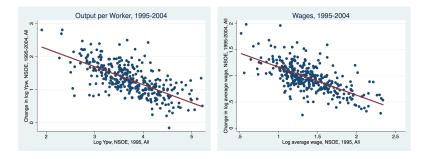
Barriers to Entry and Regional Economic Growth in China

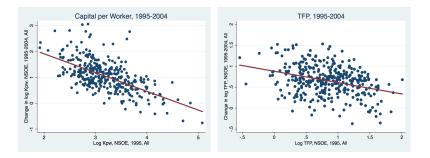
Loren Brandt University of Toronto

Gueorgui Kambourov University of Toronto


Kjetil Storesletten University of Oslo

ABFER Singapore May 21, 2018

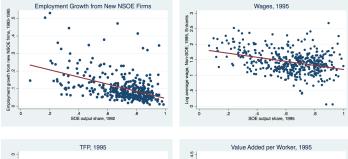
Motivation

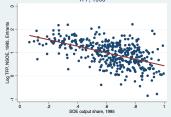

- Since the onset of economic reform in the late 1970s, China has gone from one of the poorest to a middle-income economy
- Expansion of non-state sector was main source of growth (Zhu, 2012)
- But growth was highly uneven across localities (\approx 350 prefectures)
- We show that
 - : By mid-1990s, there were **sizable local differences** in productivity, wages, & size of non-state manufacturing sector
 - dispersion reflected divergence before 1995
 - : Reversal of fortune from mid-1990s: differences across localities in non-state manufacturing performance started disappearing
 - strong convergence across prefectures in non-state value added per worker, TFP, wages, and capital per worker

Non-State Dispersion & Convergence, 1995-2004

- 1995 dispersion: avg 95% / avg 5% = 9.5 for Y/N, 6.1 for wage (Restuccia et al.: ratio Y/N across countries is 5 for non-agricult.)
- rate of convergence, output per worker; 8.5% after 1995 (Barro and Sala-i-Martin: regional convergence rate in USA: 2%)
- rate of convergence, wages; 6.0% after 1995

Non-State Dispersion & Convergence, 1995-2004




- rate of convergence, capital per worker; 13.5% after 1995
- rate of convergence, TFP (calculated as Solow residual); 3.1% after 1995

Overview

- Aim of paper: understand forces behind initial dispersion and 1995-2008 convergence
- Brandt et al, (2012) argue: creation and selection of new firms is most important source of non-state sector productivity and output growth
- We find: this process is very different across prefectures: ... in prefectures with a large presence of state firms,
 - : less entry of non-state firms
 - : non-state entrants pay lower wages, have lower TFP, lower value added per worker, lower capital per worker

Non-State firms 1995: entry rates, wages, TFP, Y/N

- Build closed economy version of Hopenhayn (1992) model with 3 distortions to account for empirical patterns
 - : capital and output wedges,
 - : an entry wedge
- Interpretation of entry wedge: restriction on number of licences allowing potential entrants to operate.
- Solve model analytically
- Estimate model using firm-level data from the 1995, 2004, and 2008 Chinese Industrial Census

Findings: entry wedge is quantitatively most important

- Entry wedge:
 - main driver of initial 1995 dispersion
 - main driver of 1995-2008 convergence
- World Bank survey "Cost of Doing Business in China, 2008": indices match well with our 2008 entry wedge estimates
- Study the empirical factors behind measured entry wedges:
 - : 1995 level systematically linked to size of SOE sector
 - : convergence after 1995 tied to downsizing of state sector
- Political economy model rationalizes entry wedge-SOE link
 - : Narrative: presence of SOEs makes local government less prone to promote private business

Model: Hopenhayn Meets Hsieh-Klenow

$$\mathbf{y}_i = \mathbf{z}_i^{1-\eta} \left(\mathbf{k}_i^{1-\alpha_j} \mathbf{n}_i^{\alpha_j} \right)^{\eta},$$

- firms in each industry have common production function
- j = J(i) denotes industry for firm *i*
- $0 < \eta < 1$: decreasing returns to scale
- common rental rate of capital $(r + \delta)$
- closed labor market: prefecture-specific wage rate w
- distortions: output tax τ_i^{γ} and capital tax τ_i^k
- Benchmark: focus on prefecture-specific wedges.
 Extension: allow within-prefecture firm heterogeneity

Firm's Problem: Output and Capital Wedges

• The firm's objective is

$$\max_{k,n}\left\{\left(1-\tau^{y}\right)y-wn-\left(1+\tau^{k}\right)\left(r+\delta\right)k\right\}.$$

• Firms' FOCs for k and n imply linear allocations in z

$$y = z \left(\left(1 - \tau^{y} \right) \eta \right)^{\frac{\eta}{1 - \eta}} \left(\frac{1 - \alpha}{\left(1 + \tau^{k} \right) \left(r + \delta \right)} \right)^{\frac{(1 - \alpha)\eta}{1 - \eta}} \left(\frac{\alpha}{w} \right)^{\frac{\alpha \eta}{1 - \eta}}$$
$$\equiv z \cdot \bar{y}$$
$$n^{*} = n(z, \tau^{y}, \tau^{k}; w) = z \cdot \alpha \eta \left(\frac{1 - \tau^{y}}{w} \right) \cdot \bar{y}$$
$$k^{*} = k(z, \tau^{y}, \tau^{k}; w) = z \cdot (1 - \alpha) \eta \frac{1 - \tau^{y}}{\left(1 + \tau^{k} \right) \left(r + \delta \right)} \cdot \bar{y}$$
$$\Pi = z \cdot \left(1 - \tau^{y} \right) (1 - \eta) \cdot \bar{y}.$$

Entrepreneur's Problem, Entry Wedges

- Large (but finite) number *M* of potential entrepreneurs in each prefecture
- Potential entrepreneurs observe individual TFP z
- *z* is Pareto distributed $f(z) = \underline{z}\xi z^{-\xi-1}$ (with $z^{\xi} \ge \underline{z}$)
- Entrepreneur incurs fixed cost v if firm is operated
- Entry wedge: only a share (1ψ) of potential entrants allowed to enter
 - random selection/lottery

Entry Decision and Clearing of Labor Market

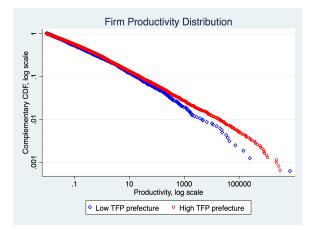
• Only entrepreneurs with $z \ge z^*$ will operate, where

$$z^*(\tau^{\mathcal{Y}},\tau^k;w)=\frac{v}{(1-\tau^{\mathcal{Y}})(1-\eta)\cdot\bar{y}}$$

• Equilibrium wage w clears the (local) labor market

$$M(1-\psi)\int_{z^*}^{\infty}n\left(z,\tau^y,\tau^k;w\right)f(z)\,dz=N$$

Equilibrium Mechanism


- Suppose (1ψ) is small
- Low (1ψ) implies that few firms enter
- Low entry implies low wages required to clear the labor market (since little competition for workers)
- Low wages implies low *z** (since labor is cheap)
- Low z* implies negative selection
 ... hence low TFP and low Y/N

Equilibrium Mechanism

- The theory predicts that the upper tail of the TFP distribution should be the same in all prefectures
- Consistent with the data
 - pick z_0 as the 90th percentile of the overall TFP distrib.
 - separate all prefectures into two groups: low TFP and high TFP
 - the estimated ξ is the same in low and high TFP prefectures
 - for the 90th perc: $\xi_{TFP,low} = 1.051$, $\xi_{TFP,high} = 1.048$

Equilibrium Mechanism

• The distributions of ln z, above the z₀ cutoff are very similar:

Equilibrium Wage: w

$$\ln w = \frac{1-\eta}{1-\eta+\xi\alpha\eta} \ln\left(\frac{(1-\psi)\underline{z}^{\xi}}{N}\right) - \frac{(1-\eta)(\xi-1)}{1-\eta+\xi\alpha\eta} \ln(\nu)$$
$$+ \frac{\xi}{1-\eta+\xi\alpha\eta} \ln(1-\tau^{y})$$
$$- \frac{(1-\alpha)\xi\eta}{1-\eta+\xi\alpha\eta} \ln\left(\left(1+\tau^{k}\right)(r+\delta)\right)$$
$$+ \Omega(\alpha,\eta,\xi)$$

$$\frac{\partial \ln w}{\partial \ln (1 + \tau^k)} = \frac{\partial \ln w}{\partial \ln (r + \delta)} = -\frac{(1 - \alpha)\xi\eta}{1 - \eta + \xi\alpha\eta} < 0$$
$$\frac{\partial \ln w}{\partial \ln (1 - \tau^y)} = \frac{\xi}{1 - \eta + \xi\alpha\eta} > 0$$
$$\frac{\partial \ln w}{\partial \ln (1 - \psi)} = -\frac{\partial \ln w}{\partial \ln N} = \frac{1 - \eta}{1 - \eta + \xi\alpha\eta} > 0$$

Equilibrium: Output per Worker

$$\ln \frac{Y}{N} = \ln w - \ln (1 - \tau^{y}) - \ln (\alpha \eta)$$

$$\frac{\partial \ln \frac{Y}{N}}{\partial \ln (1 + \tau^k)} = \frac{\partial \ln w}{\partial \ln (r + \delta)} = -\frac{(1 - \alpha)\xi\eta}{1 - \eta + \xi\alpha\eta} < 0$$
$$\frac{\partial \ln \frac{Y}{N}}{\partial \ln (1 - \tau^y)} = \frac{\xi\eta (1 - \alpha) + (\xi - 1)(1 - \eta)}{1 - \eta + \xi\alpha\eta} > 0$$
$$\frac{\partial \ln \frac{Y}{N}}{\partial \ln (1 - \psi)} = -\frac{\partial \ln w}{\partial \ln N} = \frac{1 - \eta}{1 - \eta + \xi\alpha\eta} > 0$$

Equilibrium: Entrants

$$\Gamma(z \ge z^*) = (1 - \psi)\underline{z} \left(\frac{(1 - \tau^{y})(1 - \eta) \cdot \overline{y}}{v}\right)^{\xi}$$

$$\begin{array}{ll} \displaystyle \frac{\partial \ln \Gamma}{\partial \ln \left(1 + \tau^{k}\right)} & < & 0 \\ \\ \displaystyle \frac{\partial \ln \Gamma}{\partial \ln \left(1 - \tau^{y}\right)} & > & 0 \\ \\ \displaystyle \frac{\partial \ln \Gamma}{\partial \ln (1 - \psi)} & > & 0 \end{array}$$

Equilibrium: TFP Z

$$\ln Z = \frac{\alpha \eta (1-\eta)}{1-\eta + \xi \alpha \eta} \ln \left(\frac{(1-\psi)\underline{z}^{\xi}}{N} \right) - \frac{\alpha \eta (1-\eta) (\xi-1)}{1-\eta + \xi \alpha \eta} \ln (\nu)$$
$$- \frac{1-\eta}{1-\eta + \xi \alpha \eta} \ln (1-\tau^{y})$$
$$+ \frac{(1-\eta) (1+(\xi-1)\alpha \eta)}{1-\eta + \xi \alpha \eta} \ln \left(\left(1+\tau^{k} \right) (r+\delta) \right)$$
$$+ \Omega(\alpha, \eta, \xi)$$

$$\frac{\partial \ln Z}{\partial \ln (1+\tau^k)} = \frac{\partial \ln Z}{\partial \ln (r+\delta)} = \frac{(1-\eta)(1+(\xi-1)\alpha\eta)}{1-\eta+\xi\alpha\eta} > 0$$
$$\frac{\partial \ln Z}{\partial \ln (1-\tau^y)} = -\frac{1-\eta}{1-\eta+\xi\alpha\eta} < 0$$
$$\frac{\partial \ln Z}{\partial \ln (1-\psi)} = -\frac{\partial \ln Z}{\partial \ln N} = \frac{\alpha\eta(1-\eta)}{1-\eta+\xi\alpha\eta} > 0$$

Effects of Wedges on Allocations

	$(1- au^y)$	$(1+ au^k)$	(1 – ψ)
W	+	-	+
TFP _s	-	+	+
Entry	+	-	+
Y N	+	-	+

[More]

A politico-economic motivation for wedges

- Central government dictates a prefecture-specific target level of state employment, \bar{N}_{SOE}
- Problem: SOEs compete with private sector for workers
- Instruments: Local government use wedges {τ^y, τ^k, ψ} to deliver N_{SOE} = N_{SOE}
- Objective: Local government maximize entrepreneur profits conditional on *z* (want to "help a friend")
- Optimal policy: set $\tau^y = \tau^k = 0$ and use ψ to constrain NSOE entry to ensure $N_{NSOE} = 1 \bar{N}_{SOE}$

Chinese Industrial Census

- Chinese Industrial Census (CIC)
- CIC: (1992), 1995, 2004, 2008
- Large: covers most of the manufacturing sector
- Rich: firm-level observations on value added, employment, capital stock, wage bill, year of birth, ownership, sector
- Data work (issues)
 - make prefectures consistent across years
 - define the SOE sector (especially in 2004 and 2008)
 - construct measures of real capital

Calibration

- Labor share for each industry αη: Hsieh and Klenow (2009)
- Decreasing returns: $\eta = 0.85$ (Restuccia and Rogerson 2008)
- $\xi = 1.05$, Pareto parameter, use 30% of the most productive firms

$$rac{E(z|z\geq z^*)}{z^*} \quad = \quad rac{\xi}{\xi-1}$$

- Set v such that $n^*(z^*) = 1$ in the lowest s prefectures
- Set \underline{z} such that $\psi = 0$ in the lowest *s* prefectures
- From 1995, 204, 2008 Chinese Industrial Census
 - value added: y_i
 - wage bill: w_in_i
 - estimated real capital: k_i

Accounting Exercise 1: Output and Capital Wedges

• τ_i^y and τ_i^k identified from firm's first-order conditions, for k and n

$$(1 - \tau_i^{\mathcal{Y}}) = \frac{1}{\alpha_j \eta} \frac{w_i n_i}{y_i}$$

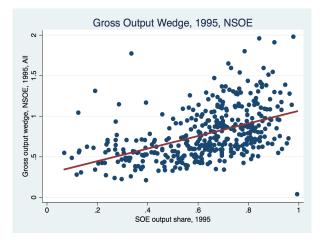
$$(1 + \tau_i^{\mathcal{K}}) = \frac{1 - \alpha_j}{\alpha_j} \frac{w_i n_i}{(r + \delta) k_i}$$

Gross output wedge in the prefecture, Δ^y_p


$$\Delta_{\rho}^{y} = \sum_{j=1}^{J} \left(\frac{1}{\alpha_{j}\eta} \sum_{i \in (j,\rho)} \frac{w_{i}n_{i}}{y_{i}} \frac{y_{i}}{Y_{j,\rho}} \right) \frac{Y_{j,\rho}}{Y_{\rho}},$$

Gross capital wedge in the prefecture, Δ^k_p

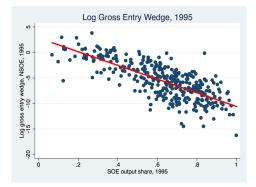
$$\Delta_{\rho}^{k} = \sum_{j=1}^{J} \left(\frac{1-\alpha_{j}}{\alpha_{j}} \sum_{i \in (j,\rho)} \frac{w_{i}n_{i}}{k_{i}} \frac{k_{i}}{K_{j,\rho}} \right) \frac{K_{j,\rho}}{K_{\rho}}$$


Compute Δ^y_p and Δ^k_p for each prefecture in the dataset

Gross Capital Wedge: Δ_p^k

Capital taxes slightly higher in high SOE-share prefectures

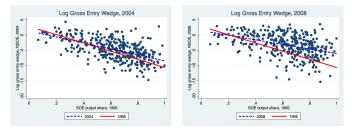
Gross Output Wedge: Δ_p^y


Output taxes low in high SOE-share prefectures

Accounting Exercise 2: Entry Wedge $(1 - \psi_p)$

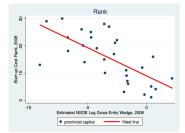
• Estimate ψ_p in prefecture *p* from the equilibrium condition

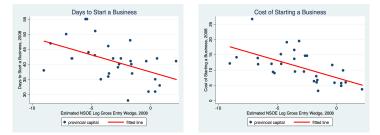
$$\ln(1 - \psi_p) = \ln N_p + \frac{1 - \eta + \xi \alpha \eta}{1 - \eta} \ln w_p$$
$$- \frac{\xi}{1 - \eta} \ln \Delta_p^{y}$$
$$+ \frac{\xi \eta (1 - \alpha)}{1 - \eta} \ln \Delta_p^{k}$$
$$+ (\xi - 1) \ln v + \Omega(\alpha, \eta, \xi, \underline{z})$$


Estimated NSOE Entry Wedge $(1 - \psi_p)$ in 1995

- Log gross entry wedge $\ln(1-\hat{\psi}_{
 ho})$
- SOE share accounts for 52% of the variation in the entry wedge

Estimated NSOE Entry Wedge $(1 - \psi_p)$





2008 Costs of Starting a Business in China

- "Doing Business in China 2008" Report
 - : The World Bank Group (2008)
 - : provides various measures of the cost of starting a business in main provincial cities
- Measures
 - : Rank: from easy (1) to hard (30) to start a business
 - : Days it takes to start a business
 - : Cost of starting a business: as a % of provincial GDP per capita

"Doing Business in China" and Entry Wedges, 2008

Entry Rates and Wedges

- Non-SOE entry rates were not targeted in the estimation of the model
- Entry rate measure $\Gamma_{p,t}^{e}$ for prefecture p in period t = 1995,2004,2008

$$\Gamma_{p,t}^{e} = \frac{N_{p,t}^{e}}{N_{p,t} - N_{p,t}^{e}}$$

- : N^e_{p,t} is employment in new non-SOE firms
- : $N_{p,t}$ is total employment
- : new firms are started in period t-1 or t-2
- : firms started in period t are dropped

Entry Rates and Wedges

$$\ln \Gamma_{\rho,t}^{e} = \beta_{0} + \underbrace{\beta_{1}}_{(+)} \underbrace{\ln(1 - \tau_{\rho,t}^{y})}_{\text{log gross output wedge}} + \underbrace{\beta_{2}}_{(+)} \underbrace{\ln[(1 + \tau_{\rho,t}^{k})(r+\delta)]}_{\text{log gross capital wedge}} + \underbrace{\beta_{3}}_{(+)} \underbrace{\ln(1 - \psi_{\rho,t})}_{\text{log gross entry wedge}} + \varepsilon_{\rho,t}$$

	$\ln(1- au^{y})$		In(1+	$\ln(1+ au^k)$			$\ln(1-\psi)$		
	β_1	1 <i>sd</i>		β2	1 <i>sd</i>		β_3	1 <i>sd</i>	
1995	0.188*	9.5%		-0.161*	-9.3%		0.106**	36.9%	
2004	0.086	3.8%		0.045	2.2%		0.042**	14.9%	
2008	0.221**	12%		-0.065	-5.0%		0.037**	13.1%	

Note: ** - statistically significant at 1%; * - statistically significant at 10%.

Entry Rates and Wedges

$$\begin{split} \Delta \ln \Gamma_{\rho,t}^{e} &= \gamma_{0} \quad + \quad \underbrace{\gamma_{1}}_{(+)} \Delta \quad \underbrace{\ln(1 - \tau_{\rho,t}^{y})}_{\text{log gross output wedge}} \quad + \underbrace{\gamma_{2}}_{(-)} \Delta \underbrace{\ln[(1 + \tau_{\rho,t}^{k})(r + \delta)]}_{\text{log gross capital wedge}} \\ &+ \underbrace{\gamma_{3}}_{(+)} \Delta \quad \underbrace{\ln(1 - \psi_{\rho,t})}_{\text{log gross entry wedge}} \quad + \quad \varepsilon_{\rho,t} \end{split}$$

	$\Delta \ln(1- au^y)$		$\Delta \ln(1+ au^k)$		$\Delta \ln(1-\psi)$			
	γ1	1 <i>sd</i>		γ2	1 <i>sd</i>		γ3	1 <i>sd</i>
1995-2004	-0.083	-4.2%		-0.201*	-13.6%		0.035*	9.1%
2004-2008	0.160*	8.9%		-0.086*	-6.8%		0.044**	9.8%

Note: ** - statistically significant at 1%; * - statistically significant at 10%.

Convergence in TFP and Wages

	TI	=P	W	Wages		
Change in	1995-2004	2004-2008	1995-2004	2004-2008		
all	0.031	0.038	0.060	0.109		
αη	-0.003	-0.007	0.023	0.006		
п	0.001	-0.001	0.006	-0.009		
$(1+\tau^k)$	-0.006	0.003	0.005	0.015		
$(1-\tau^y)$	0.009	0.013	-0.001	-0.028		
$(1-\psi)$	0.029	0.029	0.024	0.081		

What Explains the Entry Wedges?

$$\ln(1-\psi)_{\rho,t} = \beta_0 + \beta \, e^{SOE}_{\rho,t} + X_{\rho,t} \gamma' + \varepsilon_{\rho,t}$$

$$\Delta \ln(1-\psi)_{it} = eta_0 + eta_1 \Delta e^{SOE}_{it} + \Delta X_{it} \gamma' + \Delta arepsilon_{it}$$

Controls

- In FREV_t: 1995 (2004) log fiscal revenue per government worker
- In PROF^{soe}: 1995 ratio of profits to total assets for SOEs
- $e_p^{soe} = \frac{E_p^{soe}}{E_p}$: 1995 (2004, 2008) share of SOE employment in pref. p

Cross-Sectional IVs for SOE Share, e_p^{soe}

Cross-sectional instruments: lagged variables

- $IV_{lag} = e_{p,t-1}^{soe}$; lagged SOE employment share in pref. p
- *IV*₁₉₇₈
 - : restrict 1995 sample to firms established 1978 or earlier
 - : measure SOE share in 1978 using this restricted sample
- *IV*_{prov}: use 1978 GDP provincial data and construct province SOE share in 1978

The Entry Wedge in 1995, 2004, and 2008

$\ln(1-\psi)$	OLS	IV _{lag}	IV ₁₉₇₈	IV _{prov}
e ^{soe}	-11.64**	-14.13**	-12.96**	-11.72**
In FREV	1.31**	0.93*	1.11**	1.69*
In PROF ^{soe}	0.31*	0.32*	0.32*	0.13
e ^{soe}	-9.61**	-13.39**	-16.06**	-17.47**
In FREV	2.16**	1.89**	1.70**	0.40
e ^{soe}	-8.10**	-9.63**	-14.60**	-16.71**
	e ^{soe} In FREV In PROF ^{soe} e ^{soe} In FREV	e ^{soe} -11.64** ln FREV 1.31** ln PROF ^{soe} 0.31* e ^{soe} -9.61** ln FREV 2.16**	e ^{soe} -11.64** -14.13** ln FREV 1.31** 0.93* ln PROF ^{soe} 0.31* 0.32* e ^{soe} -9.61** -13.39** ln FREV 2.16** 1.89**	e ^{soe} -11.64** -14.13** -12.96** In FREV 1.31** 0.93* 1.11** In PROF ^{soe} 0.31* 0.32* 0.32* e ^{soe} -9.61** -13.39** -16.06** In FREV 2.16** 1.89** 1.70**

Note: ** - statistically significant at 1%; * - statistically significant at 5%. [First-Stage Results]

Time-Series IV for Change in SOE Share, Δe_p^{soe}

- Bartik instrument for 1995-2004 SOE empl. change
 - : 1998 SOE reform "Grab the Large, Release the Small"
- Aggregate 1995-2004 SOE empl. change in industry j

:
$$\mu_j^{soe} = \frac{E_{j,2004}^{soe} - E_{j,1995}^{soe}}{E_{j,1995}^{soe}}$$

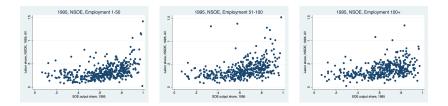
• 1995 ratio SOE empl. share in ind. *j* / pref. *p* empl.

:
$$e_{p,j}^{soe} = \frac{E_{p,j}^{soe}}{E_p}$$

Predicted increase in SOE employment (Bartik instrument)

:
$$IV_{p}^{ind} = \sum_{j} e_{p,j}^{soe} * \mu_{j}^{soe}$$

Change in the Entry Wedge, 1995-2004


$\Delta \ln(1-\psi)$	OLS	OLS	IV _p ^{ind}	IV ^{ind}
Δe^{soe}	-3.13** (1.00)	-2.54* (1.18)	-5.38* (2.20)	-6.14* (2.38)
$\Delta \ln FREV$		1.13** (0.37)		0.84* (0.41)
First stage:				
IV coefficient st. error R ²			0.67** (0.07) 0.21	0.71** (0.07) 0.30

Note: ** - statistically significant at 1%; * - statistically significant at 5%.

Alternative Theory I

- NSOE firms in a prefecture have access to two technologies:
 - 1. inefficient low z technology with a high labor share (labor intensive)
 - 2. efficient high z technology with a low labor share
- A larger fraction of the NSOE firms in the high s prefectures will use technology 1 ⇒ higher labor share
- Predictions of the alternative theory
 - within prefectures: smaller firms have higher labor share
 - across prefectures: conditional on size, firms have the same labor share

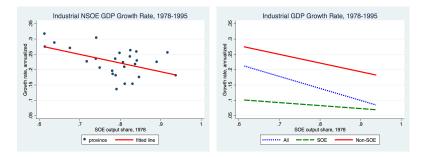
Alternative Theory I

- Predictions of the alternative theory are not consistent with the data
- Within prefectures
 - : firms with different sizes have the same labor share
- Across prefectures
 - : conditional on size, firms have increasing in s labor share

Alternative Theory II

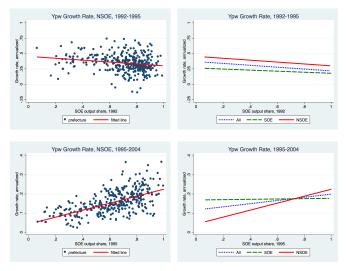
- The pool of potential entrants is worse in the high *s* prefectures:
 - lower TFP of entrants
 - less heavy right Pareto tail (larger Pareto coefficient)
- Predictions of the alternative theory
 - consider a productivity cutoff *z*₀
 - consider the right tail of the Pareto distribution for firms with $z > z_0$
 - ξ should be higher in high *s* prefectures
- Predictions of the alternative theory are not consistent with the data
 - pick z_0 as the 90th or 95th percentile of the overall TFP distrib.
 - in each case, ξ is the same in high and low *s* prefectures
 - for the 90th perc: $\xi_{s,low} = 1.051, \, \xi_{s,high} = 1.048$

Alternative Theory III

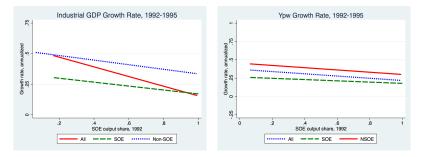

- The cost of operation, v, is higher in high s prefectures
- · Predictions of the alternative theory
 - less entry
 - lower wages
- Predictions of the alternative theory that are not consistent with the data
 - entrants are positively selected on productivity
 - high TFP

Conclusion

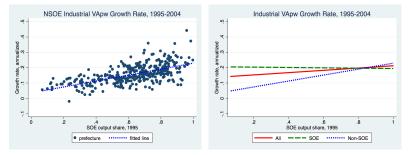
- Study growth patterns of non-state sector across localities in China
- Build Hopenhayn model of new firm entry with multiple distortions
- Identify novel entry wedge as key to explaining heterogeneity in new firm behavior across prefectures
 - Provide out-of-sample validation for these wedges
 - Link size and changes of entry costs to dynamics of state-sector
- Develop political-ec. model of local government behavior to motivate observed correlations between entry wedges and SOE presence
- Future directions
 - Allow wedges to differ by industry and location
 - Extend through Great Recession to capture possible reversal
 - Study role of wedges for impeding structural transformation


Additional Slides

Growth in the Non-State Sector: 1978-1995


- Provincial level industrial output data
- The size of the state sector in 1978 is negatively correlated with the
 - 1978-1995 growth in provincial NSOE GDP (left panel); and
 - 1978-1995 growth in prov. overall, SOE, and NSOE GDP (right panel).

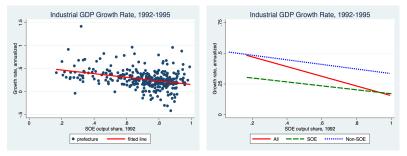
Growth in the Non-State Sector


- 1992-1995: divergence
- 1995-2004: convergence (as well as in 2004-2008)

Growth in the Non-State Sector: 1992-1995

- At the prefecture level, industrial output (per worker)
- The size of the state sector in 1992 is negatively correlated with the
 - 1992-1995 growth in prefecture GDP (left panel); and
 - 1992-1995 growth in prefecture output per worker (right panel)

Growth Rate in VApw, 1995-2004

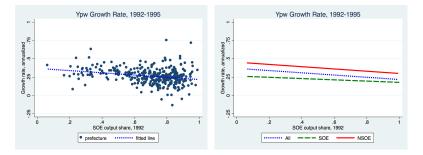

- The size of the state sector in 1995 is positively correlated with the
 - 1995-2004 growth in prefecture NSOE VApw (left panel); and
 - 1995-2004 growth in pref. overall and NSOE VApw (right panel).

[Output per worker]

[Output]

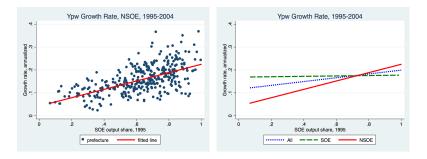
[2004-2008]

The Effect of the State Sector: 1992-1995

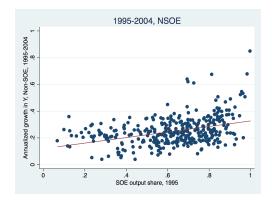


- At the prefecture level, industrial output
- The SOE share of output, s, in 1992 is negatively correlated with the
 - 1992-1995 growth in prefecture GDP (left panel); and
 - 1992-1995 growth in pref. overall, SOE, and NSOE GDP (right panel).

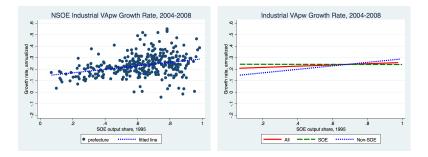
[Y/N]


[Back]

The Effect of the State Sector: 1992-1995, Y/N

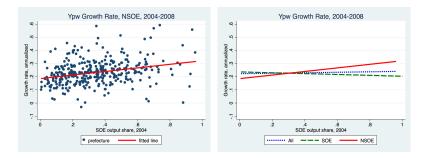

- At the prefecture level, industrial output
- The size of the state sector in 1992 is negatively correlated with the
 - 1992-1995 growth in prefecture Y/N (left panel); and
 - 1992-1995 growth in pref. overall, SOE, and NSOE Y/N (right panel).

Growth Rate in Ypw, 1995-2004


- The size of the state sector in 1995 is positively correlated with the
 - 1995-2004 growth in prefecture NSOE Ypw (left panel); and
 - 1995-2004 growth in pref. overall and NSOE Ypw (right panel).

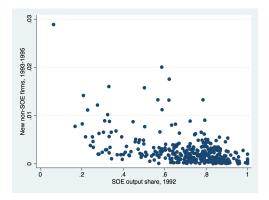
Growth Rate in Y, 1995-2004

- The size of the state sector in 1995 is positively correlated with the
 - 1995-2004 growth in prefecture NSOE Y

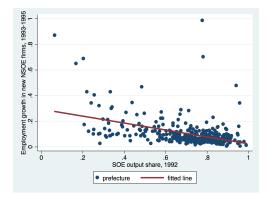

Growth Rate in VApw, 2004-2008

- The size of the state sector in 1995 is positively correlated with the
 - 2004-2008 growth in prefecture NSOE VApw (left panel)

[Back]

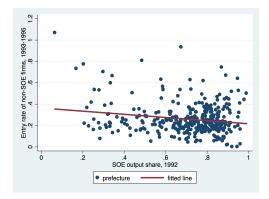

Growth Rate in Ypw, 2004-2008

- The size of the state sector in 2004 is positively correlated with the
 - 2004-2008 growth in prefecture NSOE Ypw (left panel).


[Back]

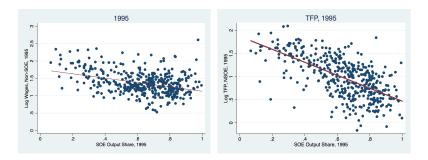
Firm Entry in the Non-state Sector, 1995

- Distribution of new non-state firms (1993-1995 entrants)
- Most are in the low s prefectures

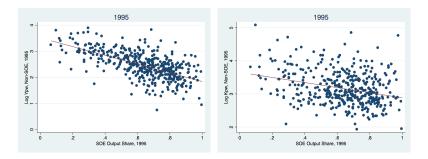

Firm Entry in the Non-state Sector, 1995

- Employment in new non-state entrants (1993-1995) relative to the employment in all firms in 1992
- Lower in high *s* prefectures

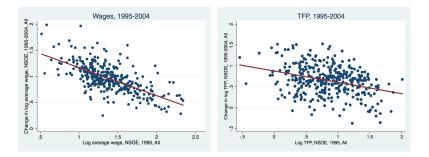
[Number of firms]


Firm Entry in the Non-state Sector, 1995

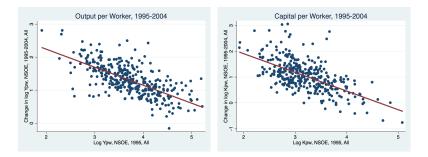
- New non-state entrants (1993-1995) relative to the stock of all firms in 1992
- Lower in high *s* prefectures


[Back]

Non-State Sector, 1995


- Size of state sector negatively correlated with NSOE
 - wages;
 - TFP (defined as Solow residual);

Non-State Sector, 1995


- The size of the state sector is negatively correlated with NSOE
 - output per worker;
 - capital per worker;

Non-State Sector Convergence, 1995-2004

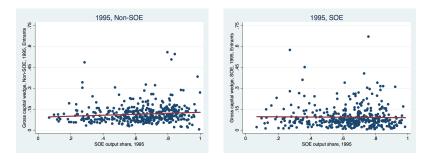
- There is a 1995-2004 convergence in the NSOE sector in
 - wages; rate of convergence is 6.0%
 - TFP (calculated as Solow resid.); rate of convergence is 3.1%

Non-State Sector Convergence, 1995-2004

- There is a 1995-2004 convergence in the NSOE sector in
 - output per worker; rate of convergence is 8.5%
 - capital per worker; rate of convergence is 13.5%

Framework for Wedges: The Labor Wedge

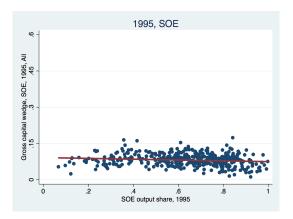
- Incorporating the gross labor wedge: (1 + τ^w)
- Gross output wedge, Δ^y_i


$$\Delta_i^y = \frac{(1-\tau_i^y)}{(1+\tau^w)} = \frac{1}{\alpha\eta} \frac{w_i n_i}{y_i}$$

Gross capital wedge, Δ^k_i

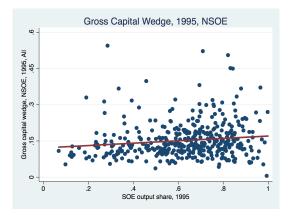
$$\Delta_i^k = \frac{(1+\tau_i^k)(r+\delta)}{(1+\tau^w)} = \frac{1-\alpha}{\alpha} \cdot \frac{w_i n_i}{k_i}$$

- If the labor wedge increases with s, then in the NSOE sectors
 - : the output subsidies have to be even higher in the high s prefectures, and
 - : the capital tax wedges have to be higher in the high s prefectures


Gross Capital Wedge, Entrants: Δ^k

- Higher capital taxes in high s prefectures for non-SOE firms
- No relationship between capital taxes and s for SOE firms

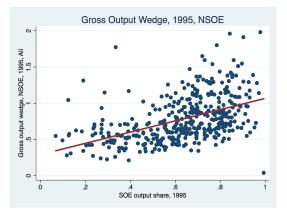
[Back]


Gross Capital Wedge: Δ^k

No relationship between capital taxes and s for SOE firms

[Back]

Gross Capital Wedge: Δ^k

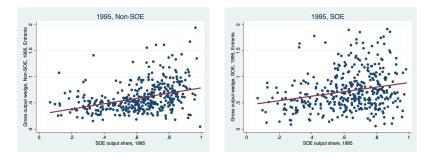


Higher capital taxes in high s pref. for non-SOE firms

[Entrants]

[SOEs]

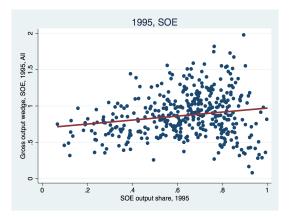
Gross Output Wedge: Δ^{y}



• Lower output taxes (higher subsidies) in high s pref. for non-SOE firms

[Entrants]

[SOEs]


Gross Output Wedge, Entrants: Δ^{y}

- Lower output taxes (higher subsidies) in high s prefectures
- For both non-SOE and SOE firms

[Back]

Gross Output Wedge: Δ^{y}

Lower output taxes (higher subsidies) in high s pref. for SOE firms
 [Back]

Entry Decision

• f(z) is Pareto distributed

$$f(z) = \underline{z}^{\xi} \xi z^{-\xi-1},$$

:
$$\xi > 1$$

: $\underline{z} \ge 1, z \in [\underline{z}, \infty)$

• The firm problem implies:

$$y = z((1-\tau^{y})\eta)^{\frac{\eta}{1-\eta}} \left(\frac{1-\alpha}{(1+\tau^{k})(r+\delta)}\right)^{\frac{(1-\alpha)\eta}{1-\eta}} \left(\frac{\alpha}{w}\right)^{\frac{\alpha\eta}{1-\eta}}$$
$$\equiv z \cdot \bar{y}$$
$$n = z \cdot \alpha \eta \left(\frac{1-\tau^{y}}{w}\right) \cdot \bar{y}$$
$$k = z \cdot (1-\alpha) \eta \frac{1-\tau^{y}}{(1+\tau^{k})(r+\delta)} \cdot \bar{y}$$
$$\Pi = z \cdot (1-\tau^{y})(1-\eta) \cdot \bar{y}.$$

Entry Decision

• Only entrepreneurs with $z \ge z^*$ will operate, where

$$z^* = \frac{v}{(1-\tau^{y})(1-\eta)\cdot \bar{y}}$$

• The measure Γ of all operating entrepreneurs is

$$\Gamma(z \ge z^*) = M(1-\psi) \int_{z^*}^{\infty} \underline{z}^{\xi} \xi z^{-\xi-1} dz = M(1-\psi) \underline{z}^{\xi} (z^*)^{-\xi}$$

• The equilibrium wage w clears the labor market

$$M(1-\psi)\int_{z^*}^{\infty}n(z)f(z)\,dz=N$$

Normalize by the size of the labor force in the prefecture

The Effect of the Wedges

	$(1- au^{y})$	$(1+ au^k)$	$(1-\psi)$	
W	$\mu \xi > 0$	$-\mu(1-lpha)\xi\eta<0$	$\mu(1-\eta) > 0$	
TFPs	$-\mu(1-\eta) < 0$	$\mu(1-\eta)[1+(\xi-1)\alpha\eta]>0$	$\mu lpha \eta (1-\eta) > 0$	
Entry	$\mu \xi > 0$	$-\mu\xi(1-lpha)<0$	$\mu(1-\eta) > 0$	
Y N	$\mu\xi\eta(1-lpha)+\ \mu(\xi-1)(1-\eta)>0$	$-\mu(1-lpha)\xi\eta<0$	$\mu(1-\eta) > 0$	

•
$$\mu = \frac{1}{1-\eta+\xi\alpha\eta} > 0$$

[Back]

Estimating the Gross Entry Wedge: $(1 - \psi)$

Calibrate some key parameters

- : labor share, $\alpha \eta$: Hsieh and Klenow (2009)
- : $\eta = 0.85$, Restuccia and Rogerson (2008):
- : $\xi = 1.05$, Pareto parameter, use 30% of the most productive firms

$$rac{E(z|z\geq z^*)}{z^*} \quad = \quad rac{\xi}{\xi-1}$$

- calibrate v such that n^{*} (z^{*}) = 1 in the lowest s prefectures
- calibrate \underline{z} such that $\psi = 0$ in the lowest *s* prefectures

Variance in TFP and Wedges

$$Var[\ln Z] \approx a_1^2 Var[\ln(1-\psi)] + a_1^2 Var[\ln N]$$
$$+ a_3^2 Var[\ln(1-\tau^y)] + a_4^2 Var[\ln(1+\tau^k)(r+\delta)]$$

- covariance terms do not play a role
- variation of a_i across prefectures ignored: does not play a role
- compute the contribution of each term in Var[In Z]

Variance in TFP and Wedges

	Var_{ψ}	Var _N	Var_{τ^y}	Var_{τ^k}
1995	0.76	0.02	0.06	0.07
2004	0.68	0.03	0.03	0.05
2008	0.62	0.02	0.05	0.09
1995-2004	0.63	0.03	0.05	0.10
2004-2008	0.60	0.01	0.10	0.15

Variance in Wages and Wedges

$$Var[\ln w] \approx a_1^2 Var[\ln(1-\psi)] + a_1^2 Var[\ln N] \\ + a_3^2 Var[\ln(1-\tau^y)] + a_4^2 Var[\ln(1+\tau^k)(r+\delta)] \\ + 2a_1 a_3 Cov[\ln(1-\psi), \ln(1-\tau^y)] \\ - 2a_3 a_4 Cov[\ln(1-\tau^y), \ln(1-\tau^k)]$$

- the other covariance terms do not play a role
- variation of a_i across prefectures ignored: does not play a role
- compute the contribution of each term in Var[In w]

Variance in Wages and Wedges

	Var_{ψ}	Var _N	Var_{τ^y}	$Var_{ au^k}$	Cov_{ψ,τ^y}	Cov_{τ^y,τ^k}
1995	5.34	0.13	4.36	0.71	-7.57	-2.13
2004	10.45	0.43	5.54	1.07	-11.88	-2.26
2008	6.15	0.24	5.27	1.28	-6.56	-3.46
1995-2004	5.14	0.28	4.46	1.23	-6.73	-2.62
2004-2008	2.39	0.03	4.24	0.90	-3.74	-2.62

Variance in K/Y and Wedges

$$Var\left[\ln\frac{K}{Y}\right] = Var[\ln(1-\tau^{y})] + Var[\ln(1+\tau^{k})(r+\delta)]$$
$$-2Cov[\ln(1-\tau^{y}),\ln(1-\tau^{k})]$$

• compute the contribution of each term in $Var\left[\ln \frac{K}{Y}\right]$

	Var_{τ^y}	Var_{τ^k}	Cov_{τ^y,τ^k}
1995	1.14	1.28	-1.42
2004	0.81	1.08	-0.89
2008	1.05	1.75	-1.80
1995-2004	0.72	1.38	-1.10
2004-2008	1.18	1.72	-1.90

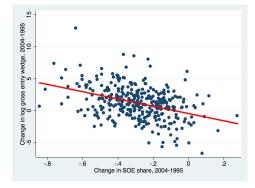
Understanding the Entry Wedge

- 1995, the entry wedge is higher in prefectures where
 - : the share of employment (or output) in the SOE sector is higher
 - : fiscal revenues per government worker are lower
 - : the profitability of SOEs is lower
- 1995-2004, the decline in the entry wedge is larger in pref. where
 - : the decline in the SOE share of employment is larger
 - : the increase in fiscal revenues per government worker are larger

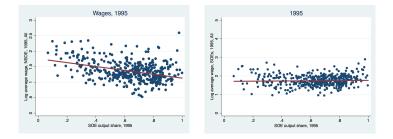
Note that data on

- : fiscal revenue per government worker available for 1995 and 2004
- : profitability of SOEs available for 1995

Fiscal and SOE Reforms


- SOE reforms after 1995
 - : smaller SOEs sold off or shutdown
 - : massive layoffs of workers in the SOE sector including in those firms not privatized
 - : concentration of SOEs in strategic and pillar sectors
- Fiscal reform after 1995
 - : recentralization of the fiscal system that increased the % of revenue going to the center
 - : new system of fiscal transfers and sharing rules between provinces and the center, and localities and provinces
 - : localities allowed to retain land conveyance fees; i.e., basically profits from the sale of farm land for non-agricultural uses

The Entry Wedge in 1995, 2004, and 2008


	$\ln(1-\psi)$	OLS	IV _{lag}	IV ₁₉₇₈	IV _{prov}
1995	e ^{soe}	-11.64**	-14.13**	-12.96**	-11.72**
	In FREV	1.31**	0.93*	1.11**	1.69*
	In PROF ^{soe}	0.31*	0.32*	0.32*	0.13
First stage:	IV coefficient R ²		0.73** 0.74	0.97** 0.73	0.97** 0.64
2004	e ^{soe}	-9.61**	-13.39**	-16.06**	-17.47**
	In FREV	2.16**	1.89**	1.70**	0.40
First stage:	IV coefficient R ²		0.62** 0.45	0.68** 0.38	0.79** 0.60
2008	e ^{soe}	-8.10** (1.04)	-9.63** (1.20)	-14.60** (1.82)	-16.71** (6.02)
First stage:	IV coefficient R ²		0.88** 0.76	0.78** 0.36	1.05** 0.30

Note: ** - statistically significant at 1%; * - statistically significant at 5%.

Entry Wedge and SOE Share, 1995-2004

SOE and NSOE Wages in *s* Prefectures

- SOEs pay the same wage in all s prefectures
- SOE and NSOE wages are similar in low s prefectures
- SOE wages are higher than NSOE wages in high s prefectures

Introduce State-owned firms (SOE)

- Assume unit measure of potential SOE (and unit measure of potential NSOE)
- SOEs have same production function and same productivity distribution as NSOE
- SOEs compete with NSOEs for workers
- Key friction: central government decides what local state employment must be: $N_{SOE} = \bar{N}$

Local government must impose frictions on NSOE to satisfy employment constraint

• For simplicity: assume $\tau_y^{SOE} = \tau_k^{SOE} = 0$

Equilibrium in model with SOE and NSOE

• Labor market equilibrium requires $N_{NSOE} = 1 - \bar{N}$, implying

$$\frac{1-\bar{N}}{\bar{N}} = (1-\psi)\left(1-\tau_{y}\right)^{\frac{\xi}{1-\eta}} \left(\frac{1}{1+\tau_{k}}\right)^{\xi\frac{(1-\alpha)\eta}{1-\eta}}$$

- Note: target employment *N* is increasing in each of the wedges, (ψ, τ_k, τ_y)
 - an increase in \overline{N} must be offset by an increase in ψ , τ_y , or τ_k (since ψ , τ_y , and τ_k are increasing in \overline{N})

Equilibrium (cont.)

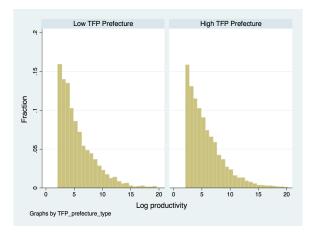
 Calculate profits – net of wedges – conditional on z and obtaining a licence;

$$\frac{\Pi(z)}{z} = \frac{1-\bar{N}}{1-\psi} \cdot (1-\eta) \left(\frac{\xi \underline{z}}{\xi-1} \left(\frac{1-\eta}{\nu} \right)^{\xi-1} \left(\frac{(1-\alpha)\eta}{r+\delta} \right)^{\xi \frac{(1-\alpha)\eta}{1-\eta}} \frac{1}{\bar{N}} \right)$$

Politico-economic problem

- Local official choose wedges (ψ, τ_y, τ_k)
- Assume: official maximizes profits entrepreneur profits conditional on *z*, subject to

1. a hiring constraint $N_{SOE} = \bar{N} \ge 1/2$


2. wedges are non-negative, $\psi \ge 0$, $\tau_y \ge 0$, and $\tau_k \ge 0$

Motivation: give advantage to friends

- **REMARK**: The constrained optimal choice of wedges (ψ, τ_y, τ_k) imply $\tau_k = \tau_y = 0$ and $\psi > 0$.
- Expect to see a high correlation between SOE employment N_{SOE} and entry barrier ψ

Equilibrium Mechanism

• The distributions of ln z, above the z₀ cutoff are very similar:

