Liquidity Provision Contracts and Market Quality: Evidence from the New York Stock Exchange

Hendrik (Hank) Bessembinder

Jia Hao

Kuncheng (KC) Zheng

For presentation at the ASIAN BUREAU OF FINANCE AND ECONOMIC RESEARCH CONFERENCE

May 2018

Research Questions

- (1) Do Designated Market Maker contracts have a *causal* effect on market quality for typical stocks?
 - In light of the fact that essentially any trader can supply liquidity in limit order markets?

(2) Can we learn anything about the nature of competition in the market for liquidity supply by studying changes in the features of DMM obligations and incentives?

Timeliness

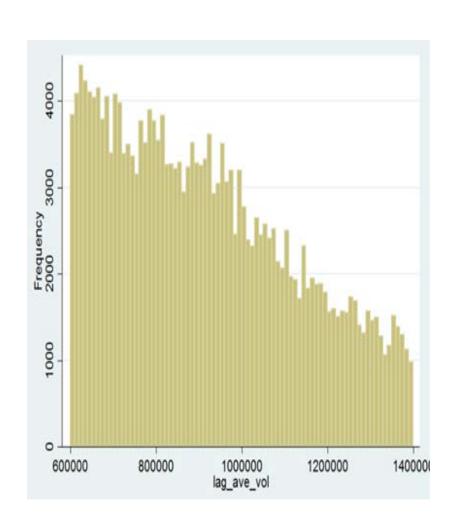
- MiFID II requires a firm that engages in algorithmic trading to pursue a market making strategy to:
- "carry on its market making activity continuously during a specified proportion of the trading venue's trading day, except under exceptional circumstances"
- "enter into a written agreement with the trading venue stating their market making obligations"

Empirical Evidence on DMM Adoption Events

- Empirical studies on the adoption of DMMs
 - Venkataraman & Waisburd (2007) Euronext Paris Stock Exchange
 - Anand, Tanggaard & Weaver (2009) Stockholm Stock Exchange
 - Menkveld and Wang (2013) Euronext Amsterdam Stock Exchange
 - Skjeltorp and Odegaard (2015) Oslo Stock Exchange
- Collectively, document improved liquidity and positive stock price reactions.
- Note, though, that the adoption of DMM contracts is endogenous for those selected firms.

This paper

- Exploits a discontinuity in both contractual obligations and incentives of DMM firms on the NYSE to identify a causal effect of stronger DMM obligations on market quality.
- Shows that more stringent market making requirements are associated with increased depth, narrower bid-ask spreads, larger rate of price improvement, and improved price efficiency.
- Further, many of the improvements are attributable to increases in liquidity provision on markets other than the NYSE, supporting the reasoning that market making equilibrium is characterized by strategic complementarity.
- Helps to explain both illiquidity spirals and why seemingly minor
 DMM obligations can have substantive effects on market liquidity.


NYSE DMM Obligations

- Every NYSE listed stock has a DMM.
- Discontinuity at one million average consolidated daily volume in prior month.
 - In DMM Obligation:
 - Lower volume stocks, must post quotations for at least 15% of the trading day.
 - Higher volume stocks, must post quotations for at least 10% of the trading day.
 - In DMM Incentive:
 - Lower volume stocks, rebate of \$.0035 per share when supplying liquidity to a trade.
 - Higher volume stocks, rebate of \$.0030 per share when supplying liquidity to a trade.
- We study the effect of the "enhanced" DMM contract using a Regression Discontinuity Design.

Data and Sample

- Database:
 - Trade-and-Quote (TAQ)
- Period:
 - September 2009 to December 2013
- Sample:
 - all NYSE-listed common stocks for which the average consolidated daily trading volume is both less than and greater than the 1 million share threshold for at least one sample month
 - A total of 756 stocks meet this criterion.

Aggregate volume outcomes near the 1 million share threshold

The Effect of DMM Obligations on Spreads (middle columns of Table 2)

	Optimal Bandwidth (0.05 million shares)			
	Quoted Effective			
	Spread	Spread		
	-0.941**	-0.866**		
DMM	(-2.15)	(-2.09)		
1-1/-11 1-1/-(1	-10.64	2.40*		

Effective spread reduction = 0.866 basis points (10% reduction)

Sample average effective spread = 8 to 9 basis points

Average daily trading volume = 974,000 shares

Average share price = \$38.45

Trading day in a year = 252

Transaction cost reduction = \$817,000 per firm year

The Effect of DMM Obligations on Market Depth (Table 3)

	In(Share Depth)	In(Dollar Depth)
	0.0113**	0.0103**
DMM	(2.18)	(2.08)
	0.316***	0.175***
In(Vol)-In(VC)	(6.39)	(3.73)
(In(VoI)-	0.0958	0.163**
In(VC))DMM	(1.55)	(2.78)
FE	Yes	Yes
N	82,518	82,518
adj. R-sq.	0.843	0.689

• Contrasts with the CYZ (2016) results that depth was not significantly changed when the NYSE ceased trading.

The Effect of DMM Obligations on Rate of Price Improvement

(Table 5) -- Transactions Executed within the NBBO Quotes

	Optimal Bandwidth (0.07 mil. shr)		
DMM	0.327*** (3.88)		
In(Vol)-In(VC)	3.354** (2.20)		
(In(Vol)-In(VC))DMM	-2.269 (-1.07)		
FE	Yes		
N	50,378		
adj. R-sq.	0.592		

The Effect of DMM Obligations on Trading Volume (Table 6)

	Optimal Bandwidth (0.135 mil. shr)	
DMM	0.031*** (3.96)	
In(VoI)-In(VC)	0.727*** (8.69)	
(In(Vol)-In(VC))DMM	-0.193 (-1.85)	
FE	Yes	
N	82,581	
adj. R-sq.	0.184	

The Effect of DMM Obligations on Price Efficiency (Absolute Deviations from Random Walk Benchmark)

	Optimal Bandwidth (0.25 mil. shr)	
DMM	-0.0433**	
	(-2.00)	
In(Vol)-In(VC)	-0.206*	
	(-1.69)	
(In(VoI)-	0.187	
In(VC))DMM	(1.25)	
FE	Yes	
N	8,544	
adj. R-sq.	0.032	

Placebo tests (Tables 9 and 10) at the 0.5 and 1.5 million share thresholds

	With Placebo cut at 0.5 million shares						
	Quoted	Effective	In(Volume	In(Dollar	DGTW	Abs	Inside
	Spread	Spread	Depth)	Depth)	Return	VR-1	NBBO
	(0.04 million)	(0.04 million)	(0.02 million)	(0.02 million)	(0.14 million)	(0.15 million)	(0.05million)
DMM	-0.461	-0.357	-0.00644	-0.0158	0.00289	-0.00098	-0.126
	(-0.57)	(-0.56)	(-0.49)	(-1.32)	(0.40)	(-0.05)	(-0.26)
In(Vol)-In(VC)	-16.97	-13.03	0.802*	0.349	0.0341	-0.00166	-5.184
	(-1.53)	(-1.49)	(1.82)	(0.87)	(0.78)	(-0.02)	(0.77)
(In(VoI)-	20.27	15.05	1.008*	-0.318	-0.136**	-0.679	-11.84
In(VC))DMM	(1.19)	(1.12)	(1.72)	(-0.59)	(-2.19)	(-0.59)	(-1.30)

	With Placebo cut at 1.5 million shares						
	Quoted	Effective	In(Volume	In(Dollar	DGTW	Abs	Inside
	Spread	Spread	Depth)	Depth)	Return	VR-1	NBBO
	(0.13 million)	(0.13 million)	(0.05 million)	(0.05 million)	(0.58 million)	(0.44 million)	(0.2million)
DMM	-0.202	-0.163	-0.0189	-0.00619	-0.00620	-0.0107	0.577
	(-0.49)	(-0.47)	(-1.45)	(-1.26)	(-0.98)	(-0.49)	(1.21)
In(Vol)-In(VC)	-4.422	-3.812	-1.872***	0.169***	0.0166	-0.0274	-4.784
	(-0.79)	(-0.83)	(-3.89)	(3.56)	(0.59)	(-0.21)	(-0.79)
(In(VoI)-	8.972	8.070	3.071***	-0.0245	-0.0844**	-0.0209	2.321
In(VC))DMM	(1.30)	(1.42)	(4.84)	(-0.42)	(-2.25)	(-0.14)	(0.30)

A Potential Mechanism: Strategic Complementarity

The effects are unlikely to be mechanical.

- There is no obligation to narrow spreads or to give executions at prices inside the quotes.
- The increased rebate equates to only 0.13 basis points relative to average share price.

Off-NYSE Outcomes

- NYSE-listed stocks are traded on other exchanges as well.
 - In sample, only 21.4% of trades and 25.0% of dollar volume is executed on the NYSE.
- Direct effects of NYSE DMM obligations should be observed on NYSE only.
- Assess off-NYSE outcomes for NYSE-listed stocks to study induced changes in the market for liquidity provision.
- If liquidity provision is characterized by strategic complementarity, then more aggressive quotations on the NYSE should lead to more aggressive quotations off the NYSE.
- If liquidity provision is characterized by strategic substitutability, then more aggressive quotations on the NYSE should lead to less aggressive quotations off the NYSE.

ON Vs. OFF NYSE Trades

(tables 11 & 12)

	Optimal B (0.07 milli		Optimal Bandwidth (0.05 million shares)		
	Off-NYSE	On-NYSE	Effective Spread for	Effective Spread for	
	Execution	Execution	Off-NYSE	On-NYSE	
	within NBBO	within NBBO	Executions	Executions	
DMM	0.335***	0.0126	-0.768**	-0.636*	
	(4.22)	(-0.56)	(-2.13)	(-1.83)	
In(Vol)-In(VC)	2.044**	-0.323	15.45	3.700	
	(1.98)	(-0.80)	(-1.63)	(-1.11)	
(In(Vol)-In(VC))DMM	-0.756	-0.581	11.88	1.560	
	(-0.38)	(-0.60)	(1.00)	(0.15)	
Realized Volatility	0.0765***	0.0768***	0.0111**	0.0104***	
	(7.26)	(6.87)	(2.22)	(2.89)	
Inv. Price	-7.487***	-10.37***	41.28***	44.87***	
	(-12.19)	(-15.93)	(4.01)	(3.63)	
FE	Yes	Yes	Yes	Yes	
N	50,378	50,378	27,970	27,970	
adj. R-sq.	0.580	0.594	0.622	0.844	

 More stringent NYSE DMM requirements are associated with more favorable trade executions for NYSE-listed stocks, even for executions off the NYSE.

Depth at NBBO and Market Shares (Tables 13 and 14)

	Dollar NBBO depth off NYSE	Dollar NBBO depth on NYSE	NYSE Share of Dollar Volume
DMM	0.015**	0.005	-0.306**
DIVIIVI	(2.89)	(0.92)	(-2.21)
In(Val) In(VC)	0.188**	0.151	-0.928
In(Vol)-In(VC)	(4.14)	(3.28)	(-0.37)
(In(VoI)-	0.144	0.217	-5.335
In(VC))DMM	(2.55)	(3.79)	(-1.58)
FE	Yes	Yes	Yes
N	86,985	86,985	38,905
adj. R-sq.	0.650	0.680	0.497

Off-NYSE Results

- Strong (if circumstantial) evidence of strategic complementarity in liquidity supply.
- Can help to explain illiquidity spirals.
 - A shock to one or a few liquidity suppliers causes others to also reduce supply.
- Helps to explain why relatively modest DMM obligations can cause substantive improvements in market liquidity.
 - Anand, Tanggaard, and Weaver (2009) examine DMM contracts on the Stockholm Exchange, and report that compensation payments average only about \$3000 per month.

Conclusion

- We estimate causal effects of more stringent DMM obligations and incentives on market quality by exploiting a discontinuity in the contractual obligations of DMM firms on the NYSE.
- Our results indicate that stronger DMM incentives are associated with narrower spread, larger depth, larger rate of price improvement, and improved price efficiency.
- We further shows that the DMM contractual requirement changes the order submission strategies of *other* market participants and the market equilibrium, implying that the market making business is characterized by strategic complements.
- This study contributes to the understanding of how DMM contracts can supplement endogenous liquidity provision to improve the functioning of financial markets.