▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Discussion

Asset Collateralizability and the Cross-Section of Expected Returns

by Ai, Li, Li, and Schlag

Zhanhui Chen

Nanyang Technological University

23/5/2017

This paper

- a *Q*-theory with financial frictions, focusing on cross-sectional implications.
 - An important and active research area.
- proposes that tangible assets provide hedging against financing constraints.
- shows that firms with more tangible assets have lower returns.

Summary	Comments	Conclusions
⊙●⊙	00000	0

Mechanism

Firms use tangible (K) and intangible (H) assets as input factors in production:

$$Y_t = A_t (\underline{K_t^{\phi} H_t^{1-\phi}})^{\alpha} L_t^{1-\alpha})$$

A fraction of $(1 - \lambda)$ firms die and are replaced by new ones.

Loans use K but not H as collateral.

$$V_{0} = \max_{\{N_{t+1}, K_{t+1}, H_{t+1}, B_{t}\}_{t=0}^{\infty}} E_{0} \left[\sum_{t=1}^{\infty} M_{0,t} \lambda^{t-1} (1-\lambda) N_{t} \right]$$
$$N_{t} + B_{t} = q_{t} K_{t+1} + p_{t} H_{t+1}, t \ge 0$$
$$N_{t+1} = R_{t+1}^{K} q_{t} K_{t+1} + R_{t+1}^{H} p_{t} H_{t+1} - R_{t}^{f} B_{t}, t \ge 0$$

 $\frac{B_t}{\zeta q_t K_{t+1}}, t \ge 0$

Summary	Comments	Conclusions
000		

Mechanism

- Under financing constraints, investments are blow the first-best case.
- Firms with higher tangibility can borrow and invest more in tangible assets which allow for further borrowing.
 - Credit multiplier
- Tangibility acts as buffer against borrowing constraints.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Higher tangibility lowers expected distress costs.
- Hence, higher tangibility leads to lower returns.

Comment 1: Alternative thoughts

- Stock returns might increase with collateralizability.
 - Tangibility makes it difficult for firms to substitute high-risk assets with low-risk ones.
 - Especially when disinvestment is costly (Zhang, 2005).
 - Firms with higher debt capacity also have higher exposure to the changes in external funding conditions (Hahn and Lee, 2009).

Comment 1: Alternative thoughts

- Stock returns might increase with collateralizability.
 - Tangibility makes it difficult for firms to substitute high-risk assets with low-risk ones.
 - Especially when disinvestment is costly (Zhang, 2005).
 - Firms with higher debt capacity also have higher exposure to the changes in external funding conditions (Hahn and Lee, 2009).
- Needs a structural model to disentangle those effects.

nmary		Comments	Conclusions
		00000	

Comment 2: Empirics

- Conceptually, story works for financially constrained firms only.
 - But we do see similar, though weaker, empirical results for unconstrained firms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Comment 2: Empirics

- Conceptually, story works for financially constrained firms only.
 - But we do see similar, though weaker, empirical results for unconstrained firms.
- Other factors predict leverage
 - Industry median, profits, and tangibility (Frank and Goyal, 2009)
 - Peer effects (Leary and Roberts, 2014)
 - How to control these? By Fama-French factors?

Comment 2: Empirics

- Conceptually, story works for financially constrained firms only.
 - But we do see similar, though weaker, empirical results for unconstrained firms.
- Other factors predict leverage
 - Industry median, profits, and tangibility (Frank and Goyal, 2009)
 - Peer effects (Leary and Roberts, 2014)
 - How to control these? By Fama-French factors?
- Zero leverage firms
 - Strebulaev and Yang (2013): 10.2% public nonfinancial US firms have zero leverage and about 22% have less than 0.05 book leverage.

Comment 3: Numerical computing

- Solving the model, especially computing asset prices, with Dynare?
 - Dynare is OK for macro quantities, but often less precise for asset prices.
 - In particular, tangibility constraint creates a kink in this model.
 - Perturbation method can't capture the discontinuous area, which is important in this model.

Comment 4: Calibration results

Moments	Data	Benchmark	Frictionless
$\sigma(ilde{M})$		104.59	94.31
$E[R^f]$	1.20(0.16)	0.83	1.14
$\sigma(R^f)$	0.97(0.31)	0.81	0.84
$E[R^{L,K} - R^f]$		(1.58)	<mark>1.26</mark>
$\sigma(R^{L,K})$		2.34	1.65
$E[R^{L,H} - R^f]$		<mark>6.73</mark>	<mark>2.91</mark>
$\sigma(R^{L,H})$		4.66	2.61
$E[R^{L,H} - R^{L,K}]$	4.80 (2.04)	$\frac{5.15}{5}$	1.65
$E[R^M - R^f]$	5.71(2.25)	3.50	1.79

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Comment 5: Consider firm heterogeneity?

Cross-sectional implications?

- Empirical results: Cross-sectional stock return variations due to different asset tangibility.
- But the model is calibrated over ONE firm and compares the returns to tangible and intangible assets.
 - Stock return = weighted average returns to tangible and intangible assets, the risk-free rate
 - The difference of returns to tangible and intangible assets \neq the stock return variations in empirical exercises

Comment 5: Consider firm heterogeneity?

Cross-sectional implications?

- Empirical results: Cross-sectional stock return variations due to different asset tangibility.
- But the model is calibrated over ONE firm and compares the returns to tangible and intangible assets.
 - Stock return = weighted average returns to tangible and intangible assets, the risk-free rate
 - The difference of returns to tangible and intangible assets \neq the stock return variations in empirical exercises
- Can we replicate the cross-sectional stock return variations documented?
 - For example, adding idiosyncratic shocks...

Very interesting thoughts and results!

- A very promising area: Q-theory with credit constraints on investment.
 - Li, Liu, and Xue (2014)
- Illustrating higher tangibility may hedge against the aggregate credit condition.