Are Disagreements Agreeable? Evidence from Information Aggregation

Authors: Dashan Huang, Jianyuan Li Liyao Wang, Guofu Zhou

Discussant: Shiyang Huang

The University of Hong Kong

Overview

- Research questions
 - Whether different disagreement proxies are agreeable?
 - How do aggregate disagreement indexes forecast the market returns?
- ► What does this paper do?
 - ► Three aggregate disagreement indexes (from 20 measures), equal-weight (EW), principal component analysis (PCA), and partial least squares (PLS), significantly improve the forecast power for future market returns.
 - ► The PLS index has significant in- and out-of sample performance.
 - The forecasting power of the disagreement indexes is asymmetric and concentrates in high sentiment periods (Atmaz and Basak 2017).
 - The aggregate disagreement indexes negatively predict economic activities, and positively predict market volatilities, illiquidity, and trading volume.

Overview: Aggregating Individual Disagreement Measures

- ► Individual Disagreement Measures
 - The survey of professional forecasts on macroeconomics conditions(SPF) GDP, GDP growth, industrial production, industrial production growth, unemployment, investment, investment growth, consumer price index, and 3-month T-bill rate
 - Analyst forecast: value-weighted dispersion (Yu, 2011) and beta-weighted dispersion (Hong and Sraer, 2016)
 - Household forecasts (Michigan University Survey of Consumers)
 expected personal financial conditions, business conditions, unemployment condition, interest rate condition, and vehicle purchase condition
 - Unexplained stock trading volume (Garfinkel 2009)
 - Aggregated idiosyncratic volatility (Boehme, Danielsen and Sorescu(2006) and Ang, Hodrick, Xing and Zhang (2006))
 - ▶ Option open interest (Ge, Lin, and Pearson 2016): one minus the scaled difference between OEX call and put option interest

Overview: Aggregating Individual Disagreement Measures

- ▶ The PLS (Partial Least Square) approach takes three steps
 - Step 1 (a time-series regression for each individual disagreement measure) $D_{t-1}^k = \pi_{k,0} + \pi_k R_t + \mu_{k,t-1}, \quad k = GDP,...,OID, \\ \text{where } \pi_k \text{ captures the sensitivity of each disagreement } D_{t-1} \\ \text{to expected market return.}$
 - Step 2 (a cross-sectional regression of D_t^k on $\widehat{\pi}_k$ at month t $D_t^k = a_t + D_t^{PLS} \widehat{\pi}_k + v_{k,t}$, where D_t^{PLS} is the PLS disagreement index in month t.
 - ► Step 3 (predict R_{t+1}) $R_{t+1} = \alpha + \beta D_t^{PLS} + \epsilon_{t,t+h}$
- Out-of-sample test: repeat three steps by truncating the observation that are not known at month t
 - ► The forecast for R_{t+1} is $\hat{\alpha}_t + \hat{\beta}_t D_t^{PLS}$, where $\hat{\alpha}_t$ and $\hat{\beta}_t$ are the estimates using information up to month t.

Overview: Comparison Between Individual and Aggregate Disagreement

▶ Return Prediction: $R_{t,t+h} = \alpha + \beta D_t + \epsilon_{t,t+h}$

	Panel A: $h = 1$			Panel B: h = 3				
Disagreement	β	t-stat	R^2	R_{OS}^2	β	t-stat	R^2	R_{OS}^2
D^{GDP}	-0.15	-0.73	0.12	-1.69	-0.26*	-1.68	1.00	-5.24
D^{GDPg}	-0.29	-1.60	0.43	-3.01	-0.29*	-1.92	1.22	-7.58
D^{IP}	-0.11	-0.60	0.06	-2.33	-0.10	-0.67	0.15	-5.35
D^{IPg}	-0.01	-0.05	0.00	-2.13	-0.20	-1.48	0.57	-9.11
D^{UEP}	0.13	0.59	0.08	-0.35	0.12	0.72	0.22	-2.14
D^{INV}	-0.21	-1.16	0.24	-2.69	-0.26*	-1.66	1.03	-8.54
D^{INVg}	0.20	1.19	0.22	-0.68	0.04	0.32	0.03	-2.73
D^{CPI}	-0.36	-1.62	0.71	-5.44	-0.31**	-2.11	1.45	-27.02
D^{TBL}	-0.66***	-2.57	2.37	-3.60	-0.55**	-2.55	4.63	-6.31
D^{Yu}	-0.32	-1.71	0.66	-3.08	-0.33**	-1.98	2.10	-4.99
D^{ris}	-0.14	-0.67	0.14	-2.80	-0.18	-0.89	0.62	-3.02
D^{RPF}	-0.20	-1.01	0.22	-2.57	-0.06	-0.35	0.06	-4.54
D^{EPF}	-0.22	-1.01	0.25	-3.05	-0.13	-0.95	0.25	-6.95
D^{BC}	-0.24	-1.25	0.31	-4.26	-0.12	-0.67	0.21	-7.75
DUC	_0.05	_0.23	0.01	_2 02	0.02	0.11	0.00	_3 41
$D^{\rm IRC}$	-0.23	-0.99	0.28	-1.74	-0.43**	-2.54	2.89	-8.69
D CIN	-0.14	-0.09	0.11	-1.69	0.08	0.48	0.09	-2.92
DSUV	-0.27	-1.61	0.40	-2.44	-0.20	-1.58	0.62	-6.52
D^{IVOL}	-0.20	-1.02	0.21	-3.36	-0.19	-1.01	0.52	-9.54
D^{OID}	-0.20	-0.56	0.08	-2.12	-0.08	-0.26	0.04	-4.80

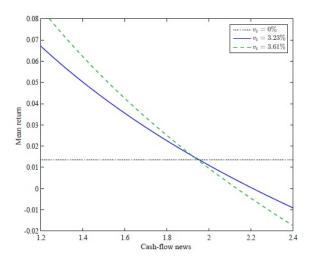
Overview: Comparison Between Individual and Aggregate Disagreement

Disagreement	β	t-stat	R^2	R_{OS}^2
Panel A: $h = 1$				
D^{EW}	-0.62***	-3.09	1.53	0.13
D^{PCA}	-0.35**	-2.02	0.56	-0.24
D^{PLS}	-0.83***	-3.69	2.59	1.94**
Panel B: $h = 3$				
D^{EW}	-0.61***	-3.30	4.31	1.41**
D^{PCA}	-0.35**	-2.15	1.57	0.00
D^{PLS}	-0.80***	-3.72	6.93	5.29***
Panel C: h = 12				
D^{EW}	-0.56***	-3.24	6.97	6.89***
D^{PCA}	-0.24*	-1.77	2.77	-0.38
D^{PLS}	-0.67***	-4.81	18.53	14.32***

- PLS measures negatively forecast economic activities: industrial production, unemployment, business inventory.
- ► Aggregate indexes (particularly PLS) asymmetrically forecast the market with greater power in high sentiment period.
- Aggregate indexes positively forecast market volatilities, illiquidity and trading volume.

Comment I: How to Improve Aggregate Measures

- Direct measures of investors' beliefs?
 - ▶ A growing literature tries to use mutual funds' holding to infer their beliefs?
 - Jiang and Sun (2014), Cohen, Polk, and Silli (2010), Shumway, Szefler and Yuan (2010)
 - Implementation (Jiang and Sun, 2014) $Dispersion_{i,t} = \{ \frac{1}{N_{i-1}} \sum_{j=1}^{N_i} [(w_{i,t}^j w_{i,t}^{j,b}) \overline{(w_{i,t}^j w_{i,t}^{j,b})}]^2 \}$
 - ▶ Why use mutual funds' holding data?
 - The U.S. market has been increasingly dominated by institutional investors.
 - The actively managed mutual funds have well-specified performance benchmarks, which allow us to use the insights of portfolio theory to infer their beliefs about future stock returns.

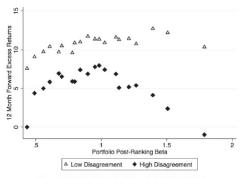

Comment I: How to Improve Aggregate Measures?

- Time-varying weights on individual disagreement measures?
 - ► For example, this paper could use 5-year rolling window in PLS
 - ▶ Step 1: using month t-60 to t to forecast $\hat{\pi}_k$
 - lacktriangle Step 2: run cross-sectional regressions from month t-60 to t
 - ► The forecast for R_{t+1} is $\hat{\alpha}_t + \hat{\beta}_t D_t^{PLS}$, where $\hat{\alpha}_t$ and $\hat{\beta}_t$ are the estimates using information from month t-60 to month t.
- Why consider time-varying PLS estimations?
 - ► The rolling-window approach could capture the time-varying information of individual disagreement measures
 - ▶ A further justification of PLS approach: holding-based disagreement may play a more important role than that based on household survey

Comment II: Predictability asymmetry of disagreement

- ► Test theory of Atmaz and Basak (2017) that disagreement has an asymmetry forecasting pattern in different market states
- Intuitions
 - Dispersion represents additional risk for investors, and therefore investors demand a higher return to hold the stock when dispersion is higher
 - However, dispersion also amplifies the average bias in beliefs, which in turn leads to a lower mean return when the view on the stock is optimistic and to a higher mean return when pessimistic.
 - When there is sufficiently optimistic view on the stock (good market states), the latter effect dominates and produces the negative relation between belief dispersion and mean return.
- How to capture the average bias? Probably not sentiment index?

Comment II: Predictability asymmetry of disagreement



- Use business cycle variables rather than sentiment
- Other sub-sample period tests: Ted spread?

Comment III: Forecasting Cross-Sectional Portfolios

- ► How disagreement predicts cross-sectional portfolio returns?
 - ► The portfolio with firms that are subject to more constrained should be more sensitive to disagreement (Duffie, Garleanu, and Pedersen 2002)
 - ► This paper uses institutional ownership, but why not consider more direct measures of short costs(lending fee)?
 - High beta portfolios are more likely to overpriced in high disagreement periods (Hong and Stein 2007)
 - ▶ But Hong and Sraer (2016) predicts a inverted-U shape of Security Market Line during the high disagreement periods, particular for those speculative stocks (high β_i/σ_i)

Comment III: Forecasting Cross-Sectional Portfolios

Panel C. 12-Month Value-Weighted Return

► An inverted-U shape of Security Market Line during the high disagreement periods?

Comment III: Forecasting Cross-Sectional Portfolios

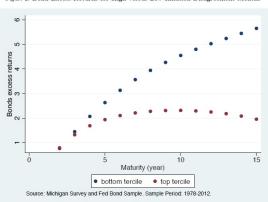


Figure 2: Bond Excess Returns for High versus Low Inflation Disagreement Months

- ► An inverted-U shape of excess return vs. maturity during the high disagreement periods?
 - ► Aggregate disagreement about CPI, 3-month T-bill rate, consumers' expectation on interest rate condition

Other Comments

- Horse race regressions: consider aggregate short interest and aggregate corporate activities
 - ► Table 11 only consider multivariate regressions with aggregate disagreement indexes and one of 14 economic predictors each time
 - Short interest strongly negatively forecast market returns (out-of-sample \mathbb{R}^2 is 13.24%, Rapach, Ringgenberg, and Zhou (2016))
 - Corporate activities (out-of-sample R^2 is 12.28%, Lie, Meng, Qian, and Zhou (2017))
- Predicting market volatility: why forecast VIX (a forward-looking measure)
- ▶ The correlation between Business-Condition-Based measure and other measure are negative (puzzling)

Conclusion

- Overall very nice paper
- Well written and solid analysis
- Would improve the PLS approach
- Better link the empirical study and theory
- More horse race regressions