Discussion of "Falling into traps? Patent thickets, patent commercialization, and stock returns" by Po-Hsuan Hsu, Hsiao-Hui Lee, and Tong Zhou

Evgeny Lyandres Boston University

May 2017

Overview

Larger patent thicket \uparrow expected litigation cost following patent commercialization

Theory: \checkmark^* ; Empirics: \checkmark

- **Patent thicket** disperse ownership of prior patents that a given patent relies on (cites)
- Larger patent thicket \uparrow expected litigation cost following patent commercialization
- Theory: \checkmark^* ; Empirics: \checkmark

Higher expected litigation cost \uparrow cost of commercialization and delays it

- **Patent thicket** disperse ownership of prior patents that a given patent relies on (cites)
- Larger patent thicket \uparrow expected litigation cost following patent commercialization
- Theory: \checkmark^* ; Empirics: \checkmark

Higher expected litigation cost \uparrow cost of commercialization and delays it Theory: \checkmark ; Empirics: \checkmark^*

Larger patent thicket \uparrow expected litigation cost following patent commercialization

Theory: \checkmark^* ; Empirics: \checkmark

Higher expected litigation cost \uparrow cost of commercialization and delays it Theory: \checkmark ; Empirics: \checkmark^*

Delayed exercise lowers the value of GO and the ratio of GO to AP

Larger patent thicket \uparrow expected litigation cost following patent commercialization

Theory: \checkmark^* ; Empirics: \checkmark

Higher expected litigation cost \uparrow cost of commercialization and delays it Theory: \checkmark ; Empirics: \checkmark^*

Delayed exercise lowers the value of GO and the ratio of GO to AP Theory: \checkmark

Larger patent thicket \uparrow expected litigation cost following patent commercialization

Theory: \checkmark^* ; Empirics: \checkmark

Higher expected litigation cost \uparrow cost of commercialization and delays it Theory: \checkmark ; Empirics: \checkmark^*

Delayed exercise lowers the value of GO and the ratio of GO to AP Theory: \checkmark

Lower GO/AP ratio \downarrow operational and stock return volatility, risk exposure, and stock returns

The paper in one slide

Patent thicket – disperse ownership of prior patents that a given patent relies on (cites)

Larger patent thicket \uparrow expected litigation cost following patent commercialization

Theory: \checkmark^* ; Empirics: \checkmark

Higher expected litigation cost \uparrow cost of commercialization and delays it Theory: \checkmark ; Empirics: \checkmark^*

Delayed exercise lowers the value of GO and the ratio of GO to AP Theory: \checkmark

Lower GO/AP ratio \downarrow operational and stock return volatility, risk exposure, and stock returns

Theory: ✓

The paper in one slide

Patent thicket – disperse ownership of prior patents that a given patent relies on (cites)

Larger patent thicket \uparrow expected litigation cost following patent commercialization

```
Theory: \checkmark^*; Empirics: \checkmark
```

Higher expected litigation cost \uparrow cost of commercialization and delays it Theory: \checkmark ; Empirics: \checkmark^*

Delayed exercise lowers the value of GO and the ratio of GO to AP Theory: \checkmark

Lower GO/AP ratio \downarrow operational and stock return volatility, risk exposure, and stock returns

Theory: 🗸

As a result, patent thickets \downarrow volatility, stock returns, and market factor loadings

Theory: \checkmark ; Empirics: \checkmark^*

- A very cool idea
- The overall logic seems economically important
- Adequate modeling setup
- Impressive data compilation
- Thorough empirics
- Overall, really interesting and thought-provoking paper!

- A very cool idea
- The overall logic seems economically important
- Adequate modeling setup
- Impressive data compilation
- Thorough empirics
- Overall, really interesting and thought-provoking paper!

But

Impressions

- A very cool idea
- The overall logic seems economically important
- Adequate modeling setup
- Impressive data compilation
- Thorough empirics
- Overall, really interesting and thought-provoking paper!

But

I am a discussant...

Model

The model's logic

- Investment (real) option exercise is delayed when the cost of exercising the option is higher (i.e. the exercise threshold is higher)
 - Dixit and Pindyck (1988)
- The risk and expected return \downarrow in the option exercise threshold
 - Carlson, Fisher and Giammarino (2006)
- This paper: The cost of exercising the option is endogenous
 - It is shown to be \uparrow in patent thicket
 - This is potentially a very important contribution!
- As a result, risk and expected return \uparrow in patent thicket

Endogenous option exercise cost - the idea

- There are *n* firms, each owning a patent that the focal firm uses
- Each firm charges the focal firm a price for using its patents (exploitation cost), q_i for firm i, and has to pay a private cost, c_i
- The higher the q_i and the higher the overall exploitation cost, $\sum_i q_i$, the longer the GO exercise is delayed, and the lower the value of GO
- Each firm does not fully internalize this reduction in value, leading to a larger $\sum_i q_i$ than would be charged by a monopolist holding all *n* patents
- The larger the *n* the higher the total exploitation cost and the lower the value of GO
 - The "population effect"
 - More interestingly, the "coordination effect"

- The authors liken the coordination effect to Cournot competition
- However, q_i is price, not quantity, despite notation
- So, this is price competition a **homogenous product price competition**
- The usual result is that such competition leads to prices equalling (constant) marginal costs
- Why is this not happening here?

Coordination effect - intuition

- Why doesn't price competition drive q_i to c_i?
 - $\bullet\,$ Because the buyer needs to buy not one product, but all of them
 - This makes the products **perfect complements**, not perfect substitutes
 - A very unorthodox setting, not sure I've encountered it

To summarize:

- When the firm has to pay exploitation costs for **all** patents, the total cost \uparrow in *n*
- When the firm has to pay exploitation cost for just one patent, the total cost is zero or ↓ in n if the marginal private cost is not constant
- A conjecture: There is a threshold fraction of patents for which the firm needs to pay exploitation costs
 - $\bullet\,$ above which total exploitation cost $\uparrow patent$ thicket
 - $\bullet\,$ below which total exploitation cost $\downarrow\,$ patent thicket
 - Perhaps this could lead to more nuanced empirical predictions

Other comments

- The payoff from exercising GO is perfectly correlated with the cash flows from AP
 - Is it reasonable?
 - Do you need it? (i.e is it crucial?)
 - Relaxing it could lead to interesting cross-sectional predictions
- The "population effect" needs to be neutralized, you only need the "coordination effect"
 - I would assume N firms holding n patents, and do comparative statics w/r to N
- There is a condition in Proposition 2 (that expected return \uparrow in patent thicket): $\theta_t < \Omega P_t^I$
 - If it is not satisfied then the effect is reversed
 - **Conjecture**: this effect must be satisfied always if GO exercise is optimal, i.e. $\theta^* < \Omega {P'}^*$

Empirics

Measure of patent thicket

- The measure of patent thicket in the model is n
- The empirical measure is $(1 \sum_{j=1}^{J} (\frac{Numcites_{i,t}^{j}}{Numcites_{i,t}})^2) \frac{Numpats_{i,t}}{Numpats_{i,t}-1}$
- If firms are symmetric in terms of $Numpats_{i,t}$ and $Numcites_{i,t}^{j}$, then the measure of patent thicket is one, regardless of n
 - I.e., the measure is constructed to be orthogonal to n

• Unlike HHI,
$$\sum_{j=1}^{J} (\frac{Numcites_{i,t}^{j}}{Numcites_{i,t}})^{2}$$

- In the context of this paper, I am not sure this orthogonalization is appropriate, as *n* is a crucial determinant of GO exercise timing in the model
- The authors mention robustness to using HHI
- I would use HHI as a primary measure of patent thicket

Asset pricing results – Interpretation

- CAPM estimation of portfolio returns shows that:
 - Difference in betas between two extreme patent thicket quintiles equals 0.07
 - $\bullet\,$ This is equivalent to roughly 0.5% annual return spread
 - Difference in (monthly) alphas between two extreme patent thicket quintiles is 0.42%
 - This is equivalent to roughly 5% annual return
 - Does the market not understand the effects of patent thickets on risk?
 - Is there a trading strategy?
 - It would be interesting to think about carefully implementing it
 - Or we have a wrong asset pricing model?
 - I would include additional factors in the return regressions
 - Given the low correlations between patent thicket and size and B/M, I suspect that alphas are robust to Fama-French 3-factor model
 - But are they robust to inclusion of other factors?

Other comments

- Patent thickets are computed using only citations to patents of public firms
 - I would report results based on patent thickets computed using all patents
- Given that litigation is related to patent citations, can there be endogeneity of citations due to strategic omission of important citations?
- The test of the effect of patent thickets on the time to commercialization uses levels of new product introduction instead of their timing
 - In the model, eventual exercise of GO is a certainty
 - If both patent thickets and commercialization are constant over time, we should not expect a theoretical relation between patent thicket and subsequent commercialization within a given time frame
 - Thus, the test is a test of the time-varying nature of patent thickets and commercialization

A paper with great potential

Thought provoking – a highly recommended read