How do private digital currencies affect government policy? By Raskin, Saleh, Yermack

Discussion by Gur Huberman Columbia Business School

Singapore, November 2018

Agenda

- The model's background vision & relevance
- Digital currency governance & its implications
 - Single/streamlined control

Vs

Protocol guided/controlled

The model's main findings

Context

- A corrupt regime
- Presumably W/O much credibility

Creates (?)

Welcomes (?)

Tolerates (?)

PRIVATE DIGITAL CURRENCY

Territory, Time Frames

- Single period
- Territorially, political & monetary regimes identical

Agenda

- The model's background vision & relevance
- Digital currency governance & its implications
 - Single/streamlined control

Vs

Protocol guided/controlled

The model's main findings

Typology

Private Digital Currencies

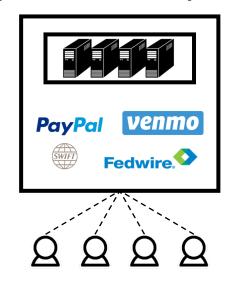
- Control? Regulation?
 - Who controls balances/transfers? Identities? Disputes?
- Territorial relevance? Is it an international currency?
- Temporal relevance?
 - How do you start the digital currency?
 - How do you stop it?
- If used to evade capital controls, is it welfare enhancing?
- The mechanism that confers credibility & value on the digital currency?
- Bitcoin is one model.

If a Trusted Party is Necessary...

It has some control/discretion

=>

- Can extract rents
- Can adapt to changing circumstances


Economics of the Bitcoin Payment System

Gur Huberman, Columbia Business School Jacob D. Leshno, Chicago Booth Ciamac Moallemi, Columbia Business School

Cryptocurrencies

- Decentralized Electronic payment systems
 - Bitcoin being the first, many other followed and offer different functions
- Decentralized, two-sided markets
 - Users receive similar services to PayPal, Fedwire; Miners provide infrastructure
 - Security and Market design enabled by blockchain protocol
- Novel economic structure
 - Owned by no one
 - Rules fixed by a protocol
 - Participants are price-takers

Traditional Payment Systems vs. Bitcoin

Rules	Set by firm/org	Fixed by protocol
Infrastructure	Procured by firm/org	Revenue, entry/exit
Revenue	Fees set by firm/org	Equilibrium congestion pricing, all agents served

Protocol Rules, No Policy Discretion

• Even when circumstances change

Two & a Half Constituencies

- Users send TXs
- Miners provide computing infrastructure
- TX recipients confer value on the coin

Miners are Crucial

- Must be compensated in native coin
- Native coin loses value => miners quit => system collapses
- Should the model incorporate this possibility?

No Trusted Party => Crypto, or Protocol-governed

- =>
- Commitment to rules
- Rules are hard to change even when circumstances change

Agenda

- The model's background vision & relevance
- Digital currency governance & its implications
 - Single/streamlined control

Vs

Protocol guided/controlled

The model's main findings

Main Finding 1:

Digital currencies enhance citizen welfare

- Risk Reduction
 Non-positive correlation with local economic risks
 provides investors with a diversification opportunity
 - Who is supplying the digital currency & is on the other side of the diversification position?
 - Is the digital currency the issuer's liability?
- Restrained Monetary Policy
 The difficulty of excluding digital currencies from the market reduces gains from seigniorage, thereby inducing lower inflation
- Difficulty of exclusion?
- E.g., Outlaw wiring money into/from exchanges

Main Finding 2: Digital currencies encourage local investment

- Diversification
 Digital currencies serve as a hedge asset, thereby facilitating investment in high-risk economies
- In what sense are currencies an asset? If we make more, are we wealthier?
- Credible Commitment
 Digital currencies facilitate a credible commitment to disciplined monetary policy, thereby enhancing expected returns from local investment
- Can terms of digital currencies adapt as circumstances change?

Main Finding 3:
Digital currencies may be desirable for corrupt sovereigns
Desirable also for non-corrupt sovereigns?
Who is corrupt? Who is to say who is corrupt?
Where's corruption in the model?

- Local Investment Increased local investment yields higher tax revenue (holding tax rates constant)
- Higher revenue to the corrupt is good?
- Welfare Gains
 Digital & original money side by side?

 Foregone network benefits of a single money?

Model: Assets

- Local productive capital
 - Taxable
 - Proxy for local investment
- Private digital currency
 - Untaxable (reflects enforcement difficulty)
 - Non-positively correlated with local economy

Source of (negative) correlation?
Source of value fluctuations?

- Unproductive capital
 - Zero real return

Agenda

- The model's background vision & relevance
- Digital currency governance & its implications
 - Single/streamlined control

Vs

Protocol guided/controlled

The model's main findings

The Stuff Dreams Are Made Of

- A small sliver of the population understands blockchain technology well enough to engage in fierce, esoteric debate over the meaning and relative importance of various ideas and terms.
- At the highest levels, everyone practices a kind of obscurantism, unwitting or otherwise.
- Elsewhere, people fake it.