealth. They report that the behavior of the vast

4



majority of the sample is consistent with RRA below 5. Bombardini and Trebbi (2012) report an
average RRA of 1 for participants in a TV game show. In a questionnaire-based study, BARSKY
et al. (1997) estimate the average RRA for gambles over lifetime income to be around 12. Studying
responses of labor supply to wage changes, Chetty (2006) argues that risk aversion is less than 2.

In summary, a variety of estimates of the RRA, based on a variety of subjects, methods, and
contexts, suggest that an empirically realistic RRA should be no greater than 12, and probably
well below it. The calibration of the present model calls for a RRA of 4.22.

The present model makes the standard assumption that consumption follows a geometric Brow-
nian motion but modifies the standard time separable constant relative risk aversion utility of
consumption to allow for shortfall aversion. The incorporation of shortfall aversion maintains the
constancy of the representative agent’s relative risk aversion but renders the sensitivity to con-
sumption non time-separable.

Shortfall aversion is a way to incorporate loss aversion into preferences over consumption. Loss
aversion is probably the best known and most widely accepted feature of Prospect Theory, which is
an experiments-based model of preferences over one period risky monetary outcomes. The decision
maker evaluates the outcomes relative to a benchmark and the marginal disutility of an outcome
slightly below the benchmark is strictly higher than the marginal benefit of an outcome slightly
above the benchmark. (For a different prospect theory-inspired treatment of the equity premium
puzzle see Barberis et al. (2001).)

The present model entails a few transitions from the canonical Kahneman-Tversky Prospect
Theory and the experiments underlying it. It is not about one-time choice between simple lotteries
designed to be comparable. Rather, it is about dynamic choice of consumption rate and investments.
Unfortunately, it is difficult if not impossible to use experiments to study directly preferences over
consumption over time. Nonetheless, the model adopts (and adapts) the central tenet of Prospect
Theory: A reference point (benchmark) and a marginal utility kinked at that point.

Kahneman and Tversky (1978, 1992) do not recommend a particular benchmark for contexts
outside their experiments. The present model includes a benchmark consumption rate level - past
peak consumption rate - and strictly lower marginal utility for consumption rates slightly above the
benchmark than for those slightly below the benchmark, which together capture shortfall aversion.
(A more general version of the preferences posits the benchmark to be past peak consumption rate
shrunk by an exponent of the time elapsed since the realization of that consumption rate.)

Past peak consumption serves as an internal habit in the present model. The decision makers
attitude to risk is derived from a standard CRRA utility function but he is also reluctant to raise
consumption rate as it approaches its past peak because once raised, it sets up a higher habit (and
thereby lower utility) for subsequent consumption rates. Past peak consumption is a transparent
reference point which gives rise to a parsimonious and tractable model.

In various contexts past peak experience appears to play a major role in the utility of the
current experience. The peak-end rule Fredrickson and Kahneman (1993) summarizes a series of
experiments in which subjects assessed the pleasure (or pain) of an experience that lasted some
time. The experience’s most intense and most recent manifestations are the main variables which
explain variations in reported experience. Performance fees of hedge funds are linked to the funds’
highest historical per share value. Life insurers’ payment guarantees on variable annuities are often
tied to the highest historical values of these funds. The NBER calls a recession if GDP drops from
its most recent peak for two consecutive quarters. (In practice the most recent peak is the all-time
peak.)

Shortfall aversion is related to first and second order risk aversion. Risk aversion is associated
with a premium one is willing to pay to avoid a fair gamble. In a single period context, a utility
function displays first (second) order risk aversion if such premiums are proportional to the standard

5



deviations (variances) of small fair gambles. A first (second) order risk averse individual will reject
(accept) slightly better than fair gambles if they are small enough. (Segal and Spivak (1990) develop
these observations.) The utility function of the present model exhibits second order risk aversion
for consumption rates below the historical peak consumption rate and a first order risk aversion at
a consumption rate equal to its historical peak. However, the model’s main force comes not from
single-period considerations but from trade-offs associated with consumption dynamics and their
implied utility.

3 Welfare Implications of the Business Cycle

Before exploring the asset pricing implications of (1)-(3) it is worthwhile to examine (1)-(2) in light
of the Lucas (2003) claim that business cycle volatility (i.e., the volatility in consumption growth)
entails only small welfare losses.

Lucas (2003) suggests a model-based, quantitative method to assess the cost of business cycle
fluctuations which he associates with variability in consuumption growth. His starting point is a
utility function that depends on consumption growth rate and its volatility, U(µc, σc). Then he
looks for an equivalent growth rate, µe which satisfies U(µc, σc) = U(µe, 0). The (relative) welfare
loss due to consumption fluctuation is 1− µe/µc.

In words, using the estimated parameters of the consumption process Lucas calculates the
expected utility of consumption under the model. He then considers a putative alternative con-
sumption process with no variability which delivers the same expected utility. The elimination of
consumption variability results in the consumption growth of the latter process being lower by a
certain fraction of the consumption growth of the former process. That fraction is the equivalent
loss in growth due to the business cycle. According to Lucas that fraction is very small.

The Lucas argument challenges a motivation underlying the study of business cycles: if they
aren’t so harmful as had been thought, why study them? Why devise policies to mitigate consump-
tion fluctuations? Society may benefit from macro economists directing their efforts to study other
issues, e.g., the drivers of economic growth.

Attempts to address Lucas’ challenge include Barro (2009). A simplified version of his argument
is that the welfare costs of ordinary year-to-year economic fluctuations is small, while the cost of
rare disasters is large.

An application of the Lucas calculation to the model presented here delivers very different
conclusions from those of Lucas, as illustrated in Figure 2.

In the Lucas setting (α = 0), the expected utility of the representative agent is

u = E

[∫ ∞
0

e−βt
c1−γt

1− γ
dt

]
=

1

β − (1− γ)
(
µc − γ

2σ
2
c

) (4)

implying that the representative agent is indifferent between a consumption stream that grows at
rate µc with volatility σc and a steady consumption stream that grows at the constant rate

µe(0) := µc −
γ

2
σ2c . (5)

Without shortfall aversion, consumption volatility has a relatively small effect; for example,
with the parameters in Table 1, the certainty-equivalent growth rate is 1.83%, about 10 basis points
below the natural growth rate of 1.93%, which amount to a reduction of 4.96% in consumption
growth. In the classical model fluctuations in consumption growth have a relatively small welfare
effect, as argued by Lucas (2003).
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Figure 2: Fraction of mean consumption growth that a representative would forego (vertical axis,
in percent) to remove its standard deviation (horizontal axis, in percent), in the benchmark model
α = 0 (solid) and with shortfall aversion α = 0.498 (dashed).

By contrast, with shortfall aversion, the certainty-equivalent growth rate is (see section (A.7))

µe(α) = µc −
σ2c
2

(
γ +

α

1− α

(
2(γ − 1) +

β

µc

))
+O

(
σ3c
)

(6)

This formula shows that shortfall aversion increases the effect of consumption volatility on welfare
With the parameters in Table 1, the certainty-equivalent growth rate is now 1.69%, 24 basis points
lower than the natural growth rate, which amounts to a 12.2% reduction in consumption growth.

In summary, the utility specification (1) is both consistent with the intuitive definitions of
recessions and of severe economic disasters and leads one to conclude that with empirically sensible
consumption fluctuations, recessions are costly.

4 Overview

This section sketches the main results, most of which are derived analytically. To summarize them
it is helpful to start as a benchmark with a version of the Lucas (1978) model in continuous time,
i.e., the present model with α = 0. The benchmark model, called here the modified Lucas model, is
in continuous time (which is a deviation from the original model). Moreover, unlike in the original
Lucas tree model, consumption and dividends are not identical but are correlated as in (2)-(3).

In the benchmark model the safe rate r0, the dividend yield y0, and the expected equity return
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Probability 1% 5% 10% 50%

Theoretical 0.946 0.964 0.972 0.991
Empirical 0.987 0.994 0.999 1.000

Table 2: Empirical vs. theoretical quantiles of the state variables. The empirical quantiles,
obtained from quarterly data for the period 1952:Q1-2015:Q1 (253 observations), are biased upwards
because consumption (personal nondurable consumption expenditures plus services) is divided by
the maximum of past consumption over quarterly rather than continuous observations.

e0 are all constant at

r0 = β + γµc −
σ2c
2
γ(γ + 1), (7)

y0 = r0 − µD + γρσcσD, (8)

e0 = r0 + γρσcσD (9)

respectively.
These formulas summarize several classical results: the equilibrium interest rate includes the

familiar time-preference, income, and precautionary savings terms. The dividend yield is deter-
mined by the discounted dividend growth (Gordon and Shapiro, 1956) in the first two terms, and
by its risk exposure as in the consumption CAPM of Breeden (1979). The equity return equals the
dividend yield plus expected dividend growth.

With the parameters Panels A and B of Table 1 the safe rate is an empirically unreasonably high
7.64%; the equity premium of .99% is far lower than the average historical equity premium. Risk
aversion γ has to be much higher for the modified Lucas model to deliver an empirically reasonable
value of the equity premium. But higher values of γ will result in even higher values of the safe
rate r0. Such high interest rate and low equity return are reminders of the inability of the classical
model to reproduce the low real rates and high equity premium observed historically – the risk-free
rate (Weil, 1989) and equity premium (Mehra and Prescott, 1985) puzzles.

The incorporation of shortfall aversion in the utility function appears to address both these
puzzles.

4.1 The State Variable

With α > 0, the single state variable is xt = ct/ht, the ratio of current consumption rate to its
historical maximum; by definition, it never exceeds 1. In fact, the model implies that this ratio
fluctuates with consumption, reaching one whenever a new maximum is reached. The stationary
(i.e., long term) density of the state variable x is

Prob(xt ∈ dx) =

{
λxλ−1 x ∈ (0, 1)

0 x 6∈ (0, 1)
where λ = 2µc/σ

2
c − 1 (10)

This distribution has mean λ/(λ+ 1), variance λ/((λ+ 1)2(λ+ 2)), and its lower p-quantile is p1/λ

(see section A.1).
Empirically, λ is large (84, with the parameters in Table 1), consistent with the economy

spending most of the time with x being very close to 1 which Table 2 suggests. In fact, the
implications of x approaching 1 drive the model’s results.
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The distribution of the state variable x is highly skewed, and especially so because the estimated
λ is so high. With the relatively short sample available it is not surprising that the empirical
quintiles in Table 2 are above their theoretical counterparts.

As spending approaches the historical maximum, the agent is reluctant to increase it and tries
to save more, which increases the prices of investment vehicles, and in particular of short-term safe
bonds and of the risky asset. These price increases reduce the safe rate of interest and the expected
return on the risky asset. The safe rate decreases faster than the expected return on the risky
asset, and therefore the equity premium increases as spending approaches its historical maximum.
Moreover, also the Sharpe ratio increases as the state variable x approaches 1 although the return
volatility of the risky asset also decreases.

The marginal utility and the resulting pricing kernel are the starting points to the results that
follow. When ct < ht, the marginal utility is

Mt = e−βtUc(ct, ht) = e−βtc−γt h
−α(1−γ)
t . (11)

As Prob(ct = ht) = 0 a.s. for all t, this stochastic discount factor prices assets that pay fixed
payments, such as zero-coupon bond with maturity t, for which Fs = 0 for s < t and Fs = 1 for
s ≥ t. In addition, the set of times t for which ct = ht has measure zero for almost every path,
the stochastic discount factor also prices assets that pay a stream of dividends dFt = Dtdt, such as
stocks and consol bonds.

The price at time t of an asset that generates a cumulative cash flow (Fs)0≤s≤∞ is of the form

pt(F ) = Et

[∫ ∞
t

Ms

Mt
dFs

]
(12)

where Et denotes the conditional expectation with respect to information available at time t. For
securities which pay continuously, e.g., stocks which pay at the rate of Dt, dFt = Dtdt The notation
dFt is needed for assets that pay at discrete points in time, such as bonds.

4.2 Interest Rates

The price at time 0 of a zero-coupon bond with maturity t is (see section A.2)

B(xt, T − t) = Et

[
MT

Mt

]
= e−(β+φ(α+γ−αγ))(T−t)Et

[
e−γσc(YT−Yt)−α(1−γ)σc(0∨(Y

∗
T−Y

∗
t +(log xt)/σc))

]
(13)

where Yt = (µc−σ2c/2)t/σc+W c
t is a Brownian motion with drift, and Y ∗t = sup0≤s≤t Ys denotes its

running maximum. (In general the state variable xt = 1 if and only if Yt = Y ∗t .) The corresponding
spot rate R(xt, T−t) and the term structure follow from the equality e−(T−t)R(xt,T−t) = B(xt, T−t).

Taking the limit of (13) as T goes to infinity delivers the long-term rate

R∞ = lim
T→∞

R(xt, T − t) = lim
T→∞

− 1

T
logB(xt, T − t), (14)

which is constant, i.e. independent of the state of the economy xt (see section A.5)

R∞ = β + µcγ
∗ − σ2c

2
γ∗(γ∗ + 1) γ∗ = α+ (1− α)γ (15)

Thus, the model implies that the long term rate is still obtained from the Lucas formula (7), by
replacing γ with γ∗, the α-weighted average of 1 and γ; i.e., γ∗ = α+(1−α)γ. Usually, γ > 1 which
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Figure 3: Term structure (horizontal axis, in years) or interest rates (vertical axis, in percent) at
states of the economy ranging from ct/ht = 99.9% (bottom), 99.5%, 99%, to 95% (top). Market
and preference parameters are as in Table 1.

implies that the long term rate is smaller than the interest rate in the benchmark modified Lucas
model. For example, the parameter values estimated in Table 1 lead to a long-term rate equal to
4.83%. In the benchmark modified Lucas model the same parameters would lead to a long-term
rate (which is equal to the short-term rate) of 7.64%.

Figure 3 displays the term structure of real interest rates at different states of the world xt
(= ct/ht). In good times consumption is at or close to its historical maximum (bottom curve,
ct/ht = 99.9%) and the term structure is sloping upwards to the long-term rate. The model
predicts low short rates in good times because when consumption is near its maximum, consumers
are aware that increased consumption is likely to have low marginal value, hence they try to save
more thereby depressing rates. As present consumption falls below its maximum, the term structure
changes to humped (second curve from bottom) and inverted (top two curves) shapes, reflecting
the higher value of short-term consumption when it is away from its maximum. The value of
consumption at medium terms depends on the probability of reaching maximum consumption at
different points in the future, leading to a humped shape when a maximum is likely to be achieved
soon, and an inverted shape when its reach is farther away.

Table 2 suggests that empirically, the state variable ct/ht exceeded .999 in about 90% of the
253 quarters between 1952 and 2015. Combining this observation with Figure 3 suggests that the
typical term structure is upward sloping.

The model’s predictions for very short maturity bonds merit special attention. For states ct/ht
which are sufficiently distant from 1 and for maturities sufficiently short, there is virtually no
possibility that consumption will equal its historical peak within the life of the bond. Therefore
the bond’s yield is high at 7.64% which is the safe rate in the modified Lucas model. For states
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closer to 1 and for longer maturities it is possible that ct = ht during the life of the bond. The set
where ct = ht is of measure zero, but on it saving is highly desired and the interest rate is minus
infinity. The net result is low rates for very short maturities and for very high values of the state
variable – see, e.g., the line corresponding to ct/ht = 99.9% in Figure 3. Holding the state fixed and
shortening the bond’s maturity results in positive rates (invisible in Figure 3 for ct/ht = 99.9%.)
Holding the bond maturity fixed and lowering the state xt/ht also results in positive rates.

The average instantaneous interest rate in the model equals

E[R0(xt)] =β + µcγ −
σ2c
2
γ(γ + 1)− α(γ − 1)(µc − σ2c/2) (16)

=r0 − α(γ − 1)(µc − σ2c/2) (17)

which implies the average term spread

R∞ − E[R0] = α(γ − 1)σ2c (γ(1− α/2) + α/2) , (18)

which is positive for risk aversion γ greater than one, and vanishes either for logarithmic preferences
(γ = 1) or without shortfall aversion (α = 0.). Notably, the term spread is independent of the
discount rate β. Rather, it arises because future cash flows are received at times when the state
variable is more uncertain. Such uncertainty depends on the evolution of future consumption,
thereby commanding a risk premium. With the parameters in Table 1, E[R0] = 4.59% and R∞ =
4.85%, whence a term spread of 0.26%.

The unconditional average short-term interest rate E[R0] in the model is significantly higher
than the typical short interest rate observed in usual good times, for two reasons. First, in rare
bad times the short term rate reverts to the high Lucas rate, but such events are not likely to
be observed even in a relatively long sample. Second, the unconditional average E[R0] refers to
instantaneous rates, while typical estimates of short term rates are based on one or three months
rates, which tend to be lower.

On the whole, the continuous time shortfall aversion model is inappropriate to deliver realistic
prediction about the very short-term rates because for very short horizons and for typical states,
shortfall aversion can be safely ignored, i.e., the predicted rate coincides with that of the modified
Lucas model. On the other hand Table 1 suggests that it offers a realistic prediction for the typical
three month rate.

A consol is a promise to pay a constant unit rate into the open-ended future. Setting Fs = s in
(12) yields the consol price (see section A.3)

pC(xt) =
1− α(1−γ)

α(1−γ)+δ0x
δ0
t

r0
, (19)

where r0 is the Lucas interest rate (7) and

δ0 = γ +
1

2
− µc
σ2c

+

√
2
β

σ2c
+

(
µc
σ2c
− 1

2

)2

(20)

whence δ0 = γ for β = 0. Since the consol price is the average of zero-coupon bond prices for
all maturities and has a simple closed-form expression and β is close to zero, this case offers a
simple benchmark to study the dependence of bond price on the model’s parameters. In good
times (x = 1) the consol rate equals

1

pC(1)
= r0 (1− α (1− 1/γ)) = r0

γ∗

γ
. (21)

11



As γ is typically greater than one, this formula displays how shortfall aversion reduces interest
rates from their classical level r0 (α = 0) down to r0/γ (α = 1). The effect on zero-coupon rates
is complicated by the joint dependence on the state xt and the maturity. Yet, the basic intuition
remains that shortfall aversion depresses the motive to consume in excess of past maxima, thereby
increasing the incentive to save and depressing interest rates.

The formula for the unconditional consol price enables the calculation of the yield of the average
bond price

1

E[pC(xt)]
≈ R∞ + o(σ2c ) (22)

which is well approximated by the long-term yield.

4.3 Price to Dividend Ratio

Specializing the general pricing formula (12) to the assumed dividend process (3) delivers the price
to dividend ratio PD(x), which depends on the state x (see section A.3)

PD(x) =
1− α(1−γ)

α(1−γ)+δx
δ

y0
, (23)

with

δ = γ +
1

2
− ρσD

σc
− µc
σ2c

+

√
2
β − µD
σ2c

+

(
1

2
− ρσD

σc
− µc
σ2c

)2

. (24)

This formula is better understood through the approximation (expanding for β − µD small)

δ ≈ γ +
β − µD

µc − σ2
c
2 + ρσcσD

+ o(β − µD). (25)

which is rather accurate for realistic parameters. For example, the figures in Table 1 lead to δ = 3.63
with both the exact and approximate formulas. In turn, this approximation implies that in good
times the dividend yield satisfies

1/PD(1) ≈ y0

(
1− α(1− 1/γ)

(
1 +

β − µD
γ(µc − σ2

c
2 + ρσcσD)

))
. (26)

Similar to the formula obtained for the consol rate, a higher shortfall aversion α reduces the dividend
yield below the Lucas level y0, significantly increasing the price to dividend ratio. (A consol is an
asset paying a dividend that neither grows (µD = 0) nor fluctuates (σD = 0), i.e., constant.) The
figures in Table 1 imply stock prices of about 27 times dividends. By comparison, with α = 0
the same parameters would imply a multiple of only 15. Shortfall aversion leads to higher stock
prices than predicted by classical models, as the lower marginal utility from increasing consumption
above its historical maximum strengthens the incentive to save in good times. In fact, comparing
equation (21) to (26) shows that for typical parameter values shortfall aversion increases the consol

multiple more than the stock multiple, as the term (β − µD)/γ(µc − σ2
c
2 + ρσcσD) is negative for

realistic parameter values. (The numerator is negative, the denominator positive.)
In general, since the stationary density of the state variable xt is λxλ−1 for x ∈ (0, 1), the

(unconditional) average price-dividend ratio is

E[PD(xt)] =
1

y0

(
1− α(1− 1/γ)

1

α(1− 1/γ)− δ/γ
· λ

δ + λ

)
(27)
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With the parameter values in Tables 1 and 2, this expression yields the average value of 26.07,
close to its value in good times, reflecting the accuracy of the above approximation and the persis-
tence of the state variable near its running maximum.

In the same fashion, the (unconditional) standard deviation of the price to dividend ratio equals

StDev(PD(xt)) =
1

y0
· 1

δ
α(γ−1) − 1

· δ

λ+ δ
·
(

λ

λ+ 2δ

)1/2

(28)

For the estimated parameter values, this formula yields the value of 0.47, which is well below the
empirical figure of 15.09. This discrepancy is the main limitation of the present model: it can
account for the low interest rates and high price multiples observed in the data, but it predicts
that price multiples should be relatively stable over time compared to the variations observed
empirically.

4.4 Equity and Consol Returns

The (unconditional) average expected equity return is (see section A.6)

lim
T↑∞

1

T

∫ T

0

dpt +Dtdt

pt
=r0 + γρσcσD + α(1− γ)σ2c

(
λ

2
− γ

∫ 1

0

xδ

1 + α(1−γ)
δ (1− xδ)

λxλ−1dx

)
(29)

≈β + γ∗µc −
σ2c
2

(γ(γ + 1)− α(γ − 1)(2γ + 1)) + γρσcσD + o(σ2c ) (30)

In particular, for α = 0 this expression reduces to the familiar formula r0 + γρσDσc, a version of
the consumption CAPM, whereby the expected excess return on a risky asset is proportional to
the covariance of its cash flow with the consumption stream.

To understand the effect of shortfall aversion, consider first the case of a consol bond (µD =
ρ = 0). Its average return is approximately

β + γ∗µc −
σ2c
2

(γ(γ + 1)− α(γ − 1)(2γ + 1)) = R∞ + α2(γ − 1)2
σ2c
2

(31)

The consol’s average return is higher than the yield in (22) by convexity: whereas the latter is the
inverse of the average price, the former is the average of the inverse price.

For equity, the additional return is the familiar γρσcσD, as in the Lucas benchmark. Thus,
average equity returns are higher in the model only because of a term premium that also affects
consols.

The impact of shortfall aversion on average expected return is negative for typical parameter
values. For example, the parameters calibrated in Table 1 lead to an average real return of 5.13%,
compared to a value of 7.89% obtained with α = 0 but otherwise the same parameters.

Likewise, the average standard deviation of stock returns equals to:√
lim
T↑∞

1

T

∫ T

0

d〈p〉t
p2t

=

√√√√∫ 1

0

(
σ2D(1− ρ2) +

(
α(γ − 1)δxδ

δ + α(γ − 1)(xδ − 1)
σc + ρσD

)2
)
λxλ−1dx (32)

where 〈p〉t denotes the quadratic variation of p. For α = 0 this expression reduces to σD: as in
the classical model the price to dividend ratio is constant, dividends and prices share the same
volatility. Shortfall aversion leads to slightly higher volatility in stock prices: in the calibration of
Table 2, the stock volatility rises to 12.43%, above the 11.05% observed for dividends, although it
does not reach the 20.17% observed historically.
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5 The Pricing Kernel and the State Variable

The fundamental pricing equation (12) can be written as

Mtpt +

∫ t

0
MsdFs = Et

[∫ ∞
0

MsdFs

]
(33)

Being the conditional expectation at different times t of the same random variable, the right hand
side is a martingale. Thus, also the left-hand side is a martingale, hence its expected conditional
increments are zero. Decomposing this conditional increment is key to solving for pt.

The first step in this direction is to calculate d(Mtpt) +MtDtdt or, equivalently, its growth rate
(See section A.3)

d(Mtpt)

Mtpt
+
MtdFt
Mtpt

=
dMt

Mt
+
dpt
pt

+
d〈M,p〉t
Mtpt

+
dFt
pt

(34)

The growth rate of the stochastic discount factor Mt = e−βtUc(ct, ht) = e−βtc−γt h
−α(1−γ)
t is

dMt

Mt
=− βdt− γ dct

ct
+
γ

2
(γ + 1)

d〈c〉t
c2t
− α(1− γ)

dht
ht

(35)

=−
(
β + µcγ − γ(γ + 1)

σ2c
2

)
dt− α(1− γ)

dht
ht
− γσcdW c

t (36)

where 〈c〉t denotes the quadratic variation of the consumption process.
The distinguishing feature of the present model is that 0 < α and therefore the term associated

with dht/ht affects the solution.
In the classical case α = 0, equation (36) reduces to the expression of the stochastic discount

factor in the classical model, whereby the drift is minus the constant interest rate r0 = β + µcγ −
γ(γ + 1)σ

2
c
2 and the consumption risk premium is γσc.

With α = 0 the stochastic discount factor is governed by a process of the type

dMt

Mt
= ftdt+ ktdW

c
t (37)

where ft and kt are identified by the conditions that Mt, multiplied by any asset price, yields a

martingale. For the the money-market account Bt = e
∫ t
0 rsds, it follows that

d(MtBt) = MtdBt +BtdMt = MtrtBtdt+BtdMt = BtMt(rt + ft)dt+BtMtktdW
c
t

whence it follows that ft = −rt. Likewise, if the stock price satisfies

dSt
St

= (et + rt)dt+ σSt dW
S
t

then the martingale condition yields (denoting by ρ the correlation between WS and W c)

d(MtSt) = MtdSt + StdMt + d〈M,S〉t = (38)

= MtSt(et + rt)dt+MtStσ
S
t dW

S
t + StMt(−rtdt+ ktdW

c
t ) + σSt ktρdt (39)

= MtSt(et + σSt ktρ)dt+MtStσ
S
t dW

S
t + StMtktdW

c
t (40)

Again, setting the total drift equal to zero yields the condition

kt = − et

σSt ρ

14



which identifies the market price of risk as the ratio between the equity premium and its exposure
to consumption risk. Vice versa, given kt, this equation yields a generic expected return-beta
representation.

The novelty of equation (36) is in the term −α(1− γ)dhtht , which is nonzero only at times when
consumption increases above its past maximum, i.e., on the set {ct = ht}. Because ct is a geometric
Brownian motion, its supremum ht is a continuous, increasing function with null derivative for
almost all t, and ht increases continuously precisely on the set of t where it is not differentiable.
Thus, the term dht is, unlike the martingale term dW c

t , conditionally increasing and, unlike the
drift term dt, it is not absolutely continuous. Informally, it behaves like a time-varying drift without
jumps, that is zero most of the time and infinitely steep in an infinitely small set, while resulting
in a nonzero contribution.

The effect of the new term is best understood in conjunction with the classical consumption
effect, i.e., by regrouping the terms in (35) and considering the sum

− γ dct
ct
− α(1− γ)

dht
ht

(41)

When consumption is below its past maximum (ct < ht), the second term is null. As it establishes
a new maximum (ct = ht and dct > 0), then temporarily dht/ht = dct/ct and (41) reduces to

− (α+ γ(1− α))
dct
ct

(42)

which implies that the agent contemplates an increase above maximum past consumption as if
preferences were classic, but risk aversion were γ∗ = α+ (1−α)γ, a value that is closer to one than
γ. As risk aversion is typically greater than one, γ∗ is typically lower than γ, which means that the
agent views increases above the maximum with less concern than changes in consumption while
below the maximum. This asymmetry vanishes in the special case of a logarithmic representative
agent (γ = 1), who behaves myopically, and therefore is insensitive to the effect of shortfall aversion
α on future marginal utility.

Any representative agent other than myopic evaluates future cash flows not only for their
marginal utility at the time they are paid, but also for their covariation with the state of the
economy – the consumption to historical peak ratio xt. As an agent anticipates consumption to
establish a new peak in the future, he realizes that it will reduce future marginal utility. To hedge
against such future changes, the agent wishes to purchase today contracts that will increase in value
when such a peak is reached – the asset prices themselves. As a result, hedging demand drives
asset prices higher today.

Thus, the state variable xt = ct/ht fluctuates in the interval (0, 1]: when ct < ht, (i.e., xt ∈
(0, 1)), it varies in lockstep with ct. But when ct = ht, any further increase in ct is offset in
xt = ct/ht by a equal increase in ht, which results in xt following a diffusion reflected at the

boundary 1. Indeed, the normalized ratio zt = − log(xt)/σc = log(ht/ct)
σc

satisfies

dzt = −µc − σ
2
c/2

σc
dt− dW c

t + dηt (43)

where the process ηt increases only on the set {ct = ht} = {zt = 0} as to keep zt ≤ 0 and hence
xt ≤ 1. (Normalizing by σc is inessential, but it helps concentrate the parameter dependence on
the drift alone.)
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6 Reference Decay

Arguably, the more distant in time is the historical peak consumption the less it affects the utility
of current consumption. A way to accommodate this feature is by replacing the utility function (1)
with

e−βtU(ct, ht) = e−βt
(cth

−α
t )1−γ

1− γ
, with ht(φ) = max

0≤s≤t
e−φ(t−s)cs, (44)

7 Concluding Remarks

The model identifies the state of the economy as current consumption relative to its past peak,
in analogy with the literature on rare disasters, where such events are defined as drops from past
peak consumption of 15% or more. In contrast to this approach, the present model does not make
a sharp separation between normal times and disasters, but leaves a continuum of states x that
vary between current peak consumption 1 and absolute ruin 0. In US postwar quarterly data, the
ratio of consumption to its historical peak has remained above 0.987 for 99% of the time (Table 2),
reflecting the absence of economic disasters. At the trough of the Great Depression, it reached the
historical low of 80%.

Due to shortfall aversion the whole term structure of the default-free interest rate is lower than
the (term-independent) rate delivered by the benchmark modified Lucas model. Shortfall aversion
also reduces the expected return on equity but to a lesser extent. The suppression of the rates and
of the expected returns is stronger the closer is current consumption to its historical peak.

A Appendix

A.1 Stationary density of the state variable (Eq. (10))

For the state variable xt = ct/ht, i.e. current consumption as a fraction of its reference level ht,

consider the normalized log ratio zt = − log(xt)/σc = log(ht/ct)
σc

, which satisfies

zt =
log(ht/ct)

σc
= −yt + sup

0≤s≤t

(
ys ∨

log(h0/c0)

σc

)
(45)

where yt = (µc + φ − σ2c/2)t/σc + Wt and y∗t = sup0≤s≤t ys. Therefore, by Skorohod’s Lemma
(Revuz and Yor, 1999, VI.2.1), zt is a Brownian motion with negative drift, reflected at zero to
remain positive, whence

dzt = −µc + φ− σ2c/2
σc

dt− dW c
t + dηt (46)

where the process ηt = sups≤t (ys ∨ log(h0/c0)) /σc increases only on the set {ct = ht} = {zt = 0}.
The long-term (stationary) distribution of a Brownian motion with negative drift reflected at

zero is an exponential distribution with rate equal to twice the absolute value of the drift (Borodin

and Salminen, p. 130), which means that the stationary density is exponential with rate 2(µc+φ)−σ2
c

σc
.

Since xt = e−σczt , setting λ = 2µc/σ
2
c − 1 it follows that the stationary density of x is a power law

on (0, 1)

P (xt ∈ dx) = m(x) =

{
λxλ−1 x ∈ (0, 1)

0 x 6∈ (0, 1)
. (47)
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The corresponding cumulative distribution function is P (xt ≤ x) = xλ and its inverse, the quantile
function, is q(p) = p1/λ.

A.2 Zero Coupon Bond Price (Eq. (13))

Denote by B(xt, T − t) the price at time t of a zero-coupon bond with maturity T . Since

ct = c0e
(µc−σ2

c/2)t+σcWt ht = e−φt
(
h0 ∨ sup

0≤s≤t
c0e

(µc+φ−σ2
c/2)s+σcWs

)
(48)

setting yt = (µc + φ− σ2c/2)t/σc +Wt, and y∗t = sup0≤s≤t ys, it follows that

ct = c0e
−φt+σcyt ht = e−φt

(
h0 ∨ c0eσcy

∗
t

)
= c0e

−φt+log(h0/c0)∨σcy∗t (49)

whence

Mt =e−βtUc(ct, ht) = e−βtc−γt h
−α(1−γ)
t (50)

=c
−(α+γ−αγ)
0 exp (−βt+ φ(α+ γ − αγ)t− γσcyt − α(1− γ)(log(h0/c0) ∨ σcy∗t )) (51)

and

Mt

M0
= exp (−βt+ φ(α+ γ − αγ)t− γσcyt − α(1− γ)σc(0 ∨ (y∗t − log(h0/c0)/σc))) (52)

Taking the expectation of this equation, it follows that, as claimed in (13),

p(t, T ) = E

[
Mt

M0

]
= e−(β+φ(α+γ−αγ))tE

[
e−γσcyt−α(1−γ)σc(0∨(y

∗
t+(log x0)/σc))

]
(53)

This expression can be computed explicitly, as the expectation in the right-hand side involves a
function of Brownian motion with drift yt and its running maximum y∗t . Recall that the joint law
of these random variables is (Karatzas and Shreve, 1988, 2.8.1)

P (yt ∈ dζ, y∗t ∈ dξ) = j(ζ, ξ) =
2(2ξ − ζ)√

2πt3
e−

(2ξ−ζ)2
2t

−mζ−m
2

2
t 0 ∨ ζ < ξ (54)

where m = (µc + φ− σ2c/2)/σc. Thus,

E
[
e−γσcyt−α(1−γ)σc(0∨(y

∗
t+(log x0)/σc))

]
=

∫ +∞

−∞

∫ +∞

0∨ζ
e−γσcζ−α(1−γ)σc(0∨(ξ+(log x0)/σc))j(ζ, ξ)dξdζ

(55)

=

−(log x0)/σc∫
0

ξ∫
−∞

e−γσcζj(ζ, ξ)dζdξ +

+∞∫
−(log x0)/σc

ξ∫
−∞

e−γσcζ−α(1−γ)σc(ξ+(log x0)/σc)j(ζ, ξ)dζdξ (56)

= e
1
2
γσcT (γσc−2m) +

2(γ∗σc −m)xγ−γ
∗

0 e
1
2
γ∗σcT (γ∗σc−2m)Φ

(
σcT (m−γ∗σc)+log(x0)

σc
√
T

)
σc(γ + γ∗)− 2m

(57)

+
σc(γ − γ∗)e

1
2
γσcT (γσc−2m)x

2γ− 2m
σc

0 Φ
(
σcT (γσc−m)+log(x0)

σc
√
T

)
σc(γ + γ∗)− 2m

− e
1
2
γσcT (γσc−2m)Φ

(
σcT (m− γσc) + log(x0)

σc
√
T

)
(58)

where γ∗ = α+ (1− α)γ.
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A.3 Stock and Consol Prices (Eqs (19) and (23))

Asset prices are of the form

pt = Et

[∫ ∞
t

Ms

Mt
Dsds

]
(59)

where pt is the price of a contract that generates the stream of cash flow (Ds)t≤s≤∞. The above
equality is equivalent to

Mtpt +

∫ t

0
MsDsds = Et

[∫ ∞
0

MsDsds

]
(60)

The right-hand side is the conditional expectation at different times t of the same random variable,
hence a martingale. Thus, also the left-hand side is a martingale, hence its expected conditional
increments are zero.

To identify the conditional increments d(Mtpt) +MtDtdt note that:

d(Mtpt)

Mtpt
+
MtDt

Mtpt
dt =

dMt

Mt
+
dpt
pt

+
d〈M,p〉t
Mtpt

+
Dtdt

pt
(61)

Since dividend growth is constant, the price should be of the form pt = Dtg(xt) for some function
g, i.e., linear in the current cash flow for a given state xt. It follows that:

dpt
pt

=
dDt

Dt
+
dg(xt)

g(xt)
+
〈g(x), D〉t
g(xt)Dt

(62)

= µDdt+ xtg′(xt)
g(xt)

(
µcdt+ σcdWt − dht

ht

)
+ σ2

c
2
x2t g
′′(xt)

g(xt)
dt+ σcσDρ

xtg′(xt)
g(xt)

dt (63)

+ σDρdW
c
t + σD

√
1− ρ2dWD

t (64)

=
(
µD + xtg′(xt)

g(xt)
(µc + φ+ σcσDρ) + σ2

c
2
x2t g
′′(xt)

g(xt)

)
dt (65)

− xtg
′(xt)

g(xt)
dηt (66)

+

(
ρσD + σc

xtg
′(xt)

g(xt)

)
dW c

t + σD
√

1− ρ2dWD
t (67)

and the covariation rate between the growth rates of M and p equals

d〈M,p〉t
Mtpt

= −γσc
(
ρσD + σc

xtg
′(xt)

g(xt)

)
dt (68)

Because any local martingale of finite-variation is necessarily constant (Revuz and Yor, 1999, Propo-
sition IV.1.2), the martingale condition for (60) requires that both (65) and (66) are zero, leading
to the differential equation

− r0 + µD + xg′(x)
g(x) (µc + φ+ σDσcρ) + σ2

c
2
x2g′′(x)
g(x) −γσc

(
ρσD + σc

xg′(x)
g(x)

)
+ 1

g(x) = 0 x ∈ (0, 1)

(69)

with boundary condition −α(1− γ)− xg′(x)

g(x)
= 0 x = 1 (70)

which reflects that the process ηt increases only on the set {xt = 1}, while remaining constant on
the set {xt ∈ (0, 1)}
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This is a inhomogeneous, second-order, linear ODE. One of its solutions is the constant g(x) =
1/y0, and we assume that y0 is positive. Thus, the general solution to the above ODE equals to this
constant, plus a linear combination of the solutions of the corresponding homogeneous equation,
i.e.,

g(x) =
1

y0
+C1x

δ−+C2x
δ+ δ± = γ+

1

2
−ρσD

σc
−µc + φ

σ2c
±

√
2
β − γφ− µD

σ2c
+

(
1

2
− ρσD

σc
− µc + φ

σ2c

)2

(71)
The constants C1 and C2 are identified by conditions on g(x) at the boundaries x = 0, 1. Since
δ− < 0, at x = 0 the classic solution recovers only if C1 = 0. For the other boundary, the martingale
property implies the Neumann condition (70). The resulting yield Dt/pt = 1/g(xt) is then, denoting
δ+ as simply δ:

y(xt) =
y0

1− α(1−γ)
α(1−γ)+δx

δ
t

(72)

In the special case µD = σD = 0, the above formula gives the price of an asset that pays a constant
cash flow – a consol bond. The resulting consol rate is therefore:

r(xt) =
r0

1− α(1−γ)
α(1−γ)+δ0x

δ0
t

(73)

where r0 is the Lucas interest rate, while δ0 is the value of δ obtained with µD = σD = 0:

δ0 = γ +
1

2
− µc + φ

σ2c
+

√
2
β − γφ
σ2c

+

(
1

2
− µc + φ

σ2c

)2

(74)

A.4 Short-Term Rate (Eq. (17))

Consider the price of a bond that is repaid over time at constant rate, i.e. with the cash flow
Dt = e−t/T /T , where T denotes the average maturity, in that:∫ ∞

0
t/Te−t/Tdt = T, (75)

and note that, with a constant interest rate r0, the price of this asset is∫ ∞
0

e−r0te−t/T /Tdt =
1

1 + r0T
(76)

(i.e., the price of a zero-coupon bond with maturity T without compounding.)
The price of this bond equals its current cash flow times a function of the state variable, i.e.

pt = e−t/T /Tb(xt) for some function b, whence

dpt
pt

=
b′(xt)dxt
b(xt)

+
1

2

b′′(xt)d〈x〉t
b(xt)

− dt

T
(77)

=

(
− 1

T
+
xtb
′(xt)

b(xt)
µ+

σ2

2

x2t b
′′(xt)

b(xt)

)
dt− xtb

′(xt)

b(xt)
(−φdt+ dηt) +

xtb
′(xt)

b(xt)
σdWt (78)

Thus, collecting the drift terms arising from the martingale condition

d(Mtpt)

Mtpt
+
Mte

−t/T /T

Mtpt
dt =

dMt

Mt
+
dpt
pt

+
d〈M,p〉t
Mtpt

+
e−t/T /Tdt

pt
, (79)
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the next ordinary differential equation follows

− r0 −
1

T
+
xb′(x)

b(x)
(µ+ φ) +

σ2

2

x2b′′(x)

b(x)
− γσ2xb

′(x)

b(x)
+

1

b(x)
= 0 x ∈ (0, 1) (80)

This ODE has the constant solution b(x) = T/(1 + r0T ), which corresponds to the familiar pt =
e−t/T 1

1+r0T
for α = 0. The general solution is thus

b(x) =
T

1 + r0T
+C1x

δT− +C2x
δT+ δT± = γ− µ+ φ

σ2
+

1

2
±

√
2
β − γφ+ 1/T

σ2
+

(
µ+ φ

σ2
− 1

2

)2

(81)
and the constants C1, C2 are identified by the boundary conditions at x = 0, 1. For x = 0 the
classical setting recovers, whence C1 = 0, while the Neumann condition

− α(1− γ)− xb′(x)

b(x)
= 0 x = 1 (82)

leads to the bond price formula:

pt =
e−t/T

1 + r0T

(
1− α(1− γ)

α(1− γ) + δT
xδT
)

(83)

To calculate the average term structure, consider the unconditional average at time 0 of the above
expression, which is

E[p0] =
δT
(
σ2c (− (α(−γ) + α+ δT − 1))− 2 (µc + φ)

)
(r0T + 1) (α(γ − 1)− δT ) (2 (µc + φ) + σ2c (δT − 1))

(84)

A.5 Long Term Rate (Eq. (15))

The spot rate R(xt, T − t) at time t with maturity T is the solution to the equation

e−R(xt,T−t) = Et

[
MT

Mt

]
(85)

and the long-term rate is defined as the limit, i.e.

R∞t = lim
T→∞

R(xt, T − t) = lim
T→∞

− 1

T − t
logEt

[
MT

Mt

]
(86)

Recall that, by the Fenyman-Kac formula, the price B(xt, T − t) of a zero-coupon bond with
maturity T satisfies the partial differential equation

Bt(x, T − t)− r0B(x, t) + xBx(x, t)
(
µc + φ− γσ2c

)
+
σ2c
2
x2Bxx(x, t) = 0 (t, x) ∈ [0, T )× (0, 1)

(87)
with boundary conditions

B(t, 0) = 0 t ∈ [0, T ) (88)

Bx(t, 1) = 0 t ∈ [0, T ) (89)

B(T, x) = 1 x ∈ (0, 1) (90)
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Guessing that the long-term rate R∞ is independent of t (in view of the positive recurrence of the
state variable xt), and thus equal to some constant r0 + λ, for long horizons bond prices should be
of the approximate form B(x, T − t) ≈ g(x)e−(r0+λ)(T−t). Replacing this guess into the previous
equation leads to the ordinary differential equation

λg(x) + xg′(x)(µc + φ− γσ2c ) +
σ2c
2
x2g′′(x) = 0 (91)

with boundary conditions

g(0) = 0 g′(1) = 0 (92)

Note that the function g(x) is determined up to a multiplicative constant, as the value of the
maturity T is arbitrary. The general solution to equation (91) is g(x) = C1x

ν−(λ) +C2x
ν+(λ), where

ν±(λ) = −µc + φ

σ2c
+ γ +

1

2
±

√(
−µc + φ

σ2c
+ γ +

1

2

)2

− 2λ

σ2c
(93)

Noting that ν−(λ) < 0, it follows that the boundary condition g(0) = 0 implies that C1 = 0, while
the value of C2 is arbitrary, in view of the arbitrariness of the multiplicative constant. Indeed, the
boundary condition on g′(1) identifies

λ =
1

2
α(γ − 1)

(
(α(1− γ) + 2γ + 1)σ2c − 2(µc + φ)

)
(94)

which in turn gives the following formula for the long-term rate

R∞ = r0 + λ = β − α(γ − 1)φ+ µcγ
∗ − σ2c

2
γ∗(γ∗ + 1) γ∗ = α+ (1− α)γ (95)

Thus, the long term rate is obtained by replacing γ with γ∗ = α + (1 − α)γ in the Lucas formula
(7) and β with β − α(γ − 1)φ.

A.6 Expected Returns (Eq. (29))

The average, conditional expected return at time t for horizon T is defined as Et

[∫ t+T
t

dps+Dsds
ps

]
.

In view of (62) and (69),

dpt +Dtdt

pt
=
(
µD + xtg′(xt)

g(xt)
(µc + φ+ σcσDρ) + σ2

c
2
x2t g
′′(xt)

g(xt)
+ 1

g(xt)

)
dt− xtg′(xt)

g(xt)
dηt (96)

+

(
ρσD + σc

xtg
′(xt)

g(xt)

)
dW c

t + σD
√

1− ρ2dWD
t (97)

=

(
r0 + γσc

(
σDρ+ σc

xtg
′(xt)

g(xt)

))
dt− xtg

′(xt)

g(xt)
dηt (98)

+

(
ρσD + σc

xtg
′(xt)

g(xt)

)
dW c

t + σD
√

1− ρ2dWD
t , (99)

The long-term expected return follows from:

lim
T↑∞

1

T

∫ T

0

dpt +Dtdt

pt
= lim

T↑∞

1

T

∫ T

0

(
r0 + γσc

(
σDρ+ σc

xtg
′(xt)

g(xt)

))
dt− lim

T↑∞

1

T

∫ T

0

xtg
′(xt)

g(xt)
dηt

(100)

= r0 + γσc

(
σDρ+ σc

∫ 1

0

xg′(x)

g(x)
m(x)dx

)
− g′(1)

g(1)

σ2c
2
m(1) (101)
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The last term, in view of the boundary condition −g′(1)/g(1) = α(1− γ) and the density m(x) =
λxλ−1, equals

− g′(1)

g(1)

σ2c
2
m(1) = α(1− γ)

σ2c
2

(
2
µc + φ

σ2c
− 1

)
= α(1− γ)

(
µc + φ− σ2c

2

)
(102)

whereas the above integral satisfies∫ 1

0

xg′(x)

g(x)
m(x)dx =

∫ 1

0

α(γ − 1)δ+x
δ+

δ+ + α(γ − 1) (xδ+ − 1)
λxλ−1dx (103)

A.7 Welfare (Eq. (6))

In the Lucas setting (α = 0), the expected utility of the representative agent is

u = E

[∫ ∞
0

e−βt
c1−γt

1− γ
dt

]
=

1

β − (1− γ)
(
µc − γ

2σ
2
c

) (104)

This means that an economy that grows at rate µc with volatility σc is equivalent to a riskless
economy that grows at rate µe defined by

µe := µc −
γ

2
σ2c (105)

For α > 0, expected utility is more complex, because it depends also on the loss aversion α and
on the state x. Suppose that at time t future expected utility is of the form (ct/h

α
t )1−γ/(1−γ)u(xt),

where the function u(x) is to be determined, i.e.

(ct/h
α
t )1−γ

1− γ
u(xt) = Et

[∫ ∞
t

e−β(s−t)
(cs/h

α
s )1−γ

1− γ
ds

]
(106)

It follows that∫ t

0
e−βs

(cs/h
α
s )1−γ

1− γ
ds+ e−βt

(ct/h
α
t )1−γ

1− γ
u(xt) = Et

[∫ ∞
0

e−βs
(cs/h

α
s )1−γ

1− γ
ds

]
(107)

Thus, since the right-hand side is a martingale, so is the left-hand side, hence its drift must be
zero. Calculating the dynamics of the left-hand side with Itô’s formula, and setting the drift to
zero, implies that

σ2c
2
x2u′′(x) + (µc + φ)xu′(x) + 1− u(x)

(
β − (1− γ)

(
µc −

γ

2
σ2c

))
= 0 x ∈ (0, 1) (108)

One boundary condition is that at x = 0 the classical case obtains, i.e.

u(0) =
1

β − (1− γ)
(
µc − γ

2σ
2
c

) (109)

The second condition is that at x = 1, when a new target is established, the marginal utility of the
present consumption increase equals the marginal decrease in future utility from a higher target,
i.e.

− α(1− γ)− xu′(x)

u(x)
= 0 for x = 1 (110)
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The solution to equation (108) is

u(x) =
2

2β + (γ − 1) (2µc − γσ2c )
(111)

+ 4α(γ−1)σ2
cx

√
−4σ2c (−2β+(3−2γ)µc+φ)−(4(γ−1)γ−1)σ4c+4(µc+φ)2−2µc+σ

2
c−2φ

2σ2c

((γ−1)(γσ2
c−2µc)−2β)

(
(2α(γ−1)−1)σ2

c−
√
−4σ2

c (−2β+(3−2γ)µc+φ)−(4(γ−1)γ−1)σ4
c+4(µc+φ)2+2µc+2φ

)
(112)

This formula is complicated because it describes the expected utility from future consumption as
a function of the current state x. For σc = 0 the above expression reduces to

1

β + (γ − 1)µe
(113)

Matching the two expressions to solve for µe, and expanding the result for σc small, it follows that:

µe = µc +
σ2c (α(β − φ) + (α(γ − 2) + γ)µc + γφ)

2(α− 1) (µc + φ)
+O

(
σ3c
)

(114)
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