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Abstract

Voting outcomes can differ from underlying preferences due to strategic selection into voting.
We discuss one explanation for such selection effects: lower participation of shareholders with
popular preferences (free-rider effect) relative to those with unpopular preferences (underdog
effect). We develop a rational choice model where the voting participation decision depends
on the probability of being pivotal and the costs and benefits of voting. Our model yields an
algorithm that uncovers unobserved shareholder preferences. Empirically, we find that strategic
selection into voting is relevant: the realized support for a proposal on average differs by 21%
from its popularity in the shareholder base.
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1 Introduction

Voting is the main avenue to aggregate shareholder preferences. Alas, not all shareholders need to

vote. In the US, mutual funds have an obligation to vote and report their votes. These funds on

average constitute 20% of shareholders. Netting out these mandatory votes, we document average

discretionary participation rates in US corporate voting of 73% and considerable variation across

proposals. Selection into voting participation creates a wedge between the underlying shareholder

preferences and the observed voting patterns. How large is this wedge? Would mandatory voting

change voting support or even sway the outcome?

We address these questions from a benefit to cost trade-off perspective, where the benefit of

voting is weighted by the likelihood that the voter is pivotal. To capture this trade-off, we propose

a rational choice model. The model introduces ownership heterogeneity to the class of pivotal

voter models in the political science literature (especially Myatt (2015)). Specifically, we juxtapose

regular voters (such as the mutual funds in the US) to discretionary voters that choose whether

to vote (such as hedge funds or wealth managers in the US). Our description of equilibria via

parameter regions and associated participation rates allow us to identify preference parameters

from observed voting outcomes. Based on this structure, we estimate model parameters using US

voting data between 2003 and 2011.

We illustrate how the participation decision can change voting outcomes. In particular, the

model unravels the tension between the groups of regular and discretionary voters: discretionary

voters who agree with the majority of regular voters turn out to vote less, the intergroup free-

riding effect ; those who disagree turn out more, the intergroup underdog effect. In the US data,

selection on average augments the observed voting support for the minority by 21% compared to

the support in the entire shareholder base (i.e., the population). This leads to a measurable but

rather small 3.7% probability of overturning the population preference. We compute counterfactual

values for this selection-implied probability of a non-representative outcome as a function of the

costs of voting. On a spectrum between the full participation cost level and the cost level with no

discretionary participation, we locate the US case at a low level, close to the cost level that implies

full participation. The selection-driven probability of a non-representative outcome (misalignment)

has a reverse-U shape, with a peak of 35% at a medium cost level with the highest occurrence
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of an equilibrium with partial participation (i.e., mixing) on both sides. In such ‘mixed-mixed’

equilibrium the average outcome is a tie and the ultimate outcome is decided with a coin-flip (so

there is a 50% chance that the favourite won’t win).

Our model follows the long tradition of pivotal voter models in the political economy litera-

ture. Similar to those, we consider a voting contest with two options, where voting is costly and

voters have a preferred alternative (i.e., they are partisan). In the corporate context, such par-

tisanship is analogous to disagreement between shareholders, which is a widespread phenomenon

among participants in firms; see, for example, Aghion and Bolton (1989), Bolton, Li, Ravina, and

Rosenthal (2018) and Li, Maug, and Schwartz-Ziv (2019).1 Our model is closest to Myatt (2015),

who introduces aggregate uncertainty about the popularity of the proposal amongst voters. The

substantive innovation of our model is that we account for heterogeneity in shareholder character-

istics and distinguish between regular (or committed) and discretionary (or intermittent) voters.

We can interpret the first group as either investment funds, which are legally required to vote,

or blockholders such as families, who hold such a large fraction of shares that voting is always

beneficial to them. The second group can be thought of as dispersed shareholders (such as hedge

funds or private wealth managers) who choose whether they will vote or not. Discretionary voters

are homogeneous other than their preferred alternative.

We solve for the equilibrium participation choices of discretionary voters who are either against

or for the proposal, who we refer to as types of voters. We obtain six equilibria for non-overlapping

parameter regions available in closed form. These parameters are the fraction of shares owned

by regular voters, their preferences (as captured by the popularity of against/for amongst them),

the benefit to cost ratio per discretionary voter, and the mean and standard deviation of their

preferences (as captured by the popularity of against/for amongst them). For each equilibrium we

have a different set of participation rates for each type (against/for), which are given in closed-form

for all equilibria. For example, in the ‘mixed-mixed’ equilibrium both types are indifferent between

voting and not, which results to incomplete turnout on both sides.

The model unravels the effects of ownership structure and preferences on discretionary partici-

1Disagreement may arise due to differences in beliefs [agreeing to disagree (Harrison and Kreps (1978)) and
overconfidence (Scheinkman and Xiong (2003))] or conflicts of interest [portfolio allocation (Cohen and Schmidt
(2009)), business ties (Davis and Kim (2007), Cvijanović, Dasgupta, and Zachariadis (2016)), and proxy advisors
(Li (2016))], or differences in incentives [flow motives/reputational concerns (Chevalier and Ellison (1999))], among
others.
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pation and ultimate voting outcome. Let us start with the type of discretionary voters that support

the favorite alternative amongst regular voters (that is, they agree). Those agreeing voters turn out

less across all equilibria the strongest the support of their preferred alternative is amongst regular

voters. Hence, they free-ride on the regular voters, an effect comparable to that in the context

of takeover bids (Grossman and Hart (1980)). In contrast, disagreeing discretionary shareholders

turn out more across all equilibria the weaker their support by regular voters, an underdog effect.2

The combined effect on the voting outcome depends on the equilibrium. For example, the equilib-

rium with mixed participation on both sides exhibits a full underdog effect: disagreeing voters turn

out more to overcome their ex ante disadvantageous position, to the extent that the equilibrium

outcome is on average a tie. In contrast, the equilibrium with full turnout by disagreeing voters

and partial turnout by agreeing ones exhibits a partial underdog effect where the outcome is on

average the favorite of the regular voters.

The model guides the design of an algorithm to estimate the unobservable parameters (such

as the benefit to cost ratio per voter) using observable ones (such as the fraction of shares owned

by regular voters). In particular, we perform a first stage generalized method of moments (GMM)

estimation across all equilibria. We use as inputs the first and second moments of discretionary

support for each type across all proposals, as well as the observed fraction of shares owned by regular

voters and their voting behaviour (which we assume is known ex ante). Our estimated parameters

are the benefit to cost ratio per voter, the equilibrium participation rates for each type, and the

mean and standard deviation of the popularity of the proposal amongst discretionary voters.

We apply the algorithm to a sample of US proposals. In the US, investment funds have a

fiduciary duty to vote and report their vote in the N-PX form. We use these shareholders as

an empirical approximation of the regular voters in the model. To this end, we match aggregate

voting records from ISS for non-standard proposals in Russell 3000 firms between 2003 and 2011 to

ownership data from 13F form filings, and the individual number of votes and their direction from

N-PX forms. The algorithm is able to assign 95% of the proposals to an equilibrium region and

yields parameter estimates within those. The algorithm performs significantly better in predicting

voting outcomes out of sample compared to a linear ordinary least squares (OLS) model based on

the previous literature, in particular Malenko and Shen (2016). Its parameter estimates in terms

2In the political science literature, where there is a single group of only discretionary voters, the underdog effect
refers to the higher participation rate of supporters of the option that is (ex ante) less popular among the electorate.
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of the benefit to cost ratio per voter are comparable to the previous literature’s estimates of share

price returns to shareholder proposals, Cuñat, Gine, and Guadalupe (2012).

Our estimates reveal that in the US data the most frequent equilibrium is one in which the

supporters of the majority turn out partially (i.e., they play a mixed strategy), while those of the

minority turn out fully. Intuitively, supporters of the majority free-ride on each other and especially

their supporters among the regular voters, while supporters of the minority have a small chance

to overturn the result to their favour and participate over-proportionally. Essentially, they turn

out to lose with a tiny probability of winning. Their presence leads to the discrepancy of 21% (in

absolute terms) between actual voting support and the hypothetical support under full participa-

tion and overturns the decision in 3.7% of the observations. To put the 21% difference between the

full participation benchmark and actual support in perspective, it is useful to compare the actual

support to the other ‘extreme’ benchmark, the voting support for the majority preference under

no discretionary participation (i.e., only regular voters). From the no-discretionary participation

benchmark, the observed support differs by 31%. In summary, the observed support for the ma-

jority’s favourite outcome is 21% away from its popularity within the entire population and 31%

away from its popularity within the regular voters.

We then use the US estimates to compute counterfactuals. The counterfactuals not only speak

to current policy debates, but also allow us to draw the shape of selection effects as a function of

different parameters. One parameter that is especially interesting to policy makers is the cost of

voting. While the cost of voting is low in the US, the EU aims to reduce its cost of voting towards the

US level, most notably with its recent roll-out of the Shareholder Rights Directive. We illustrate how

equilibrium outcomes descend with increasing voting costs from the full participation benchmark

to the only regular voters benchmark. We locate the full participation benchmark (where the

population favourite option always wins) at a counterfactual voting cost of 1/4 of the US level. At

20 times the US level, voting costs reach a level that implies virtually full intergroup free-riding,

with less than 1% of the proposals likely to have any discretionary participation in support for

the majority preference of regular voters. After that point, the only meaningful equilibrium is the

one with no discretionary participation for the majority preference of regular voters and partial

participation against it (i.e., by the “underdog”). At around 30 times the US level, the population

favourite option wins with probability 92%, reflecting the 7% difference in its popularity between
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US regular and discretionary voters. Between the full participation level and the no free-riding level

of voting costs, the probability of a minority win takes a reverse-U shape in the cost of voting, with

a peak at 35% at a voting cost of 3 times the US level. Selection is strongest here because we have

the highest occurrence of an equilibrium with partial participation (i.e., mixing) on both sides. In

such ‘mixed-mixed’ equilibrium the average outcome is a tie and the ultimate outcome is decided

with a coin-flip. As a consequence, there is a 50% chance that the favourite loses. We argue that

the US is an exceptionally low cost of voting regime and hence (ceteris paribus) the intermediate

benefit to cost ratio case is more likely to occur in the rest of the world.

We document large variations in our estimates of selection effects. The probability of underdog

wins is highest for governance related shareholder proposals, and in general larger for shareholder

proposals than management proposals. The benefit to cost ratio is highest for management pro-

posals on takeover defense; smallest for board and governance related shareholder proposals.

We report a range of robustness checks. Those in large verify the qualitative results of the main

section. Among our alternative estimations are those for subsamples where our assumptions are

more likely to hold. Most importantly, our model focuses on the participation decision and thus

does not consider how voters arrive at their partisan preferences nor their knowledge about other

voters’ preferences. This situation is more realistic later in the voting season, after investors have

observed many votes on similar ballots.

To maximize the transparency of the structural estimation, we deliberately keep the model

as simple as possible. Our estimation algorithm performs well compared to reduced form despite

only using the moments of two variables as input. However, when interpreting our estimates, it is

important to be aware of the assumptions and limitations of the model. We discuss these in detail

in Section 7.1.

Related Literature. Our theoretical work builds on the extensive literature on participation in

political elections. In this literature, we follow the stream on pivotal voter models that describes

the participation decision as a function of the costs and benefits of voting and the probability

that rational voters will be pivotal. An early contribution is Downs (1957), where the focus is on

explaining the observed participation rates in political elections. These rates are high compared

to model predictions when voting is costly, the so-called voters’ paradox. Palfrey and Rosenthal
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(1983) uses a game theoretic approach for this class of models (see Feddersen (2004), Geys (2006)

for overviews of the literature). Our own work is closer to recent pivotal voter models, which

introduce aggregate uncertainty, Krishna and Morgan (2012) and Evren (2012), and is even closer to

Myatt (2015). We contribute to this literature in that we introduce heterogeneity in the ownership

structure and hence illustrate a way to extend the vast literature on political elections to the

corporate context.

A separate stream of the political voting participation literature focuses on other reasons to

explain participation rates. In Feddersen and Sandroni (2006), voters are motivated to vote by

ethical considerations, and in Feddersen and Pesendorfer (1996), some voters may abstain to allow

more informed voters to assist in information aggregation.

The current theoretical literature on corporate voting focuses on how dispersed private infor-

mation is aggregated in a framework with a common value and zero cost of voting. In this context,

Maug and Yilmaz (2002) consider how two-class voting can resolve conflicts of interest; Maug and

Rydqvist (2009) study the effect of majority rules on strategic voting; Bond and Eraslan (2010)

endogenize the proposal; and Levit and Malenko (2011) study the advisory role of voting on non-

binding proposals. The aforementioned papers do not allow for abstention and assume homogeneity

in ownership (similar to the seminal work of Feddersen and Pesendorfer (1997)). In a contempora-

neous paper, Bar-Isaac and Shapiro (2017) consider blockholders and dispersed shareholders and

show that the former may not vote all their shares to assist in information revelation in the voting

process. We are the first to examine a cost to benefit analysis of corporate voting, with a pivotal

voter model in which voting is costly, ownership is heterogeneous, and there is disagreement among

shareholders.

Voting is part of the voice mechanism in corporate governance. The theoretical literature has

focused on another important channel: the sale of shares in the open market, that is, the exit

mechanism, and its interplay with voice.3 Specifically, Admati and Pfleiderer (2009) and Edmans

(2009) offer the first treatments of the ‘Wall Street Walk’ phenomenon; Edmans and Manso (2011)

study exit with multiple blockholders; and Dasgupta and Piacentino (2015) examine the effect of

career concerns on exit.4

3In early years, the interplay between exit and voice was highlighted by Hirschman (1970) and first studied
theoretically by Kahn and Winton (1998) and Maug (1998).

4See Edmans and Holderness (2017) for a comprehensive overview.
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The empirical literature on voter participation in political elections documents how participation

varies with institutional differences [e.g., compulsory voting (Blais (2006))] and voter characteristics

[e.g., age (Wolfinger and Rosenstone (1980) and Blais (2000)), altruism (Blais (2000)), and educa-

tion (Abramson, Aldrich, Paolino, and Rohde (1992))] and candidates [e.g., viability (Abramson,

Aldrich, Paolino, and Rohde (1992))]. We document how voting participation in corporate contests

varies with proposal and sponsor types.

The only empirical paper on corporate voting participation is by Van der Elst (2011), who

empirically shows that block ownership significantly affects corporate voting participation. We

build on this result and contribute to the empirical literature, first, by theoretically showing how

ownership matters and second, by isolating the effects of ownership and describing how to back out

importance-related information from participation rates. We also document the role of participation

in voting outcomes.

We generally contribute to the empirical literature on voting. This literature shows that voting

outcomes affect the decision making of firms (Thomas and Cotter (2007), Guercio, Seery, and

Woidtke (2008), Cai, Garnier, and Walkling (2009), Levit and Malenko (2011), Becht, Polo, and

Rossi (2016)). Much of the literature has focused on the voting patterns of US investment funds,

which since 2003 have had a fiduciary duty to vote and have to disclose their votes (Brickley,

Lease, and Smith Jr. (1994), Matvos and Ostrovsky (2010), Iliev and Lowry (2014), Malenko and

Shen (2016), Cvijanović, Dasgupta, and Zachariadis (2016), Appel, Gormley, and Keim (2016),

and Schwartz-Ziv and Wermers (2016)). For example, Iliev and Lowry (2014) empirically analyze

mutual funds’ voting behaviour and posit that these funds base their voting strategies on the costs

and benefits of “active” voting, while Matvos and Ostrovsky (2010) highlight systematic differences

in the voting behavior of more management-friendly funds. Bach and Metzger (2015) indicate that

an abnormal share of shareholder proposals were instituted by management, with a very small

difference in the results for 2003 and 2016. We contribute to this literature by showing how the

differences in preferences between blockholders, institutional investors, and other investors can

affect the participation decision.

Another stream of the literature aims to estimate the importance of voting. This literature has

used the stock market reaction to the passing of proposals (Cuñat, Gine, and Guadalupe (2012) and

Bach and Metzger (2015)); the market for votes in the US equity loan market (Christoffersen, Geczy,
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Musto, and Reed (2007) and Aggarwal, Saffi, and Sturgess (2015)); and the discrepancy between

stock and option prices around voting contests (Kalay, Karakaş, and Pant (2014)). We develop

another method to estimate the importance of proposals that does not rely on a discontinuity

analysis of only close elections but rather uses all proposals.

2 Empirical Regularities

We begin our analysis with some simple facts about voting participation in US firms.

2.1 Data

We use aggregate voting data from the ISS Voting Results database. The data provide for Russell

3000 firms from 2003-2013: the voting direction for all proposals (total votes for, votes against,

and empty votes casts, or abstentions), the voting outcome (Pass/Fail), the appropriate base for

calculating the voting outcome (for plus against, for plus against plus abstain, or outstanding),

the majority rule (simple or super-majority), and the recommendation of management and the

ISS. As in the previous literature (e.g., Cvijanović, Dasgupta, and Zachariadis (2016)), we exclude

director elections, as many of these are under plurality voting standards where abstentions have a

different interpretation than a “No” vote (Matvos and Ostrovsky (2010), Cai, Garner, and Walkling

(2013)); ratification proposals, as they are routine and noncontroversial (Bethel and Gillan (2002));

and say-on-pay frequency proposals, where the outcome is not binary. Finally, we exclude the

very few (approximately 2%) super-majority voting contests since our model only addresses simple

majority elections.

We combine the aggregate voting results with the ISS Mutual Fund Voting database, which

provides the number of votes per voting direction (for, against, and abstentions) of individual

investment funds for each proposal. The source for this database is the mandatory N-PX filings

that funds have to report. We aggregate fund level voting information at the corresponding fund-

family level.

We obtain data on institutional ownership from the quarterly 13F filings, which are collected by

Thomson Reuters. Institutions that report 13F filings include investment funds, which also disclose

their votes on the N-PX forms, as well as hedge funds and other asset managers. We complement
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this data with the fraction of shares owned and the type of owner (institutional or private), which

we hand collect from the proxy statements. In the proxy filing, which contains the voting invitation,

the firms must report the ownership of blocks greater than 5%.

2.2 Summary Statistics

Table 2 presents the summary statistics for the data sample used in the paper. Panel A provides

the number of observations per year. Our sample includes 8,568 meetings with 18,520 nonstandard

proposals. There are on average two such proposals per meeting. Both the number of meetings and

proposals per meeting increase over time, with 1.7 proposals per meeting in 2003 and 2.5 proposals

per meeting in 2011. Panel B presents the characteristics of the firms in our sample. Our firms

are comparable to the samples used by other papers on shareholder meetings (e.g., Cvijanović,

Dasgupta, and Zachariadis (2016)), with an average book asset size of $18 billion, leverage of 23%,

and a market to book ratio of 1.9.

Panel C presents the summary statistics for share ownership at the meeting level. At the time

of the meeting, there are on average 272 million shares outstanding, of which on average 68% are

owned by institutional investors. Among these, 20% report their votes (N-PX shares). The blocks

over 5% reported in the proxy statement account for 25% of the shares owned. Most of these blocks

belong to institutional shareholders, in total, amounting to 23% of the shares. Private shareholders

that own blocks over 5% account for only 2% of all shares. Finally, the directors own on average

1.6% of the shares.

[Insert Table 2 about here]

2.3 Regular and discretionary voting

In the US, certain shareholders must vote their shares, while others can choose whether to vote

or not. In particular, investment funds have a fiduciary duty to vote on behalf of their clients

(SEC Final Rule IA-2106). This duty is enforced for mutual funds and other registered investment

management companies, which are required to disclose their votes on the N-PX forms. As Table

2, Panel C shows, these shareholders hold a significant fraction, 20%, of shares but not typically

the majority. Examples for other shareholders that do have discretion over voting participation are

Hedge Funds, Private Wealth Managers and Family Offices.
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A similar duty to vote on behalf of assets managed is going to become part of EU regulations

with the 2019 Shareholder Rights Directive. However, there are other examples for regular voters.

One example are family voting trusts that combine the voting power of family members in family

firms. Similarly, shareholders can delegate voting to independent voting trusts that always vote

(these exist, for example, in the UK and Netherlands).

To represent the participation decision accurately, we calculate discretionary participation rates

excluding the N-PX shareholders’ votes. To that end, we calculate the fraction owned by the

regular voters (henceforth γ) as the fraction of N-PX voters from the 13F filings. To calculate the

number of votes by discretionary voters, we subtract the votes of regular (N-PX) voters from the

aggregates in each category (for, against, and abstentions). These “NonN-PX” votes can come from

other institutional investors (such as hedge funds and pension funds) as well as individuals (such

as insiders, directors, and dispersed shareholders). We then calculate discretionary participation

as the number of these NonN-PX votes out of the total number of “NonN-PX” shares. Total

participation is calculated as all votes cast as a percentage of the shares outstanding or the sum

of the discretionary and regular voting participation (by definition 100%). The shareholders can

also formally cast abstention votes. The number of abstentions is very small: 1.6% of all votes and

2.4% of all N-PX votes. In our results going forward, we include the official abstention votes to

obtain participation rates. Due to the low incidence of such votes, our results are not qualitatively

changed when we deduct these votes.

2.4 Voting Participation: Stylized Facts

To set the stage for our empirical analysis, in Table 3, we show the basic summary statistics for

voting support (as a fraction of the valid base) and participation. The base can be either the

number of shares outstanding or the number of shares that voted and depends on state laws and

the company charters (Bach and Metzger (2015)).

[Insert Table 3 about here]

Panel A shows that voting participation is non-trivial but also not full on average. Total

participation averages 77% of shares outstanding, and discretionary participation 73%. These

percentages are substantial compared to the participation in political elections, such as the 55%
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participation in the 2016 US presidential election.

Panel B reports the voting direction and participation by type of proposal (see Appendix B for

details on the definition of each type). The proposals that receive the most support are related to

mergers (73%) and payouts (70%). CSR proposals receive the least support (10%). These averages

already reveal that participation is not always related to the level of support: discretionary voting

participation is at its lowest for mergers, at 70%, but at its highest for payout proposals, at 76%.

Panel C shows the voting direction and participation by the type of sponsor. Management

proposals receive the highest support rates (60%), and shareholders are most likely to follow the

ISS’s recommendation with these proposals (76%). This result highlights that shareholders self-

select themselves into firms and thus on average support management.

Among the shareholder proposals, support is highest for coalitions (30%) and proxy advisors

(37%) and lowest for corporations (9%). In contrast, proposals made by social groups receive

the highest discretionary participation rates (75%). The lowest discretionary participation rates

are made by employee proposals (47%). The shareholders are most likely to follow the ISS’s

recommendations for proposals made by social groups (71%) and least likely to do so for proposals

made by coalitions (50%), unions (51%), and, not surprisingly, proxy advisors (52%).

Our results highlight that participation rates contain information in addition to support rates:

shareholders seem to consider proposals made by social groups important enough to vote for (or

against) even if they are unlikely to succeed.

3 Model

In this section, we present a rational-choice model of voting participation. This model is an ex-

tension of the one proposed in Myatt (2015), where the important variation is that we allow for

heterogeneity between shareholders in their voting discretion. We solve the model with the intent to

unravel new effects that are unique to corporate voting and link these effects to certain parameters,

which we then estimate using US voting data.

Setup. Consider a corporate proposal, where shareholders choose between two options R and L.

The firm has n + 1 voting shares. A fraction γ ∈ [0, 1) of the n shares belongs to regular voters,

while a fraction 1− γ of n belongs to discretionary voters with a single voting share and so a single

12



vote each, with the last voting share belonging also to a discretionary voter. Hence, for γ = 0, we

are in the model of Myatt (2015).5

The γ ∈ [0, 1) regular voters always vote. Their voting preference is captured by a constant

q ∈ (1/2, 1), which is the fraction of this group who vote for R. Thus, regular voters can be

thought of either as i) two subgroups (blockholders) with sizes q and 1 − q supporting R and L,

respectively, or alternatively as ii) coalitions of dispersed shareholders who always participate and

vote in proportion q, 1− q for R and L, respectively. The choice of R as the most popular option

(i.e., the favorite) among regular voters (i.e., q > 1/2) is without a loss of generality.

Among discretionary voters, option R has ex ante popularity p ∈ (0, 1). The crux of the model

is that p is unknown (in contrast to q), distributed according to density f in (0, 1), with a mean of

p. Discretionary voters will vote with a probability of a, which is distributed according to density

g in (0, 1] and has a mean of a (i.e., a is an ‘availability’ shock); p and a are independent random

variables, while q is known. The shareholders are partisan: they vote according to their preferences

(types) regardless of the others’ voting preferences and participation. Hence, if all shareholders

were available and always voted, then the expected votes for R would be qγ + p(1− γ).

Discretionary voters decide to vote or not based on an instrumental benefit v > 0, which

they receive only if their preferred option wins, and a cost c > 0, which they face when they

vote, regardless of the outcome. We assume that R and L supporters have the same v and c,

respectively, and are risk-neutral. Hence, the discretionary voters are homogeneous except for their

voting preferences. This assumption primarily assists our identification of several parameters in the

data. The benefit v can be thought of as the subjectively perceived payoff in $/shares accruing to a

discretionary voter when her preferred option wins. The benefit is a combination of any (forecasted)

short-run stock market reaction and any (unpriced) long-run benefit (including portfolio concerns

and “altruistic” motives). The opportunity cost c captures the time and effort spent to cast a

vote. Once (confidential) voting is done, the outcome is decided by the simple majority of the votes

cast and in case of a tie, a fair coin toss is the tie-breaker. All the information above is common

knowledge.

The only choice variable (strategy) is whether a discretionary voter votes. Hence, the model

5The number of voting shares n can be thought of as the market capitalization of the firm divided by the average
holdings in that firm; for example, in a firm with $10M market capitalization and $10K average holding, we have
n = 1000. For comparison, the average number of non-NPX institutions in our sample is 532 (see Table 4).
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is silent on how shareholders choose how to vote, but considers whether she chooses to voice her

opinion by voting or not. We look for symmetric strategies across types R or L of discretionary

voters and the solution is determined by the Bayesian Nash Equilibrium.

The main difference between our model and previous models of corporate elections [e.g., Maug

and Rydqvist (2009), Levit and Malenko (2011), and Bar-Isaac and Shapiro (2017)] is that we

assume that voters are partisan, and although there is aggregate uncertainty, there is no dispersed

private information. The partisan assumption can be microfounded in one of the following ways: i)

investors have common values (i.e., care about the stock price) but “agree to disagree” (i.e., have

heterogeneous priors and do not learn), as in asset pricing models (e.g., Harrison and Kreps (1978));

ii) investors have private values. For example, investors may have different incentives [e.g., flow

motives, cf. Chevalier and Ellison (1999)], conflicts of interest [e.g. portfolio allocation, cf. Cohen

and Schmidt (2009)], or different ideologies [cf. Bolton, Li, Ravina, and Rosenthal (2018)]; and iii)

investors may have common values but are of extreme types and/or receive ‘extreme’ information

(so they do not learn from the voting contest), cf. Feddersen and Pesendorfer (1997) and Yilmaz

(2000). In reality, shareholders probably have both common and private values. However, to the

best of our knowledge, there is no canonical model of voter turnout (in either political economics

or financial economics) that incorporates both values, as well as costly participation.6

Our main goal is to have a tractable model for which voting participation is endogenous and

the parameters, which capture shareholder preferences, can be estimated using the data. To this

effect, the partisan assumption implies that our model’s predictions are stronger when disagreement

is more likely to occur and/or private-information-driven voting is less prominent. A detailed

discussion of all the assumptions of the model and how we deal with them in the data appears in

Section 7.1. We now proceed to the solution of the model.

Primitives. For discretionary participation to be possible, we rule out the case where either type

of regular voter can decide the outcome unilaterally. Since q > 1/2, we need only assume the

following:

A1: γ < 1/ (2q).

6Models that incorporate private and common values usually make some simplifying assumptions; most notably
Krishna and Morgan (2011) assume that ideology (private) trumps competence (common).
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Consider a focal discretionary voter (shareholder) of type i ∈ {R,L}. Let bR and bL be the

votes of nonfocal discretionary voters for each option. Then, the total votes for R are bR + qγn,

and for L, they are bL + (1 − q)γn. The focal shareholder is pivotal if either i) her type is losing

by one vote, she pushes the score to a tie and the coin toss is favorable (with a probability of 1/2),

or ii) if there is already a tie, the coin toss is against her type and with her vote, she gives a clear

majority to her type; that is,

Pr[Pivotal|R] =
Pr[bR + qγn = bL + (1− q)γn] + Pr[bR + qγn− 1 = bL + (1− q)γn]

2
,

Pr[Pivotal|L] =
Pr[bR + qγn = bL + (1− q)γn] + Pr[bR + qγn+ 1 = bL + (1− q)γn]

2
.

The shareholder votes if vPr[Pivotal|i] > c or Pr[Pivotal|i] > c/v and does not vote otherwise, for

i ∈ {R,L}. Hence, for any participation to be possible, we also assume that the cost should not be

higher than the benefit:7

A2: v ≥ c.

Now, if

Pr[Pivotal|i] =
c

v
, (1)

for either type i ∈ {L,R}, then that type is indifferent between voting or not, which follows a

mixed strategy, and we have partial participation for i.

Large Elections. As Myatt (2015) notes, the pivotal probabilities are cumbersome to calculate

unless n is large. Let tR and tL denote discretionary voter participation rates, depending on the

shareholders’ type. Below, we present the pivotal probabilities as approximated for large elections

and the case where a is equal to a (i.e., g is degenerate). The proof appears in Appendix A.

Lemma 1. Assuming g(a) = δ(a − a), that is, the Dirac function, and A1, then the pivotal

7We can strengthen this requirement to v ≥ 2c as a “benevolent dictator” would enforce but this would not change
significantly our subsequent calculations.
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probabilities for R and L in large elections are approximately:

Pr[Pivotal|R] ≈ 1

(1− γ)n

1

ap(tR + tL)
f (p∗) p∗, (2)

Pr[Pivotal|L] ≈ 1

(1− γ)n

1

a(1− p)(tR + tL)
f (p∗) (1− p∗), (3)

where

p∗ ≡ tL
tR + tL

− (2q − 1)γ

1− γ
1

a(tR + tL)
. (4)

The value p∗ is the average probability of support for R among the discretionary voters, for which

the total average support for R and L are equal; that is,

a(1− γ)p∗tR + γq = a(1− γ)(1− p∗)tL + γ(1− q). (5)

Although (2) and (3) are approximations, we use them as equalities in what follows. In that

sense, we are looking at approximate equilibria, as defined in Myatt (2015, p. 10). Note that since

p∗ is a probability, it should be in (0, 1), and hence, we can see from (4) that tL cannot be zero.

Hence:

Corollary 1. There is no equilibrium where discretionary voters of type L do not vote; that is,

tL 6= 0.

Hence, ruling out trivial equilibria (with tL = 0 where R wins), there are 6 possible equilibria

to compute tL ∈ {(0, 1), 1}, tR ∈ {0, (0, 1), 1}. To illustrate, we go over the steps of deriving the

equilibrium with incomplete participation by both types. We then present all possible equilibria,

with the detailed derivations provided in the Internet Appendix.

Equilibrium with Incomplete Participation. Given the expressions for the pivotal proba-

bilities, we now seek to determine whether an equilibrium exists with incomplete participation for

both L and R [i.e., tL, tR ∈ (0, 1)]. From (1), we know that since the cost to benefit ratio is the

same for both types, the pivotal probabilities should also be the same for both types. Hence, using
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(2) and (3), in equilibrium, we must have:

p∗ = p, (6)

which given (5) means that at equilibrium, the total average supports for L and R are equalized.

Hence, the expected outcome is a tie. In other words, the advantage of the favorite of the whole

population of voters is overcome by higher participation rates of L voters. From (6) the pivotal

probabilities in equilibrium are:

Pr[Pivotal|R] = Pr[Pivotal|L] =
1

(1− γ)n

1

a(tR + tL)
f (p∗) .

Moreover, the pivotal probability for type R is equal to her cost to benefit ratio (1) in the equilibrium

with incomplete participation; hence,

tR + tL =
1

(1− γ)na
f(p)

v

c
. (7)

Furthermore, according to the definition of p∗ (4) and the fact that it is equal to p (6), after some

simple algebra, we have

tL = (tR + tL)p+
(2q − 1)γ

1− γ
1

a
. (8)

Using (7) with (8), we derive the equilibrium tL and tR,

tL =
1

n

1

a

1

(1− γ)
f(p)p

v

c
+

(2q − 1)γ

1− γ
1

a
, (9)

tR =
1

n

1

a

1

(1− γ)
f(p)(1− p)v

c
− (2q − 1)γ

1− γ
1

a
, and (10)

t =
2p(1− p)
n(1− γ)

v

c
f(p) +

(2q − 1)γ

1− γ
(1− 2p), (11)

ttotal =
2p(1− p)

n

v

c
f(p) + 2γ (p(1− q) + q(1− p)) , (12)
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where in the third and fourth line, we used the definitions of average participation for discretionary

voters and average total participation (i.e., including regular voters):

t ≡ a (ptR + (1− p)tL) ,

ttotal ≡ (1− γ)t+ γ.

Incomplete participation means that (tL, tR) ∈ (0, 1). These restrictions lead to a set of necessary

and sufficient conditions in terms of the parameters of the model, in particular n, γ and v/c or

equivalently, v/ (cn). The full set of parameter regions that imply and are implied by incomplete

participation are presented in Proposition 2 in Appendix A. Below, we present the part of the result

for large n, which is the case where our approximations work well and is also empirically relevant.

Proposition 1 (Equilibrium mm). Assume that q ∈ (1/2, 1), p ∈ (0, 1), f(p) > 0, a ∈ (0, 1],

g(a) = δ(a− a). If

n ∈ Nmm ≡
(
f(p) (a(1− p) + 2q − 1)

a(2q − 1)
,∞
)
, (13)

γ ∈ Γmm ≡
(
f(p)(1− p)
n(2q − 1)

,
a(1− p)

a(1− p) + 2q − 1

)
, (14)

v

cn
∈ Vmm ≡

(
γ(2q − 1)

f(p)(1− p)
,min

{
(a− γ (a− 1 + 2q))

f(p)p
,
(a− γ (a+ 1− 2q))

f(p)(1− p)

})
. (15)

Then, there exists an incomplete participation equilibrium for both types; that is, tL, tR ∈ (0, 1),

which is given by equations (9) and (10). Furthermore, the average participation of discretionary

voters t and the average total participation ttotal are given by (11) and (12), respectively. Finally,

in such equilibrium, the probability that either L of R is pivotal is equal to the common cost to

benefit ratio c/v (1), and the total expected votes for L and R are equal (5); that is, the expected

outcome is a tie.

Our approximations work well for large n; therefore, we assume that there are many voters

and that the restriction imposed by n ∈ Mmm is innocuous. Then, the incomplete participation

equilibrium exists for a set of points (region) in the two-dimensional space (γ, v/ (cn)); that is, the

space of a fraction of regular voters (henceforth, the regular block size) and the benefit to cost ratio

per voter. To differentiate across the equilibria in Section 3.2, we label them by the corresponding

18



strategy of type L and R, respectively. Hence, for the incomplete participation equilibrium, the

label is mm, signifying a mixed strategy for both types of discretionary voters. Conditional on a

large n, the infimum of Γmm is essentially zero. Hence, we cover all plausible scenarios in the data.

The interval Γmm depends on parameters q, p, f(p), and a. The interval Vmm depends on all the

above plus γ. Geometrically, this means that the region Γmm×Vmm is not rectangular. The region

is depicted in Figure 1 below.

In Proposition 1, the lower bound of γ guarantees that v/c is higher than one (see assumption

A1), and hence, some participation is possible. The upper bound of γ guarantees that the lower

bound of v/ (cn) does not exceed the upper bound, and hence, an equilibrium with incomplete

participation exists. A large n guarantees that the lower bound of γ does not exceed the upper

bound. The lower bound of v/ (cn) guarantees that the participation of the agreeing shareholders

tR is positive. The upper bound of v/ (cn) guarantees that neither of the types participates fully.

In summary, for (γ, v/ (cn)) ∈ Γmm × Vmm, participation is strictly between zero and one for both

types.

3.1 Comparative Statics

The main selection effects —the underdog and free-riding effects— are visible in the formulas for

the rates (9)–(12). All rates are the sum of two terms: an intragroup one, also present in Myatt

(2015) (i.e., the instance of our model where γ = 0), capturing the interactions among discretionary

voters and an intergroup term, unique to our setup, capturing interactions between regular and

discretionary voters, which is a key feature of corporate voting.

We focus on the intergroup terms first. Note that L is the least populous option, that is, the

underdog, among regular voters given our innocuous assumption that q > 1/2. Then, the stronger

the favoritism is for R among the regular voters, the more the supporters of the underdog L among

discretionary voters will participate [i.e., ∂tL/∂q > 0 in (9)]. This process reflects the intergroup (in

contrast to intragroup) underdog effect. In turn, the stronger the favoritism is for R among regular

voters, the less the supporters of that favorite R among the discretionary voters will participate

[i.e., ∂tR/∂q < 0 in (10)], that is, the (intergroup) free-rider effect. Both of these effects are

combined in discretionary participation and in total participation. Which effect dominates depends

on which one is the underdog/favorite among the discretionary voters. If the discretionary voters
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also on average prefer R, there is agreement between the discretionary and regular voters. Then,

discretionary and total participation decrease as the free-riding effect dominates the underdog effect

[i.e., ∂t, ttotal/∂q < 0 in (11) and (12) if p > 1/2]. In contrast, discretionary and total participation

increase if there is disagreement and the underdog effect dominates [i.e., ∂t, ttotal/∂q > 0 in (11)

and (12) if p < 1/2].

Now, we turn to the intragroup terms (present also in the incomplete participation equilibrium

of Myatt (2015, Proposition 1)). More average p (support for R among the discretionary voters)

increases tL and decreases tR; this is the intergroup underdog effect, which is standard in politi-

cal elections. Moreover, t and ttotal increase with the expected contestedness of the vote among

discretionary voters; that is, −|p − 1/2|, capturing the fact that (ignoring regular voters) close

elections command more participation. All rates decrease with the size of the electorate n since in

a larger pool of shareholders, each voter has a smaller probability of being pivotal; increase with

the concentration of the ex ante beliefs arounds the mean f(p) because shareholders are more likely

to vote if they are more certain about each other’s preferences; and increase with the benefit to

cost ratio, which represents the ‘importance’, of election v/c. As expected, the average availability

shock a decreases both tL and tR and does not affect t and ttotal. Finally, the first parts of all rates

increase with γ, capturing the fact that more regular voters translates to fewer discretionary voters.

The parameters of our model also affect the region Γmm× Vmm of the incomplete participation

equilibrium. For example, for a large regular block size γ (or support for R among regular voters

q), the length of the interval of permissible values for the benefit to cost per voter diminishes.

Intuitively, for high γ, high values of v/ (cn) (which were permissible for lower values of γ) lead

to full participation for voters of L, while low values of v/ (cn) (which were permissible for lower

values of γ) will lead to no participation for voters of R. Geometrically, this result means that the

region Γmm × Vmm will become narrower as γ (or q) increases. This result is depicted in Figure 1

below.

[Insert Figure 1 about here]

3.2 Equilibria

Table 1 reports for all possible equilibria the pair (tL, tR) (in columns 2 and 3, respectively) and

the corresponding regions in the space (γ, v/ (cn)) (in columns 4 and 5, respectively), referring the
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Table 1: List of all possible equilibria.

Eqm. Prop. tL tR γ ∈ v/ (cn) ∈ Avg. outcome

mm 1 ∈ (0, 1), (9) ∈ (0, 1), (10) Γmm, (14) Vmm, (15) Tie
1m 3 =1 ∈ (0, 1), (IA.4) Γ1m, (IA.2) V1m, (IA.3) Tie/Right
10 4 =1 =0 Γ10, (IA.6) V10, (IA.7) Right
11 5 =1 =1 Γ11, (IA.9) V11, (IA.10) Left/Tie/Right
m1 6 ∈ (0, 1), (IA.14) =1 Γm1, (IA.12) Vm1, (IA.13) Left
m0 7 ∈ (0, 1), (IA.18) =0 Γm0, (IA.16) Vm0, (IA.17) Right
00 8 =0 =0 Γ00, (IA.19) V00, (IA.20) Right

reader to the explicit formulas in the relevant propositions and equations in the Internet Appendix.

The name of the equilibrium (column 1) denotes the participation by L and R, where m stands

for mixed, 1 for full, and 0 for no discretionary participation.8 For equilibria where only one side

uses a mixed strategy (i.e., 1m, m1, and m0), we need an additional assumption regarding the

distribution of p to obtain closed form expressions for the participation rate of the type that uses

the mixed strategy. In particular, we assume that p ∼ U [l, h], where (l, h) ⊆ (0, 1).9

Assuming that g(a) = δ(a− a) and majority is decided among voting participants (as we have

done throughout), we define the voting outcome with discretionary participation as:

Odisc(p) ≡
total support for R︷ ︸︸ ︷
γq + a(1− γ)ptR − [

total support for L︷ ︸︸ ︷
γ(1− q) + a(1− γ)(1− p)tL] =

regular voters︷ ︸︸ ︷
γ(2q − 1) +

discretionary voters︷ ︸︸ ︷
a(1− γ) [tRp− tL(1− p)] .

Odisc(p) is the difference between total support for R and L when the ex ante support for R among

discretionary voters is p. If Odisc(p) > 0, then R wins; if Odisc(p) = 0, then there is a tie; and if

Odisc(p) < 0, then L wins. From the definition of p∗ (see 5), we know that Odisc(p
∗) = 0. Now,

if we compute Odisc(p), we can infer the average outcome of a voting contest. In particular, we

know that for all parameters {q, l, h, a, n, γ, v/ (cn)}, where equilibrium mm exists, we have that

p∗ = p and so the outcome in this equilibrium, as we mentioned, is on average a tie. However, this

is not true for the other equilibria listed in Table 1. For example, for equilibrium 1m, there are

parameter values in the permissible for this equilibrium region where we have a tie on average and

others where R wins (on average). Hence, in Table 1, for each equilibrium in the list, we mention

the possible average outcomes (column 7, with the added assumption that a = 1).

8For all equilibria, we posit that n is large enough so that the equilibrium requirements are met, which is sensible
since our approximations work well for large n, and empirically, the number of voters is rarely small.

9This assumption implies that p = (h+ l)/2 and f(p) = 1/(h− l) for all p ∈ [l, h], and zero otherwise.
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A few notes about these equilibria. First, the Γ× V regions are non-overlapping; hence, given

the parameter values, the equilibrium prediction is unique (if an equilibrium exists at all for those

parameters). Second, outside of the parameter regions of the equilibria in Table 1, there are

no equilibria where the two types use symmetric strategies (pure or mixed). Third, aggregate

uncertainty regarding p is essential for sustaining equilibria with some participation (i.e., given our

assumption regarding f , it is necessary that h > l; otherwise, the regions Γ × V are empty). The

intuition is that if voters were certain of the ex ante preferences, then their perceived probability of

being pivotal would almost always be zero, and hence, their incentives to participate are diminished.

Fourth, in Myatt (2015, Proposition 2), i.e., for γ = 0, we have only equilibria mm, 1m (or m1

depending on the assumption regarding who is the underdog/favorite) and 11. Hence, the inclusion

of regular voters (i.e., γ > 0) not only enhances the space where certain equilibria exist but also

results in a richer set of strategies for the discretionary voters (e.g., equilibrium m0).

The existence of equilibria for large n and general (γ, v/ (cn)) depends on the values of q, l,

h, and a (see Propositions 1 and 3-8). We summarize these findings here: case i) all equilibria

exist [for different regions of (γ, v/ (cn))] if p < 1/2, l < 1/2 and h < (a + 2q − 1)/(2a); case ii)

equilibrium 11 does not exist (all others do) if p < 1/2, l < 1/2 and h > (a + 2q − 1)/(2a); case

iii) equilibrium m1 does not exist (all others do) if 1/2 < p < 1/2 + (a+ 2q − 1)/(2a), l < 1/2 and

h < (a + 2q − 1)/(2a); and case iv) Equilibria 11 and m1 do not exist (all others do) if p > 1/2,

and either l > 1/2 or {l < 1/2 and h > (a+ 2q − 1)/(2a)}.

Each outcome can be consistent with several equilibria. Hence, observing the average outcome

of a voting contest does not lead to a unique equilibrium prediction. For example, L is the (possible)

average outcome under Equilibria 11 and m1. Note that equilibrium 11 (tL = tR = 1, Proposition

5) exists only when l < 1/2 and h < (a+ 2q − 1)/(2a). Moreover, the region in which L wins (i.e.,

Odisc(p) < 0) exists only when p = (h + l)/2 < 1/2. In turn, equilibrium m1 (tL ∈ (0, 1), tR = 1,

and Proposition 6) exists only when p < 1/2 [for p > 1/2, the corresponding region is taken over by

equilibrium 1m (tL = 1 tR ∈ (0, 1), Proposition 3), see Figure 1]. Similarly, the average outcome of

R is consistent with equilibria 1m, 10, 11, and m0, while the average outcome of T (ie) is consistent

with equilibria mm, 1m and 11.

The comparative statics for the equilibria exhibit interesting patterns. In Figure 1 we depict

the possible equilibria in the space (γ, v/ (cn)) for two sets of parameters {q, l, h, a}; the first
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corresponds to agreement between the regular and discretionary voters [case i) mentioned above],

and the second leads to disagreement [case iv) mentioned above].10 The maximum value of γ

in both graphs is 1/2q (see Assumption 1). The upper value of v/ (cn) is given by the equilibria

regions in agreement, while in disagreement, we truncate it to 100 (i.e., the blue region theoretically

extends to infinity). As we noted above, the region of equilibrium mm is not orthogonal, and its

‘width’ reduces for higher γ (see (14)). Moreover, the region is larger when there is disagreement,

capturing the greater likelihood of a tie in this case.

In equilibrium 1m, the effects are given by tR [see (IA.4)] since tL is at a ‘corner’: there

is a free-riding effect (i.e., ∂tR/∂q < 0), which survives in average discretionary participation t

for any p. However, note that when there is disagreement (i.e., p < 1/2), then equilibrium 1m

occupies a smaller region [i.e., Γ1m in (IA.2) is smaller; see also Figure 1], which is consistent with

the observation we made above that less agreement should result in less of the free-riding effect.

Equilibrium 1m does not exist for γ = 0 when there is disagreement. The intuition is that for γ = 0

and (what we call) disagreement supporters of R are the (intergroup) underdogs (since there are no

regular voters), and hence, there cannot be an equilibrium where the supporters of the underdog

participate incompletely while those of the favorite (L in this case) participate fully.

In equilibria 10 and 11, the turnout rates for both types are in the ‘corner’, so any effect stems

from the regions. As expected, equilibrium 10 (where the intergroup underdog participates fully

and the intergroup favorite does not participate) is more prevalent (and for smaller values of γ)

when we have agreement (see Proposition 4), otherwise some discretionary supporters of R would

want to participate. The full participation equilibrium 11, as mentioned, is present when there is

disagreement (for relatively high values of benefit to cost per voter ratio (see (IA.10) and Figure

1)) and when there is some agreement (so that p is not that much higher than 1/2; see case iii)

above and Proposition 5).

Now, in equilibria m1 and m0, all the action comes from tL (see (IA.14) and (IA.18), re-

spectively). In both equilibria, the underdog effect is present (i.e., ∂tL/∂q > 0). However, note

that equilibrium m1 exists only when there is disagreement (see Proposition 6) because if there

is agreement, the supporters of R do not have an incentive to turn out completely, while those of

the obvious underdog do. Equilibrium m0, again, does not exist for γ = 0 or for (what we call)

10Note that the y axis is in logarithmic scale.

23



agreement or disagreement. In both cases, if there is participation by L, then certainly, R has an

incentive to participate; otherwise, R will lose the voting contest (for zero or a fraction that is close

to zero of regular voters).

In summary, underdog and free-riding effects are weakly present in all equilibria. That is also

the case for the intragroup underdog effect, since across all equilibria, tR (weakly) decreases in p,

while tL increases. Finally, the rest of the effects manifest as well; that is, all rates (weakly) increase

in the benefit to cost per voter ratio v/ (cn), decrease in number of voters n, and in dispersion h− l.

However, note that although all these effects are monotonic (for a given equilibrium), they are

not linear. Moreover, there are ‘kinks’ as we transition from one equilibrium to another. All the

aforementioned observations guide our estimation process, which we discuss in the next section.

4 Estimation

In this section, we elaborate how we can use the model to estimate unobservable parameters in the

data.

4.1 Identification

In ex post voting data (discussed in Section 2.1) for each proposal we observe: γ (i.e., the fraction

of regular voters) and q (i.e., the fraction of regular voters in support of their favorite option

R); dSuL, the discretionary support of type L voters among those who vote; and dSuR, the

discretionary support of type R voters among those who vote.11 In the data, we standardize as

R the direction (for or against) that is most popular (on average) among the regular voters for a

proposal type. Table 4 reports univariate statistics for these input variables.

We estimate the following unobserved parameters: v/ (cn) (i.e., the benefit to cost ratio per

voter); p (i.e., the average fraction of discretionary voters in support of R); and std(p) (the standard

deviation of the fraction of discretionary voters in support of R).12 Assume throughout that the

average availability is a = 1.

The unit of estimation is a quantile of γ times quantile of n (proxied with the market capital-

ization) per proposal-type. For each bin in this triple-sort, we compute the average γ; the average

11Note that dSuL and dSuR correspond to tL(1− p) and tRp in the model.
12Given our assumption on p ∼ U [l, h] we have p = (h+ l)/2 and std(p) = (h− l)/

√
12.
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preference for the favorite among regular voters q;13 and the averages dSuR2, dSuL, dSuR2, dSuL2.

The bins are necessary because the observed dSuR, dSuL are in a firm×year×proposal-type di-

mension. To compute meaningful averages for a given proposal-type, we therefore have to ‘fix’ the

firm×year parameters of the model: γ and n. Hence, our identifying assumption is that within

each bin (i.e., a quantile of γ, quantile of n, and proposal-type) unobserved {v/ (cn) , p, std(p)}

are constant and the averages γ, q are representative. Therefore, we postulate that variation in

(discretionary support for R) p across proposals is the (only) variation that allows us to identify

the bin-specific parameters.

4.2 Algorithm

The algorithm performs an exhaustive search for every bin. We consider a dense grid of points in the

permissible space of the unobserved parameters {v/ (cn) , p, std(p)}: v/ (cn) is positive, while from

the above, for tL, tR ≤ 1, we have p ∈
[
dSuR, 1− dSuL

]
and std(p) ∈

[
max{std(dSuR), std(dSuL)}, 1/

√
12
]
,

where std(dSuR) ≡ dSuR2 − dSuR2
and std(dSuL) ≡ dSuL2 − dSuL2

.14 Given a point in the

grid, the algorithm performs the following (sub)steps for each possible equilibrium:

i) calculates the interval Γ and asks if γ belongs in it; if it does, then the calculations continue

for that equilibrium. Otherwise, we proceed to the following equilibrium;

ii) if γ ∈ Γ, then the algorithm calculates the interval V and asks if the v/ (cn) under consider-

ation belongs in it; if it does, then calculations continue for that equilibrium. Otherwise we

proceed to the following equilibrium;

iii) If v/ (cn) ∈ V , then the algorithm calculates tL and tR and creates estimates for

dSuLest = tL(1− p), dSuRest = tRp,

dSuL2
est = (tLstd(p))2 + (tL(1− p))2 , dSuR2

est = (tRstd(p))2 + (tRp)
2 .

13Our results stay similar if we use medians
14Note that 1/

√
12 is the standard deviation of a uniform in [0, 1].
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iv) Finally, the algorithm calculates the error:

Estimation Error =
(
dSuLest − dSuL

)2
+
(
dSuRest − dSuR

)2
+

(
dSuL2

est − dSuL2
)2

+
(
dSuR2

est − dSuR2
)2
.

In the third and final step, the algorithm picks for every bin the point in the grid and the associated

equilibrium that minimizes the above estimation error. Hence, since we take an identity weighting

matrix for our errors we perform a one-stage GMM (see Hansen (1982), Hansen and Singleton

(1982)), referred to as ‘Baseline’ henceforth.15

A few observations about the estimation. First, in terms of v/(nc), the algorithm returns a

point estimate only if in the equilibrium with the minimum estimation error, both rates are not

‘corners’ [i.e., there is a rate strictly in (0, 1), which is true for equilibria mm, m1, m0, and 1m].

In turn, for equilibria 11 and 10 we obtain a set estimate V =
[
v/ (nc)lower , v/ (nc)upper

]
because

in those equilibria all v/(nc) ∈ V will lead to the same estimated values (as the particular value of

v/ (cn) does not affect the rates tL, tR). Second, given the possibility for set estimates we essentially

use four moments to estimate in principle four parameters, hence our system is exactly identified.

Third, the uniqueness of the identified parameters should be noted. Recall that for fixed parameters

{γ, q, v/ (cn) , p, std(p)}, the model predicts a unique equilibrium. In addition, the algorithm picks

the parameter values that minimize the estimation error using exhaustive search. Hence, we can

be certain that no other parameter values in the grid and associated equilibrium would result in

lower estimation error, given the data. Fourth, we perform, as mentioned, the estimation for each

quantile of γ, each quantile of n, and each proposal-type. We face the following tradeoff choosing

the size of each bin: more observations within a bin make our computed averages more accurate

but also reduce the ‘representativeness’ of the computed γ and q. We checked that this tradeoff

does not affect our results qualitatively with robustness checks with respect to the bin size.

15As we know the one-stage estimates are consistent but not efficient. As part of robustness we also perform the two-
stage (efficient) GMM estimation (referred to as ‘GMM’ henceforth) and results are qualitatively similar. However, as
noted in Parker and Julliard (2005, bottom of p. 193) and references therein: “...GMM with a pre-specified weighting
matrix has superior small-sample [as our bins are] properties...”.
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4.2.1 Delta Method

This subsection describes how we compute standard errors for the estimates. The t-statistics of

the errors, described in Appendix B, are calculated using the variance-covariance matrix from one-

stage GMM. In particular, we compute our standard errors using the Delta Method approach (see

Wooldridge (2010, pp. 44-45)).

Let the estimated parameters θ ≡ [v/ (nc)lower , v/ (nc)upper , p, std(p)], given the moments m ≡

[dSuL, dSuR, dSuL2, dSuR2]. First, we use the data to numerically compute the sensitivity of

these estimates to changes in the moments, i.e., ∂θi/∂mj , for i, j ∈ {1, 2, 3, 4}. Second, we estimate

the variance-covariance matrix, let S, of the four errors that we base our estimation on, i.e.,

dSuLest − dSuL, dSuRest − dSuR, dSuL2
est − dSuL2, dSuR2

est − dSuR2.

Then, the variance of our error in estimating parameter θi is

∆i × S ×∆T
i ,

where vector ∆i ≡ [∂θi/∂m1, ∂θi/∂m2, ∂θi/∂m3, ∂θi/∂m4], for i = {1, 2, 3, 4}.

4.2.2 Probabilities of Misalignment

This subsection describes how we compute the probability of a misalignment (“swing”) between the

actual pass/fail decision and the counterfactual pass/fail decision under full participation. Intu-

itively, holding the parameters of each bin constant, we simulate the probability of a misalignment

in the voting outcome per bin. First, given our estimated p, std(p) we simulate proposals p ∼ U [l, h].

Second, for each p given our estimated tL, tR for this bin we compute:

i) The estimated outcome index under discretionary participation:

Odisc(p) ≡
total support forR︷ ︸︸ ︷
γq + (1− γ) tRp−

total support forL︷ ︸︸ ︷
γ (1− q) + (1− γ) tL(1− p) .
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ii) The estimated outcome index under full participation is:

Ofull(p) ≡
total support forR︷ ︸︸ ︷
γq + (1− γ) p −

total support forL︷ ︸︸ ︷
γ (1− q) + (1− γ) (1− p) .

The sign of Odisc, Ofull determines whether the proposal passes or fails. Hence, a measure of the

difference in the decision between discretionary and full participation is the indicator

I (Odisc(p)Ofull(p) ≤ 0) .

Finally, we average for all p and this gives as a per bin estimate of P [Odisc(p)Ofull(p) ≤ 0].

Two observations for this measure. First, Odisc for every p is computed using the estimated

tR, tL and the bin γ, q, and not the actual dSuR, dSuL. This is because we do not want our

swing measure to be ‘polluted’ by estimation error. Second, the only difference between Odisc and

Ofull are the rates tR and tL, which capture the very selection effect we want to quantify with this

measure.

Moreover, we can perform exactly the same exercise as above but instead of using full partici-

pation as our benchmark, use the case of no discretionary, only regular participation. To this end

define:

Oonly-reg ≡
total support forR︷︸︸︷

γq −
total support forL︷ ︸︸ ︷
γ (1− q) .

Note that Oonly-reg does not depend on p, which is only relevant for discretionary voters, and given

our assumption that q > 1/2 is always positive, i.e., R wins if only regulars vote (which is trivial

since we defined R to be the favourite amongst regular voters.).

Given the above definitions the outcome index under full participation can be written as:

Ofull(p) = γq − γ (1− q)︸ ︷︷ ︸
Oonly-reg

+ (1− γ) tRp− (1− γ) tL(1− p)︸ ︷︷ ︸
Oonly-disc(p)︸ ︷︷ ︸

Odisc(p)

+ (1− γ) (1− tR) p− (1− γ) (1− tL) (1− p)︸ ︷︷ ︸
Ono-part(p)

,

where we decomposed Ofull in three parts: Oonly-reg due to regular voters, from above; Oonly-disc(p)
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due to discretionary voters who participate; and Ono-part(p) the part due to discretionary voters

who do not participate in equilibrium. As also noted above the sum of the first two parts is the

outcome index in equilibrium Odisc(p).

5 Results

This section reports the main empirical findings. We begin with the estimation results and then

set them in context. To be more precise, we provide a more in-depth discussion of the selection

effects in relation to their associated equilibrium, and a discussion of the benefit to cost ratio across

different proposals. We then present counterfactuals where we vary the cost fo voting c to illustrate

selection effects in a spectrum between full and no discretionary participation. The section closes

with a comparison of the model fit relative to the previous literature.

5.1 Parameter estimates

Panel A in Table 5 reports the point estimates of v/cn, p and std(p). The estimates of v/cn, the

benefit to cost ratio per voter, is 2.07 in our baseline estimation. The 95% confidence interval

ranges from 2.02 to 2.10. The estimated distribution of p, the fraction for R among discretionary

voters, has 0.83 mean and 0.24 standard deviation. The 95% confidence intervals are 0.81 to

0.84 for the mean and 0.23 to 0.24 for the standard deviation.16 All the two-step and baseline

confidence intervals overlap. In terms of model fit, Panel A provides the proposal-weighted model

mean absolute error (m.a.e.) for each of the moments. The m.a.e. equals 2.3% for the first moment

of dSuL and 1.6% for the one of dSuR. These numbers compare to a proposal-weighted mean

dSuL of 15% and dSuR of 56%. The second moment m.a.e. are higher, with an average of 4.4%

for dSuL and 1.3% for dSuR.

To set these numbers in context, we now compare the estimates to the previous literature,

starting with v/cn. Out of v, c, and n, the literature on v, the benefits of winning a vote, has

been the most extensive. Although we do not disentangle the three parameters in our estimation,

we can approximate a range for the magnitude of v using rather primitive assumptions on c and

n. For an assumed average share holding size of $1.5 million (the average holding size of insider

16The magnitudes of estimates and confidence intervals from a two-step (efficient) GMM are comparable and listed
next to our one-stage, baseline estimates.
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holdings convicted by the SEC (Ahern (2015))) and a cost of $1, the “return” is 1.3% . This result

compares to an average return of 1.6% for the passing of governance-related proposals by Cuñat,

Gine, and Guadalupe (2012). Assuming a higher cost would linearly translate into lower returns.

Next, we set our estimates of p, the mean discretionary shareholder popularity of R, in relation

to other parameters (reported in Panel B). We start by comparing p to q (i.e., the bin average of q,

the regular voter support for their favourite option R). Regular and discretionary voters preferences

differ on average by 7.0%. Direction-wise, this difference is almost entirely attributable to a greater

support of the regular voters towards their preferred option R: the signed (as opposed to absolute)

difference is 6.2%. This compares in magnitude to a standard deviation of q, the support of regular

voters for R, of 7% and a mean of 89% (remember that q is defined to be above 50%).

Our p estimates per bin enable us to quantify selection effects by comparing discretionary

voting support for the average proposal to the counterfactual benchmark equilibria under zero and

full discretionary participation. To this end, we contrast the estimated Odisc(p) to Oonly-reg and

Ofull(p), as defined in Section 4.2.2. Any differences are due to the endogenous participation choice

of discretionary voters, captured by the rates tL and tR. We find, that the participation decision

augments the difference between regular and discretionary voters significantly. Discretionary voters

who participate increase (in absolute terms) the support for R by 31.1% relative to what it is with

only regular voters. This is intuitive as regular and discretionary voters by an large agree (the

average q − p is 6.2%). Moreover, it would be increased by a further 21.4% if we were to force

all discretionary voters to vote. The substantial support for R that is being ‘lost’ by the non-

participating discretionary voters is due to the free-riding and underdog effects: the discretionary

supporters of R (i.e., the majority of regular voters) free-ride on regular voters with their preference

and participate less than the “underdogs” L, the opponents of the majority of regular voters.

How often can selection into voting overturn the voting decision? We document estimates

for the probability of a voting decision that does not equal the majority preference of the full

shareholder base (misalignment probability). This probability represents the fraction of such a

misalignment within Monte-Carlo simulations within each bin under the parameter estimates for

the distribution of p. On average, this probability is 3.7% in our sample of proposals. In other

words, free-riding results in a probability of 3.7% for proponents of the majority in losing the vote,

or: for the “underdog” to win the vote despite being the minority in the entire shareholder base.
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5.2 Selection Effects and Equilibria

The participation decision leads to a pronounced difference of 21% between the observed voting

support and the hypothetical one under full participation. The probability that these 21% over-

turning the majority’s preferred decision, however, is only 3.7%. What drives this discrepancy in

magnitudes? To explain the apparent disconnect, we document the estimates by equilibrium in

Panel C. Equilibria differ in terms of the expected outcomes and the relationships between the

parameters and participation rates (see Table 1). Thus, the identity of the equilibrium affects

how parameters can affect the observed participation, the actual outcome, or even the equilibrium

itself. Graphically, this means that the region in Figure 1 affects the consequences of moving in

any direction.

First, Panel C reports the number of proposals that correspond to each equilibrium in Table

1. The vast majority of such proposals correspond to the 1m equilibrium, where the intergroup

“underdogs” (discretionary voters against the average direction of regular voters) participates fully

and the “free-riders” (discretionary voters for the average direction of regular voters) participate

partially. In other words, discretionary voters against the regular voters are more likely to partic-

ipate. In contrast, only 80 proposals correspond to the m1 equilibrium where the side supporting

the regular voters participates fully and the the side against regular voters participates partially.

The incomplete participation equilibrium mm is the most appropriate for 41 of the proposals. Re-

call that in this equilibrium, the expected outcome is a tie. We do not find any proposals that

correspond to equilibrium 10 or 11 (full participation only against regular voters, full participation

on both sides).

The pronounced participation of “underdogs” in the 1m equilibrium increases the observed

voting support for the underdog compared to the average popularity in the total population. Indeed,

over the entire sample the average participation rate for L is almost 100%, compared to an average

participation rate of 66.7% for R. Such free-riding on the R side results into the high actual support

for the minority option compared to the counterfactual under full participation. In contrast, in the

mm and m1 equilibria, the R side receives more support under discretionary participation than

under mandatory participation.

The probability of a decision misalignment between discretionary and mandatory participation

also differs across equilibria. Recall that the probability of any average outcome in the mm equi-
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librium is 50% (because we have on average a tie and a coin toss to decided the ultimate outcome).

Indeed, the probability of overturning the majority of the underlying shareholder population is

18.8% for the mm equilibrium. That probability is much lower, with 3.7%, for the 1m equilibrium.

For the m1 equilibrium, the probability is 24.5%. Because most of our proposals correspond to

the 1m equilibrium, the sample average probability of overturning is so small. In the next section,

we consider how changes to the cost of voting can affect equilibrium incidence, participation, and

outcomes.

5.3 Heterogeneity in Preferences

The algorithm produces estimates of otherwise unobserved shareholder preferences: the popularity

of a proposal among the entire shareholder population (as discussed in the previous section) and

the benefit to cost ratio per voter. In Table 6, we show these estimates by proposal type. Among

shareholder proposals, CSR proposals have the highest benefit to cost ratio per voter. There

is variation in terms of selection bias among the different proposal types. The likelihood of a

minority-win is 13% for governance shareholder proposals. The absolute difference between the

voted outcome and the preference of the entire shareholder is largest for CSR proposals (28%);

the difference between the voted outcome and the hypothetical outcome under no discretionary

participation is highest for payout proposals (30%). Among the management-sponsored proposals,

takeover-defense, payout and board-related proposals have the highest benefit to cost ratios. The

distance between the voted outcome and the preference of the entire shareholder base across the

management proposals is smallest for CSR proposals (9%) and highest for say-on-pay and other

compensation proposals (22%). The variation is smaller for the discrepancy between the actual

outcome and the hypothetical one under no discretionary turnout.

The discrepancy between the shareholder proposals and the management proposals indicates

that not only the proposal type matters but also the sponsor. Table 6, Panel B shows the outcomes

of the algorithm using bins of sponsor types instead of proposal types. In this specification, man-

agement counts as one sponsor type; hence, this estimation is coarser for management proposals

than our baseline results, where we estimate management proposals by proposal type. Nevertheless,

the results are similar to the proposal-type estimation. Table 6 Panel B shows that management

proposals have the highest benefit to cost ratio per voter, followed by proposals made by social
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groups and corporations. The proposals with the lowest benefit to cost ratio per voter are made by

proxy advisors and employees. The likelihood of an outcome different from the preference of the

majority of the shareholder base is highest for pension funds sponsored proposals (7%). In terms of

the absolute distance between the voted outcome and the preference of the entire shareholder base,

the distance is smallest for coalition proposals (9%) and management proposals (20%) and highest

for employee-sponsored proposals (38%). The selection effects are different when we compare actual

outcome to the no-discretionary-turnout outcome: there, the highest distance occurs for proposals

sponsored by management, the smallest by those from employees.

In Panel C of Table 6, we report the outcomes of the algorithm using bins of years instead of

proposal types. The most common equilibrium is 1m, with full participation by “underdog” voters

and partial participation of “free-riding” voters. Table 6 shows an increasing trend in the benefit to

cost ratio per voters. This trend may reflect a declining cost of voting, which is consistent with the

increasing popularity of online voting, or a trend in the average number of shares held. Despite the

trend in the benefit to cost ratio, selection-related estimates do not exhibit any meaningful time

trends.

5.4 Model comparison

To help understand the fit of the model, in this section we compare the precision of out-of-sample

predictions to models similar to the previous literature. To be more precise, we use an estimation

model based on Table 3 of Malenko and Shen (2016) on our data up to 2010 to forecast 2011 voting

results. Malenko and Shen (2016) shows that a negative ISS recommendation causes a significant

decline in say-on-pay voting support, with a high R2 of 0.63. We use their estimation model

in reduced form, adding their instrument of the ISS recommendation –whether firm performance

has been below an ISS specific threshold– as an additional explanatory variable. To ensure that

this model is directly comparable to ours, we also add the information we use in our baseline

estimation as explanatory variables: γ, q, p × (1 − p), market cap. We use this model to predict

total participation, dSuL, dSuR, and the outcome index Odisc(p).

We provide the estimates in Table 8 Panel A. Similar to Malenko and Shen (2016), NegRec

predicts the outcome significantly. We obtain estimates for 13,520 proposals. For total participation

as dependent variable, we obtain a R2 of 0.65. For discretionary participation, the R2 equals 0.59.
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To compare the errors, we compute the squared residuals and average them per bin. Because

the OLS residuals average zero by construction, for each observation we determine whether our

algorithm performs better than the OLS models. We repeat this exercise with an out-of-sample

forecast for the last year (2011) of our sample, where we predict the model parameters using data

up to 2010.

Note that the applicable sample differs across the two sets of models. As Panel A, columns

1-4 show, the number of observations (proposals) with valid data for the reduced form models is

11,602 across all years for total participation and outcome, and 10,851 (10,907) for dSuL and dSuR,

respectively. This compares to 15,666 proposal observations for which the baseline model obtains

parameter outputs that are consistent with any equilibrium boundaries and do not imply trivial

benefit to cost ratios (i.e., benefits smaller than cost) out of a total of 16,493 proposals. Intuitively,

any trivial proposal that may have already been excluded by the company because it was deemed

immaterial.

To compare the prediction accuracy of our baseline model to the reduced form models, we

calculate model parameters with data up to 2010. We then use these parameters (v/cn and the

distribution of p) to predict participation, dSuL, dSuR, and outcome for 2011 proposals, using 2011

data for any other input needed (proposal type, γ, and q). For the reduced form model, we obtain

regression coefficients with data up to 2010 and use them with 2011 data to obtain predictions. For

both sets of predictions, we calculate the mean squared errors (MSE) of the 2011 predictions and

test whether our baseline estimation yields smaller errors than the reduced form model.

Panel C reports the MSEs of both models and their difference. The baseline model produces

smaller MSEs than the reduced form model. Indeed, the reduced form model MSEs are around

twice the magnitude of the baseline MSEs. We use a Diebold-Mariano (Diebold and Mariano

(1995)) test to show that the difference in MSEs is significant; for this test we treat the predictions

as a time series with the meeting order as time stamp. The differences in MSE are the highest for

total participation and dSuL. For this discretionary support against R, the OLS obtains MSEs

twice as high as for the support towards R, while the difference among our estimates are more

comparable. This discrepancy is consistent with a prevalence of corner equilibrium outcomes on

the L side.
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6 Counterfactuals

An appealing feature of our approach is that we can use the estimated model to evaluate the effects

of counterfactual experiments on participation and voting decisions, and on the outcomes they

induce. This approach can be useful for practitioners who wish to optimize their campaign budget

as well as regulators who wish to alter voting procedures. Here we consider variations of the cost of

voting c, a variable of interest for policy makers. The cost in our model enters through the benefit

to cost ratio per voter v/cn. Hence an increase in the cost, keeping v and n constant leads to a

decrease in the v/cn or an increase to cn/v. Clearly, our counterfactuals are equivalent if one was

to think of changing these ratios directly (by for example changing v and keeping c and n constant).

Reducing the cost of voting is an objective of regulators around the world, for example see

the 2017 version of the Shareholder Rights Directive in the European Union.17 Notable examples

of cumbersome and thus costly voting procedures includes pre-registration requirements (e.g., in

Switzerland), Power of Attorney requirements (e.g., in Sweden), the non-availability of electronic

voting outside the US and Europe (see Eckbo, Paone, and Urheim (2010), Eckbo, Paone, and

Urheim (2011), and of Institutional Investors (2011)). In addition, the concentrated nature of

shareholders meetings (in spring in the US, on 2 days annually for the entire Japanese population

of public firms) provides challenges especially for small, but diversified asset managers.

In contrast, costs of voting in the US are likely to be small. Most firms in the US support

electronic voting and do not require cumbersome paperwork to prove ownership or pre-register

for voting. The US low cost of voting is reflected in the high participation rate among L voters

we estimate with the US data. The dominance of the 1m equilibrium means that shareholders

face a low cost of voting compared to the potential benefit of winning (given the relatively small

probability of being pivotal).

In Table 7, we report P [Odisc(p)Ofull(p) ≤ 0] (Panel A), i.e., the probabilities of a non-representative

outcome, and associated equilibrium incidence (Panel B) for different multiples of cost of voting,

keeping all other parameters constant. Technically, we compute these for multiples of the estimated

cn/v (i.e., the inverse of the benefit to cost ratio per voter). We begin with a c of 0.25, 0.5, and

0.75 times the US level and proceed with multiples of 2–5, 10, 15, 20, 25, and 30 the US level. For

comparison, we also report the actual estimates (multiple of 1).

17Available online at http://bit.ly/2rtcZA5.

35



The probability of a non-representative outcome is very low at voting costs below the US level.

The probability is zero at a cost of 0.25 times the US level and 2·10−4% at 0.5 times the US level

(Panel A). This is because, as Panel B shows, for cost levels of 0.25 times the current US level all

proposals with any associated equilibrium are of the full participation (i.e., 11) type (and 60 out of

62 proposals for 0.5 times the US level).

For voting costs above the US level, the probability of a non-representative outcome peaks at

35%, for costs 3 times the US level. Higher levels of costs than that are associated with a lower

probability of a non-representative outcome. This is because costs of 3 times the US level leads to

the highest incidence of the mm equilibrium, 4286 out of 15,665 proposal (see Panel B). Recall that

in that equilibrium, both sides use a mixed strategy and the average outcome is a tie. The ultimate

outcome is decided by a coin flip, so conditional on an mm equilibrium the favourite loses with 50%

probability. This associated randomness produces voting outcomes that are non-representative of

the full population in 44% of all proposals. At the 3 times cost level, we also start seeing more

incidences of the 10 and m0 equilibria instead of the 1m equilibrium, so that discretionary support

for R falls to even zero. In other words, we obtain maximum free-riding on regular voters from the

discretionary voters who agree with their favourite outcome.

Note that even with cost of voting as high as 30 times the US level the “underdog” will par-

ticipate fully in some proposals. Hence, the predominance of proposals where the “underdog”

participates fully (the 1m equilibrium) in the US sample is not unusual. Indeed, the probability of

changing the voting outcome in their favour in the 1m equilibrium is as high as 24% with costs of

voting 2 times the US level and 30% with costs of voting 3 times the US level. In the 10 and m0

equilibria, for 3 times the US level, the “underdogs” have an even higher probability of changing

the voting outcome, with averages of 34% and 46%, respectively.

With increasing cost of voting, participation moves from full to none. That is, we move from

the 11 equilibrium with full participation to the m0 equilibrium where almost only regular voters

and a few underdogs participate. The representativeness of such high-cost elections depend on

how much discretionary voters agree with regular voters. Regular voters that perfectly agree

with discretionary voters can represent all shareholders even if voting is prohibitively costly for

discretionary voters. Such perfect alignment of preferences would support regulations that force

institutional investors to vote. However, our estimations above show that this is not always the
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case. The average distance between q and p ranges from 4% in board-related shareholder proposals

to 19% in takeover defense-related shareholder proposals.

To study the importance of disagreement between regular and discretionary voters, we re-

port the counterfactual misalignment probabilities for these two types of proposals. As expected,

disagreement yields a higher probability of non-representative outcomes for high costs of voting.

Starting from a level of 7 times the US cost of voting, the high-disagreement defence propos-

als yield a higher probability that the minority wins than the low-disagreement board proposals.

However, the low-disagreement board proposals face a higher probability of misalignment = at

lower costs levels. That is, disagreement does not necessarily translate into a higher probability of

non-representative outcomes at medium levels of costs of voting, as L voters may be sufficiently

dissuaded from participating.

7 Discussion and Robustness

7.1 Model Assumptions

Our model is stylized and meant to illustrate how the participation decision can change voting

outcomes. The good fit of our estimates compared to that of a reduced form model suggests that

even with very few input parameters within a simple model, the algorithm performs well. To

facilitate the interpretation of the estimations, however, we point out here the limitations imposed

by the model assumptions.

Most important, our model focuses on the decision whether to participate in voting and abstracts

from all other decisions. In particular, the model abstracts from how the potential voters obtained

their votes, how they chose their preferred side, and how they arrived at their common knowledge

of the model parameters (i.e., the fraction and preferences of the regular voters and the distribution

of preferences among the discretionary voters). In reality, however, these decisions are likely to be

endogenous with the participation decision as well as depend on factors that are not considered in

our model.

In particular, how do shareholders obtain information needed to make their decisions in prac-

tice? Much of the relevant information is fairly easy to access today due to disclosure regulations:

the ownership structure, which is disclosed in the invitation to vote, voting manifestos, commonly

37



published online by institutional investors, and recommendations given by proxy advisory compa-

nies such as the ISS and Glass Lewis (Iliev and Lowry (2014), Malenko and Shen (2016)). Alas,

high quality information can still be costly to acquire: for example, products such as Proxy Insights

provide aggregate voting predictions using the past voting behaviour of institutional investors by

subscription. Hence, it would be natural to assume that instead of being partisan, shareholders

need to acquire potentially costly information about the potential benefits of the proposals as well

as the preferences of the other shareholders. While such costs are sunk at the stage of the par-

ticipation decision we focus on, the heterogeneity of such costs or the distribution of information

(both the parameters and noise) are likely to have an effect on our results.18

For example, what would happen if the voting cost c was heterogeneous among discretionary

voters? According to Myatt (2015, Section 5), heterogeneous costs imply that in the incomplete

participation equilibrium mm, the underdog effects may not be able to cause a tie (this is referred

to as the “partial underdog compensation effect”). We suspect a similar qualitative result in our

setting with both regular and discretionary voters. As a consequence, when there are heterogeneous

costs, the selection effects can be considerable even without resulting in a 1m equilibrium, which

would infer a subtly different channel for our findings, where most proposals are in a 1m equilibrium.

We plan to explore this issue further both theoretically and empirically in future work.

Another relevant practical matter is equity lending. The literature has documented significant

equity lending (see Christoffersen, Geczy, Musto, and Reed (2007) and Aggarwal, Saffi, and Sturgess

(2015)) around shareholder meetings. In the presence of such a market, discretionary voters may

decide to lend their shares instead of voting, effectively increasing the opportunity cost of voting. If

voting constitutes a significant factor in the equity lending market, the demand, supply, and interest

should be endogenous to shareholder preferences and the voting decision. Given that the expected

benefits of voting are greater for shareholders with a preference for the underdog, these should be

willing to pay more to borrow shares. This will allow them to acquire more votes, which will lead

to closer votes than that occurring in a world without equity lending. Closer voting outcomes can

lead to more incidences of the partial equilibrium outcome, which is rare in our data set.19 In the

18There are institutional reasons to believe that such heterogeneity exists. For example, Bach and Metzger (2015)
argue that management has access to inside information about the votes already cast and therefore can run a targeted
soliciting campaign. Moreover, shareholder pressure groups, such as Shareaction or Peta, advocate for their cause in
highly visible advertising campaigns. Indeed, this may be one channel through which the underdog side achieves the
full participation we document.

19A more problematic bias may arise if external reasons unrelated to voting increase the demand or supply of equity
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next section, we compare the top and bottom quintile of firms in terms of the demand and supply

of equity lending and investigate the effect on our estimation results.

We also make procedural assumptions that are standard in the literature (see Heard and Sher-

man (1987), McGurn (1989), and Monks and Minow (2003) for further details about the mechanics

of proxy voting). First, we assume that voting occurs simultaneously. In practice, there might

be instances of early access (e.g., provided by vote solicitors such as Broadridge, see Bach and

Metzger (2015)). However, most voters and brokers submit their votes at the deadline to prevent

such access and to avoid having to change their votes should they change their opinion. Second,

we assume that regular voters never abstain from voting, which is consistent with the data that

shows virtually no abstentions by regular voters, with fewer than 1% of empty votes cast within

our sample. Third, our model assumes that the vote is for a single issue/proposal, i.e., abstracts

from bundling, which occurs in reality. To address this potential issue, we conduct a robustness

check by splitting meetings into different degrees of proposal bundling.

Finally, shareholder preferences and types are, in reality, much more heterogeneous than we

assume in the model. We assume that the cost and benefit of voting are constant and symmetric

across types and that discretionary voters all own the same number of shares. We make these as-

sumptions to keep the model as simple as possible and to avoid overfitting the empirical estimation.

Our model also allows for a set up in which the discretionary voters have a different number of

votes as long as these differences are small.

7.2 Alternative Estimation Methods

In this section, we show how robust our estimations are to alternative estimation methods. In

Panel A of Table 9, we report the MSE for variations of our algorithm, compared to the one of

the Malenko-Shen model, as described in Section 5.4. For comparison, we report the MSEs for

both the baseline and the comparison model (and both for the entire and the outsample) on top

of the table. In Panel B, we report the equilibrium incidence using the different variations. For

all variations, MSEs are significantly smaller than the comparison model, and the 1m equilibrium

remains dominant.

[Insert Table 9 about here]

lending.
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Two-step GMM Our baseline estimations use a non-weighted GMM because the two-step op-

timization does not usually perform well for small numbers of observations as in our bins. Here we

show that a two-step GMM procedure yield similar MSEs. The equilibrium instance distribution

is also similar, with more mm estimates (205 compared to 41 in the baseline) but still a large

dominance of the 1m equilibrium.

Alternative bins Our baseline estimations use bins per proposal type×γ decile×n decile. In

Table 9, we report the performance and equilibrium incidence for bins using quintiles of γ and size

instead. Using quintiles, our model performs similar to the OLS model. The coarser equilibrium

estimates do not identify any equilibria other than themm and 1m ones, and only 58 of the proposals

have the mm equilibrium. We also compute alternative n deciles using the actual number of non-

NPX institutions. Note that we do not observe the number of non-institutional investors and hence

cannot compute the actual value of n.

Medians instead of means Our baseline estimations use the means and standard deviations

per bin. In Table 9, we report the performance and equilibrium incidence using medians instead

of means. Using medians does not change the model performance or equilibrium allocation signifi-

cantly.

Excluding the 1m equilibrium How robust is our allocation of proposals to equilibria, espe-

cially the most popular 1m equilibrium? If allocating proposals to other equilibria increases errors

only marginally but changes our results significantly, we should consider those alternative results

more seriously. In Table 9, we report MSEs and equilibrium allocations if we do not allow the

1m equilibrium. Doing so increases our MSEs massively. It doubles the MSE for dSuL, triples it

for Odisc(p), inflates the one for dSuR by 5 and the one for turnout t 14 times. (Note that the

resulting errors are still significantly below the reduced form MSEs.) Out of 15,545 proposals that

our baseline estimation allocates to be in the 1m, 7,313 are now in the mm equilibrium, 3,045 in the

10, 5,228 in the 11 equilibrium. Note that the baseline estimation does not allocate any proposals

to the latter two corner equilibria. The number of proposals in the m1 equilibrium remains 80 like

in the baseline estimation.
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ISS recommendations Proxy advisors have a large influence on the voting direction of regular

voters (Iliev and Lowry (2014), Malenko and Shen (2016)). To reflect this influence, we compute

alternative estimates for bins of ISS recommendation×proposal type×γ decile×size decile. Errors

are similar and the dominance of the 1m equilibrium is unchanged. We report the average estimates

in Table D1.

Equity lending In the presence of an equity lending market, discretionary voters may decide

to lend their shares instead of voting, effectively increasing the opportunity costs of voting. We

compare the firms above and below the median in terms of the demand and supply of equity

lending and investigate the effect on our estimation results. Currently, the US equity lending

market operates over-the-counter, and data are available from Markit for the period of 2001-2016.20

The Markit database covers over 90% of that market and contains firm-quarter level information

on the supply of lendable shares for the majority of stocks listed in public exchanges. Following

Campello and Saffi (2015), we define equity lending supply as the difference between the value of

a firm’s lendable shares and the number of lendable shares currently on loan divided by the firm’s

market capitalization. This calculation gives us a precise measure of the net lendable supply. We

define equity lending demand as the value of shares actually borrowed divided by the firm’s market

capitalization. We then compare the firms above and below the median in terms of the demand

and supply of equity lending and investigate the effect on our estimation results. As we can see in

Table 9, Panel A, our algorithm performs well across the different subsamples in terms of the supply

and demand of equity lending. Across the equity lending supply and demand subsamples, the 1m

equilibrium remains dominant, ranging from 96% for the low equity lending supply subsample to

99% for the high equity lending supply subsample.

7.3 Sample Splits

In this section, we examine our model’s performance and the robustness of the estimates for the

various subsamples. We report proposal type averages estimates in Table 10.

[Insert Table 10 about here]

20We are most grateful to Pedro Saffi for providing us with part of this dataset.
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Number of proposals First, we split the sample at the median number of proposals being

voted on in a meeting. Since our model focuses on one proposal, the results for meetings that have

fewer proposals should be more representative. Neither the MSEs (see Panel A, Table 9) nor the

equilibrium allocation differs significantly between the two subsamples. The incidence of the 1m

equilibrium is dominant for both subsamples (Panel B, Table 9).

Ownership We repeat the analysis by splitting the sample at the annual median percentage of

shares owned by hedge fund activists, the total ownership by institutions (including below 5%),

and the Herfindahl concentration index of institutional ownership. Neither the errors nor the

equilibrium incidence differ significantly across the subsamples.

Importance of information An important ingredient of the voting process that is not included

in our model is information aggregation of dispersed private information. Hence, the algorithm

should be more suitable when information aggregation is less important. This should be the case

later in the proxy season, after shareholders have already observed the voting preferences in many

firms and guidance on the respective proposal types. We split the sample by the date of the

meeting (before or after the median month in any given year) as well as by whether ISS has issued

recommendations in both directions for the same proposal type in the same season yet (”Early/Late

meeting/ISS”). For a firm-specific measure, we also split the sample by the annual median of the

standard deviation of analysts forecasts. Neither the MSEs nor the equilibrium incidences differ

significantly from the base algorithm.

Equity lending In Panels D and E, we finalize the analysis by splitting our sample into stocks

with high (low) equity lending demand (Panel D) and high (low) equity lending supply (Panel

E). As described above, we define equity lending supply as the difference between the value of a

company’s lendable shares and the number of lendable shares currently on loan, divided by its

market capitalization. We define equity lending demand as the value of shares actually borrowed

divided by its market capitalization. We then compare the firms above and below the median in

terms of the demand and supply of equity lending. The different subsamples produce similar MSEs

and equilibrium allocations.
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7.4 Holding size

The algorithm estimates the benefit to cost ratio per voter v/ (cn). In this section, we illustrate

the benefit to cost ratio distribution as a function of the average holding size, which allows us to

calculate the number of voters n.

[Insert Figure 2 about here]

Figure 2 depicts the estimated range of the benefit to cost ratio for an average share block worth

from $100,000 up to $3 million. We exclude estimations where the benefit to cost ratio is lower

than 1 (i.e., irrelevant proposals). We plot the “return” of a proposal by dividing the benefit to

cost ratio estimate by the assumed block size. For this analysis, we hold the cost estimate constant:

the magnitude shown can be interpreted as the return on a proposal if we assume a cost of $1.

Assuming a higher cost would linearly translate into lower returns.

The graph shows that an average share holding size over $500,000 can yield realistic estimates

of the benefit to cost ratios (below 20%). For an assumed average share holding size of $1.5 million

(the average holding size of insider holdings convicted by the SEC (Ahern (2015)), the “return”

is 1.3% . This result compares to an average return of 1.6% for the passing of governance-related

proposals by Cuñat, Gine, and Guadalupe (2012). Hence, using the average holding size, following

Ahern (2015), yields estimates that are roughly comparable to those of the previous literature.

8 Conclusion

In this paper, we show how shareholders decide whether to vote. In a rational choice model where

participation depends on the cost and benefits of voting and the probability that one’s vote matters,

we illustrate how shareholders conduct a cost to benefit analysis of voting based on their preferences

and beliefs and the ownership structure. The model shows that the voting outcome can differ from

the preferred outcome of the shareholders. This is due to the lower participation of shareholders

with popular preferences (free-rider effect) relative to those with unpopular preferences (underdog

effect).

Our model yields an algorithm that uncovers unobserved shareholder preferences such as a

proposal’s popularity among the entire shareholder base and its perceived benefits. Despite the
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stylized assumptions of the model, the algorithm performs strikingly well, producing significantly

smaller estimation errors than a comparable reduced form model. Using aggregate voting data from

the US, we find that strategic selection into voting is relevant. On average, voting outcomes differ

by 22% from the preference of the entire shareholder base. Even though we estimate the underlying

population preferences of discretionary (such as hedge funds) voters to be only 7% different from

the preferences of regular voters (such as mutual funds), the actual voting support differs by 31%

from the counterfactual equilibrium where no discretionary voters were to vote. This discrepancy

stems from discretionary shareholders that agree with regular voters and free-ride on them. Such

free-riding results into an average 3.7% probability that the actual voting decision differs from

the preferred option of the total shareholder base. This probability of selection-driven outcome

misalignment is most pronounced for governance-related shareholder proposals. Finally, the cost

of voting is arguably small in the US. Taking multiples of it we produce counterfactuals for the

misalignment probability: the result is a reverse-U shape relationship, which peaks at probability

35% for cost three times the US level.
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APPENDIX

A. Equilibrium With Incomplete Participation

Proof of Lemma 1. Define uR ≡ aptR, uL ≡ a(1 − p)tL, the actual voting probabilities for R

and L among discretionary voters, and the probability of absentee votes u0 ≡ 1− uR − uL. Vector

u ≡ (uR, uL, u0) lives in simplex Λ and assumes that the beliefs regarding u are represented by

density h(·|i), for i ∈ {R,L}. Then, by adapting Lemma 1 proposed by Myatt (2015) for our

purposes, we know that the probability of a tie with x votes of discretionary voters for R is:

Pr [bR = x, bL = x+ (2q − 1)γn|h(·|i)] =

∫
Λ

((1− γ)n)!uR
xuL

x+(2q−1)γnu0
(1−2qγ)n−2x

x!(x+ (2q − 1)γn)!((1− 2qγ)n− 2x)!
h(u|i)du ≈

h

(
x

(1− γ)n
,

x

(1− γ)n
+

(2q − 1)γ

(1− γ)
,
1− 2qγ

1− γ
− 2

x

(1− γ)n
|i
)

Γ ((1− γ)n+ 1)

Γ ((1− γ)n+ 3)
≈

1

(1− γ)n

h
(

x
(1−γ)n ,

x
(1−γ)n + (2q−1)γ

(1−γ) ,
1−2qγ
1−γ − 2 x

(1−γ)n |i
)

(1− γ)n
,

for i ∈ {R,L}.21 By summing the x, the overall probability of a tie is:

n/2−qγn∑
x=0

Pr [bR = x, bL = x+ (2q − 1)γn|h(·|i)].

Given the above approximation, when n is large enough, the sum can be approximated by the

integral

1

(1− γ)n

∫ 1/2−qγ
1−γ

0
h(y, y + (2q − 1)γ/(1− γ), (1− 2qγ)/(1− γ)− 2y|i)dy.

21These approximations depend on the observation that when n is large, most of the distributution will be concen-
trated at its mode.
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Now, by using Lemma 2 of Myatt (2015), the probability of a tie and a near tie are equal for a

large n and hence for i ∈ {R,L}:

Pr[Pivotal|i] ≈ 1

(1− γ)n

∫ 1/2−qγ
1−γ

0
h(y, y + (2q − 1)γ/(1− γ), (1− 2qγ)/(1− γ)− 2y|i)dy.

(16)

Below, we revert the above expressions from vector u to vector (p, a) so that we can transition

from density h to densities f and g. Recall that uR = aptR, uL = a(1 − p)tL; hence, the Jacobian

∂(uR, uL)/∂(p, a) has a determinant equal to atRtL. Moreover, note that each shareholder updates

her beliefs based on her own availability and so

h(x, y, 1− x− y|i) =
f (p(x, y)|i) g (a(x, y)|available)

a(x, y)tLtR
,

for any x, y ∈ (0, 1) and i ∈ {R,L}, where

g (a|available) =
g(a)a

ā
, f(p|L) = f(p)

1− p
1− p

, f(p|R) = f(p)
p

p
.

Hence, for uR = y and uL = y + (2q − 1)γ/(1− γ) from (16), after some simple algebra we have

p(a) ≡ tL
tR + tL

− (2q − 1)γ

1− γ
1

a(tR + tL)
,

a(y) ≡ y(tR + tL)

tRtL
+

(2q − 1)γ

1− γ
1

tL
.

By substituting all the above in the integrand of (16), we have

h(y, y + (2q − 1)γ/(1− γ), (1− 2qγ)/(1− γ)− 2y|R) =
f (p(a(y)) g (a(y)) a(y)p (a(y))

a(y)tRtLāp

= p (a(y)) f (p(a(y)) g (a(y))
1

tRtLāp

and similarly,

h(y, y + (2q − 1)γ/(1− γ), (1− 2qγ)/(1− γ)− 2y|L) = (1− p (a(y))) f (p(a(y)) g (a(y))
1

tRtLā(1− p)
.
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Now, to calculate the integral in (16), we change the variable from y to a = a(y). We have

da = dy(tR + tL)/(tRtL) and

a(0) =
(2q − 1)γ

1− γ
1

tL
,

a ((1/2− qγ)/(1− γ)) =
tR (1/2− γ(1− q)) + tL (1/2− γq)

(1− γ)tRtL
.

Then, we have that:

Pr[Pivotal|R] ≈ 1

(1− γ)n

∫ 1/2−qγ
1−γ

0
h(y, y + (2q − 1)γ/(1− γ), (1− 2qγ)/(1− γ)− 2y|R)dy.dy

=
1

(1− γ)n

1

āp(tR + tL)

∫ a((1/2−qγ)/(1−γ))

a(0)
f(p(a))p(a)g(a)da. (17)

Since we are seeking to develop a simple formula that we can use with the data, we assume that

a follows a degenerate distribution around its mean; that is, g(a) = δ(a− ā), where δ is the Dirac

function. Then, to have a strictly positive probability of being pivotal, we need:

a(0) < ā < a ((1/2− qγ)/(1− γ)) ⇐⇒ (2q − 1)γ

1− γ
1

tL
< ā <

tR (1/2− γ(1− q)) + tL (1/2− γq)
(1− γ)tRtL

.

(18)

The above is a restriction on equilibrium tR, tL which we need to verify after the equilibria are

derived.22 Given g(a) = δ(a− ā) and A1, we know that (17) becomes (2), and similarly, we reach

(3) for Pr[Pivotal|L], where p∗ = p(ā) is given by (4). �

A.1 Bounds on the Parameters

Now, we will derive the necessary and sufficient conditions, that is, the parameter regions, with

which we can obtain a valid equilibrium with incomplete participation for both sides.23 Since we

have obtained equilibrium tL, tR from (9) and (10), we can check (18) and express it in terms of

22Note that (18) is satisfied for all tR, tL ∈ (0, 1) for γ = 0 (i.e., the Myatt (2015) setup).
23In an ongoing work, we look for equilibria with either complete participation for at least one type or no partici-

pation for the supporters of R.
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the primitives of the model.24 First, (18) requires that

ā >
(2q − 1)γ

1− γ
1

tL
⇐⇒ tL >

(2q − 1)γ

1− γ
1

ā
,

which is clearly satisfied by tL in (9). Second, the assumption requires that

ā <
tR (1/2− γ(1− q)) + tL (1/2− γq)

(1− γ)tRtL
.

Plugging in the expressions for tL, tR (9) and (10), and after some algebra, the above is equivalent

to:

v

c
<

n (1− 2γ (p(1− q) + q(1− p)))
2f(p)(1− p)p

. (19)

By definition, what we need for incomplete participation is (tL, tR) ∈ (0, 1). According to (9), it is

evident that tL > 0 for all parameter values. The condition tL < 1 is equivalent to:

γ <
ā

2q − 1 + ā
, and (20)

v

c
<

n (ā− γ (ā− 1 + 2q))

f(p)p
. (21)

Given our assumption that q > 1/2, the condition of (20) takes precedence over A1 with respect to

the upper permissible value of γ. Now, the condition tR > 0 is equivalent to:

v

c
>

nγ(2q − 1)

f(p)(1− p)
. (22)

For (22) to be the relevant lower bound of v/c given A2, we define a lower bound on the regular

block size and the number of voting shares,

γ >
f(p)(1− p)
n(2q − 1)

, and (23)

n >
2qf(p)(1− p)

2q − 1
, (24)

24Note, that for the computed tL and tR in (9) and (10), the pivotal probabilities in Lemma 1 (2) and (3) are well
defined.
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; otherwise, v/c ≥ 1 from A2. Finally, the condition tR < 1 is equivalent to:

v

c
<

n (ā− γ (ā+ 1− 2q))

f(p)(1− p)
. (25)

Hence, for the benefit to cost ratio v/c, we have three possible upper bounds, (19), (21), and (25).

We can show that (19) is never the relevant bound, but (21) and (25) can be, depending on the

parameter values. Therefore, the upper bound of v/c is

v

c
< min

{
n (ā− γ (ā− 1 + 2q))

f(p)p
,
n (ā− γ (ā+ 1− 2q))

f(p)(1− p)

}
. (26)

For v/c, we also have a lower bound, which is either (22), if γ satisfies (23), or one. In either

case, we need to make sure that the lower bound is lower than the upper bound of v/c. Let us look

at each case in turn:

1.

γ >
f(p)(1− p)
n(2q − 1)

,

Then, to ensure the bound of (26) is higher than the bound of (22), we have another restriction

on γ,

γ <
ā(1− p)

ā(1− p) + 2q − 1
. (27)

From the two possible upper bounds of γ in (20) and (27), we can show that for q > 1/2, the

relevant bound is condition (27). Finally, we need to make sure that the lower bound of γ in

(23) is lower than the upper bound of (27). This puts a lower bound on the number of voting

shares:

n >
f(p) (ā(1− p) + 2q − 1)

ā(2q − 1)
,

which supersedes the other lower bound of (24).
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2.

γ <
f(p)(1− p)
n(2q − 1)

, (28)

Then, to ensure the upper bound of (26) is higher than the lower bound of A2, we add the

following two restrictions on γ,

n(ā− (2q − 1))γ < ān− f(p)(1− p),

n(ā+ (2q − 1))γ < ān− f(p)p.

For these to be satisfied, we need

n >
f(p)p

ā
. (29)

Observe also that the second restriction above implies the one in (20), so this latter bound

can be ignored in what follows. Then, we have the following subcases:

(a) n > f(p)(1−p)
ā and ā < 2q− 1Then, the only other restrictions on γ (i.e., other than (28))

can be written as

γ <
ān− f(p)p

(ā− 1 + 2q)n
. (30)

(b) n > f(p)(1−p)
ā and ā > 2q − 1Then, the added restriction on γ can be written as

γ < min

{
ān− f(p)(1− p)

(ā+ 1− 2q)n
,
ān− f(p)p

(ā− 1 + 2q)n

}
. (31)

(c) n < f(p)(1−p)
ā and ā > 2q−1Then, there is no equilibrium with incomplete participation.

(d) n < f(p)(1−p)
ā and ā < 2q − 1Then, provided that p < 1/2, we need

ān− f(p)(1− p)
(ā+ 1− 2q)n

< γ <
ān− f(p)p

(ā− 1 + 2q)n
, for (32)

f(p) (ā(1− p) + 2q − 1)

ā(2q − 1)
< n <

f(p)(1− p)
ā

. (33)
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The above is summarized in the proposition below.

Proposition 2. Assume that q ∈ (1/2, 1), p ∈ (0, 1), f(p) > 0, ā ∈ (0, 1], g(a) = δ(a− ā) and

v

c
< min

{
n (ā− γ (ā− 1 + 2q))

f(p)p
,
n (ā− γ (ā+ 1− 2q))

f(p)(1− p)

}
.

In addition, consider the following disjoint parameter regions:

(a) Small regular block size:

v

c
≥ 1,

n >
f(p)p

ā
, and

(i) Many voters, high availability:

n >
f(p)(1− p)

ā
, ā > 2q − 1, and 0 ≤ γ < min

{
ān− f(p)(1− p)

(ā+ 1− 2q)n
,
ān− f(p)p

(ā− 1 + 2q)n
,
f(p)(1− p)
n(2q − 1)

}
, or

(ii) Many voters, low availability:

n >
f(p)(1− p)

ā
, ā < 2q − 1, and 0 ≤ γ < min

{
ān− f(p)p

(ā− 1 + 2q)n
,
f(p)(1− p)
n(2q − 1)

}
, or

(iii) Few voters, low availability:

f(p) (ā(1− p) + 2q − 1)

ā(2q − 1)
< n <

f(p)(1− p)
ā

, ā < 2q − 1, p <
1

2
, and

ān− f(p)(1− p)
(ā+ 1− 2q)n

< γ <
ān− f(p)p

(ā− 1 + 2q)n
.

(b) Large regular block size (Many voters, any availability):

v

c
>

nγ(2q − 1)

f(p)(1− p)
,

n >
f(p) (ā(1− p) + 2q − 1)

ā(2q − 1)
, and

f(p)(1− p)
n(2q − 1)

< γ <
ā(1− p)

ā(1− p) + 2q − 1
.
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These conditions are necessary and sufficient for the existence of an incomplete participation

equilibrium by both types, that is, tL, tR ∈ (0, 1), which are given by equations (9) and (10). Fur-

thermore, the average participation among discretionary voters t̄ and the average total participation

ttotal are given by (11) and (12). Finally, in such equilibrium, the probability of being pivotal for

either R of L is equal to the common cost to benefit ratio c/v (1), and the expected votes for R and

L are equal (5).

Note that Proposition 1 in the main text is the restriction to case (b), which is the empirically

most plausible one, as discussed in Proposition 2 above.

B. Proposal Classification

The ISS’s functional classification of proposals into 257 types is fine enough to risk obscuring the

economic meaning of each proposal-type. For example, ISS assigns a different proposal-type for

“Amend Omnibus Stock Plan (M0524)” and “Approve Omnibus Stock Plan (M0522)”, even though

these two proposals address the same economic issue, executive compensation. For this reason, it

is useful to work with a coarser, more economically meaningful, classification. Our classification

groups proposals into 12 economically relevant types. We list these types along with their frequency

in our sample in Table 3. The set of types is chosen to reflect leading issues arising in the literature

on voting and corporate governance (see for example Knoeber (1986), LaPorta, de Silanes, Shleifer,

and Vishny (1998), Grullon and Michaely (2002), Gompers, Ishii, and Metrick (2003), Bebchuk,

Cohen, and Ferrell (2009), Becht, Franks, Mayer, and Rossi (2009), Bebchuk and Fried (2009),

Ferri and Maber (2012)). Once the set of types is chosen, the proposals are classified based on their

description in a straightforward way, as illustrated in the example above on M0524 and M0522. In

Table 11, we list the top 3 proposals per category. Needless to say, this classification is not unique.

C. Tables and Figures
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Table 2: Univariate Statistics

This table shows the univariate statistics for a sample of proposals voted upon in US firms from 2003-2011.
Panel A shows the number of proposals and meetings. Panel B shows the firm characteristics (at the firm-year
level). Panel C shows the summary statistics for ownership (at the meeting level).

Panel A: Number of observations per year

Date Proposals Meetings

2003 358 212
2004 2,566 1,389
2005 1,256 788
2006 1,776 1,021
2007 1,562 824
2008 1,491 862
2009 2,069 1,149
2010 4,149 1,756
2011 3,293 1,296

Panel B: Firm level statistics

Variable Obs Mean Std. Dev. Min Max

Assets 8568 18,780.92 109,456.10 0.76 2,265,792.00
Leverage 8568 0.23 0.23 - 3.64

M/B 8568 1.88 1.36 0.38 26.82
Return (monthly) 6256 0.08 0.47 (3.61) 3.62
Return (annual) 6191 0.009 0.032 -0.229 0.256

Panel C: Summary statistics for ownership

Variable Obs Mean Std. Dev. Min Max

% Institutional ownership 9297 68.32 21.58 0.60 99.96
of which: N-PX 9297 20.13 10.77 0.01 58.96

% > 5% Ownership 8705 24.51 18.43 0 97.90
of which: institutional 8705 23.13 17.88 0 97.90

private 9297 2.24 5.43 0 65.95

% Management ownership 9297 5.18 5.56 0 79.43

Shares outstanding 9163 272,000,000 861,000,000 555,992 29,100,000,000
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Table 3: Proposals

This table shows the univariate statistics for a sample of proposals voted upon in US firms from 2003-2011.
Panel B (C) shows the frequency of proposals voted upon in US firms from 2003-2011 per proposal (sponsor)
type.

Panel A: Summary Statistics

Variable Mean Std. Dev. Min Max

Total participation 77.35 11.78 0.00 100.00
Discretionary participation 73.33 14.39 0.00 100.00

Panel B: Proposals per proposal-type

Proposal Type Frequency Support (%) Participation (%)
Total Discretionary

Compensation 8,171 61.44 75.31 70.57
Say-on-pay 2,118 69.91 76.69 72.58
Say-on-pay frequency 1,818 N/A 75.96 71.49
Restructuring 1,301 69.42 81.35 78.51
Board 1,274 50.70 78.54 72.89
CSR 1,086 10.02 73.93 75.08
Defense 990 67.54 80.94 75.61
Governance 806 56.41 78.67 74.19
Merger 356 72.52 75.15 70.46
Business 237 45.26 76.59 73.23
Payout 21 69.53 80.66 76.66
Other proposals 336 46.97 76.49 73.09

Panel C: Proposals per sponsor type

Sponsor Type Frequency Support (%) Participation (%)
Total Discretionary

Management 14,912 60.17 78.25 74.09
Individual activist 1016 26.26 72.39 66.58
Institutional (pension fund) 665 25.69 74.29 70.45
Social group 451 10.76 74.24 74.92
Institutional (non-pension fund) 309 20.68 73.33 71.45
Union 295 25.78 75.14 71.80
Coalition 43 30.19 74.69 70.16
Employee 12 17.97 62.42 47.38
Corporate 5 9.16 74.27 74.24
Proxy advisor 2 37.11 69.70 65.98
Other sponsors 810 24.38 74.14 71.08
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Table 4: Algorithm input parameters

This table shows univariate statistics for the input parameters for the algorithm.

Variable N Mean Std. Dev. Min Max

dSuL 16,434 0.15 0.08 0.00 0.94
dSuR 16,450 0.56 0.12 0.01 0.97
dSuL2 16,434 0.05 0.05 0.00 0.89
dSuR2 16,450 0.36 0.13 0.00 0.94
γ 16,479 0.21 0.10 0.00 0.59
market cap (proxy of n) 16,479 17,200,000,000 46,400,000,000 3,196,664 555,000,000,000
q 16,479 0.89 0.07 0.51 1.00
N non-NPX institutions 17,764 532.24 650.71 0 5,933
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Table 5: Estimation Results

This table shows the univariate statistics for the estimation results of the algorithm run for the bins of proposal type×decile of institutional
ownership×decile of market cap. Panel A shows the percentage of proposals for which the algorithm detects an equilibrium for each equilibrium
type. Panel B shows the summary statistics of the distance between the actual voting support and the underlying estimated preferences for the entire
shareholder population. Panel C shows means for the distances for each equilibrium.

Panel A: Parameter estimates

Estimates Baseline 95% confidence interval GMM 95% confidence interval

v/cn benefit to cost ratio per voter 2.07 2.02 2.10 1.96 1.88 2.04
[s.e.] − [0.01689] [0.03677]
[s.e.] + [0.02137] [0.04271]
p popularity of R among discretionary voters
p 0.83 0.81 0.84 0.82 0.76 0.83
[s.e.] − [0.00148] [0.00708]
[s.e.] + [0.01058] [0.03185]
std(p) 0.24 0.23 0.24 0.23 0.22 0.24
[s.e.] − [0.00181] [0.00255]
[s.e.] + [0.00463] [0.00721]
Mean Absolute Error

dSuL 0.0229 0.0364

dSuR 0.0163 0.0341

dSuL2 0.0445 0.0454

dSuR2 0.0126 0.0322
N 15,666 14,127

Panel B: Distance between the underlying preferences and voting outcomes

Obs Mean Std. Dev. Min Max

q − p 15,666 6.2% 7.8% -36.1% 95.2%
|q − p| 15,666 7.0% 7.1% 0.0% 95.2%
Odisc(p)−Oonly-reg 15,666 31.1% 14.8% -85.8% 89.9%
Ofull(p)−Oonly-reg 15,666 52.6% 16.8% -91.6% 98.0%
Odisc(p)−Ofull(p) 15,666 -21.4% 8.0% -58.6% 43.1%
|Odisc(p)−Ofull(p)| 15,666 21.8% 7.0% 2.4% 58.6%
Prob. misalignment Odisc(p) vs Ofull(p) 15,666 3.7% 6.2% 0.0% 50.0%
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Panel C: Selection effects per equilibrium

Equilibrium mm 1m 10 11 m1 m0

N 41 15,545 0 0 80 0
% 0.3% 99.2% 0.0% 0.0% 0.5% 0.0%
Participation tL 59.3% 100.0% 64.8%

tR 90.7% 66.5% 100.0%
Prob. misalignment Odisc(p) vs Ofull(p) 18.7% 3.7% 24.7%
Odisc(p)−Ofull(p) signed 22.4% -22.0% 21.4%
|Odisc(p)−Ofull(p)| unsigned 25.2% 22.0% 21.4%
q − p signed 53.4% 5.8% 57.7%
|q − p| unsigned 53.4% 6.4% 57.7%
Odisc(p)−Oonly-reg -6.7% 31.4% -21.8%
Estimation error 0.0% 0.8% 0.0%
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Table 6: Heterogeneity

This table shows average parameter estimates by proposal type (Panel A), sponsor type (Panel B), and year (Panel C).

Panel A: Shareholder preferences by proposal type

Proposal type v/ (cn) tL tR
Prob. misalignment
Odisc(p) vs Ofull(p)

Odisc(p)−Ofull(p) Odisc(p)−Oonly-reg mm 1m m1 Total

Board 0.84 100% 55% 9% -25% 9% 0 706 2 708
Business 1.71 99% 56% 3% -26% 19% 0 120 2 122
CSR 1.94 100% 58% 1% -28% 27% 0 1,066 0 1,066
Compensation 1.01 100% 54% 7% -25% 11% 0 724 5 729
Defense 1.29 95% 60% 8% -19% 11% 26 363 13 402
Governance 0.84 96% 58% 13% -21% 7% 9 305 23 337
Other 1.53 97% 58% 2% -25% 21% 2 98 6 106
Payout . 100% 62% 0% -24% 30% 0 3 0 3
Restructuring 1.53 100% 57% 1% -26% 21% 0 72 0 72
Total 1.32 99% 57% 6% -25% 16% 37 3,457 51 3,545

Management proposals

Board 2.94 100% 76% 0% -16% 45% 0 466 1 467
Business 2.63 100% 76% 0% -19% 51% 0 94 0 94
CSR . 100% 87% 0% -9% 54% 0 6 0 6
Compensation 2.08 100% 67% 4% -22% 31% 0 7,162 0 7,162
Defense 3.08 100% 80% 0% -13% 44% 0 544 0 544
Governance 2.78 99% 79% 1% -13% 39% 0 319 9 328
Merger 2.72 100% 72% 0% -22% 47% 0 326 1 327
Other 1.91 97% 73% 4% -15% 24% 4 142 18 164
Payout . 100% 74% 0% -21% 52% 0 15 0 15
Restructuring 2.47 100% 77% 2% -16% 41% 0 932 0 932
SOP 2.41 100% 70% 1% -22% 42% 0 2,082 0 2,082
Total 2.27 100% 70% 3% -20% 36% 4 12,088 29 12,121
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Panel B: Shareholder preferences by sponsor type

sponsor type v/ (cn) tL tR
Prob. misalignment
Odisc(p) vs Ofull(p)

Odisc(p)−Ofull(p) Odisc(p)−Oonly-reg mm 1m m1 Total

Coalition 0.96 96% 60% 6% -19% 5% 0 27 3 30
Corporate 2.21 100% 63% 0% -26% 34% 0 4 0 4
Employee 0.84 100% 29% 0% -38% 3% 0 12 0 12
Fund 1.35 99% 56% 4% -26% 16% 1 293 4 298
Individual activ 1.17 98% 54% 5% -26% 15% 35 968 3 1,006
Management 2.31 100% 70% 3% -20% 36% 0 12,416 0 12,416
Pension Fund 1.04 100% 55% 7% -25% 10% 0 655 2 657
Proxy advisor 0.53 100% 52% 6% -30% 10% 0 2 0 2
Social group 1.90 100% 58% 1% -27% 27% 0 457 0 457
Union 1.03 99% 56% 7% -23% 10% 5 281 4 290

Panel C: Shareholder preferences by year

Year v/ (cn) tL tR
Prob. misalignment
Odisc(p) vs Ofull(p)

Odisc(p)−Ofull(p) Odisc(p)−Oonly-reg mm 1m m1 Total

2003 1.99 100% 64% 3% -24% 33% 0 331 1 332
2004 1.93 100% 66% 3% -22% 30% 0 1,844 5 1,849
2005 1.90 100% 67% 6% -23% 31% 8 1,044 4 1,056
2006 2.01 100% 67% 4% -22% 31% 0 1,533 3 1,536
2007 2.13 100% 66% 2% -21% 30% 0 1,391 1 1,392
2008 2.22 100% 67% 2% -21% 30% 0 1,299 0 1,299
2009 2.08 100% 66% 3% -22% 29% 0 1,990 0 1,990
2010 2.08 100% 68% 2% -22% 34% 0 3,114 0 3,114
2011 2.34 100% 71% 2% -21% 41% 0 1,908 0 1,908
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Table 7: Counterfactuals

This table shows P [Odisc(p)Ofull(p) ≤ 0], the average probability that the minority wins (Panel A) and the number of proposals per equilibrium (Panel
B) for varying values of c, holding all other parameters constant. The column caption states the value of c as a multiple of the estimates presented in
Table 5.

Panel A: Misalignment Probability

Multiple 0.25× 0.5× 0.75× 1× 1.25× 1.5× 1.75× 2× 3× 4× 5× 10× 15× 20× 25× 30×
All 0.0% 2·10−4% 0.8% 3.8% 10.3% 16.2% 21.2% 25.5% 34.9% 34.5% 33.2% 26.3% 19.8% 14.5% 10.7% 8.1%
By Equilibrium:
mm 18.7% 37.5% 41.9% 40.9% 41% 44% 41% 39% 37% 36% 36% 47% 47%
1m 1.8% 4.0% 3.7% 10.5% 16.3% 21.0% 24% 30%
10 6·10−3% 9.7·10−2% 0.1% 16% 34% 32% 30% 26% 34% 35% 37% 35%
11 0% 0% 0%
m1 8.4% 24.7% 27.0% 26.1% 28.1% 32% 44%
m0 0.4 % 44% 46% 43% 40% 28% 21% 18% 11% 9%
By type:
Board shareholder
proposals
(low distance)

0.0% 0.0% 2.2% 9% 21% 32% 38% 42% 44% 40% 34% 12% 5% 3% 3% 2%

Defense shareholder
proposals
(high distance)

0.0% 9·10−3% 1.9% 8% 17% 24% 29% 33% 38% 35% 31% 15% 9% 5% 3% 4%

Panel B: Equilibrium Incidence

Multiple 0.25× 0.5× 0.75× 1× 1.25× 1.5× 1.75× 2× 3× 4× 5× 10× 15× 20× 25× 30×
mm 0 0 41 182 463 1091 2,295 4286 2821 1944 813 524 88 36 31
1m 0 2 3045 15545 15438 15174 14533 13,310 2896 0 0 0 0 0 0 0
10 0 0 0 2 7 27 42 7279 8845 7772 3965 193 106 49 3
11 60 60 11 0 0 0 0 0 0 0 0 0 0 0 0 0
m1 0 0 67 80 44 22 14 12 1 0 0 0 0 0 0 0
m0 0 0 0 0 0 0 1 7 1204 4000 5950 10886 14933 15390 15353 15075
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Table 8: Comparison of Estimation Methods

This table compares the prediction accuracy of the algorithm compared to reduced form models reported in Panel A. The dependent variable and the
relevant sample is reported in the table caption. Independent variable are the input variables to the algorithm γ, q, and market capitalization, p(1− p),
the number of proposals in the meeting, and the dependent variables from Table 3 of Malenko and Shen (2016), most importantly: NegRec, which
equals one if ISS gives a negative recommendation, and zero otherwise; BelowCutoff, which equals one if the firm is below the cutoff (MaxTSR < 0),
and zero otherwise, and the interaction of these variables. Standard errors are reported in parentheses. *, **, and *** represent significance at the 10%,
5%, and 1% level, respectively. Panel B reports the mean squared error (MSE) of our baseline estimations and the ones reported in Panel A columns
4-7, their difference, the test statistic and the p-value of the Diebold-Mariano test for equality of predictive accuracy.

Panel A: Reduced Form regressions
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent variable Total
participation dSuL dSuR Odisc(p) Total

participation dSuL dSuR Odisc(p) Total
participation

Sample All All All All Excl. 2011 Excl. 2011 Excl. 2011 Excl. 2011 All
Regression OLS OLS OLS OLS OLS OLS OLS OLS Tobit
Gamma 0.202*** -0.132*** 0.146*** 0.283*** 0.206*** 0.294*** -0.145*** 0.147*** 0.202***

(12.25) (-5.45871) (4.97973) (10.7302) (11.6877) (10.4963) (-5.66793) (4.81377) (13.4097)
q 0.018*** -0.451*** 0.417*** 0.723*** 0.020*** 0.729*** -0.451*** 0.419*** 0.018***

(3.06882) (-35.6601) (30.5898) (51.3033) (3.11961) (50.1657) (-34.7959) (29.6577) (3.35901)
p · (1− p) -0.165*** 0.724*** -0.871*** -0.873*** -0.215*** -0.893*** 0.728*** -0.903*** -0.165***

(-5.70509) (15.275) (-16.255) (-15.2818) (-6.65427) (-14.4223) (14.3934) (-15.6557) (-6.24452)
Market cap 0.201048 1.29863 0.0417589 0.134928 0.294562 0.682407 1.10374 0.255816 0.220057

(-0.002**) (0) (-0.001) (0) (-0.002**) (0) (-0.001) (-0.001) (-0.002**)
# proposals in meeting -1.96551 -0.494096 -1.06753 -0.306639 -2.42255 -0.255197 -0.862115 -1.19468 -2.1517

(-0.001) (0.069***) (-0.071***) (-0.083***) (-0.002) (-0.067***) (0.053***) (-0.057***) (-0.001)
NegRec -0.001 0.069*** -0.071*** -0.083*** -0.002 -0.067*** 0.053*** -0.057*** -0.001

(-0.373947) (11.8787) (-11.6256) (-12.4002) (-0.807994) (-9.58043) (8.89368) (-8.99107) (-0.407723)
MaxTSR 0 0 0 0 0 0 0 0 0

(-0.874149) (0.392299) (-0.846655) (-0.920532) (-0.539165) (-1.35456) (1.11853) (-0.561241) (-0.956944)
BelowCutoffMaxTSR 0.001*** 0 0.001*** 0 0.001*** 0 0 0.001*** 0.001***

(3.37761) (1.07129) (3.53101) (0.55448) (2.91743) (0.445572) (1.35149) (3.61571) (3.69752)
Total Compensation 1.67076 -0.459484 1.77932 0.463802 1.54221 0.345444 -0.473349 1.61794 1.82905

(0) (0) (0) (0) (0) (0) (0) (0) (0)
TDC1 Change 0.808093 0.0971939 1.02828 1.50597 1.03692 1.53424 0.164914 1.21642 0.884254

(0.003) (0.008) (-0.01) (-0.015*) (0.003) (-0.013) (0.007) (-0.011) (0.003)
% Stock Compensation 0.003 0.008 -0.01 -0.015* 0.003 -0.013 0.007 -0.011 0.003

(0.456466) (1.03957) (-1.06516) (-1.68834) (0.458282) (-1.44587) (0.859745) (-1.07654) (0.499935)
Director holdings % 0 0 0 0 -0.001 -0.001 0.001 0 0

(-0.878148) (0.574338) (-0.0687775) (-0.318927) (-1.0724) (-0.604603) (0.793207) (-0.643289) (-0.961415)
Log Equity 0.003 -0.002 -0.001 -0.006 0 -0.006 -0.002 -0.007 0.003

(0.958112) (-0.537401) (-0.200036) (-1.23872) (-0.0640705) (-1.12589) (-0.385976) (-1.23676) (1.04903)
ROA 2.92192 -0.923531 2.83253 1.38013 3.44727 0.0676263 0.444505 2.24262 3.19879

(0.002) (0.003) (-0.002) (-0.003) (0.002) (-0.007**) (0.005) (-0.005) (0.002)
Market/book 1.30587 0.953262 -0.607647 -1.14304 1.0401 -2.01845 1.59905 -1.50814 1.42981

(0.020**) (0.033) (0.008) (-0.027*) (0.009) (-0.025) (0.027) (-0.013) (-0.016***)
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Proposal type FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sponsor type FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.655 0.468 0.551 0.529 0.647 0.534 0.478 0.564 0
N 11,602 10,851 10,907 11,602 10,131 10,131 9,466 9,521 −
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Panel B: Diebold-Mariano comparison between reduced form and baseline forecasts

Forecasts Participation dSuL dSuR Odisc(p)

MSE algorithm 0.011 0.032 0.032 0.070
MSE Malenko-Shen* 0.442 0.244 0.134 0.277
Difference -0.431 -0.213 -0.102 -0.207
S (1) -334.9 -168.7 -104.7 -104.1
p <0.0000 <0.0000 <0.0000 <0.0000
Out-sample
MSE baseline estimation 0.024 0.034 0.057 0.122
MSE reduced form 0.532 0.268 0.143 0.296
Difference -0.507 -0.234 -0.086 -0.174
S (1) -48.6 -21.8 -10.6 -8.1
p <0.0000 <0.0000 <0.0000 <0.0000
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Table 9: Robustness

Panel A reports, for the alternative estimations, the mean squared errors (MSE). *** denote a <1% signif-
icant Diebold-Mariano test, showing that the MSE of the variable denoted in the header for the respective
estimation is lower than those of the Malenko-Shen estimation reported in row 2 (row 4 for out-of-sample
tests). Panel B reports the incidence of each equilibrium for these estimations. Column 1 describes whether
the algorithm matches the moments of deciles, the moments of quintiles, the median instead of the mean or
instead of a proposal type×decile γ×decile size bin, an ISS recommendation×proposal type×decile γ×decile
size bin. Column 2 reports whether the entire sample or a subsample was used, where High/Low activist
(private, institutional) ownership or ownership concentration (High/Low forecast std) refer to above/below
the median hedge fund ownership (private ownership, institutional ownership) or ownership concentration
(analyst forecast standard deviation), Early/Late meetings refer to meetings held before/after the median
proxy meeting date, Early/Late meetings/ISS refer to meetings held before/after ISS has issued recommen-
dations for the resp. proposal type in both directions, and equity lending supply/demand refers to the
quarterly lowest/highest quintile in equity lending supply/demand.

Panel A: Mean Squared Errors

Mean Squared Errors
Algorithm Sample t dSuL dSuR Odisc(p)

Base All 0.011*** 0.032*** 0.032*** 0.07***
Malenko-Shen All 0.442*** 0.244*** 0.134*** 0.277***
Base 2011 (out-sample) 0.024*** 0.034*** 0.057*** 0.122***
Malenko-Shen 2011 (out-sample) 0.532*** 0.268*** 0.143*** 0.296***
GMM All 0.013*** 0.022*** 0.03*** 0.072***
Quintiles All 0.012*** 0.022*** 0.03*** 0.072***
n-decile with count All 0.012*** 0.021*** 0.029*** 0.068***
Median All 0.012*** 0.023*** 0.029*** 0.07***
No 1m All 0.157*** 0.066*** 0.168*** 0.211***
ISS All 0.012*** 0.015*** 0.022*** 0.044***
Base Single proposal 0.013*** 0.023*** 0.031*** 0.075***
Base Bundle 0.011*** 0.015*** 0.02*** 0.049***
Base Low activist ownership 0.012*** 0.02*** 0.026*** 0.064***
Base High activist ownership 0.012*** 0.02*** 0.027*** 0.064***
Base Low private ownership 0.012*** 0.02*** 0.027*** 0.065***
Base High private ownership 0.012*** 0.021*** 0.025*** 0.063***
Base Low institutional ownership 0.014*** 0.02*** 0.029*** 0.07***
Base High institutional ownership 0.01*** 0.019*** 0.024*** 0.056***
Base Low ownership concentration 0.01*** 0.015*** 0.02*** 0.048***
Base High ownership concentration 0.015*** 0.027*** 0.036*** 0.084***
Base Early meeting 0.012*** 0.02*** 0.027*** 0.064***
Base Late meeting 0.014*** 0.022*** 0.028*** 0.067***
Base Early meeting/ISS 0.012*** 0.017*** 0.023*** 0.055***
Base Late meeting/ISS 0.012*** 0.022*** 0.029*** 0.07***
Base Low forecast std 0.012*** 0.021*** 0.029*** 0.07***
Base High forecast std 0.011*** 0.017*** 0.022*** 0.053***
Base Low equity lending demand 0.01*** 0.017*** 0.023*** 0.056***
Base High equity lending demand 0.013*** 0.022*** 0.029*** 0.069***
Base Low equity lending supply 0.016*** 0.025*** 0.034*** 0.085***
Base High equity lending supply 0.011*** 0.018*** 0.024*** 0.056***
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Panel B: Equilibrium incidence

Equilibrium
Algorithm Sample mm 1m 10 11 m1 m0 Total

Base All 41 15,545 0 0 80 0 15,666
GMM All 205 13,908 3 0 11 0 14,127
Quintiles All 42 16,007 0 0 1 0 16,050
Median All 45 15,525 0 0 87 0 15,657
n-decile with count All 30 15,546 0 0 84 0 15,660
No 1m All 7,313 0 3,045 5,228 80 0 16,059
ISS All 237 15,140 0 0 682 0 16,059
Base Bundle 51 5,461 0 0 42 7 5,561
Base Single proposal 63 9,004 0 0 24 0 9,091
Base High activist ownership 48 7,118 0 0 70 7 7,243
Base Low activist ownership 57 7,367 0 0 31 5 7,460
Base High private ownership 4 2,086 1 0 93 0 8,663
Base Low private ownership 32 13,355 0 0 62 0 5,705
Base High institutional ownership 13 8,008 0 0 61 0 7,526
Base Low institutional ownership 11 7,275 0 0 132 0 7,418
Base High ownership concentration 18 6,682 0 0 196 0 6,896
Base Low ownership concentration 10 8,050 0 0 68 0 8,128
Base Early meeting 104 11,241 0 0 36 5 11,386
Base Late meeting 12 3,288 0 0 34 4 3,338
Base Early meeting/ISS 11 5,563 0 0 131 0 5,705
Base Late meeting/ISS 2 5,113 0 0 57 0 5,172
Base High analyst forecast std 8 9,106 0 0 71 0 9,185
Base Low analyst forecast std 16 8,678 0 0 206 0 8,900
Base Low equity lending demand 9 5,293 0 0 73 0 4,862
Base High equity lending demand 40 6,936 0 0 43 0 7,019
Base Low equity lending supply 42 2,194 0 0 55 0 2,291
Base High equity lending supply 4 9,960 0 0 58 0 9,575
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Table 10: Proposal Splits

This table shows the estimates per proposal type when the sample is split into bundled vs. non-bundled proposals (Panel A), high vs low activist
ownership companies (Panel B), early vs late shareholder meetings in a particular year (Panel C), high vs low equity lending demand (Panel D) and
high vs low equity lending supply (Panel E). In Panel A, we split the sample based on the number of proposals being voted on in a meeting: if a
proposal is being voted on in a meeting that contains more than the median number of proposals in any given year, we call those proposals bundled.
In Panel B, we split the sample into high and low activist ownership, based on the percentage of shares owned by hedge fund activists. We classify a
company as a high activist ownership company if in any given year that the stake of the hedge fund activist ownership is higher than the median activist
ownership across all companies in our sample. In Panel C, we split the sample into meetings that are held before the median month in any given year.
In Panels D and E, we split the sample into stocks with high (low) equity lending demand (Panel D) and high (low) equity lending supply (Panel E).
As described in the main text, we define equity lending supply as the difference between the value of a company’s lendable shares and the number of
lendable shares currently on loan divided by the firm’s market capitalization. We define equity lending demand as the value of shares actually borrowed
divided by the firm’s market capitalization. We then compare the firms above and below median in terms of the demand and supply of equity lending.

Panel A: Bundled vs. non-bundled proposals

Shareholder proposals

Single proposal Bundle of proposals

Proposal type v/(cn)
Prob. misalignment
Odisc(p) vs Ofull(p)

Odisc(p)−Ofull(p) Odisc(p)−Oonly-reg v/(cn)
Prob. misalignment
Odisc(p) vs Ofull(p)

Odisc(p)−Ofull(p) Odisc(p)−Oonly-reg

Board 0.91 11.1% -20.0% 8.7% 0.85 7.0% -25.2% 9.2%
Business 1.76 2.8% -23.6% 21.5% 1.49 3.5% -26.1% 17.9%
CSR 2.00 2.7% -23.3% 25.9% 1.94 1.2% -28.8% 26.5%
Compensation 1.08 8.1% -22.1% 10.8% 1.00 6.6% -25.8% 11.2%
Defense 1.29 7.7% -20.6% 9.9% 1.20 5.0% -21.0% 11.8%
Governance 0.97 9.4% -14.9% 4.3% 0.85 13.4% -19.7% 6.8%
Restructuring 1.40 1.0% -29.4% 21.7% 1.40 0.1% -23.6% 29.7%
Payout 2.72 1.0% -25.5% 19.1%
Total 1.34 7.0% -21.3% 14.2% 1.32 5.1% -25.7% 16.1%

Management proposals

Board 2.98 0.1% -15.2% 47.6% 2.90 0.1% -17.7% 43.7%
Business 2.95 0.1% -18.0% 54.2% 2.72 0.1% -20.2% 49.6%
CSR 3.19 0.1% -12.8% 60.5% 3.33 0.1% -8.3% 53.2%
Compensation 2.05 5.0% -22.0% 30.0% 2.23 2.5% -21.4% 34.5%
Defense 2.94 0.7% -14.6% 42.6% 3.06 0.3% -14.0% 42.0%
Governance 2.61 2.3% -14.0% 37.1% 2.68 1.0% -10.7% 34.5%
Merger 2.72 0.1% -22.3% 47.6% 2.54 0.3% -23.0% 40.9%
Payout 1.70 0.0% -41.5% 47.3% 2.87 0.1% -19.2% 51.8%
Restructuring 2.46 2.6% -15.1% 42.1% 2.50 2.2% -18.3% 42.5%
SOP 2.43 1.2% -22.3% 42.5% 2.38 0.5% -21.0% 38.7%
Total 2.23 3.7% -21.0% 34.7% 2.44 1.7% -19.3% 37.4%
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Panel B: Low vs. high activist ownership ownership

Shareholder proposals

Low activist ownership High activist ownership

Proposal type v/(cn)
Prob. misalignment
Odisc(p) vs Ofull(p)

Odisc(p)−Ofull(p) Odisc(p)−Oonly-reg v/(cn)
Prob. misalignment
Odisc(p) vs Ofull(p)

Odisc(p)−Ofull(p) Odisc(p)−Oonly-reg

Board 0.86 7.4% -25.7% 0.84 10.4% -18.4% 6.6%
Business 1.65 2.4% -26.9% 21.9% 1.48 5.1% -24.0% 14.6%
CSR 2.00 1.3% -28.9% 27.8% 1.85 2.2% -24.5% 23.2%
Compensation 1.04 6.1% -26.1% 12.3% 1.01 10.2% -21.1% 9.1%
Defense 1.13 8.6% -16.8% 7.0% 1.38 6.6% -22.9% 14.6%
Governance 0.99 12.5% -19.2% 7.3% 0.75 11.4% -17.8% 5.2%
Payout 2.50 0.1% -27.5% 39.1% 3.17 0.0% -15.9% 11.0%
Restructuring 1.36 0.6% -28.3% 22.6% 1.38 1.1% -25.4% 14.4%
Total 1.36 5.3% -25.5% 16.6% 1.28 7.1% -21.6% 13.4%

Management proposals

Board 2.94 0.1% -16.6% 44.4% 2.96 0.1% -15.9% 47.1%
Business 2.71 0.1% -20.3% 54.2% 2.89 0.1% -17.5% 47.0%
CSR 3.31 0.0% -8.5% 58.3% 3.29 0.1% -10.1% 46.7%
Compensation 2.13 4.5% -22.1% 31.3% 2.06 4.2% -21.9% 30.8%
Defense 3.02 0.4% -13.9% 44.9% 3.05 0.3% -12.9% 40.8%
Governance 2.64 2.2% -12.1% 34.8% 2.71 1.0% -13.7% 40.8%
Merger 2.66 0.1% -24.2% 47.4% 2.73 0.2% -21.3% 46.3%
Payout 2.94 0.0% -18.9% 52.2% 2.38 0.2% -25.5% 49.4%
Restructuring 2.49 2.5% -15.7% 41.8% 2.51 1.8% -16.0% 42.2%
SOP 2.43 1.2% -23.0% 43.7% 2.41 0.8% -21.2% 40.0%
Total 2.32 3.1% -20.5% 36.0% 2.27 2.9% -20.4% 35.0%
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Panel C: Early vs. late shareholder meetings

Shareholder proposals

Early meetings Late meetings

Proposal type v/(cn)
Prob. misalignment
Odisc(p) vs Ofull(p)

Odisc(p)−Ofull(p) Odisc(p)−Oonly-reg v/(cn)
Prob. misalignment
Odisc(p) vs Ofull(p)

Odisc(p)−Ofull(p) Odisc(p)−Oonly-reg

Board 0.84 10% -24% 9% 1.06 7.2% -18.8% 10.4%
Business 1.56 3% -27% 20% 1.64 0.6% -20.3% 13.9%
CSR 1.91 1% -28% 26% 2.20 2.0% -22.8% 30.4%
Compensation 1.01 7% -25% 12% 0.99 7.6% -19.7% 8.7%
Defense 1.23 9% -19% 11% 1.35 5.0% -21.0% 11.3%
Governance 0.85 14% -21% 7% 0.99 6.3% -17.4% 3.9%
Payout 2.75 0% -24% 24% 2.67 0.0% -22.9% 41.0%
Restructuring 1.41 1% -27% 20% 1.40 0.9% -23.3% 23.0%
Total 1.31 6% -25% 16% 1.44 5.0% -20.3% 15.7%

Management proposals

Board 2.92 0% -17% 45% 2.84 0.3% -11.8% 36.2%
Business 2.83 0% -19% 52% 2.72 0.1% -21.4% 51.1%
CSR 3.27 0% -10% 48% 3.49 0.0% -3.5% 88.3%
Compensation 2.14 4% -21% 32% 1.97 5.2% -23.2% 28.5%
Defense 3.03 0% -14% 45% 2.81 1.0% -15.4% 37.9%
Governance 2.70 2% -16% 38% 2.48 2.3% -11.9% 26.9%
Merger 2.77 0% -22% 48% 2.65 0.3% -23.0% 46.0%
Payout 2.72 0% -22% 49% 3.27 0.1% -11.1% 65.7%
Restructuring 2.50 2% -15% 41% 2.51 1.3% -16.6% 43.4%
SOP 2.45 1% -22% 42% 2.28 1.9% -24.6% 41.2%
Total 2.33 3% -20% 36% 2.17 3.7% -21.6% 33.1%
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Panel D: Low vs. high equity lending demand

Shareholder proposals

Low demand High demand

Proposal type v/(cn)
Prob. misalignment
Odisc(p) vs Ofull(p)

Odisc(p)−Ofull(p) Odisc(p)−Oonly-reg v/(cn)
Prob. misalignment
Odisc(p) vs Ofull(p)

Odisc(p)−Ofull(p) Odisc(p)−Oonly-reg

Board 0.85 6% -25% 11% 0.87 13% -19% 6%
Business 1.41 2% -25% 17% 1.95 0% -27% 28%
CSR 1.94 1% -28% -26% 1.98 2% -25% -26%
Compensation 1.07 7% -24% 11% 0.98 10% -24% 10%
Defense 1.25 6% -20% 11% 1.21 8% -20% 9%
Governance 0.81 15% -19% 6% 0.97 9% -21% 6%
Payout 2.72 0% -24% -30% . . . .
Restructuring 1.21 1% -26% 20% 1.65 1% -27% 17%
Total 1.34 5% -25% 16% 1.32 7% -22% 14%

Management proposals

Board 2.89 0% -14% 43% 3.04 0% -15% 50%
Business 2.96 0% -14% 56% 2.94 0% -17% 47%
CSR 3.33 0% -8% 53% 3.19 0% -13% 61%
Compensation 2.30 3% -20% 34% 1.98 4% -23% 29%
Defense 2.02 0% -14% 40% 2.94 0% -15% 43%
Governance 2.72 0% -10% 36% 2.60 1% -14% 37%
Merger 2.73 0% -14% 46% 2.67 1% -23% 44%
Payout 2.66 0% -23% 60% 1.24 0% -24% 38%
Restructuring 2.67 1% -14% 45% 2.48 2% -17% 43%
SOP 2.43 2% -21% 42% 2.42 1% -22% 42%
Total 2.44 2% -19% 37% 2.19 3% -21% 34%

74



Panel E: Low vs. high equity lending supply

Shareholder proposals

Low supply High supply

Proposal type v/(cn)
Prob. misalignment
Odisc(p) vs Ofull(p)

Odisc(p)−Ofull(p) Odisc(p)−Oonly-reg v/(cn)
Prob. misalignment
Odisc(p) vs Ofull(p)

Odisc(p)−Ofull(p) Odisc(p)−Oonly-reg

Board 1.02 6% -28% 15% 0.82 9% -23% 8%
Business 1.29 1% -30% 22% 1.62 2% -25% 20%
CSR 1.70 2% -32% 29% 1.98 1% -27% 26%
Compensation 1.07 6% -26% 13% 1.00 7% -25% 10%
Defense 0.62 12% 1% 8% 1.31 5% -24% 14%
Governance 1.04 6% -22% 7% 0.85 13% -20% 6%
Payout 2.33 0% -32% 37% 2.92 0% -19% 26%
Restructuring 1.03 1% -37% 21% 1.45 1% -25% 19%
Total 1.22 5% -25% 16% 1.34 6% -25% 15%

Management proposals

Board 2.84 0% -12% 42% 2.96 0% -15% 42%
Business 2.92 0% -16% 61% 3.02 0% -14% 45%
CSR 3.35 0% -7% 58% 3.26 0% -11% 51%
Compensation 1.93 9% -25% 31% 2.12 3% -21% 31%
Defense 2.91 1% -13% 50% 3.04 0% -14% 40%
Governance 2.23 2% -6% 19% 2.75 1% -15% 40%
Merger 2.51 0% -26% 49% 2.81 0% -20% 43%
Payout . . . 1.72 0% -36% 45%
Restructuring 2.46 3% -20% 50% 2.60 1% -14% 42%
SOP 2.31 2% -26% 50% 2.49 0% -20% 39%
Total 2.16 6% -22% 38% 2.31 2% -20% 34%
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Table 11: Proposal type classification

Proposal Type Proposal Descriptions

Compensation Amend Omnibus Stock Plan, Advisory Vote to
Ratify Named Exec. Officers’ Comp., Approve
Omnibus Stock Plan

Say-On-Pay Advisory Vote on Say-On-Pay Frequency, Bun-
dled Say-On-Pay/Golden Parachute Advisory

Restructuring Increase Authorized Common Stock, Company
Specific-Equity-Related, Approve Reverse Stock
Split

Board Require a Majority Vote for the Election of
Board, Require Independent Board Chairman,
Restore or Provide for Cumulative Voting

CSR Political Contributions and Lobbying, Social
Proposal, Improve Human Rights Standards or
Policy

Defense Declassify the Board of Directors, Reduce Su-
permajority Vote Requirement, Submit Share-
holder Rights Plan (Poison Pill)

Governance Amend Articles/Bylaws/Charter-NonRoutine,
Amend Articles/Bylaws/Charter-Call Special
Meeting, Company Specific-Gov. Related

Merger Approve Merger Agreement, Approve Acquisi-
tion OR Issue Shares in Connection with Acqui-
sition, Approve Sale of Company Assets

Business Change Company Name, Claw-Back of Pay-
ments under Restatement, Company-Specific–
Organization-Related

Payout Approve Allocation of Income and Divide, Ap-
prove Dividends, Initiate Payment of Cash Div-
idend

Other Company-Specific–Shareholder Miscella-
neous, Other Business, Company-Specific-
Miscellaneous
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Figure 1: Equilibria regions under agreement and disagreement across the group of voters (a = 1,
h− l = 0.2, q = 0.9).
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Figure 2: Benefit-to-cost ratio vs. average holding size.
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Internet Appendix

“Freeriders and Underdogs: Participation in Corporate Voting”

Dragana Cvijanovic, Moqi Groen-Xu, and Konstantinos E. Zachariadis

In this Online Appendix, we present the derivations of the equilibria where at least one type of

discretionary voter has a ‘corner’ participation rate.

First, we list the propositions for all the equilibria, and then, we present the corresponding

proofs. Throughout, assume that q ∈ (1/2, 1), a ∈ (0, 1], and g(a) = δ(a− a).

Proposition 3 (Equilibrium 1m). Assume that p ∼ U [l, h], (l, h) ⊆ (0, 1) and let d ≡ h− l. If and

only if

n ∈ N1m ≡
(

max

{
(1− γ)a− (2q − 1)γ

4(1− γ)2a2pd
,

1

pd

l2

(1− γ)a− (2q − 1)γ

}
,∞
)
, (IA.1)

γ ∈ Γ1m ≡
(

a(1− 2p)

a(1− 2p) + 2q − 1
I
(
p <

1

2

)
,

a(1− l)
2q − 1 + a(1− l)

)
, (IA.2)

v

cn
∈ V1m ≡

(
max

{
(1− γ)2a2pd

(1− γ)a− (2q − 1)γ
,
(1− γ)a− (2q − 1)γ

p
d,

1

n

}
,

min

{
4(1− γ)2a2pd

(1− γ)a− (2q − 1)γ
,
(1− γ)a− (2q − 1)γ

l2
pd

})
, (IA.3)

where I the indicator function and there exists an equilibrium with tL = 1 and tR ∈ (0, 1) given by

tR =

√
(1−γ)a−(2q−1)γ

dc
v
np

1
(1−γ)a − 1. (IA.4)

Proposition 4 (Equilibrium 10). Assume that p ∈ (l, h) ⊆ (0, 1) (not necessarily uniform). If and

only if:

n ∈ N10 ≡
(
f (p∗) p∗

(1− γ)ap
,∞
)
, (IA.5)

γ ∈ Γ10 ≡
(

(1− p)a
2q − 1 + (1− p)a

,
a(1− l)

2q − 1 + a(1− l)

)
, (IA.6)

v

cn
∈ V10 ≡

(
max

{
1

n
,
(1− γ)a(1− p)
f (p∗) (1− p∗)

}
,
(1− γ)ap

f (p∗) p∗

)
, (IA.7)

, there exists an equilibrium with tL = 1 and tR = 0, where from (4); here, p∗ = 1 − (2q −

1



1)γ/ ((1− γ)a).

Proposition 5 (Equilibrium 11). Assume that p ∈ (l, h) ⊆ (0, 1) (not necessarily uniform). If and

only if:

l <
1

2
, h <

a+ 2q − 1

2a
,

and

n ∈ N11 ≡ (0,∞) , (IA.8)

γ ∈ Γ11 ≡
(

max

{
0,

a(1− 2h)

a(1− 2h) + 2q − 1

}
,

a(1− 2l)

a(1− 2l) + 2q − 1

)
, (IA.9)

v

cn
∈ V11 ≡

(
max

{
(1− γ)ap

f (p∗) p
∗

2

,
(1− γ)a(1− p)
f (p∗) 1−p∗

2

,
1

n

}
,∞

)
, (IA.10)

, there exists an equilibrium with tL = 1 and tR = 1, where from (4); here, p∗ = 1/2 − (2q −

1)γ/ (2(1− γ)a).

Proposition 6 (Equilibrium m1). Assume that p ∼ U [l, h], (l, h) ⊆ (0, 1) and let d ≡ h − l. Iff

and only if

p <
1

2
,

and

n ∈ Nm1 ≡
(

max

{
(1− γ)a+ (2q − 1)γ

4d(1− γ)2a2(1− p)
,

(1− h)2

d(1− p) ((1− γ)a+ (2q − 1)γ)

}
,∞
)
,(IA.11)

γ ∈ Γm1 ≡
(

0,
a(1− 2p)

a(1− 2p) + 2q − 1

)
, (IA.12)

v

cn
∈ Vm1 ≡

(
max

{
1

n
, d

(1− γ)a+ (2q − 1)γ

(1− p)

}
,

min

{
d

4(1− γ)2a2(1− p)
(1− γ)a+ (2q − 1)γ

, d
(1− p)((1− γ)a+ (2q − 1)γ)

(1− h)2

})
, (IA.13)

, there exists an equilibrium with tL ∈ (0, 1) given by

tL =

√
(1− γ)a+ (2q − 1)γ

dc
v n(1− p)

1

(1− γ)a
− 1, (IA.14)

and tR = 1.

2



Proposition 7 (Equilibrium m0). Assume that p ∼ U [l, h], (l, h) ⊆ (0, 1) and let d ≡ h− l, If and

only if

n ∈ Nm0 ≡
(

max

{
(2q − 1)γ

d(1− γ)2a2(1− p)
,

1− p
d(2q − 1)γ

}
,∞
)
, (IA.15)

γ ∈ Γm0 ≡
(

0,
a

2q − 1 + a

)
, (IA.16)

v

cn
∈ Vm0 ≡

(
max

{
1

n
, d(1− p)(2q − 1)γ

}
,min

{
d

(1− γ)2a2(1− p)
(2q − 1)γ

,
d(2q − 1)γ

1− p

})
,(IA.17)

, there exists an equilibrium with tL ∈ (0, 1) given by

tL =
√

(2q−1)γ
n(1−p)d c

v

1
(1−γ)a (IA.18)

and tR = 0.

Proposition 8 (Equilibrium 00). If and only if

γ ∈ Γ00 ≡
(

1

2q
,∞
)
, or (IA.19)

v

cn
∈ V00 ≡

(
0,

1

n

)
, (IA.20)

, there exists an equilibrium with tL = 0 and tR = 0.

The last proposition, that is, the no participation equilibrium, follows directly from a violation

of either Assumption 1 or Assumption 2.

IA.0.1 Proofs of Propositions 3–7

Note that: tL = tR = 0 is ruled out from Assumptions 1 and 2; also recall that tL = 0 cannot

happen in equilibrium, as this would imply that p∗ in (4) is negative, but p∗ ∈ (0, 1). Hence, the

equilibria we need to inquire about are:

3



tL = 1, tR ∈ (0, 1), (1m)

tL = 1, tR = 0, (10)

tL = 1, tR = 1, (11)

tL ∈ (0, 1), tR = 1, (m1)

tL ∈ (0, 1), tR = 0. (m0)

For equilibria 1m, 10, and 11 where tL = 1, we have:

K = 1− (2q − 1)γ

(1− γ)a
.

We need K > 0, otherwise p∗ < 0, i.e.,

1 >
(2q − 1)γ

(1− γ)a
⇐⇒ a− aγ > (2q − 1)γ

⇐⇒ a > (2q − 1 + a)γ ⇐⇒ γ <
a

2q − 1 + a
. (IA.21)

Now,

p∗ = K
1

1 + tR
.

We also need p∗ < 1, i.e.,

K
1

1 + tR
< 1 ⇐⇒ tR > K − 1

⇐⇒ tR > −
(2q − 1)γ

(1− γ)a
.

Also note that K < 1.

4



For tL = 1, we need:

P [pivotal|L] >
c

v

⇐⇒ 1

(1− γ)n

1

a(1− p)
f(p∗)(1− p∗)

1 + tR
>
c

v

⇐⇒ f(p∗)(1− p∗)
1 + tR

>
c

v
(1− γ)na(1− p)

⇐⇒ f

(
K

1

1 + tR

)
1 + tR −K
(1 + tR)2

>
c

v
(1− γ)na(1− p). (IA.22)

Equilibrium 1m: For tR ∈ (0, 1), we need:

P [pivotal|R] =
c

v

⇐⇒ 1

(1− γ)n

1

ap

f(p∗)p∗

1 + tR
=
c

v

⇐⇒ f

(
K

1

1 + tR

)
K

(1 + tR)2
=
c

v
(1− γ)nap. (IA.23)

Let us assume that p ∼ U [l, h], 0 ≤ l < h ≤ 1; then, p = h+l
2 , f(p) = 1

h−l = 1
d and (IA.23) becomes:

1

d

K

(1 + tR)2
=
c

v
(1− γ)nap

⇐⇒ (1 + tR)2 =
K

dc
v (1− γ)nap

=

(1−γ)a−(2q−1)γ
(1−γ)a

dc
v (1− γ)nap

⇐⇒ (1 + tR)2 =
(1− γ)a− (2q − 1)γ

dc
v np(1− γ)2a2

⇐⇒ tR =

√
(1− γ)a− (2q − 1)γ

dc
v np

1

(1− γ)a
− 1. (IA.24)

Need: tR < 1

⇐⇒ (1− γ)a− (2q − 1)γ
dc
v np

1

(1− γ)2a2 < 4

⇐⇒ v

c
< d

4(1− γ)2a2np

(1− γ)a− (2q − 1)γ
, (IA.25)
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and tR > 0

⇐⇒ (1− γ)a− (2q − 1)γ
dc
v np

> (1− γ)2a2

⇐⇒ v

c
> d

(1− γ)2a2np

(1− γ)a− (2q − 1)γ
. (IA.26)

In addition, from (IA.22), for p ∼ U [l, h] we have that:

1

d

1 + tR −K
(1 + tR)2

>
c

v
(1− γ)na(1− p)

⇐⇒ 1

1 + tR
− K

(1 + tR)2
>
dc

v
(1− γ)na(1− p)

⇐⇒

√
dc
v np

(1− γ)a− (2q − 1)γ
(1− γ)a− dc

v
(1− γ)nap >

dc

v
(1− γ)na(1− p)

⇐⇒

√
v

dcn

p

(1− γ)a− (2q − 1)γ
> p+ 1− p

⇐⇒ v

c
> nd

(1− γ)a− (2q − 1)γ

p
. (IA.27)

We need to check whether (IA.25)-(IA.27) are consistent with each other:

4(1− γ)2a2p2 > [(1− γ)a− (2q − 1)γ]2

⇐⇒ 2(1− γ)ap > (1− γ)a− (2q − 1)γ

⇐⇒ (1− γ)a(1− 2p)− (2q − 1)γ < 0

⇐⇒ a(1− 2p) < γ [a(1− 2p) + 2q − 1] .

Case A: 1− 2p > 0 =⇒ p < 1
2 then:

need γ >
a(1− 2p)

a(1− 2p) + 2q − 1
. (IA.28)

6



For this to be consistent with (IA.21), we need:

a

2q − 1 + a
>

a(1− 2p)

a(1− 2p) + 2q − 1

⇐⇒ a(1− 2p) + 2q − 1 > (1− 2p)(2q − 1) + a(1− 2p)

⇐⇒ 1 > 1− 2p ⇐⇒ 2p > 0 ⇐⇒ p > 0. OK.

Case B: 1− 2p < 0 ⇐⇒ p > 1
2 ,

but a(1− 2p) + 2q − 1 > 0

⇐⇒ 2p <
2q − 1 + a

a

⇐⇒ p <
2q − 1

2a
+

1

2
.

Hence, for 1
2 < p < 1

2 + 2q−1
2a then we are OK without (IA.28).

Case C: 1− 2p < 0 ⇐⇒ p > 1
2 ,

but a(1− 2p) + 2q − 1 < 0

⇐⇒ p >
2q − 1

2a
+

1

2
then need

⇐⇒ a(2p− 1) > γ [a(2p− 1)− (2q − 1)]

⇐⇒ γ <
a(2p− 1)

a(2p− 1)− (2q − 1)
. (IA.29)

(IA.29) vs. (IA.21):

2p− 1

a(2p− 1)− (2q − 1)
<

1

2q − 1 + a

⇐⇒ (2p− 1)(2q − 1) + (2p− 1)a < (2p− 1)a− (2q − 1)

⇐⇒ 2p− 1 < −1 ⇐⇒ 2p < 0 ⇐⇒ p < 0. NO.

Hence, (IA.29) is weaker than (IA.21) and does not take precedence.

7



Now, we consider (IA.26) vs. (IA.27):

(1− γ)2ap2 > [(1− γ)a− (2q − 1)γ]2

⇐⇒ a(1− p) < γ [a(1− p) + 2q − 1]

⇐⇒ γ >
a(1− p)

a(1− p) + 2q − 1
.

Is this consistent with (IA.21)?

a(1− p)
a(1− p) + 2q − 1

<
a

2q − 1 + a

⇐⇒ (1− p)(2q − 1) + (1− p)a < a(1− p) + 2q − 1

⇐⇒ 1− p < 1 ⇐⇒ p > 0. OK.

Hence, both (IA.26) and (IA.27) can be true.

Summary up to this point:

Then, tL = 1, tR ∈ (0, 1) exists iff:

max

{
(1− γ)2a2npd

(1− γ)a− (2q − 1)γ
,
(1− γ)a− (2q − 1)γ

p
nd

}
<

<
v

c
< d

4(1− γ)2a2np

(1− γ)a− (2q − 1)γ
, (IA.30)

and if p <
1

2
γ >

a(1− 2p)

a(1− 2p+ 2q − 1)
, γ <

a

2q − 1 + a
,

if
1

2
< p <

1

2
+

2q − 1

a
γ <

a

2q − 1 + a
,

if p >
1

2
+

2q − 1

2a
γ <

a

2q − 1 + a
,

, then tR is given by (IA.4).

8



Next, for the requirement that γ < 1
2q , check with (IA.21):

a

2q − 1 + a
<

1

2q

⇐⇒ 2qa < 2q − 1 + a

⇐⇒ (2q − 1)a < 2q − 1

⇐⇒ a < 1. OK.

Next, for the requirement that v
c ≥ 1, check with (IA.30), for the existence we need:

d4(1− γ)2anp > (1− γ)a− (2q − 1)γ

⇐⇒ n >
(1− γ)a− (2q − 1)γ

4(1− γ)2a2pd
. (IA.31)

Next, for the lower bound, check with (IA.26):

relative to 1 (one)→ n >
(1− γ)a− (2q − 1)γ

(1− γ)2a2pd
,

and relative to (IA.27)→ γ >
a(1− p)

a(1− p) + 2q − 1
.

In this case, the first lower bound given by (IA.26) is active.

relative to 1 (one)→ n >
p

d [(1− γ)a− (2q − 1)γ]
,

and relative to (IA.26)→ γ <
a(1− p)

a(1− p) + 2q − 1
.

In this case, the second lower bound given by (IA.27) is active.

relative to (IA.26)→ n <
(1− γ)a− (2q − 1)γ

(1− γ)2a2pd
,

and relative to (IA.27)→ n <
p

[(1− γ)a− (2q − 1)γ] d
.

In this case, 1 (one) is the relative low bound.

9



Recall that:

p∗ =
K

1 + tR
,

where:

K = 1− (2q − 1)γ

(1− γ)a
.

Since p ∈ [l, h] for equilibrium 1m [tL = 1, tR ∈ (0, 1)], we need to also check that:

0 ≤ l < p∗ < h ≤ 1. (IA.32)

We have:

tR =

√
(1− γ)a− (2q − 1)γ

dc
v np

1

(1− γ)a
− 1

⇐⇒ 1

1 + tR
=

√
dc
v np

(1− γ)a− (2q − 1)γ
(1− γ)a

⇐⇒ K

1 + tR
=

√
dc
v np

(1− γ)a− (2q − 1)γ
[(1− γ)a− (2q − 1)γ]

⇐⇒ K

1 + tR
=

√
dc

v
np [(1− γ)a− (2q − 1)γ]

⇐⇒ 1 + tR
K

=

√
v

nc

1

dp

1

[(1− γ)a− (2q − 1)γ]

⇐⇒
(

1 + tR
K

)2

=
v

nc

1

dp

1

[(1− γ)a− (2q − 1)γ]
.

Hence, (IA.32) becomes:

l < p∗ < h (IA.33)

⇐⇒ 1

h2
<

1

p∗2
<

1

l2

⇐⇒ 1

h2
<

v

nc

1

dp

1

[(1− γ)a− (2q − 1)γ]
<

1

l2

⇐⇒ dp[(1− γ)a− (2q − 1)γ]

h2
(IA.34)

<
v

nc
<

dp[(1− γ)a− (2q − 1)γ]

l2
. (IA.35)

10



How does this reconcile with (IA.30)?

(IA.34) vs. second term in max for the lower bound in (IA.30):

(1− γ)a− (2q − 1)γ

p
d

?
> dp

(1− γ)a− (2q − 1)γ

h2

⇐⇒ 1

p
>

p

h2

⇐⇒ p2 < h2

⇐⇒
(
h+ l

2

)2

< h2,

which is always true; hence, (IA.34) is never relevant.

(IA.35) vs. upper bound in (IA.30):

dp [(1− γ)a− (2q − 1)γ]

l2
?
>

4(1− γ)2a2pd

(1− γ)a− (2q − 1)γ

⇐⇒ [(1− γ)a− (2q − 1)γ]2 > 4(1− γ)2a2l2

⇐⇒ (1− γ)a− (2q − 1)γ > 2(1− γ)al

⇐⇒ (1− γ)a [1− 2l] > (2q − 1)γ

⇐⇒ (1− 2l)a > (2q − 1 + a− 2la)γ

⇐⇒ (1− 2l)a > (2q − 1 + a(1− 2l))γ.

Case i) 1− 2l > 0 ⇐⇒ l < 1
2 then we need

γ <
(1− 2l)a

2q − 1 + a(1− 2l)

for the current upper bound to be relevant.
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Case ii) 1− 2l < 0 ⇐⇒ l > 1
2 , then:

ii-1) 2q − 1 + a(1− 2l) > 0 =⇒ a <
2q − 1

2l − 1
then (IA.35) is relevant upper bound.

ii-2) 2q − 1 + a(1− 2l) < 0 =⇒ a >
2q − 1

2l − 1
,

then we need γ >
(2l − 1)a

1− 2q + a(2l − 1)
for the current upper bound to be relevant.

We need to ensure that the new upper bound is larger than the existing lower bound of v/c:

vs 1 (one):

(1− γ)a− (2q − 1)γ

l2
npd > 1

=⇒ n >
1

pd

l2

(1− γ)a− (2q − 1)γ
. (IA.36)

vs. the first term in max for the lower bound in (IA.30):

(1− γ)a− (2q − 1)γ

l2
npd >

(1− γ)2a2npd

(1− γ)a− (2q − 1)γ

=⇒ (1− γ)a− (2q − 1)γ > (1− γ)al

⇐⇒ (1− γ)a(1− l) > (2q − 1)γ

⇐⇒ a(1− l) > [2q − 1 + a(1− l)] γ

⇐⇒ γ <
a(1− l)

2q − 1 + a(1− l)
.

vs. the second term in max for the lower bound in (IA.30):

(1− γ)a− (2q − 1)γ

l2
npd >

(1− γ)a− (2q − 1)γ

p
nd

=⇒ p2 > l2

=⇒ p > l. X

12



How does (IA.36) compare with the existing bound on n?

1

pd

l2

(1− γ)a− (2q − 1)γ
>

(1− γ)a− (2q − 1)γ

4(1− γ)2a2pd

=⇒ 2l(1− γ)a > (1− γ)a− (2q − 1)γ

⇐⇒ (1− γ)a(1− 2l) < (2q − 1)γ.

If 1− 2l < 0 =⇒ l > 1
2 always true.

If 1− 2l > 0 =⇒ l < 1
2 , then we need:

γ >
a(1− 2l)

2q − 1 + a(1− 2l)
,

which is acceptable if:

2l > l

=⇒ l > 0 OK.

Therefore, both can be true for l < 1
2 .

Hence, the upper bound in (IA.30) needs to be amended to:

min

{
4(1− γ)2a2npd

(1− γ)a− (2q − 1)γ
,
(1− γ)a− (2q − 1)γ

l2
npd

}
.

This concludes the proof of Proposition 3.

Note that at this equilibrium, we have:

ttotal = γt+ (1− γ), where:

t = a(ptR + (1− p)tL)

⇐⇒ t = a

(√
v

cnd
p [(1− γ)a− (2q − 1)γ]

1

(1− γ)a
− p+ (1− p)

)
⇐⇒ t =

√
v

cnd
p

(
a

(1− γ)
− (2q − 1)γ

(1− γ)2

)
+ a(1− 2p).
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And:

sign

(
∂t

∂γ

)
= sign

∂
(√

v
cndp

(
a

(1−γ) −
(2q−1)γ
(1−γ)2

)
+ a(1− 2p)

)
∂γ

 and

∂
(

a
(1−γ) −

(2q−1)γ
(1−γ)2

)
∂γ

=
a

(1− γ)2
− (2q − 1)(1− γ)2 + (2q − 1)γ2(1− γ)

(1− γ)4

=
a

(1− γ)2
− (2q − 1) [1− γ + 2γ]

(1− γ)3

=
a(1− γ)− (2q − 1)(1 + γ)

(1− γ)3

⇐⇒ ∂t

∂γ
< 0 ⇐⇒ a(1− γ) < (2q − 1)(1 + γ)

⇐⇒ a− aγ < (2q − 1) + (2q − 1)γ

⇐⇒ a− (2q − 1) < (2q − 1 + a)γ

⇐⇒ γ >
a− (2q − 1)

2q − 1 + a
.

If a < 2q − 1 always true!

If a > 2q − 1, then for a very small γ, t(tR) might increase with γ. (as in equilibrium mm; see

Proposition 1). �

Equilibrium 10. For tR = 0, we need from (IA.23):

P [pivotal|R] <
c

v

⇐⇒ 1

(1− γ)n

1

ap

f(p∗)p∗

1 + 0
<
c

v
,

where from p∗ = K
1+tR

for tR = 0, we have p∗ = K

⇐⇒ 1

(1− γ)n

1

ap
f(K)K <

c

v

⇐⇒ c

v
>

f(K)K

(1− γ)nap
,where K = 1− (2q − 1)γ

(1− γ)a
.
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While for tL = 1 we need from (IA.22):

c

v
<

f(K)(1−K)

(1− γ)na(1− p)
,

For existence, we need:

f(K)K

(1− γ)nap
<

f(K)(1−K)

(1− γ)na(1− p)

⇐⇒
(

1− (2q − 1)γ

(1− γ)a

)
(1− p) < (2q − 1)γ

(1− γ)a
p

⇐⇒ 1− p− (2q − 1)γ

(1− γ)a
< 0

⇐⇒ (1− p)(1− γ)a− (2q − 1)γ < 0

⇐⇒ [2q − 1 + a(1− p)] γ > (1− p)a

⇐⇒ γ >
(1− p)a

2q − 1 + (1− p)a
.

Is this consistent with (IA.21), i.e., for existence we need:

(1− p)a
2q − 1 + (1− p)a

<
a

2q − 1 + a

⇐⇒ (1− p)a [2q − 1 + a] < (2q − 1 + (1− p)a)a

⇐⇒ (1− p− 1)a(2q − 1) < 0

⇐⇒ − pa(2q − 1) < 0. OK.

Assumption (IA.21) on γ is satisfied, then what about A1 that v
c ≥ 1 or c

v ≤ 1. Hence, for existence,

we need:

f(K)K

(1− γ)nap
≤ 1

⇐⇒ n ≥ f(K)K

(1− γ)ap
.

Given p ∈ [l, h], we also need to ensure that:

l ≤ K ≤ h where:
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K = 1− (2q − 1)γ

(1− γ)a
.

So we have:

1− h ≤ 1−K ≤ 1− l

⇐⇒ 1− h ≤ 2q − 1

a

γ

1− γ
≤ 1− l

⇐⇒ a(1− h)

2q − 1
≤ 1

1
γ − 1

≤ (1− l)a
2q − 1

⇐⇒ 2q − 1

a(1− l)
≤ 1

γ
− 1 ≤ 2q − 1

a(1− h)

⇐⇒ 2q − 1 + a(1− l)
a(1− l)

≤ 1

γ
≤ 2q − 1 + a(1− h)

a(1− h)

⇐⇒ a(1− h)

2q − 1 + a(1− h)
(IA.37)

≤ γ ≤

a(1− l)
2q − 1 + a(1− l)

. (IA.38)

How does (IA.37) compare with the current lower bound?

a(1− h)

2q − 1 + a(1− h)
<

a(1− p)
2q − 1 + a(1− p)

⇐⇒ 2q − 1

a(1− h)
>

2q − 1

a(1− p)

⇐⇒ 1− h < 1− p

⇐⇒ p < h. X

Therefore, the current lower bound stands.

How does (IA.38) compare with the current upper bound?

a

2q − 1 + a
<

a(1− l)
2q − 1 + a(1− l)

⇐⇒ 2q − 1

a
>

2q − 1

a(1− l)

⇐⇒ 1 < 1− l

⇐⇒ l < 0. X
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Therefore, (IA.38) takes precedence.

This concludes the proof of Proposition 4. �

Equilibrium 11. For tR = 1, we need from (IA.23):

P [pivotal|R] >
c

v

⇐⇒ 1

(1− γ)n

1

ap

f(p∗)p∗

2
>
c

v
,

and p∗ = K
2 for tR = 1; hence:

1

(1− γ)n

1

ap

f
(
K
2

)
K

4
>
c

v

⇐⇒ c

v
<

1

(1− γ)n

1

ap
f

(
K

2

)
K

4
.

For tL = 1, we need from (IA.22):

f(
K

2
)
2−K

4
>
c

v
(1− γ)na(1− p)

⇐⇒ c

v
<

1

(1− γ)n

1

a(1− p)
f

(
K

2

)
2−K

4
.

In addition, we also need c
v ≤ 1.

Given p ∈ [l, h], we further need to ensure that:

l ≤ K

2
≤ h

⇐⇒ 1− 2h ≤ 1−K ≤ 1− 2l

⇐⇒ 1− 2h ≤ 2q − 1

a

γ

1− γ
≤ 1− 2l.

Therefore, for equilibrium to exist, we need 1 − 2l ≥ 0 ⇐⇒ l ≤ 1
2 (and 1 − 2h ≤ 1 =⇒ h ≥ 0

OK).
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Case 1: 1− 2h < 0 =⇒ h ≥ 1
2 ; then, we just need:

2q − 1

a

γ

1− γ
≤ 1− 2l

⇐⇒ 1
1
γ − 1

≤ (1− 2l)a

2q − 1

⇐⇒ 1

γ
− 1 ≥ 2q − 1

(1− 2l)a

⇐⇒ 1

γ
≥ 2q − 1 + (1− 2l)a

(1− 2l)a

⇐⇒ γ ≤ (1− 2l)a

(1− 2l)a+ 2q − 1
,

which also takes precedence over the current upper bound.

Case 2: 1− 2h > 0 =⇒ h ≤ 1
2 ; then, we also need:

γ ≥ (1− 2h)a

(1− 2h)a+ 2q − 1
.

We also need to check what happens when 1− 2h < 0 =⇒ h > 1
2 and

1− 2h < 1−2q
a =⇒ h > a+(2q−1)

2a .

We need:

(2h− 1)a

a(2h− 1) + 1− 2q
<

a(1− 2l)

a(1− 2l) + 2q − 1

⇐⇒ (2h− 1)(2q − 1) < (1− 2l)(1− 2q)

⇐⇒ 2h− 1 < 2l − 1

⇐⇒ h < l. X

Hence, in that case equilibrium does not exist.

Therefore, we need:

h <
a+ 2q − 1

2a
.

This concludes the proof of Proposition 5. �
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Equilibrium m1. Here, we want to inquire whether tL ∈ (0, 1), tR = 1 can be an equilibrium:

First, we have that:

p∗ =
tL

1 + tL
− (2q − 1)γ

(1− γ)a

1

1 + tL

⇐⇒ 1− p∗ =
1

1 + tL

[
1 +

(2q − 1)γ

(1− γ)a

]
︸ ︷︷ ︸

L

.

We have L > 0 but also need:

1− p∗ < 1 ⇐⇒ 1 + tL > 1 +
(2q − 1)γ

(1− γ)a
⇐⇒ tL >

(2q − 1)γ

(1− γ)a
, (IA.39)

and for an equilibrium to exist: (2q−1)γ
(1−γ)a < 1

⇐⇒ (2q − 1 + a)γ < a ⇐⇒ γ <
a

2q − 1 + a
. (IA.40)

P [pivotal|R] >
c

v
⇐⇒ 1

(1− γ)n

1

ap(1 + tL)
f(p∗)p∗ >

c

v
, (IA.41)

and P [pivotal|L] =
c

v
⇐⇒ 1

(1− γ)n

1

a(1− p)(1 + tL)
f(p∗)(1− p∗) =

c

v
. (IA.42)

Assume that p ∼ U [l, h] then (IA.42) becomes:

1

(1− γ)n

1

a(1− p)
1

(1 + tL)

1

d

1

1 + tL
L =

c

v

⇐⇒ (1 + tL)2 =
L

dc
v (1− γ)na(1− p)

=

(1−γ)a+(2q−1)γ
(1−γ)a

dc
v (1− γ)na(1− p)

⇐⇒ (1 + tL)2 =
(1− γ)a+ (2q − 1)γ
dc
v n(1− p)(1− γ)2a2

⇐⇒ tL =

√
(1− γ)a+ (2q − 1)γ

dc
v n(1− p)

1

(1− γ)a
− 1. (IA.43)
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Need: tL < 1

⇐⇒
√

(1− γ)a+ (2q − 1)γ
dc
v n(1− p)

1

(1− γ)a
< 2

⇐⇒ v

c
< d

4(1− γ)2a2n(1− p)
(1− γ)a+ (2q − 1)γ

, (IA.44)

and tL > 0

⇐⇒ (1− γ)a+ (2q − 1)γ
dc
v n(1− p)

> (1− γ)2a2

⇐⇒ v

c
> d

(1− γ)2a2n(1− p)
(1− γ)a+ (2q − 1)γ

. (IA.45)

In addition, from (IA.41), we have for p ∼ U [l, h] that:

1

(1− γ)n

1

ap(1 + tL)2

1

d

(
tL −

(2q − 1)γ

(1− γ)a

)
>
c

v

⇐⇒ 1

(1− γ)n

1

ap

1

d

(
1

1 + tL
− L

(1 + tL)2

)
>
c

v

⇐⇒
(

1

1 + tL
− L

(1 + tL)2

)
>
dc

v
(1− γ)nap

⇐⇒

√
dc
v n(1− p)

(1− γ)a+ (2q − 1)γ
(1− γ)a− dc

v
(1− γ)na(1− p) > dc

v
(1− γ)nap

⇐⇒

√
v
cdn(1− p)

(1− γ)a+ (2q − 1)γ
> 1 ⇐⇒ v

c
> nd

(1− γ)a+ (2q − 1)γ

1− p
. (IA.46)

Let us see how (IA.39) changes in terms of the computed tL in (IA.14). We have:

√
(1− γ)a+ (2q − 1)γ

dc
v n(1− p)

1

(1− γ)a
− 1 >

(2q − 1)γ

(1− γ)a

⇐⇒
√

(1− γ)a+ (2q − 1)γ
dc
v n(1− p)

> (2q − 1)γ + (1− γ)a

⇐⇒ v

c
> nd(1− p) [(2q − 1)γ + (1− γ)a] . (IA.47)

Note that since 1
1−p > 1 − p ⇐⇒ (1 − p)2 < 1 ⇐⇒ 1 − p < 1 ⇐⇒ p > 0, (IA.46) always

supersedes (IA.47) and we do not need to worry about (IA.47).
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Now, we need to check whether (IA.44) & (IA.46) are consistent with each other:

4(1− γ)2a2(1− p)2 ?
> [(1− γ)a+ (2q − 1)γ]2

⇐⇒ 2(1− γ)a(1− p)
?
> (1− γ)a+ (2q − 1)γ

⇐⇒ (1− γ)a(2− 2p− 1) > (2q − 1)γ

⇐⇒ (1− γ)a(1− 2p) > (2q − 1)γ

⇐⇒ a(1− 2p) > γ [a(1− 2p) + 2q − 1] .

Case A: 1− 2p > 0 =⇒ p < 1
2 ; then, we need:

γ <
a(1− 2p)

a(1− 2p) + 2q − 1
. (IA.48)

How does this compare with (IA.40)?

a

2q − 1 + a
>

a(1− 2p)

a(1− 2p) + 2q − 1
⇐⇒ · · · ⇐⇒ p > 0. OK.

Therefore, (IA.48) supersedes (IA.40) in this case.

Case B: 1− 2p < 0 =⇒ p > 1
2 ,

but a(1− 2p) + 2q − 1 > 0

=⇒ p <
1

2
+

2q − 1

2a
,

then, there is no equilibrium for 1
2 < p < 1

2 + 2q−1
2a .

Case C: 1− 2p < 0 =⇒ p > 1
2 and

a(1− 2p) + 2q − 1 < 0 ⇐⇒ p >
1

2
+

2q − 1

2a
,
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; then, we need

a(2p− 1) < γ [a(2p− 1)− (2q − 1)]

⇐⇒ γ >
a(2p− 1)

a(2p− 1)− (2q − 1)
. (IA.49)

Is this consistent with (IA.40)? For equilibrium to exist, we need:

a(2p− 1)

a(2p− 1)− (2q − 1)
<

a

2q − 1 + a

⇐⇒ (2p− 1)(2q − 1) + a(2p− 1) < (2p− 1)a− (2q − 1)

⇐⇒ (2q − 1)(2p− 1 + 1) < 0

⇐⇒ (2q − 1)2p < 0. NO,

; hence, there is no equilibrium for p > 1
2 + 2q−1

2a .

How about (IA.45) vs. (IA.46):

(1− γ)2a2(1− p)2 ?
> [(1− γ)a+ (2q − 1)γ]2

⇐⇒ (1− γ)a(1− p) > (1− γ)a+ (2q − 1)γ

⇐⇒ (1− γ)a(1− p− 1) > (2q − 1)γ

⇐⇒ − (1− γ)ap > (2q − 1)γ. NO.

Therefore, (IA.46) supersedes (IA.45) and is the only lower bound on v
c .

How about A1 that γ < 1
2q vs. (IA.48)? We have:

a(1− 2p)

a(1− 2p) + 2q − 1
<

1

2q
for p <

1

2
=⇒ 1− 2p > 0

⇐⇒ a(2q − 1)(1− 2p) < 2q − 1

⇐⇒ a(1− 2p) < 1. OK.
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Therefore, (IA.48) is the valid γ threshold.

How about A2 that v
c ≥ 1? Check with (IA.44) for existence:

1 < d
4(1− γ)2a2n(1− p)
(1− γ)a+ (2q − 1)γ

⇐⇒ n >
(1− γ)a+ (2q − 1)γ

4d(1− γ)2a2(1− p)
. (IA.50)

How about with a single lower bound (IA.46)?

relative to 1 (one)→ n >
(1− p)

d [(1− γ)a+ (2q − 1)γ]
,

; in this case, (IA.46) is relevant; otherwise, 1 is relevant.

For the case tL ∈ (0, 1), tR = 1, we have:

p∗ =
tL

1 + tL
− (2q − 1)γ

(1− γ)a

1

1 + tL
,

where:

tL =

√
(1− γ)a+ (2q − 1)γ

dc
v n(1− p)

1

(1− γ)a
− 1

⇐⇒ 1 + tL =

√
(1− γ)a+ (2q − 1)γ

dc
v n(1− p)

1

(1− γ)a

⇐⇒ 1

1 + tL
= (1− γ)a

√
dc
v n(1− p)

(1− γ)a+ (2q − 1)γ
.
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In addition:

tL −
(2q − 1)γ

(1− γ)a

=
1

(1− γ)a

[√
(1− γ)a+ (2q − 1)γ

dc
v n(1− p)

− ((2q − 1)γ + (1− γ)a)

]

=

√
(1− γ)a+ (2q − 1)γ

(1− γ)a

[√
v

dcn

1

1− p
−
√

(1− γ)a+ (2q − 1)γ

]

=⇒
tL − (2q−1)γ

(1−γ)a

1 + tL

=

√
dcn

v
(1− p)

[√
v

dcn

1

1− p
−
√

(1− γ)a+ (2q − 1)γ

]
=1−

√
dcn

v
(1− p) ((1− γ)a+ (2q − 1)γ).

Therefore, given that p ∈ [l, h], we must also have,

l < p∗ < h

⇐⇒ 1− h < 1− p∗ < 1− l

⇐⇒ (1− h)2 < (1− p∗)2 < (1− l)2

⇐⇒ (1− h)2 <
dcn

v
(1− p) ((1− γ)a+ (2q − 1)γ) < (1− l)2

⇐⇒ d(1− p) ((1− γ)a+ (2q − 1)γ)

(1− l)2
(IA.51)

<
v

nc
<

d(1− p) ((1− γ)a+ (2q − 1)γ)

(1− h)2
. (IA.52)

(IA.51) vs (IA.46):

(1− γ)a+ (2q − 1)γ

1− p
>

(1− p) [(1− γ)a+ (2q − 1)γ]

(1− l)2

⇐⇒ (1− l)2 > (1− p)2

⇐⇒ 1− l > 1− p

⇐⇒ l < p

⇐⇒ l <
h+ l

2
OK.
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How about (IA.52) vs. the upper bound in (IA.44)?

4(1− γ)2a2(1− p)
(1− γ)a+ (2q − 1)γ

?
<

(1− p)((1− γ)a+ (2q − 1)γ)

(1− h)2

⇐⇒ 4(1− γ)2a(1− h)2 < [(1− γ)a+ (2q − 1)γ]2

⇐⇒ 2(1− γ)a(1− h) < (1− γ)a+ (2q − 1)γ

⇐⇒ (1− γ)a [2(1− h)− 1] < (2q − 1)γ

⇐⇒ [2(1− h)− 1] a < [2q − 1 + (2(1− h)− 1) a] γ.

The sign depends on whether:

2(1− h)− 1 > 0 =⇒ 1− h > 1

2
=⇒ h <

1

2

or not.

Hence, we need to amend the upper bound for v/c to:

min

{
4(1− γ)2a2(1− p)nd
(1− γ)a+ (2q − 1)γ

,
(1− p)((1− γ)a+ (2q − 1)γ)nd

(1− h)2

}
.

We need to ensure that the new upper bound is larger than the existing lower bound :

vs1 (one):

(1− p)((1− γ)a+ (2q − 1)γ)

(1− h)2
nd > 1

=⇒ n >
(1− h)2

d(1− p)((1− γ)a+ (2q − 1)γ)
. (IA.53)

vs (IA.46):

(1− p)((1− γ)a+ (2q − 1)γ)

(1− h)2
nd > nd

(1− γ)a+ (2q − 1)γ

(1− p)

=⇒ (1− p)2 > (1− h)2

=⇒ 1− p > 1− h

=⇒ p < h. X
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How does (IA.53) compare with the existing bound on n?

(1− h)2

d(1− p)((1− γ)a+ (2q − 1)γ)
>

(1− γ)a+ (2q − 1)γ

4d(1− γ)2a2(1− p)

=⇒ 2(1− h)(1− γ)a > (1− γ)a+ (2q − 1)γ

=⇒ (1− γ)a(2− 2h− 1) > (2q − 1)γ

=⇒ (1− γ)a(1− 2h) > (2q − 1)γ.

If 1− 2h < 0 =⇒ h > 1
2 , the current holds.

If 1− 2h > 0 =⇒ h < 1
2 , then the current holds if:

(1− γ)a(1− 2h) < (2q − 1)γ

=⇒ a(1− 2h) < (2q − 1 + a(1− 2h))γ

=⇒ γ >
a(1− 2h)

2q − 1 + a(1− 2h)
.

Check:

a(1− 2h)

2q − 1 + a(1− 2h)
<

a(1− 2p)

2q − 1 + a(1− 2p)

⇐⇒ 1
2q−1

a(1−2h) + 1
<

1
2q−1

a(1−2p) + 1

=⇒ 2q − 1

a(1− 2h)
>

2q − 1

a(1− 2p)

=⇒ 1− 2h < 1− 2p

=⇒ h > p. X

Therefore, both can be true for h < 1
2 .

This concludes the proof of Proposition 6.
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Note that at this equilibrium we have:

ttotal = γt+ (1− γ) (as always) where:

t = a(ptR + (1− p)tL)

⇐⇒ t = a

(
p− 1 + p+

√
v

cnd
(1− p) [(1− γ)a+ (2q − 1)γ]

1

(1− γ)a

)
⇐⇒ t = a(2p− 1) +

√
v

cnd
(1− p) [(1− γ)a+ (2q − 1)γ]

1

(1− γ)

⇐⇒ t =

√
v

cnd
(1− p)

[
a

1− γ
+

(2q − 1)γ

(1− γ)2

]
+ a(2p− 1).

And:

sign

(
∂t

∂γ

)
= sign

∂
(√

v
cnd(1− p)

[
a

1−γ + (2q−1)γ
(1−γ)2

]
+ a(2p− 1)

)
∂γ

 and

∂
(

a
1−γ + (2q−1)γ

(1−γ)2

)
∂γ

=
a

(1− γ)2
+

(2q − 1)(1− γ)2 + (2q − 1)γ2(1− γ)

(1− γ)4

=
a

(1− γ)2
+

(2q − 1)(1− γ) + (2q − 1)2γ

(1− γ)3

=
a

(1− γ)2
+

(2q − 1)(1− γ + 2γ)

(1− γ)3

=
a

(1− γ)2
+

(2q − 1)(1 + γ)

(1− γ)3

=
a(1− γ) + (2q − 1)(1 + γ)

(1− γ)3
> 0 always,

; hence, in this equilibrium, ∂t
∂γ > 0 for all the parameter values in the regions where equilibrium

exists. �

Equilibrium m0. Now, we inquire about the existence of equilibrium with tL ∈ (0, 1) and tR = 0

Then, p∗ becomes:

p∗ = 1− (2q − 1)γ

1− γ
1

atL

⇐⇒ 1− p∗ =
(2q − 1)γ

1− γ
1

atL
.
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We have 1− p∗ > 0 but also need:

1− p∗ < 1 ⇐⇒ (2q − 1)γ < (1− γ)atL

⇐⇒ tL >
(2q − 1)γ

(1− γ)a
, (IA.54)

and for an equilibrium to exist:

γ <
a

2q − 1 + a
. (IA.55)

P [pivotal|R] <
c

v
⇐⇒ 1

(1− γ)nap

1

tL
f(p∗)p∗ <

c

v
, (IA.56)

P [pivotal|L] =
c

v
⇐⇒ 1

(1− γ)na(1− p)
1

tL
f(p∗)(1− p∗) =

c

v
. (IA.57)

Assume that p ∼ U [l, h]; then, (IA.57) becomes:

1

(1− γ)2na2(1− p)
1

t2L

1

d
(2q − 1)γ =

c

v

⇐⇒ t2L =
(2q − 1)γ

(1− γ)2a2n(1− p)d cv

⇐⇒ tL =

√
(2q − 1)γ

n(1− p)d cv
1

(1− γ)a
. (IA.58)

Need tL < 1:

⇐⇒ (2q − 1)γ

n(1− p)d cv
< (1− γ)2a2

⇐⇒ v

c
< d

(1− γ)2a2n(1− p)
(2q − 1)γ

, (IA.59)

and tL > 0, which is always true!
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In addition, from (IA.56) we have for p ∼ U [l, h] that:

1

(1− γ)nap

1

d

1

tL
p∗ <

c

v

⇐⇒ 1

(1− γ)nap

1

d

1

tL

(
1− (2q − 1)γ

1− γ
1

atL

)
<
c

v

⇐⇒ 1

(1− γ)nap

1

d

(
1

tL
− (2q − 1)γ

(1− γ)a

1

t2L

)
<
c

v

⇐⇒

√
n(1− p)d cv
(2q − 1)γ

(1− γ)a− (2q − 1)γ

(1− γ)a

(1− γ)2a2n(1− p)d cv
(2q − 1)γ

< d
c

v
(1− γ)nap

⇐⇒

√
v

dcn

1− p
(2q − 1)γ

< 1− p+ p

⇐⇒ v

c
< d

n(2q − 1)γ

1− p
. (IA.60)

Let us see how (IA.54) changes in terms of the computed tL in (IA.18). We have:

√
(2q − 1)γ

n(1− p)d cv
1

(1− γ)a
>

(2q − 1)γ

(1− γ)a

⇐⇒
√

1

n(1− p)d cv
>
√

(2q − 1)γ

⇐⇒ v

c
> dn(1− p)(2q − 1)γ. (IA.61)

Between (IA.59) and (IA.60), which is the relevant bound for v/c?

d
n(2q − 1)γ

1− p
< d

(1− γ)2a2n(1− p)
(2q − 1)γ

⇐⇒ (2q − 1)γ < (1− γ)a(1− p)

⇐⇒ γ [2q − 1 + a(1− p)] < a(1− p)

⇐⇒ γ <
a(1− p)

2q − 1 + a(1− p)
(IA.62)

Hence, if (IA.62) is true, then (IA.60) is relevant; otherwise, (IA.59) is relevant. Note, that (IA.62)

is consistent with (IA.55).

For the existence of this equilibrium, we need both (IA.59) and (IA.60) to be larger than (IA.61).
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Hence, we have that for (IA.59) to be larger than (IA.61) we need:

d
(1− γ)2a2n(1− p)

(2q − 1)γ
> dn(1− p)(2q − 1)γ

⇐⇒ (1− γ)2a2 > (2q − 1)2γ2

⇐⇒ (2q − 1 + a)γ < α

⇐⇒ γ <
α

2q − 1 + a
,

, which is always true according to (IA.55). For (IA.60) to be larger than (IA.61), we need:

d
n(2q − 1)γ

1− p
> dn(1− p)(2q − 1)γ

⇐⇒ (1− p)2 < 1

⇐⇒ p > 0. OK

Now, we check the consistency of the upper bounds for v/c (IA.59) and (IA.60) with respect to

Assumption 2 (i.e., v/c > 1):

1 (one) vs. (IA.59):

n >
(2q − 1)γ

d(1− γ)2a2(1− p)
. (IA.63)

1 (one) vs. (IA.60):

n >
1− p

d(2q − 1)γ
. (IA.64)

Note that the upper bound of γ (IA.55) takes precedence over Assumption 1 (i.e., qγ < 1/2).

Given that p ∈ [l, h], we need to also ensure that 0 ≤ l < p∗ < h ≤ 1 when tL ∈ (0, 1) and
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tR = 0. We have:

tL =

√
(2q − 1)γ

n(1− p)dcv

1

(1− γ)a

⇐⇒ 1

tL
= (1− γ)a

√
dcn
v (1− p)

(2q − 1)γ

⇐⇒ (2q − 1)γ

(1− γ)a

1

tL
=

√
(2q − 1)γ

dcn

v
(1− p)

⇐⇒ 1− p∗ =

√
(2q − 1)γ

dcn

v
(1− p).

Hence,

l < p∗ < h

⇐⇒ 1− h < 1− p∗ < 1− l

⇐⇒ (1− h)2 < (1− p∗)2 < (1− l)2

⇐⇒ (1− h)2 < (2q − 1)γ
dcn

v
(1− p) < (1− l)2

⇐⇒ nd(2q − 1)γ(1− p)
(1− l)2

(IA.65)

<
v

c
<

nd(2q − 1)γ(1− p)
(1− h)2

. (IA.66)

(IA.65) vs (IA.61):

nd(2q − 1)γ(1− p)
(1− l)2

?
< nd(1− p)(2q − 1)

⇐⇒ (1− l)2 > 0,

is always true, and hence, (IA.65) never relevant.
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(IA.66) vs (IA.59):

(1− γ)2a2n(1− p)
(2q − 1)γ

?
<
nd(2q − 1)γ(1− p)

(1− h)2

⇐⇒ (1− γ)a(1− h) < (2q − 1)γ

⇐⇒ γ >
a(1− h)

2q − 1 + a(1− h)
, (IA.67)

Therefore, we need to inquire further. How does (IA.67) compare with the existing upper bound

on γ (IA.55)?

a

2q − 1 + a

?
<

a(1− h)

2q − 1 + a(1− h)
.

⇐⇒ 2q − 1 + a(1− h) < (2q − 1)(1− h) + a(1− h)

⇐⇒ 1− h > 1

⇐⇒ h < 0. X

Hence, (IA.67)<(IA.55) always occurs and so both (IA.59) and (IA.66) can be relevant.

(IA.66) vs (IA.60):

d(2q − 1)γn

1− p
?
<
nd(2q − 1)γ(1− p)

(1− h)2

⇐⇒ 1− h < 1− p

⇐⇒ p < h, X

, which is always true, so that (IA.60)<(IA.66) for all parameter values and so (IA.66) is never the

relevant upper bound for v/c.

This concludes the proof of Proposition 7.
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Note that at this equilibrium, we have:

ttotal = γt+ (1− γ) (as always) where:

t = a(ptR + (1− p)tL)

⇐⇒ t = a(1− p)tL

⇐⇒ t = a(1− p)

√
(2q − 1)γ

n(1− p)d cv
1

(1− γ)a

⇐⇒ t =

√
(2q − 1)

v

dcn
(1− p) γ

(1− γ)2
.

Hence:

sign
∂t

∂γ
= sign

∂
(

γ
(1−γ)2

)
∂γ

and

∂
(

γ
(1−γ)2

)
∂γ

=
(1− γ)2 + γ2(1− γ)

(1− γ)4

=
1− γ + 2γ

(1− γ)3

=
1 + γ

(1− γ)3
> 0 always.

Hence, in this equilibrium ∂t
∂γ > 0 for all parameter values in the region where equilibrium exists.

�
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Table 12: Alternative estimation methods: ISS

This table shows average parameter estimates by proposal type, where the estimation was made for proposal type×ISS recommendation×γ decile×size
decile.

ISS

Proposal type v/ (cn) tL tR
Prob. misalignment
Odisc(p) vs Ofull(p)

Odisc(p)−Ofull(p) Odisc(p)−Oonly-reg

Shareholder proposals

Board 0.92 0.99 0.56 0.10 -0.23 0.09
Business 1.58 0.98 0.57 0.04 -0.25 0.18
CSR 1.98 0.99 0.59 0.02 -0.26 0.25
Compensation 1.13 0.98 0.56 0.10 -0.23 0.10
Defense 1.28 0.96 0.60 0.08 -0.19 0.11
Governance 0.89 0.95 0.60 0.14 -0.18 0.06
Payout 2.72 1.00 0.62 0.00 -0.24 0.30
Restructuring 1.39 1.00 0.57 0.01 -0.26 0.19
Total 1.37 0.98 0.58 0.07 -0.23 0.15

Management proposals

Board 2.90 1.00 0.77 0.00 -0.16 0.44
Business 2.81 0.99 0.77 0.00 -0.18 0.47
CSR 3.30 1.00 0.87 0.00 -0.09 0.54
Compensation 2.09 0.98 0.69 0.04 -0.19 0.30
Defense 3.01 1.00 0.79 0.00 -0.13 0.43
Governance 2.57 0.97 0.80 0.02 -0.11 0.33
Merger 2.71 1.00 0.71 0.00 -0.22 0.46
Payout 2.80 1.00 0.74 0.00 -0.21 0.52
Restructuring 2.46 0.98 0.79 0.02 -0.14 0.39
SOP 2.47 1.00 0.71 0.01 -0.21 0.41
Total 2.29 0.98 0.72 0.03 -0.18 0.34
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