A Shadow Rate New Keynesian Model

Jing Cynthia Wu Chicago Booth and NBER

Ji Zhang Tsinghua PBC

Issues caused by ZLB: UMP

Before ZLB

- ► Federal funds rate is the primary instrument of monetary policy
- Economists rely on it to study monetary policy
 - monetary VAR
 - New Keynesian model

At 71 B

- Unconventional policy tools
 - large-scale asset purchases
 - lending facilities
 - forward guidance

How do we accommodate the ZLB and unconventional monetary policy?

Issues caused by ZLB: counterfactual implications of standard NK models

Anomalies at the ZLB without unconventional policy

- before: decreases output
- ▶ at zlb: increases output

C, consumption

Government spending shock

▶ before: < 1

6 dev. from S.S.

▶ at zlb: > 1

Issues caused by ZLB: computational challenges

The ZLB imposes one of the biggest challenges for solving and estimating these models:

- nonlinearity
- multiple equilibria

Existing methods

- Shortcut
 - greatly simply the solution, but
 - have undesirable economic implications
 - cannot match data
 - hide nonlinear interactions
- Global projection method
 - seriously solve the model, but
 - ightharpoonup computationally demanding ightarrow estimation impossible

Contributions

- presents new empirical evidence relating the shadow rate with
 - private interest rates

Microfoundation I: QE

- Fed's balance sheet.
- Taylor rule
- proposes a New Keynesian model with the shadow rate
 - accommodates both conventional and unconventional policies
- maps unconventional policy tools into the shadow rate framework
 - QE
 - lending facilities
- makes two anomalies disappear
 - a negative supply shock decreases output
 - government-spending multiplier is back to normal
 - restores traditional solution and estimation methods

Outline

- 1. Shadow rate New Keynesian model (SRNKM)
- 2. Microfoundation I: Mapping QE into SRNKM
- 3. Microfoundation II: Mapping lending facilities into SRNKM
- 4. Quantitative analyses

Standard NK model

Definition

A standard New Keynesian model consists of the IS curve

$$y_t = -\frac{1}{\sigma}(r_t - \mathbb{E}_t \pi_{t+1} - s) + \mathbb{E}_t y_{t+1},$$

New Keynesian Phillips curve

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa (y_t - y_t^n),$$

and the Taylor rule with zero lower bound

Long-term interest rate interpretation

Microfoundation I: QE

$$y_t = -\frac{1}{\sigma} \sum_{i=1}^n \mathbb{E}_t (r_{t+i-1} - \pi_{t+i} - r) + \mathbb{E}_t y_{t+n}$$
$$= -\frac{1}{\sigma} n r_{t,t+n} - \frac{1}{\sigma} \sum_{i=1}^n \mathbb{E}_t (-\pi_{t+i} - r) + \mathbb{E}_t y_{t+n}.$$

- long-term rate matters for decision making instead of short rate
- UMP works through long term rates to affect the economy
- this link is missing in standard NK models

Two ways to fill the gap:

- model UMP separately structural break
- ▶ use the shadow rate to capture UMP no structural break

Shadow rate NK model

Definition

The shadow rate New Keynesian model consists of the shadow rate IS curve

$$y_t = -\frac{1}{\sigma}(s_t - \mathbb{E}_t \pi_{t+1} - s) + \mathbb{E}_t y_{t+1},$$

New Keynesian Phillips curve

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa (y_t - y_t^n),$$

and shadow rate Taylor rule

$$s_t = \phi_s s_{t-1} + (1 - \phi_s) [\phi_v (y_t - y_t^n) + \phi_\pi \pi_t + s].$$

▶ QE ▶ lending facilities

Shadow rate

▶ Black (1995): $r_t = max(s_t, \underline{r})$

Wu-Xia Shadow Federal Funds Rate

Sources: Board of Governors of the Federal Reserve System and Wu and Xia (2015)

Empirical 1: shadow rate and private rates

- the fed funds rate is at the ZLB
- shadow rate moves in response to unconventional monetary policy
- private rates move with the shadow rate $r_t^B = s_t + rp$
- private rates are the relevant rates for agents

Empirical 2: shadow rate and Fed's balance sheet

Correlation

▶ full sample: -0.74

QE1 - QE3: -0.94

Empirical 3: shadow rate Taylor rule

$$s_t = \beta_0 + \beta_1 s_{t-1} + \beta_2 (y_t - y_t^n) + \beta_3 \pi_t + \varepsilon_t$$

Outline

- 1. Shadow rate New Keynesian model (SRNKM)
- 2. Microfoundation I: Mapping QE into SRNKM
- 3. Microfoundation II: Mapping lending facilities into SRNKM
- 4. Quantitative analyses

Large-scale asset purchases (QE)

The risk premium channel

- government purchases outstanding loans
- decrease interest rates through reducing risk premium
 - ► Gagnon et al. (2011) and Hamilton and Wu (2012)
- ▶ The same mechanism works for government bonds or corporate bonds

Households' problem

Households' utility function

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma}}{1-\sigma} - \frac{L_t^{1+\eta}}{1+\eta} \right)$$

budget constraint

$$C_t + \frac{B_t^H}{P_t} = \frac{R_{t-1}^B B_{t-1}^H}{P_t} + W_t L_t + T_t$$

Euler equation

$$C_t^{-\sigma} = \beta R_t^B \mathbb{E}_t \left[\frac{C_{t+1}^{-\sigma}}{\Pi_{t+1}} \right]$$

The linear Euler equation

$$y_t = -\frac{1}{\sigma} \left(r_t^B - \mathbb{E}_t \pi_{t+1} - r^B \right) + \mathbb{E}_t y_{t+1}$$

Bond return and policy rate

Define

$$rp_t \equiv r_t^B - r_t$$

Gagnon et al. (2011), Krishnamurthy and Vissing-Jorgensen (2012), and Hamilton and Wu (2012) suggest

$$rp'_t(b_t^G) < 0 \Rightarrow rp_t(b_t^G) = rp - \varsigma(b_t^G - b^G)$$

lacktriangle During normal times, $b_t^G = b^G, r_t = s_t$

$$r_t^B = r_t - rp_t(b_t^G) = r_t + rp = s_t + rp$$

▶ At the ZLB, $r_t = 0$

$$r_t^B = r_t - rp_t(b_t^G) = rp_t = rp - \varsigma(b_t^G - b^G) = s_t + rp$$
 if $s_t = -\varsigma(b_t^G - b^G)$

- ◆□ ▶ ◆圖 ▶ ◆불 ▶ · 볼|= · 쒸٩♡

Shadow rate equivalence for QE

Proposition

The shadow rate New Keynesian model represented by the shadow rate IS curve

$$y_t = -rac{1}{\sigma} \left(\mathbf{s_t} - \mathbb{E}_t \pi_{t+1} - \mathbf{s}
ight) + \mathbb{E}_t y_{t+1}$$

New Keynesian Phillips Curve, shadow rate Taylor rule

$$s_t = \phi_s s_{t-1} + (1 - \phi_s) [\phi_y (y_t - y_t^n) + \phi_\pi \pi_t + s].$$

nests both conventional Taylor interest rate rule and QE operation that changes risk premium if

$$\begin{cases} r_t = s_t, \ b_t^G = b^G & \text{for } s_t \ge 0 \\ r_t = 0, \ b_t^G = b^G - \frac{s_t}{\varsigma} & \text{for } s_t < 0. \end{cases}$$

▶ Shadow rate NK model

Quantifying assumption in proposition

$$s_t = -\varsigma (b_t^G - b^G)$$

- ▶ linear assumption: correlation = 0.92
- $\varsigma = 1.83$
 - ▶ Fed increases its bond holdings by 1%, the shadow rate decreases by 0.0183%
 - ▶ QE1: 490 billion to 2 trillion \Rightarrow 2.5% decrease in the shadow rate
 - ▶ QE3: 2.6 trillion to 4.2 trillion \Rightarrow 0.9% decrease in the shadow rate

Outline

- 1. Shadow rate New Keynesian model (SRNKM)
- 2. Microfoundation I: Mapping QE into SRNKM
- 3. Microfoundation II: Mapping lending facilities into SRNKM
- 4. Quantitative analyses

Lending facilities

Government injects liquidity to the economy

- Term Asset-Backed Securities Loan Facility in the US
- valuation haircuts in Eurosystem
- credit controls in UK

Combine this with a tax on interest rates

Model features

Entrepreneurs

- produce intermediate goods with labor and capital
- maximize utility
- discount factor $\gamma < \beta$
- borrow from households with a loan-to-value ratio M
- accumulate capital
- use capital as collateral

Government policy at the ZLB

- ▶ lending facilities
 - ▶ lend directly to entrepreneurs
 - \triangleright change the loan-to-value ratio from M to M_t
- tax (subsidy) on the interest rate income (payment)

Entrepreneurs' problem

Utility function

$$\max \qquad \mathbb{E}_0 \sum_{t=0}^{\infty} \gamma^t \log C_t^E$$

production function

$$Y_t^E = AK_{t-1}^{\alpha}(L_t)^{1-\alpha}$$

capital accumulation

$$K_t = I_t + (1 - \delta)K_{t-1}$$

budget constraint

$$\frac{Y_t^E}{X_t} + \tilde{B}_t = \frac{R_{t-1}^B \tilde{B}_{t-1}}{\mathcal{T}_{t-1} \Pi_t} + W_t L_t + I_t + C_t^E$$

borrowing constraint

$$\tilde{B}_t \leq M_t \mathbb{E}_t \left(\frac{K_t \Pi_{t+1}}{R_t^B} \right)_{t=0}$$

Entrepreneurs' FOCs

Labor demand

$$W_t = \frac{(1 - \alpha)AK_{t-1}^{\alpha}L_t^{-\alpha}}{X_t}$$

Euler equation

$$\frac{1}{C_t^E} \left(1 - \frac{M_t \mathbb{E}_t \Pi_{t+1}}{R_t^B} \right) = \gamma \mathbb{E}_t \left[\frac{1}{C_{t+1}^E} \left(\frac{\alpha Y_{t+1}^E}{X_{t+1} K_t} - \frac{M_t}{\mathcal{T}_t} + 1 - \delta \right) \right]$$

Households' problem

Microfoundation I: QE

Households' utility

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma}}{1-\sigma} - \frac{L_t^{1+\eta}}{1+\eta} \right)$$

budget constraint

$$C_t + \tilde{B}_t^H = \frac{R_{t-1}^B \tilde{B}_{t-1}^H}{T_{t-1} \Pi_t} + W_t L_t + T_t$$

Euler equation

$$C_t^{-\sigma} = \beta \mathbb{E}_t \left(R_t^B \frac{C_{t+1}^{-\sigma}}{\Pi_{t+1} \mathcal{T}_t} \right)$$

labor supply

$$W_t = C_t^{\sigma} L_t^{\eta}$$

Microfoundation II: Lending facilities

Sources of funding

Entrepreneurs' borrowing constraint

$$\tilde{B}_t \leq M_t \mathbb{E}_t \left(\frac{K_t \Pi_{t+1}}{R_t^B} \right)$$

Households lend

$$\tilde{B}_t^H \leq M \mathbb{E}_t \left(\frac{K_t \Pi_{t+1}}{R_t^B} \right)$$

- ▶ During normal times $\tilde{B}_t = \tilde{B}_t^H$, and $M_t = M$
- ▶ At the ZLB $M_t > M$

Government lends the rest

$$\tilde{B}_{t}^{G} = (M_{t} - M)\mathbb{E}_{t}\left(\frac{K_{t}\Pi_{t+1}}{R_{t}^{B}}\right)$$

Conventional and unconventional policy

Microfoundation I: QE

Suppose $R_t^B = R_t R P$

Conventional and unconventional policy tools appear in the model in pairs:

- ▶ R_t/T_t HH Euler equation, HH&E budget constraints
- $ightharpoonup R_t/M_t$ E borrowing constraint, E Euler equation
- ▶ M_t/T_t E Euler equation

Decreasing R_t is equivalent to increasing T_t and M_t .

Shadow rate equivalence for lending facilities

Proposition

If

$$\begin{cases} R_t = S_t, \mathcal{T}_t = 1, M_t = M & \textit{for } S_t \ge 1 \\ \mathcal{T}_t = M_t/M = 1/S_t & \textit{for } S_t < 1, \end{cases}$$

then
$$R_t/\mathcal{T}_t = S_t$$
, $R_t/M_t = S_t/M$, $M_t/\mathcal{T}_t = M \ \forall S_t$.

- \triangleright S_t summarizes both conventional and unconventional policies
- ► Equivalence in the non-linear model

Shadow rate equivalence for lending facilities

Proposition

The shadow rate New Keynesian model represented by the Euler equation

$$c_t = -\frac{1}{\sigma}(s_t - \mathbb{E}_t \pi_{t+1} - s) + \mathbb{E}_t c_{t+1}$$

the shadow rate Taylor rule, Phillips curve, ..., nests both conventional Taylor interest rate rule and lending facility – tax policy if

$$\begin{cases} r_t = s_t, \tau_t = 0, m_t = m & \text{for } s_t \ge 0 \\ \tau_t = m_t - m = -s_t & \text{for } s_t < 0. \end{cases}$$

▶ Shadow rate NK model

▶ Detailed model

Quantitative model

lacoviello (2005, AER) with

- unconventional policy
- technology shock to investigate the impact of negative supply shocks at the ZLB
- government spending to investigate fiscal multiplier at the ZLB
- preference shocks to create ZLB

Methodology

Notations

- **standard model**: w/o unconventional policy $r_t = 0$
- ▶ shadow rate model: w/ unconventional policy $s_t < 0$

Methodology for standard model:

piecewise linear – Guerrieri and Iacoviello (2005, JME): toolkit for models with occasionally binding constraints

Methodology for shadow rate model:

solve linear model with shadow rate

Microfoundation I: QE

then use propositions mapping shadow rate into various UMP

Preference shock and the ZLB

Negative technology shock

Note: blue: shadow rate NK model with UMP; red: standard NK model without UMP

Economic implication 1: negative supply shock

Technology shock

$$a_t \downarrow = \rho_a a_{t-1} + e_{a,t} \downarrow$$

Phillips Curve

$$\pi_t \uparrow = \beta \mathbb{E}_t \pi_{t+1} + \kappa (y_t - y) - \frac{\kappa (1 + \eta)}{\sigma + \eta} a_t \downarrow$$

Economic implication 1: negative supply shock

Standard model

Monetary policy

$$r_t = \max\{\phi_s s_{t-1} + (1 - \phi_s) [\phi_y (y_t - y_t^n) + \phi_\pi \pi_t + s], 0\}$$

Real interest rate

$$rr_t = r_t - \mathbb{E}_t[\pi_{t+1}]$$

IS curve

$$y_t = -\frac{1}{\sigma}(rr_t - r) + \mathbb{E}_t y_{t+1}$$

normal times: $\pi \uparrow \rightarrow r \uparrow \uparrow \rightarrow rr \uparrow \rightarrow y \downarrow$ ZLB without UMP: $\pi \uparrow \rightarrow r = 0 \rightarrow rr \downarrow \rightarrow y \uparrow Counterfactual$

Economic implication 1: negative supply shock

Shadow rate model

Shadow rate Taylor rule

$$s_t = \phi_s s_{t-1} + (1 - \phi_s) [\phi_v (y_t - y_t^n) + \phi_\pi \pi_t + s]$$

Real interest rate

$$rr_t = s_t - \mathbb{E}_t[\pi_{t+1}]$$

Shadow rate IS curve

$$y_t = -\frac{1}{\sigma}(s_t - \mathbb{E}_t \pi_{t+1} - r) + \mathbb{E}_t y_{t+1}$$

normal times: $\pi \uparrow \rightarrow r \uparrow \uparrow \rightarrow rr \uparrow \rightarrow y \downarrow$ ZLB without UMP: $\pi \uparrow \rightarrow r = 0 \rightarrow rr \downarrow \rightarrow y \uparrow Counterfactual$ ZLB with UMP: $\pi \uparrow \rightarrow s \uparrow \uparrow \rightarrow rr \uparrow \rightarrow y \downarrow Data consistent$

Government-spending shock

Note: blue: shadow rate NK model with UMP; red: standard NK model without UMP details

Economic implication 2: government spending multiplier

Government spending shock

$$g_t \uparrow = (1 - \rho_{\sigma})g + \rho_{\sigma}g_{t-1} + e_{\sigma,t} \uparrow$$

Market-clearing condition

$$y_t \uparrow = c_y c_t + g_y g_t \uparrow$$

Phillips Curve

$$\pi_t \uparrow = \beta \mathbb{E}_t \pi_{t+1} + \frac{\kappa}{\delta + \eta} (\sigma(c_t - c) + \eta(y_t \uparrow - y))$$

Economic implication 2: government spending multiplier

Standard model

Monetary policy

$$r_t = \max\{\phi_s s_{t-1} + (1 - \phi_s) [\phi_v(y_t - y_t^n) + \phi_\pi \pi_t + s], 0\}$$

Real interest rate

$$\mathit{rr}_t = \mathit{r}_t - \mathbb{E}_t[\pi_{t+1}]$$

IS curve

$$c_t = -\frac{1}{\sigma}(rr_t - r) + \mathbb{E}_t c_{t+1}$$

normal times: $\pi \uparrow y \uparrow \rightarrow r \uparrow \uparrow \rightarrow rr \uparrow \rightarrow c \downarrow \rightarrow \Delta y < \Delta g$ ZLB without UMP: $\pi \uparrow y \uparrow \rightarrow r = 0 \rightarrow rr \downarrow \rightarrow c \uparrow \rightarrow \Delta y > \Delta g$

Shadow rate NK model and Anomaly 2

Shadow rate model

Shadow rate Taylor rule

$$s_t = \phi_s s_{t-1} + (1 - \phi_s) [\phi_y (y_t - y_t^n) + \phi_\pi \pi_t + s]$$

Real interest rate

$$rr_t = s_t - \mathbb{E}_t[\pi_{t+1}]$$

Shadow rate IS curve

$$c_t = -\frac{1}{\sigma}(s_t - \mathbb{E}_t \pi_{t+1} - r) + \mathbb{E}_t c_{t+1}$$

normal times: $\pi \uparrow y \uparrow \rightarrow r \uparrow \uparrow \rightarrow rr \uparrow \rightarrow c \downarrow \rightarrow \Delta y < \Delta g$ ZLB without UMP: $\pi \uparrow y \uparrow \rightarrow r = 0 \rightarrow rr \downarrow \rightarrow c \uparrow \rightarrow \Delta y > \Delta g$ ZLB with UMP: $\pi \uparrow y \uparrow \rightarrow s \uparrow \uparrow \rightarrow rr \uparrow \rightarrow c \downarrow \rightarrow \Delta y \leq \Delta g$

Conclusion

We build a shadow rate NK model, capturing

Microfoundation I: QE

- the conventional interest rate rule at normal times
- unconventional monetary policy at the ZLB

The shadow rate policy can be implemented by

- QE
- lending facilities

Economic implications

- a negative supply shock is not stimulative
- government-spending multiplier is as usual

Model solution

the ZLB is not associated with a structural break

Lending facilities

$$egin{array}{lcl} c_t & = & -rac{1}{\sigma}(r_t^B- au_t-\mathbb{E}_t\pi_{t+1}-r-rp)+\mathbb{E}_tc_{t+1} \ \Rightarrow c_t & = & -rac{1}{\sigma}(s_t-\mathbb{E}_t\pi_{t+1}-r)+\mathbb{E}_tc_{t+1} \end{array}$$

$$C^{E}c_{t}^{E} = \alpha \frac{Y}{X}(y_{t} - x_{t}) + Bb_{t} - R^{B}B(r_{t-1}^{B} + b_{t-1} - \tau_{t-1} - \pi_{t-1}) - Ii_{t} + \Lambda_{1}$$

$$\Rightarrow C^{E}c_{t}^{E} = \alpha \frac{Y}{X}(y_{t} - x_{t}) + Bb_{t} - R^{B}B(s_{t-1} + rp + b_{t-1} - \pi_{t-1}) - Ii_{t} + \Lambda_{1}$$

$$b_t = \mathbb{E}_t(k_t + \pi_{t+1} + m_t - r_t^B)$$

$$\Rightarrow b_t = \mathbb{E}_t(k_t + \pi_{t+1} + m - s_t - r_t)$$

Lending facilities

$$0 = \left(1 - \frac{M}{R^{B}}\right) \left(c_{t}^{E} - \mathbb{E}_{t}c_{t+1}^{E}\right) + \frac{\gamma \alpha Y}{XK} \mathbb{E}_{t}(y_{t+1} - x_{t+1} - k_{t})$$

$$+ \frac{M}{R^{B}} \mathbb{E}_{t}(\pi_{t+1} - r_{t}^{B} + m_{t}) + \gamma M(\tau_{t} - m_{t}) + \Lambda_{2}$$

$$\Rightarrow 0 = \left(1 - \frac{M}{R^{B}}\right) \left(c_{t}^{E} - \mathbb{E}_{t}c_{t+1}^{E}\right) + \frac{\gamma \alpha Y}{XK} \mathbb{E}_{t}(y_{t+1} - x_{t+1} - k_{t})$$

$$+ \frac{M}{R^{B}} \mathbb{E}_{t}(\pi_{t+1} - s_{t} - rp + m) - \gamma Mm + \Lambda_{2}$$

Calibration

para	description	source	value
В	discount factor of patient households	lacoviello (2005)	0.99
β^{I}	discount factor of patient nouseholds discount factor of impatient households	lacoviello (2005)	0.99
-	discount factor of impatient nousenoids	lacoviello (2005)	0.93
?			0.96
j	steady-state weight on housing services	lacoviello (2005)	
η	labor supply aversion	lacoviello (2005)	0.01
μ	capital share in production	lacoviello (2005)	0.3
ν	housing share in production	lacoviello (2005)	0.03
δ	capital depreciation rate	lacoviello (2005)	0.03
X	steady state gross markup	lacoviello (2005)	1.05
θ	probability that cannot re-optimize	lacoviello (2005)	0.75
α	patient households' wage share	lacoviello (2005)	0.64
ME	loan-to-value ratio for entrepreneurs	Iacoviello (2005)	0.89
M ^I	loan-to-value ratio for impatient households	lacoviello (2005)	0.55
rR	interest rate persistence	lacoviello (2005)	0.73
ry	interest rate response to output	Iacoviello (2005)	0.27
r _□	interest rate response to inflation	Iacoviello (2005)	0.13
G V	steady-state government-spending-to-output ratio	Fernandez-Villaverde et al. (2015)	0.20
ρ_a	autocorrelation of technology shock	Fernandez-Villaverde et al. (2015)	0.90
ρ_g	autocorrelation of government-spending shock	Fernandez-Villaverde et al. (2015)	0.80
ρ_{β}	autocorrelation of discount rate shock	Fernandez-Villaverde et al. (2015)	0.80
σ_a	standard deviation of technology shock	Fernandez-Villaverde et al. (2015)	0.0025
σ_g	standard deviation of government-spending shock	Fernandez-Villaverde et al. (2015)	0.0025
σ_{β}	standard deviation of discount rate shock	Fernandez-Villaverde et al. (2015)	0.0025
ξ_p	price indexation	Smets and Wouters (2007)	0.24
lπ	steady-state inflation	2% annual inflation	1.005
BG	steady-state government bond holdings	no gov. intervention in private bond market	0
τ	steady-state tax/subsidy on interest rate income/payment	no tax in normal times	1
rp	steady-state risk premium	3.6% risk premium annually	1.009

Preference shock and the ZLB

