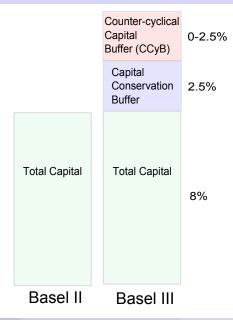
Banking Dynamics and Capital Regulation

José-Víctor Ríos-Rull Tamon Takamura Yaz Terajima

University of Pennsylvania CAERP Bank of Canada

Bank of Canada

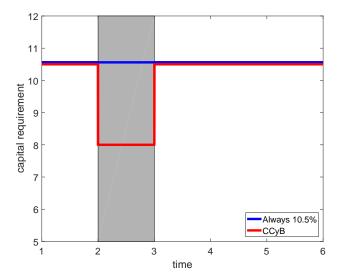

22 May, 2018

Preliminary

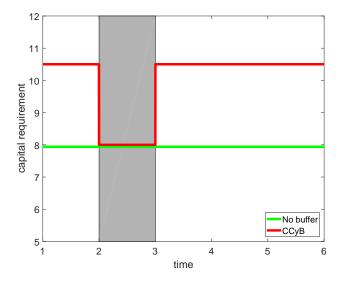
The views expressed in this paper are those of the author. No responsibility or them should be attributed to the Bank of Canada.

- Recent development in banking regulations: Basel III
- Multiple layers of capital requirements make it difficult to analyze
 - No empirical guidance in Canada on how to adjust CCyB
- Need a structural model to quantify the implications of Basel III

Basel III capital regulations



- How does CCyB impact the bank lending and the stability of banks relative to just raising the minimum capital requirement?
- How does CCyB affect banks of different sizes?
- How should CCyB be switch on and off along cycles?


What/how we do

- Develop a partial equilibrium heterogeneous banking model with
 - inefficiency from MH due to limited liability and deposit insurance
 - endogenous bank default that changes with regulation
 - wholesale borrowing depends on the default probability of banks
 - banks rationally anticipate policy changes and aggregate fluctuations
- Calibrate the model to Canadian banks: large vs small
- Simulate the model: crisis and recovery
- Today's focus:
 - model calibrated to large Canadian banks
 - non-contingent regulation vs CCyB

The analysis we do today

Not this one

Relative to the non-state contingent capital regulation...

- CCyB attenuates bank failures during stressed periods
- However, CCyB increases bank failures during and after recovery
- CCyB contributes to more stable loan supply
- \Rightarrow Policy implication: potential trade-off associated with CCyB

Mechanism

The problem with a higher capital requirement during a crisis:

- recapitalization is costly for banks with diminished equity
- instead of raising capital, banks cut new loans
- besides, the cost of wholesale funding (WSF) increases
 - \because bank default increases when satisfying the requiremnt is harder

By turning off CCyB during a crisis,

- temporarily less stringent capital ratio \Rightarrow support new loan issuance
- less likely to violate capital requirement
 - \Rightarrow less bank default & more favorable WSF rate
- trade-off: a higher bank default rate after crisis <= lower capital ratio

- Gertler and Kiyotaki (2010), Corbae et al. (2017), Bianchi and Bigio (2017)
- De Nicolo et al. (2014), Mankart et al. (2016), Corbae and D'Erasmo (2012, 2013)
- Our paper: heterogeneous banks with WSF priced by individual risks

Model: Bank balance sheet

ASSET	LIABILITY/EQUITY		
Long-term Illiquid Loan			
	Uninsured wholesale funding		
	Equity		

Capital regulation:

 $\frac{\mathsf{Equity}}{\mathsf{Risk} \; \mathsf{Weghted} \; \mathsf{Assets}} \geq \theta,$

where θ is the capital requirement

- Loans shrink by idiosyncratic loan-failure shock
 - loan balance and cash-in-hand differ across banks
- Large banks and small banks have different business models:
 - the amount of deposit
 - the cost of loan issuance
 - the maturity of loans
 - the premium on borrowing
 - operation cost
 - the loan failure shock process

- a: cash-in-hand
- ℓ : existing loans
- **z**: aggregate states (= G, B)
- φ : outside option

$$V(a, \ell, z) = \max\left\{\underbrace{\varphi}_{\text{default}}, \underbrace{W(a, \ell, z)}_{\text{operate}}\right\}$$

Model: Bank's operation decisions

• If banks can satisfy the capital requirement:

$$W(a,\ell,z) = \max_{(n,c,b')\in\mathbb{R}^3_+} u(c) + \beta \mathbb{E}V\left(a'(\delta'),\ell'(\delta'),z'\right)$$

subject to

$$\ell' = (1 - \lambda) (1 - \delta') \ell + (1 - \overline{\delta})n$$

$$a' = (\lambda + r)(1 - \delta')\ell + r (1 - \overline{\delta})n - \xi_d - b'$$

$$(1 + \phi)c + n + \chi(n) \le a + q(\ell, n, b', z)b' + \xi_d$$

$$\frac{e}{RWA} \ge \theta(z)$$

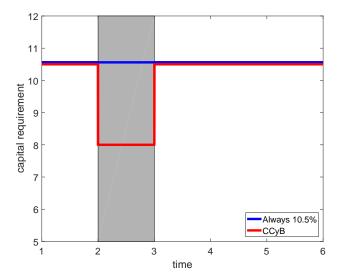
• Banks under supervision are further subject to c = n = 0.

From the zero-profit condition of an investor,

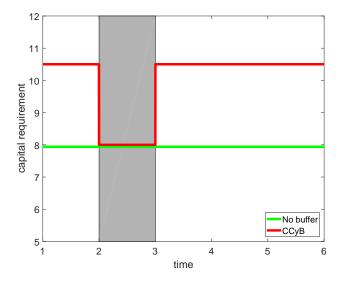
$$q(\ell, n, b', z) = \frac{1 - \Pr\left(\delta' \ge \underline{\delta}(\ell, n, b', z') \mid z\right)}{1 + r_f + \rho},$$

where $\underline{\delta}$ is the endogenous default threshold, implicitly determined by banks' default decisions

- The limiting distribution of banks is achieved when the normal state realizes every period (z = G ∀t)
- Note that banks' decisions assign a positive probability to the crisis state (*z* = *B*)
- We use the limiting distribution for calibration


Calibration: Large Canadian banks

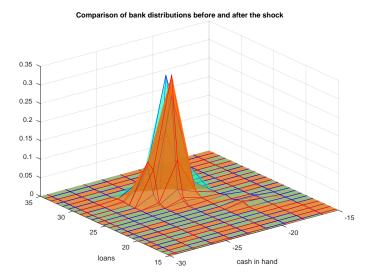
Parameter	Value	Description
$(\xi_{n,1},\xi_{n,2})$	(0, 0.011)	$\chi(n,\xi_{n,1},\xi_{n,2}) = \xi_n^1 n + 0.5 \xi_n^2 n^2$
ξd	11.76	Deposits
β	0.97	Subjective discount factor
λ	0.37	Maturity rate of long-term loans
r	0.04	Bank lending rate
$r_f + \rho$	0.001	Risk-free rate
σ	0.98	$u(c)=c^{\sigma}$
ω_r	0.9798	Risk weight on risky loans
$\Gamma_{z=G,z'=G}$	0.99	$\Pr(z' = G z = G)$
$\Gamma_{z=B,z'=B}$	0.8	$\Pr(z' = B z = B)$
$(\alpha_{\delta'}, \beta_{\delta'})_{z=G}$	(0.20, 43.6)	Loan write-off process in $z=G$
$(\alpha_{\delta'}, \beta_{\delta'})_{z=B}$	(2.45, 106.5)	Loan write-off process in $z=B$
φ	0	Outside option
$\underline{\theta}$	0	Default threshold
ϕ	0.016	Operation cost


Key banking industry moments: Large Canadian banks

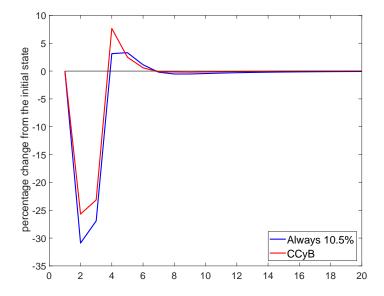
	Data	Model	
		Non-contingent	ССуВ
Bank failure rate	0.0%	0.016%	0.037%
Capital ratio	15.0%	17.2%	16.1%
New Loans/Deposit	0.91	0.88	0.87
Existing Loans/Deposit	2.44	2.33	2.32
WSF/Deposit	2.10	1.94	1.95
Equity/Deposit	0.22	0.60	0.57
Dividend/Deposit	0.035	0.066	0.066

What we are comparing

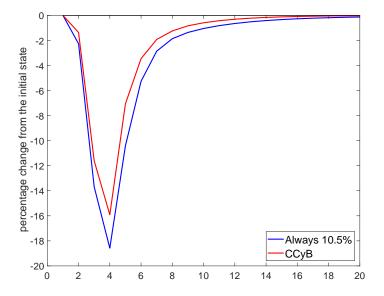
Not this one

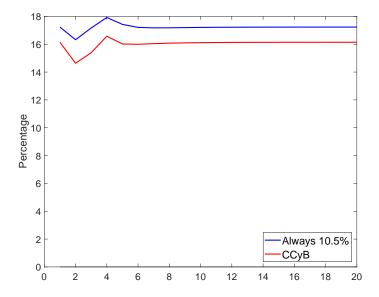


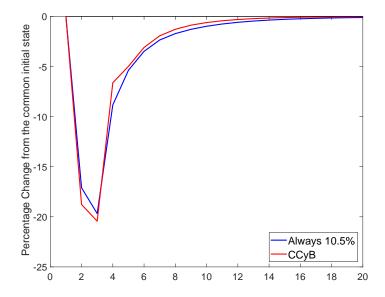
 $t = 1, \ldots, 20$

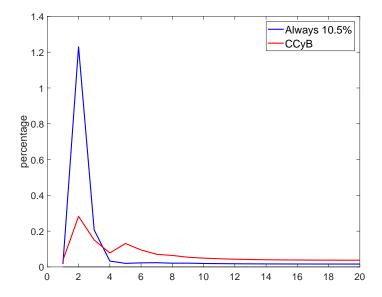

- The economy has been in the limiting state in t = 1.
- A crisis state realizes in t = 2, 3.
 - the average of loan failure rate is 5 times larger
 - the variance of loan failure rate is 2 times larger
- The aggregate state returns to the normal state in $t = 4, \ldots, 20$.

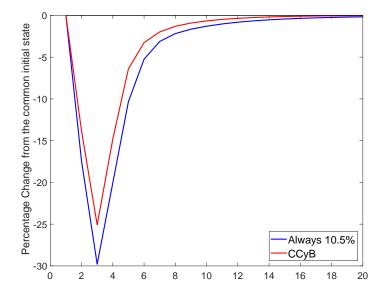
Compare " capital requirement is always 10.5%" vs "CCyB"


The distirubtion of banks one period after the shock


New loans


Existing loans


Capital ratio


Equity

Bank default probability

WSF

Our model generates a trade-off associated with CCyB:

- Relative to a uniform increase in the capital requirement across aggregate states, CCyB supports smoother loan dynamics during distressed periods
- CCyB also attenuates bank loan failures during a crisis.
- However, CCyB comes at a cost of a higher bank default probability in normal times.

- Calibration for small banks
- More layers of aggregate states: recessions in addition to crisis
- Comparison between CCyB and "No buffer"