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Abstract

We use data on firms’ expectations and planned capital expenditures to show that
capital budgets (i) capture information beyond simple expectations of future profitabil-
ity, (ii) are partially flexible, but (iii) are costly to deviate from. To explain these facts,
we develop an investment model where firms endogenously learn about firm fundamen-
tals and make partially flexible investment plans. Our calibrated model shows managers
actively use both strategies, leading to substantial amelioration of misallocation arising
from capital budget formation under uncertainty. Using a decomposition exercise, we
show that this arises primarily because high-productivity firms actively allocate a larger
fraction of their expenses towards better planning.
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1 Introduction
Corporate managers typically begin a fiscal year with capital budgets, making capital ex-

penditure plans under substantial uncertainty around the realization of sales and costs in

that year (Harris et al. (1982)). Subsequently, as the year progresses, they may deviate from

plans by adjusting actual investments in response to additional information. Consequently,

the quality of a firm’s investment plan and the flexibility to adjust to real time changes be-

come jointly important in determining the effect of uncertainty on the profitability of a firm,

and on an aggregate level, capital allocation across firms. While a large body of research

has studied the role of imperfect information in firm decision-making, the primary focus has

been on directly connecting sales or profitability uncertainty to capital expenditure decisions,

while bypassing the investment planning channel. In part, a challenge for studying the role

of investment planning and flexibility in mitigating the impact of uncertainty on firm bottom

lines arises from the lack of access to a dataset with sufficiently rich set of observations on

sales forecasts, capital budgeting, as well as the underlying balance sheet of the firm.

To that end, in this paper, we use a unique setting in Japan which permits the construc-

tion of a firm-level panel with headline financial statement variables, and rich expectations

and planned spending data along with their ex-post realizations, for a nationally represen-

tative sample of firms. We examine the degree to which firms utilize two levers of corporate

policy to mitigate uncertainty: (i) costly capital budgeting, and (ii) the flexibility to adjust

investments in response to real time shocks. Then, we connect these strategies of uncer-

tainty mitigation to a broader macroeconomic literature on dynamic capital misallocation.

We present two sets of results. First, we establish three stylized facts connecting capital

budgeting and actual investment choices. We show that (i) investment plans are a strong

input into actual investment above and beyond a manager’s expectations on profitability;

(ii) realized investments deviate from plans in response to ex-post shocks to profitability, but

plans retain forecasting power even after accounting for these shocks; and that (iii) deviat-

ing from plans appears costly, with firm profitability declining in the following year when
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managers deviate more from their initial investment plans through the fiscal year, even when

controlling for both ex-ante and ex-post characteristics like expected and realized TFP and

firm size. Overall, our facts suggest that investment plans are not simple conduits through

which expectations about sales or productivity feed into investments. Moreover, they are

costly to adjust on-the-fly, but are not completely immutable.

Next, to study the economic implications of our findings, we formulate a parsimonious

investment model with costly endogenous learning and capital budgeting where investment

plans are flexible but costly to adjust, and calibrate our model to the data. Our baseline

model follows Hopenhayn (1992) with only two additional key ingredients: costly informa-

tion acquisition and costly deviation from investment plans. The first ingredient – costly

information acquisition – means that firms start with uncertainty but may acquire better

information (to make better investment plans) at a cost. In practice, this cost may take the

form of conducting additional market research or hiring better managers with more fore-

casting ability.1 The second ingredient – flexible but costly deviation from investment plans

– means firms want to reduce their uncertainty due to adjustment costs for deviations as

the year unfolds. In practice, the adjustment costs may manifest through financing or or-

ganizational frictions which involve a large collection of agents coordinating to deviate from

initial plans.2 These micro-founded frictions based on the existing empirical and theoretical

accounting and corporate finance literature introduce a novel intertemporal tradeoff for firms

between purchasing better information ex-ante against planning to potentially deviate from

investment plans ex-post.

A key insight of our model is that firms with different characteristics tolerate different

levels of uncertainty due to the cost to deviate from initial capital budgets. A higher level of

uncertainty is costlier for more productive firms because the returns to learning increase in

1See Baik et al. (2011); Lee et al. (2012); Goodman et al. (2014).
2Extant research such as Harris et al. (1982), Antle and Eppen (1985), Bernardo et al. (2004), and Malenko
(2019) all study the theoretical implications of intrafirm agency and information frictions for capital allo-
cation within a firm, usually with an angle for studying incentive mechanisms for managers within a firm.
However, there is little research on the macroeconomic implications of costly and noisy capital expenditure
plans.
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productivity. This mechanism gives rise to two unique predictions regarding TFP forecast

errors and investment plan deviations, which we test and verify using our data: (1) the

dispersion of TFP forecast errors decreases in initial firm productivity, and (2) the dispersion

of investment plan deviations increases in the absolute size of realized TFP shocks. Because

our panel data contains information of forecasts/plans and realizations for both sales and

investments as well as other financial statement variables, our data are uniquely suited for

testing these predictions.

Our calibrated model suggests that while firms actively adjust their capital expenditures

on the fly, they generally prefer to seek better information rather than be forced to adjust

ex-post. The total resources spent on information acquisition is more than five-times that of

investment plan deviation. An outcome of this is that revenue is positively correlated with

signal acquisition costs expended, but negatively correlated with investment plan adjustment

costs. That said, as firms do actively utilize both levers of corporate policy, attributing

capital misallocation to either channel alone could lead to overstatement of the effects of one

or the other.

From a macroeconomic perspective, we find that the ability to mitigate uncertainty via

investment planning and flexible budget adjustments substantially ameliorates capital mis-

allocation arising from uncertainty. For instance, in our baseline model, we find that ag-

gregate wages are about 0.4% lower than a reference model of costless investment planning

and adjustments.3 Notably, the bulk of the amelioration in capital misallocation arises from

our model assumptions that allow managers to optimally choose how much information to

acquire. In contrast, a counterfactual model that imposes homogenous uncertainty (as is

common in the literature on uncertainty and misallocation, e.g. Asker et al. 2014; David

and Venkateswaran 2019) predicts substantially higher levels of misallocation; for instance,

wages are about 2.5% lower relative to the same reference. In contrast, imposition of fully im-

mutable plans (while maintaining the endogenous learning assumption) leads to an economy

3Such a reference model relates to the framework and timing that is utilized in most macroeconomic firm
dynamics model, e.g. David and Venkateswaran (2019).
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where wages are about 0.5% lower relative to the same reference model.

Finally, our main theoretical result, where higher productivity firms endogenously choose

lower subjective uncertainty, also has implications for the business cycle. We show in an ex-

tended model with aggregate productivity shocks that our model endogenously generates (1)

persistent and counter-cyclical subjective uncertainty over both idiosyncratic and aggregate

conditions; and (2) counter-cyclical capital misallocation, with the latter a natural conse-

quence of the former. Critically, our theoretical results depend on the fact that investment

plans are costly to adjust. While both facts have been established in the literature, we

also utilize our data to directly test these predictions. As with our earlier results from the

stationary model, the extended predictions are also matched in the data.

After discussing the related literature, the rest of our paper proceeds as follows: Sec-

tion 2 provides empirical evidence that investment plans are important predictors of actual

investment choices; even after accounting for other variables like expected sales; Section 3

describes our baseline model; Section 4 discusses and tests our main model predictions; Sec-

tion 5 discusses key quantitative results through our calibrated model; Section 6 presents

our extended model with aggregate risk; finally, Section 7 concludes.

Related Literature

Our results contribute to several strands of the corporate finance literature on learning,

uncertainty, and investment dynamics as well as macroeconomics.

First, our paper builds on the long insight in corporate finance that argues for the impor-

tance of capital budgeting. Closest to our research is Harris and Raviv (1996), who argue

that unanticipated shocks to productivity can lead to inefficient investment as it is difficult

to adjust actual investment in real-time. Similar to our paper, they argue using a small

sample of firms that due to inertia in adjusing investment, firms under-invest (over-invest)

in response to positive (negative) shocks. Our empirical framework clarifies that this is true

for a broad representative cross-section of firms, and our model allows us to map these “poor”

firm responses to macroeconomic outcomes.
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Along this vein, our paper is also related to the literature on the macroeconomic impli-

cations of behavioral corporate managers that study how systematic forecast errors affect

capital misallocation in the aggregate (e.g. Goodman et al. 2014; Gennaioli et al. 2015;

Coibion et al. 2020; Ma et al. 2018; Barrero 2021). A common assumption is that firm

managers implement corporate capital expenditure policy based entirely on their biased ex-

pectations, implicitly assuming that investment plans are immutable. In our model, firm

managers not only endogenously decide on the quality of the information to purchase (and

hence the quality of their capital budgets), but also can adjust their actual investments

ex-post.

Second, our paper connects to the broad theoretical literature on rational inattention

(e.g. Sims 2003; Reis 2006; Van Nieuwerburgh and Veldkamp 2009; Benhabib et al. 2016;

Ilut and Valchev 2020). Like the literature, we assume firms are rationally inattentive due

to costly information acquisition. However, we focus on how costly information acquisition

interacts with partially flexible investment plans and connect this channel to a broader study

on dynamic capital misallocation. Our key focus is on studying ex-ante improvements in the

quality of capital budgeting in mitigating uncertainty, especially when firms are constrained

in how they can respond in real time to contemporaneous shocks. Importantly, we directly

verify our mechanisms using a unique novel data set of firm expectations, where we observe

both expected and realized sales and investment as well as the underlying balance sheet of

nationally representative firms.4

Third, our findings also relate to the literature studying uncertainty as a source of capital

misallocation. Recent literature have argued that the combined effect of investment under

uncertainty, and capital physical adjustment frictions, can lead to substantial capital mis-

allocation (e.g. David et al. (2016) imposes an implicit time-to-build element, while Asker

et al. (2014); David and Venkateswaran (2019) combines both time-to-build and physical

4In contrast, prior research (e.g. Bachmann et al. 2013; Bachmann and Elstner 2015; Bachmann et al. 2017)
uses survey data that are less comprehensive and/or only include qualitative forecasts regarding sales or
investment.
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adjustment costs). Unlike the literature, uncertainty in our paper generates misallocation

because firms need to plan capital budgets under incomplete information, and face costly

real-time investment plan adjustments. Therefore, our focus is on adjustment costs that

arise from non-tangible costs such as co-ordination or opportunity costs that arises due to

deviations from initial budgets. We find that uncertainty plays a small role in generating

capital misallocation, similar to the finding in David and Venkateswaran (2019). However,

we differ in the underlying economic mechanism. In our paper, the diminished role of un-

certainty for misallocation arises because of endogenous learning, and importantly, because

high-productivity firms optimally incur the bulk of the cost of learning. In contrast, David

and Venkateswaran (2019) assume that a fraction of uncertainty is resolved costlessly ahead

of time. In this context, we show that while capital misallocation arising from uncertainty

is low, this comes at a tradeoff off of expending more resources to buying better information

(at least, from the firm’s perspective). Notably, while our framework focuses on a different

economic environment, we believe that our underlying economic insight should translate over

to the broader literature.

Our framework also relates to the broader literature studying aggregate fluctuations in

uncertainty. Similar to recent work (e.g. Benhabib et al. (2016); Ilut and Saijo (2020)), we

propose endogenous pro-cyclical learning as an explanation for counter-cyclical uncertainty,

which is in contrast to the broader literature where counter-cyclical uncertainty is exoge-

nously imposed (e.g. Bloom 2009; Bachmann and Bayer 2014; Bachmann and Elstner 2015;

Bloom et al. 2018; Senga 2018). Unlike the recent literature, we focus on a different mecha-

nism where counter-cyclical uncertainty arises because the returns to learning are increasing

in firm productivity. In contrast, counter-cyclicality in Benhabib et al. (2016) arises from a

general-equilibrium effect of complementarity in signal acquisition, while in Ilut and Saijo

(2020), fluctuations in uncertainty arises from passive information accumulation.5 Impor-

tantly, we empirically verify our key mechanism using our data by showing that firms with

5In particular, Benhabib et al. (2016) assume that firm productivity is i.i.d., which implies that the initial
conditions of firms do not matter with respect to information acquisition.
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higher productivity have smaller forecast errors over fundamentals. Our empirical finding

is similar to those in Tanaka et al. (2020), who find, using a similar but distinct dataset in

Japan, that higher productivity firms have lower uncertainty in the form of lower absolute

forecast errors over aggregate variables. They hypothesize that this result is due to better

management ability, implying a model where marginal costs to acquire information decreases

in productivity. In contrast, we show that given standard assumptions, the returns to being

“correct” is naturally higher for firms with higher productivity, even when the marginal cost

of acquiring information is homogenous across firms.

Finally, our paper is related to the literature on investment dynamics, beginning with

Kydland and Prescott (1982), that study the role of time-to-build and time-to-plan. Our

paper’s focus is similar to that of Christiano and Todd (1996); Bar-Ilan and Strange (1996);

Kuehn (2011) in studying the implications for firm and aggregate outcomes when planned

and realized investments do not necessarily coincide. And although we do not study asset

prices, our findings and model are both related to and consistent with empirical findings in

Lamont (2000), and modeling assumptions in Li et al. (2020) and Li and Wang (2020), who

document the asset-pricing implications of investment plan frictions.

2 Firm Forecasts and Investment Plans
In the following subsections, we first discuss our main data sources as well as the definition

and construction of key variables that we will use in our analysis. Then, we present three

stylized facts regarding firm investment plans, which we use to argue that (i) investment plans

capture more information than just the expectations of future profitability; (ii) investment

plans are only partially flexible; and (iii) investment plans are costly to deviate from. We

then use these facts as motivation for our theoretical model in the next section.

2.1 Data Sources

Our main data sources are the Business Outlook Survey (BOS) and the Annual and Quarterly

Financial Statements Statistics of Corporations by Industry in Japan. The BOS contains
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firm-level expectations, forecasts, and spending plan data and their realizations, while the

Annual (Quarterly) Financial Statistics survey provides detailed year-end (quarter-end) fi-

nancial statistics such as cash holdings, debt, total employment, cost of labor, and other

financial statement variables for the fiscal period. Although the two sets of surveys are dis-

tinct, both are administered by the Ministry of Finance (MoF) and follow the same sampling

procedure. Appendix D contains a more detailed description of the sampling structure and

discusses why the sampling procedure effectively permits the construction of a nationally

representative and complete panel data of large firms, both publicly-listed and private, in

Japan.

We merge these two data sets together for our sample, which comprises around 6,000

firms a year, from fiscal year (FY) 2005 (April 2005 to March 2006) to FY 2016 (April 2016

to March 2017). The firms in our sample account for around 60% of total employment in

Japan. Table I reports the broad general characteristics of our merged sample. Panel A

reports the balance sheet variables as reported in the Annual Financial Statistics survey,

and Panel B reports spending plan data from the BOS as well as constructed key variables

like TFP, which we define below.

[Table I Here]

2.2 Definition and Construction of Key Variables

In our sample, we observe a firm’s forecasted sales, profits, and investment spending plans

for the full year, conditional on information available to a firm as of the first fiscal quarter.6

For sales and profits, we refer to the differences between actual and realized variables as

“shocks”. In contrast, for investment plans, we refer to the differences between realized and

planned values as “deviations from plan”. Our interpretation is that differences in actual and

predicted sales or profits are largely driven by circumstances outside of a firm’s control, and

thus can be interpreted as innovations to a firm’s information set.7 In contrast, investment
6Firms are surveyed in around one and a half months into the first fiscal quarter about their expectations
for the full fiscal year. Appendix D contains more detailed description of the sampling timing.

7This is consistent with, for example, the assumptions made in Bachmann and Elstner (2015).
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spending is under a firm’s control, thus any differences between realized and planned values

are choices made by a firm. Such deviations reflect both a firm’s reactions to real time

innovations to its information set as well as the degree of flexibility of a firm to adjust

capital expenses relative to its planned expenses. This distinction between innovations to

the information set and degree of investment plan flexibility will be the key feature in our

analyses and model. Appendix Section A.2 shows that the observed capital spending plans

appear informative for realized spending, generating results quantitatively similar or even

larger than those in Gennaioli et al. (2015). These results suggest the BOS corporate plans

and forecasts are good predictors of actual realizations, and hence economically relevant.

2.2.1 TFP, Expected TFP, and TFP Shocks

The firm-level “fundamental” that we consider is its revenue total factor productivity (hence-

forth TFP), as is commonly used in the literature. For computing realized TFP, we follow

the measurement strategy as detailed in Asker et al. (2014). We follow standard convention

by assuming that firms operate Cobb-Douglas physical production functions with capital

(labor) intensity α (1−α), and face isoelastic demand curves with elasticity η. Given values

for α and η, we can back out TFP z using the identity

z =
(py)

η−1
η

kαl1−α
,

where py is the firm’s total value added for the fiscal year, k is the firm’s physical capital

stock at the end of last fiscal year, and l is the number of full-time equivalent labor hired as

of the end of the current fiscal year. A full description is deferred to Appendix A.3 in the

interest of space.

We also compute an approximate measure of the firm’s expected TFP using data on

expected sales and balance sheet variables, and use that to infer the TFP shock the firm faces.

This is unlike prior research, which typically uses the fitted value of an AR(1) regression as a

proxy for a firm’s expected TFP, and the residuals as the TFP shock a firm faces. Specifically,

9



we define expected TFP ze as

ze ≡ (pye)
η−1
η

kαl1−α
,

where pye is the firm’s expected total value added for the fiscal year (defined as expected

sales minus realized costs of goods sold), and k and l are the same variables as before. We

will define a TFP “shock” ∆ log z as

∆ log z ≡ log z − log ze,

and we will interpret the cross-sectional dispersion of ∆ log z as the average amount of

uncertainty across firms at a particular point of time.8,9

2.2.2 Investment Plans and Deviations from Investment Plans

In the BOS, firms are surveyed about their planned and actual investment-related spending,

including information over three broad categories of spending, namely (i) physical property

and equipment (PP&E), (ii) land, and (iii) software. For most of our analysis, we will focus

on PP&E as our definition of “capital”. We denote i as actual investment, ip as planned

investment, and ∆i ≡ i − ip as “deviation from investment plans”. Moreover, for all of

our analysis, we utilize investment rates rather than investment levels, where we normalize

investment by the initial period capital stock. Correspondingly, investment plan deviations

are defined as

∆
i

k
≡ i− ip

k
.

8Readers might observe that our measure of expected TFP mismeasures the true expected TFP, and conse-
quently, also mismeasures the true TFP shock. In Appendix A.3.3, we demonstrate that given the timing
convention and parametric assumptions of our model in Section 3, these measurement issues do not affect
our qualitative results, and is also unlikely to be quantitatively large.

9Our measure of expected value added also requires an assumption that firms have perfect foresight regarding
intermediate factor input costs for the year, as we do not observe forecasted intermediate input cost.
For robustness, we therefore verify that all our reported empirical results using any expected TFP or its
derivatives are also robust to using the as-reported expected sales or profits (i.e., replacing TFP shocks
with sales shocks or profits shocks).
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One issue we face is that the BOS focuses on capital expenses. This means that for firms

that plan on doing disinvestment and/or end up doing disinvestment at the end of year,

they will report ip = 0 and/or i = 0. This manner of reporting will bias our measure of ∆i

towards 0, which means that we will underestimate investment flexibility. In Appendix A.3.4,

we discuss this issue in more detail. In practice, we do not believe this bias to meaningfully

affect our empirical results.10

2.3 Three Facts on Investment Plans

We now present three stylized facts regarding firm investment plans.

2.3.1 Fact 1. Investment Plans Contain Incremental Information Not Captured

in Expected Future Performance Alone

To study the importance of investment plans relative to other common alternative explana-

tory variables (in particular, expected profitability), we run regressions of the form:

ii,t
ki,t

= αj(i),t + β
ipi,t
ki,t

+ γxt+1
i,t +X ′i,t−1Γ + εi,t, (1)

where i indexes a firm, j(i) indexes the industry that firm i is in, and t is a fiscal year,

Xi,t−1 are control variables including log total assets, cash to total assets, and the long-

term book leverage ratio, and αj(i),t represents industry-by-year fixed effects. The regression

specification compares firms in the same industry and year, where the coefficients of interest

are β which captures the relation between investment plans and realized investments, and γ

which studies the relation between investment it and an explanatory expected future period

t + 1 performance variable xt+1
i,t . For our performance variable, we consider as alternatives

expected sales relative to capital, expected value-added relative to capital, and expected

TFP. We also run the same regressions without investment plans (i.e., dropping ipi,t) to show

the benchmark result of the performance variable alone. This set of specifications allows us

10Part of this stems from the fact that the fraction of firms doing negative investment, based on calculations
from the financial statements, is not large. Around 16% of firms report i

k < 0, as we report in Table A.2.
If we consider true disinvestment as only firms reporting i

k < −1% (c.f. Cooper and Haltiwanger (2006)),
this fraction falls to around 9%.
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to essentially interpret the regressions as a horse race between investment plans and xt+1
i,t in

determining actual investment.

[Table II Here]

We report our results in Panel B of Table II, where Columns 1, 3, and 5 report regressions

on log expected sales divided by capital, log expected value added divided by capital, and

log expected TFP per the definition in Section 2.2.1, while Columns 2, 4 and 6 report the

regressions including investment plans as a regressor. 11 A sharp and consistent result

emerges: investment plans are statistically significantly related to actual capital expenses

even after controlling for these conventional variables. Moreover, the presence of investment

plans attenuate the importance of these expected performance variables by over two-thirds

and improve R2 by more than 4 times. For instance, in comparing Columns 5 and 6 in Panel

B, we find that the coefficients on expected TFP decrease by over 75% and R2 increases by

over five-times from 0.080 to 0.473 when adding investment plans as a regressor.

Our results are surprising, as conventional firm dynamics models would predict that

investment plans will have no predictive power for actual investment once we control for

expected TFP, since any correlation between actual and planned investment are driven by

the firm’s expectations of productivity. Moreover, our results are not simply due to our

measure of expected TFP, as similar results obtain when simply considering log expected

sales divided by capital or log expected value added divided by capital, the former which

requires no structural functional form assumptions. Therefore, investment plans appear to

statistically and economically significantly explain realized investments, beyond acting as a

conduit of expected sales, expected value added, or expected TFP.

These findings are also consistent with investment plans being partially flexible. On

one hand, plans are informative of actual capital investment as the coefficient is statistically

different than zero. On the other hand, if plans were completely irreversible, we would expect

11Appendix Section A.2 shows a similar empirical result when using a specification with no structural as-
sumptions and firm fixed effects.
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an estimate very close to unity since realized investments cannot deviate from plans. In the

next subsection, we test the flexibility of investment plans more directly.

2.3.2 Fact 2. Investment Plans are Partially Flexible

To test the flexibility of investment plans, we consider a regression specification of the form:

∆
ii,t
ki,t

= αj(i),t + β∆ log zi,t +X ′i,t−1Γ + ηi,t, (2)

where the indices i, j(i), and t as well as the set of control variables X ′i,t−1 follow Equation

1 before. The coefficient of interest β tells us how much deviation from planned investment

is possible in response to TFP shocks. Standard errors are clustered by firm.

Table III reports the empirical results documenting the flexibility of investment plans,

dropping the i, t subscript when there is no confusion. Columns 1, 3, and 5 study how

investment deviations ∆ii,t
ki,t

respond to performance shocks, studying sales shocks, value added

shocks, and TFP shocks respectively. We find firms deviate from investment plans in response

to all three measures of performance shocks in conventional ways. For instance, compared to

firms in the same industry, those that receive a more positive TFP shock ramp up investment

relative to their plans, and those that receive more negative TFP shocks scale down relative

to their plans. Taken together, this suggests that deviations from investment plans are

possible.

[Table III Here]

A concern with our specification is that our measure of investment plan deviations ∆i

partially captures the endogeneity of investment plans itself to TFP shocks—effectively in-

troducing a reverse causality problem—rather than the variation in realized investment re-

sponses themselves.12 This counterfactual is plausible if firms have some private information

that is not reflected in our expected TFP measure. To alleviate this concern, Columns 2, 4,
12For instance, influential work by Jaimovich and Rebelo (2009); Schmitt-Grohé and Uribe (2012) conclude
that “news shocks”—that firms have advanced information on future innovations—are important drivers
of investment decisions.
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and 6 in Table III consider a slightly different regression specification using realized invest-

ment i
k
as a dependent variable and investment plans ip

k
as a control to more directly study

changes in actual investment responses. We show actual investment indeed responds to TFP

shocks and investment plans remain statistically and economically significant. Our findings

are robust to studying both sales and value-added shocks as the performance shock rather

than TFP. Therefore, the investment plan deviations indeed to appear to capture intra-year

deviations from initial budgets.

Finally, we conclude this section by addressing two earlier concerns. First, we noted

earlier in Section 2.2.1 that our TFP shocks measure is biased. However, the fact that we

mismeasure TFP shocks is not a major threat to our empirical results given the robustness

of the qualitative correlations to using sales or value-added shocks, similarly defined. Since

these definitions require less assumptions than TFP, we believe our empirical results are

not driven solely by the bias in the TFP shock measurement. Second, we noted in Section

2.2.2 that our measure of investment deviation is biased towards 0, which in turn implies an

underestimation of investment flexibility. As our results show, even with this bias in place,

actual investment is still responsive to TFP shocks, implying the bias might not be that

severe. Therefore, we believe that our two measures, while imperfect, are not mechanically

biasing our empirical results towards our conclusions.13 Regardless, to directly account for

these empirical concerns for our counterfactual analyses, we will simultaneously address both

concerns when calibrating our model in Section 5.

2.3.3 Fact 3. Deviations from Capital Budgets are Costly

Finally, we study whether investment plans are only partially flexible in part because it is

costly to deviate from the capital budget. To show this relation, we study whether a firm’s

future profitability relates to its capital budget deviations using a regression of the following

13Both stylized facts are robust to accounting for firm fixed effects (which will also account for heterogeneity in
firm-level V). However, we prefer the specification with no firm fixed effects to maintain a close connection
to our model.
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form:

yi,t+1 = αj(i),t + β log

(
1 + |∆ ii,t

ki,t
|
)

+ γii,t + φ log zi,t + ψ(∆ log zi,t−1) +X ′i,t−1Γ + εi,t+1,

(3)

where the indices i, j(i), and t as well as the set of control variables X ′i,t−1 follow Equation 1

before. The outcome variable yi,t+1 is a firm’s future gross profit margins, defined as the ratio

of ordinary profits to sales. Our empirical specification studies the impact of investment plan

deviations from planned investment on firm’s bottom line, holding fixed all other relevant

firm characteristics. We effectively compare two otherwise identical firms in the same year

in the same industry with similar fundamentals (including realized investment rates), for

which the only difference is their initial investment plans (and hence, with the same actual

investment choices, different levels of deviation). By controlling for actual realized TFP, we

also control for actual outcomes, relating any changes in profitability to plan deviations.

Table IV reports our results. Column 1 controls for realized TFP, Column 2 controls

additionally for TFP shocks, and Column 3 also includes additional firm-level controls. Re-

gardless of the suite of control variables, the deviations in investment choices from plans,

whether it is a need to ramp up or scale down, reduces future profit margins. These re-

sults are economically meaningful. For example, Column 1 shows a one percentage increase

in deviations leads to a 0.3 percentage point decrease in gross margins. Since the average

profit margin is 6.70% of sales, equivalent to around US$45 million given the average sales

of US$670 million. This therefore amounts to foregone profits of around US$2 million.14

Importantly, in Column 3, we also control for firm total assets with quantitatively similar

effects. The robustness of our point estimates suggests that our investment plan deviations

measures are not simply picking up the effect of physical adjustment costs.

[Table IV Here ]

14This back of the envelope calculation assumes that investment plan deviations only affect profits rather
than sales, which is consistent with our model in the next section.
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3 Model
In this section, we present a parsimonious model of firm dynamics motivated by the stylized

facts from Section 2. We consider a discrete time, infinite-horizon economy, populated by a

representative household, a representative final goods firm, and heterogeneous intermediate

goods firms. Our model features two key elements: (i) endogenous signal acquisition and (ii)

costly deviation from investment plans. We will use this as our baseline economic environ-

ment to study the aggregate implications of partially irreversible investment plans on TFP

forecast errors, investment plan deviations, and capital allocation.

3.1 Households

The household is infinitely-lived, discounts time at rate β, and owns all the firms in the

economy. It inelastically supplies a fixed quantity of labor N = 1, and has preferences over

consumption of a final aggregate consumption good. The household plays a limited role in

our analysis, but is presented for completeness.

3.2 Final Good Firms

There is a representative final good firm that aggregates up all the intermediate goods yi.

Aggregate output is a constant elasticity of substitution (CES) aggregate over a measure 1

of different varieties of goods Yt =

(∫ 1

0
y
η−1
η

i,t di

) η
η−1

, where i is a generic variety and η is the

elasticity of substitution across goods. The usual cost minimization problem for the final

goods firm yields the standard demand schedule for each good i as pi,t = y
− 1
η

i,t PtY
1
η

t , where

Pt ≡
(∫M

0
p1−η
i,t di

) 1
1−η is the usual CES price index giving us PtYt =

∫M
0
pi,tyi,tdi. For the

rest of the paper, we will set the final consumption good as the numeraire and normalize P

to 1.

3.3 Intermediate Good Firms

The economy is populated by a continuum of intermediate goods firms indexed by i ∈ [0, 1].

Firms are infinitely lived and are run by managers who discount future utility at a constant

rate β. Managers derive utility over dividend flow but also have preferences over how actual
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investment deviates from their plans. In the interest of clarity, we delay further discussion

of manager preferences until the rest of the economic environment has been described.

3.3.1 Production

Intermediate goods firms produce a differentiated good using the production function yit =

zitk
α
itl

1−α
it , where zit is idiosyncratic stochastic productivity, kit is the beginning-of-period

capital stock, lit is labor hired by the firm, and α ∈ (0, 1) is the capital share of the firm.

We assume that log zit follows an AR(1) process given by log zit = ρ log zi,t−1 + εit, where

εit ∼ N (0, σ2
ε ). In addition, capital depreciates at a geometric rate δ. Finally, each unit

of labor costs a wage w, and we will assume that lit is chosen after zit has been observed.

Under these assumptions, without loss of generality, we can directly rewrite the firm’s gross

profit function net of labor cost as

π = A (w, Y ) zΘz
it k

Θk
it , (4)

where Θz ≡
η−1
η

1−(1−α) η−1
η

, Θk ≡
α η−1

η

1−(1−α) η−1
η

, and A (w, Y ) > 0 is a function of the endogenous

aggregate wage and output.

3.3.2 Capital Budgeting

A key element of the model is that, as a model primitive, we will assume firm managers

have to make investment plans kpi,t+1 prior to making an actual investment to achieve the

next period capital stock ki,t+1. While we do not take a stand on exactly why firms have

to make investment plans, both the extant corporate finance literature and our empirical

results show that firm managers in fact do care strongly about making correct plans, and

that any need for ex-post adjustments is costly.15 We assume that given some plans and

actual investment, the firm managers face the following cost function φ(kpi,t+1, ki,t+1) for any

15In practice, capital budgeting is a core process in the allocation of capital within a firm, and any deleterious
effects of poor capital budgeting could arise from a variety of reasons (e.g. Mao 1970; Myers 1974; Schall
et al. 1978; Arnold and Hatzopoulos 2000; Ryan and Ryan 2002), which is outside the scope of this paper.
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deviation to the plan:

φ
(
kpi,t+1, ki,t+1

)
=
χ

2

(
ki,t+1

kpi,t+1

− 1

)2

kpi,t+1, (5)

where χ ≥ 0 denotes the severity of the cost function, and χ = 0 implies that plans are

irrelevant. We discuss the importance of this assumption through the lens of the information

structure and model timing below.16

3.3.3 Information and Timing

Why do firm managers not simply set kpi,t+1 = ki,t+1? In a standard firm dynamics model

such as Hopenhayn (1992), firms perfectly observe contemporaneous productivity zit, so all

planned investments equate to realized investments. However, as discussed in the empirical

section, firms generally do not perfectly observe their current productivity when they are

making plans. Instead, at the beginning of a period, they forecast the sales (and hence TFP)

for the year and make operating expenditure plans accordingly based on currently available

information from the past period’s productivity. Then, given the plans, they are able to

partially deviate as the year progresses and more information is revealed. To account for

this fact, we will need to assume a different timing assumption. To keep the model as simple

as possible but still have this intra-year feature, we split a time period into a “day” and

“night” sub-period.

Day In a given period, during the day, the manager only has information on the previous

period’s productivity zi,t−1 (which was realized at the previous period at night) but does not

observe εit. However, the firm manager is able to improve on her information by acquiring

signals with precision 1/σ. For some choice of σ, the manager will receive some signals sit

16This assumption on costly plan deviation can be microfounded by operational inefficiencies such as those
modeled by Harris and Raviv (1996) and Malenko (2019) which feature information asymmetry within a
firm and costly verification (auditing) of spending within a firm. In both models, the constrained optimal
capital budgeting rule is to allocate a planned amount for capital expenditure, then incurring costly
verification for realized spending that deviates from plans. In this framework, costs are due to information
frictions in the decentralized organization and like auditing or various meetings.
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about current productivity, given by

sit = uit + εit,

where uit ∼ N (0, ς2) and ς2 ≡
(

1
σ2 + 1

σ2
u

)−1

. The parameter σ2
u is the intrinsic upper bound

to the uncertainty regarding current productivity, while σ2 is the amount of uncertainty that

the manager chooses to reduce relative to this upper-bound.17 In order to improve on her

information about the current period productivity, the firm manager is able to acquire better

signals at a cost. Specifically, for some choice of σ, the manager bears a utility cost

C (σ) = ξ ×
(

1

V
−
(

1

σ2
u

+
1

σ2
ε

))
,

where V ≡
(

1
ς2

+ 1
σ2
ε

)−1

. The cost goes to 0 when the signal is infinitely noisy (i.e. σ →∞),

and goes to infinity when the signal is perfect (i.e. σ → 0). It is worth noting here that the

marginal cost of improving signal precision is some constant ξ and homogenous across firms.

After observing the signal, the manager is able to update her belief over the posterior

distribution of zi,t using Bayesian updating. Specifically, her beliefs follows

log z̃it ∼ N (log ẑit,V) ,

where log ẑit ≡ ρ log zi,t−1 + σ2
ε

ς2+σ2
ε
sit is the expected current period productivity and V

is the posterior variance of productivity (equivalently, V−1 gives us the precision of the

signal) from above. In contrast, a standard timing where σ = 0 for all firms results in a

posterior distribution of log zit that is degenerate (all firms know exactly what their current

productivity is). The manager then makes an investment plan, taking into account the

adjustment cost function φ(kpi,t+1, ki,t+1) in equation 5.

17Notice that with our specification, ς ∈ (0, σu), where ς → 0 when σ → 0, and ς → σu when σ → ∞.
Moreover, uit becomes degenerate at 0 when ς → 0; in other words, this reduces to the standard timing
where firms perfectly observe current productivity. Finally, note that σu refers to the amount of subjective
uncertainty that firms face over z, and is not the volatility of z.
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Night During the night, all uncertainty about current productivity is resolved, and the

manager perfectly observes zit. In addition, the manager also observes a signal about future

innovations to productivity εi,t+1, given by

s̃i,t+1 = ũi,t+1 + εi,t+1,

where ũi,t+1 ∼ N (0, σ2
u). In other words, prior to picking some level of signal clarity, the

manager already has some knowledge about future productivity “for free”. Given this infor-

mation, the manager’s posterior belief about future productivity zi,t+1 is given by

log z̃i,t+1 ∼ N

(
ρ log zi,t +

σ2
ε

σ2
u + σ2

ε

s̃i,t+1,

(
1

σ2
u

+
1

σ2
ε

)−1
)
.

At this point, the manager uses this refined information to decide how much capital to

invest into the next period, subject to the aforementioned adjustment cost φ(kpi,t+1, ki,t+1) in

equation 5. At this point, we see that σu arises as a natural upper-bound for the amount of

uncertainty in the “day”.18

3.4 Bellman Equations

We can now define the problem recursively. Let J(k, kp, z) denote the value function of the

manager after all shocks have been realized (i.e., at night), W (k, s, z−1) denote the value

function of the manager after a signal has been observed, and finally V (k, z̃, z−1) denote the

value function of the manager at the beginning of the period (i.e., day).

The manager’s Bellman equation at night can be written as

J (k, kp, z) = max
k′

π + (1− δ) k − k′ − χ

2

(
k′

kp
− 1

)2

kp + βE
[
V
(
k′, z̃′, z

)
|z, s̃′

]
s.t. log z̃′ ∼ N

(
ρ log z +

σ2
ε

σ2
u + σ2

ε

s̃′,

(
1

σ2
u

+
1

σ2
ε

)−1
)
,

18Notice that in terms of the evolution of the manager’s information set, when σ = 0 for all (z−1, k), our
model collapses to that in David and Venkateswaran (2019). Moreover, σu corresponds to their exogenously
imposed uncertainty parameter.
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when next period capital k′ is chosen by the manager to maximize her expected utility,

taking into account that deviations from investment plans are costly. Therefore, the Bellman

equation after the signal has been observed is given by

W (k, s, z−1, σ) = max
kp

E [J (k, kp, z) |s, z−1, σ]

s.t. log z ∼ N
(
ρ log z−1 +

σ2
ε

ς2 + σ2
ε

s,V
)
,

when the manager chooses investment plan kp, taking into account the potential future need

to deviate from the plan. The manager has to set kp accounting for the full distribution of

possible investment choices, since she does not know at this point what current productivity

is. Finally, in anticipation of the post-signal and night period, the Bellman equation in the

day is given by

V (k, z̃, z−1) = max
σ
−ξ
(

1

V
−
(

1

σ2
u

+
1

σ2
ε

))
+ E [W (k, s, z−1, σ)]

s.t. s = u+ ε

u ∼ N
(
0, ς2

)
,

noting that ς2 ≡
(

1
σ2 + 1

σ2
u

)−1

. Here, the manager chooses the signal quality of today’s

productivity σ, where a more precise signal is costlier to acquire but adds value at night,

since this reduces the need for ex-post deviations from investment plans. The manager

knows the productivity from the previous period (z−1), since we assume that all uncertainty

regarding productivity is resolved at night.

3.5 Equilibrium Definition

A stationary competitive equilibrium is defined by a measure of firms Λ, a set of policy

functions {σ (z−1, k;w, Y ) , kp (z−1, k, s;w, Y ) , k′ (z−1, k, s, z;w, Y )}, a set of value functions

{V,W, J}, intermediate good prices {pi,t}i∈Λ, wage w, and a Markov transition function Γ

induced by the policy function k′ and exogenous productivity z′ such that (1) the distribution

of firms is invariant, namely Λ = Γ (Λ), (2) the labor market clears, and (3) the intermediate
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good market clears.

4 Forecast Errors and Firm Characteristics
Before moving on to our main quantitative results in Section 5, we focus our discussion

here on how our model relates back to our initial stylized facts. We then show how our

model derives sharp predictions that connect observable firm characteristics to the size of

their forecast errors. We will rely on local perturbation methods to solve the model, which

generates sharp analytical predictions.19,20 In the final part of this section, we directly test

our predictions. Importantly, we are able to do this test because our panel data includes

quantitative information on expected and realized sales, planned and actual investment, and

various key financial statement variables.

4.1 Matching Stylized Facts

To begin, recall the observation that firm investment plans are partially flexible. This effect

is taken as given in our model as a primitive in the form of the adjustment cost function

for investment plans. However, it is less clear how the adjustment cost parameter χ maps

investment plans into actual investment. To do so, we formally state our first result below.

Claim 1. The optimal investment plan kp depends on both expected productivity ẑ and the

posterior distribution of productivity V.

We derive an explicit solution for kp in Appendix B, showing that kp is indeed a function of

both ẑ and V. We list this claim here mainly to show that investment plans are not simply

a conduit for expected TFP, but rather also reflect the amount of uncertainty under which

these plans are made. In fact, as we show later, firms with the same expected TFP can have

very different plans depending on their choice of information acquisition. Therefore, both

19We also assume that σu =∞. Our proposition does not hinge on this assumption in any way, but is done
for the sake of algebraic clarity.

20We log-linearize the capital choice function k′ around the non-stochastic steady-state. However, the in-
vestment plan and signal acquisition policy functions remain generally non-linear functions of the natural
state variables. We have also numerically solved our model using global methods to verify the accuracy
of our approximation. This is not surprising given that under in a frictionless environment, k′ is exactly
log-linear in z.
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investment plans and expected TFP are jointly significant determinants of actual investment,

as we documented in Section 2.

Claim 2. The optimal next period capital choice k′ is a function of realized productivity z

and planned investment kp.

This claim results directly from the Euler equation (see Appendix B). A key implication here

is that investment plans, in the form of kp, becomes a relevant state variable for predicting

actual investment. Unfortunately, k′ is a non-linear function of z and kp, and defined im-

plicitly by the Euler equation. To make headway in to deriving a sharper characterization,

we proceed to the next claim.

Claim 3. Under a log-linear approximation around the non-stochastic steady-state, k′ is

given by the following equation,

log k′ = (1− φk) log k̄ + φz log z + φk log kP , (6)

where φz ≡ Θzρ(r+δ)
(1+r)χ+(r+δ)(1−Θk)

and φk ≡ (1+r)χ
(1+r)χ+(r+δ)(1−Θk)

, and k̄ =
[

ΘkA(w,Y )
r+δ

] 1
1−Θk is the

non-stochastic steady-state capital holdings of the firm.

Appendix B derives the preceding claim.21 Here, we see that the weight on current productiv-

ity φz decreases in the adjustment cost parameter χ, whereas the weight on investment plans

φk increases in χ. Essentially, this result shows that the more irreversible investment plans

are, the more powerful investment plans will be as a predictor of actual firm investment, and

therefore the more correlated these two variables will be. In contrast, if χ = 0 (reducing the

model to the standard timing), investment plans would have no predictive power for actual

investment once (expected) productivity is properly controlled for. Moreover, it is clear to

see that the dispersion of investment errors is decreasing in χ, holding all else constant, since

investment is more flexible.

Therefore, our model set up rationalizes the three stylized facts presented in Section 2.

21While we express the policy function in terms of next period capital stock, note that since investment is
simply i = k′ − (1− δ) k, all our claims here will carry through.
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This outcome is unsurprising as the facts informed our model setup. In the next section,

we will derive additional implications of the relation between the dispersion of investment

errors, TFP errors, and the costliness of deviating from plans to quantitatively inform how

flexible investment is.

4.2 Other Key Relationships

We present two additional testable predictions as a means to validate our model. We first

present these model predictions, discuss their intuition, then test the predictions empirically.

Appendix B contains all the relevant formal proofs.

Proposition 1. Under a log-linear approximation for next period capital choice k′,

1. the ex-ante (day) expected value of the firm, gross of signal acquisition cost, is strictly

decreasing in the posterior uncertainty V.

2. the value of increasing signal precision (i.e., decreasing V) is increasing in initial firm

productivity z−1.

This result leads to the following two corollaries.

Corollary 1. The optimal signal precision is increasing in initial firm productivity.

Heuristically, by building directly from Proposition 1 and our assumption on the cost

of signal acquisition being monotone and increasing in 1
V , we see that the optimal signal

precision must be increasing in z−1. Building on our proposition and corollary, we make two

predictions unique to our model:

Prediction 1. The dispersion of forecast errors for firm TFP is decreasing in initial firm

productivity.

Prediction 2. The dispersion of forecast errors for investment rates is increasing in the

absolute size of realized TFP shocks.

It is useful to take stock of the economic mechanism behind our proposition and the
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resulting predictions. Why does the value of the firm decrease in the posterior uncertainty?22

To understand this, recall that the value of the firm is maximized when expected internal

and external rates of return to capital are equal, and that any “wedge” between them reduces

firm value. With this in mind, we can rewrite the Euler equation in our model as

(Me − (r + δ))2 =

(
(1 + r)χ

k′

kp
− (1 + r)χ︸ ︷︷ ︸

)2

≡τ

, (7)

whereMe ≡ exp
(

1
2
Θ2
zσ

2
ε

)
ΘkA (w) zΘzρk′Θk−1 is the expected next-period marginal revenue

product of capital, and τ is interpreted as an investment wedge. By squaring both sides, we

have the interpretation of a loss function: larger absolute values of the wedge is associated

with larger reduction in firm value. We can then express the ex-ante expected loss in the

day period as

E
[
τ 2|σ

]
= ((1 + r)χ)2

(
2− 2 exp

(
−1

2
φ2
zV
))

, (8)

where we see that the expected loss increases in the posterior uncertainty. Intuitively, larger

uncertainty means the probability of a manager needing to make large adjustments is higher,

since she is more likely to make a mistake in her plans. Since adjustment is costly (as captured

by χ), this means that she is not able to fully correct her mistake. The combined effect leads

to a decrease in the expected value of the firm.

The preceding discussion is simply a heuristic and does not explain why the value of

increasing signal precision is increasing in z−1. In Appendix B, we show that the marginal

benefit of increasing signal precision (increasing V−1) can be explicitly expressed in the

following form

22This prediction contrasts with the usual Abel-Hartmann-Ooi effect, which predicts that increases in real
uncertainty are often associated with an increase in the value of the firm.
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k̄ z
ρφz

1−φk
−1︸ ︷︷ ︸

scaling effect

[ χ

(
V2∂FA (V)

∂V

)
︸ ︷︷ ︸

expected ex-post adjustment needed

+
1

1 + r
exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)(
−V2∂Fπ (V)

∂V

)
︸ ︷︷ ︸

expected continuation profits

],

which decomposes the marginal effect of being “more correct” on the expected magnitude

of ex-post adjustment that has to be done (∂F
A(V)
∂V ), and the expected loss of profit (gross

of adjustment cost) due to mistakes being made (∂F
π(V)
∂V ).23 As we show in the Appendix,

∂FA(V)
∂V > 0 and ∂Fπ(V)

∂V < 0. This effect relates to the earlier discussion on the Euler equation

wedge.

[Figure I Here]

Notice that the term z−1 does not enter into either FA or Fπ. In other words, z−1 has a

pure scaling effect that amplifies the marginal benefit of being correct. As an example, we plot

in Figure I the marginal benefit of increasing signal precision for two levels of productivity

against the marginal cost. The figure shows that z−1 scales up the marginal benefit of

improving signal precision. As a result, higher productivity firms prefer to acquire better

signals. In this sense, our model captures the economic intuition that high-productivity firms

have more to gain from being “correct”.24

A final takeaway is that any heterogeneity that arises from information acquisition is

due only to returns in learning being higher for higher productivity firms, since we assumed

23FA (V) and Fπ (V) are functions of model parameters and V, and is defined in Appendix B in the interest
of space. The marginal benefit of improving signal precision V−1 due to reduced ex-post adjustment is in

fact given by −χ∂F
A(V)

∂V−1 , while that from improved capital allocation is 1
1+r exp

(
1
2

(
φz

1−φk

)2
σ2
ε

)(
∂Fπ(V)
∂V−1

)
,

which evaluates to the terms above when we use the fact that dV−1 = −V−2dV.
24To put our model mechanism in the context of a real life example, consider the impact of capital budgeting
mistakes on the profitability of a large grocery store chain as compared to a “mom-and-pop” corner store.
Our model predicts that the same relative mistake (i.e., same percentage investment plan deviation) will
naturally have a larger level impact on the bottom line of the large chain as compared to corner store.
This difference then leads the large chain to preemptively make better investment plans (for instance, by
engaging external consultants) relative to the corner store.
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homogenous and constant marginal cost of improving signal precision.25 In contrast, some

recent research like Tanaka et al. (2020) which also finds in the data that higher firm produc-

tivity correlates with lower forecast error dispersion, postulate that this arises from better

managerial ability. This hypothesis implies that higher productivity firms face lower marginal

cost of learning. Our model clarifies that such a finding does not necessarily require decreas-

ing marginal costs. That said, a decreasing marginal cost hypothesis is complementary to

our analysis and suggests that future work could be done in quantifying the importance of

these two channels.

4.3 Empirical Evidence

We now test the two predictions in our data. In the following analyses, the outcome variables

are dispersions of either TFP or investment forecast errors, and regressors are either lagged

or concurrent TFP forecast error dispersions, corresponding to Panels A and B in Table VI

which test predictions (1) and (2) respectively.

Analyses relating forecast error dispersions use the log of one plus the absolute level of

forecast error. There are three advantages for making this choice. First, this transformation

accounts for the fact that the absolute errors follow a distribution with long tails and therefore

make our statistical inferences more reliable. Second, it preserves all observations with

a forecast error including those with forecast error equal to zero. Third, it permits an

interpretation similar to an elasticity of dispersion interpretation of our results.26 We present

analyses using two levels of variation: (1) unconditional pooled regressions, and (2) cross-

sectional regressions comparing firms to others in the same industry and year. We show both

levels of variation as the intuition of our model goes through at all levels of analyses, and

indeed we broadly find results consistent across all sources of variation that we consider.

25Notably, we also do not “bake in” this result on the benefit side of the equation. As briefly discussed earlier,
the marginal cost of relative investment plan deviation is homogenous across firms.

26All of the empirical results are robust to a battery of alternative transformations, including the inverse
hyperbolic sine transformation, log absolute errors where we drop firm-year observations with numerically
zero forecast error, as well as simply the absolute errors themselves with no transformation for the whole
sample.
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Prediction 1. Dispersion of forecast errors for firm productivity (“TFP”) is decreasing in

initial firm productivity. Panel A Table VI shows the empirical relation between TFP shocks

and previous period’s realized TFP. We find that higher realized TFP in the previous fiscal

year is correlated with smaller TFP shocks at both levels of variations. The results in all

regressions are statistically significant at the 1% level.

Prediction 2. Dispersion of forecast errors for investment rates is increasing in the absolute

size of realized TFP shocks. Panel C in Table VI shows that the dispersion of investment

deviations increase in TFP error dispersions. The results in all regressions are statistically

significant at the 1% level.

Altogether, these results facts are consistent with the predictions in Section 4.2, which

are unique to our model with endogenous learning and partial flexibility of investment plans.

In untabulated analyses, we find these results also obtain for Prediction 1 when replacing

TFP shocks with sales shocks as defined in Table III as well as when considering lagged sales

relative to capital rather than TFP as the regressor; and, for Prediction 2 when replacing

TFP shocks with sales or value-added shocks as defined in Table III. Therefore, we argue

that our economic mechanism is empirically verified and robust. We build on the empirical

findings to deduce additional quantitative implications in the section below.

[Table VI Here]

5 Quantitative Analysis
In this section, we discuss quantitative and theoretical implications of our model. We first

calibrate our model to identifying moments in the data and compute the dollar costs of these

two frictions. Subsequently, we compare and contrast the different strategies different types

of firms use to mitigate uncertainty when formulating capital budgets. Finally, we discuss

how our results relate to firm uncertainty as a source of dynamic misallocation. Along this

vein, we relate our model findings to broader results in the literature on capital misallocation.
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5.1 Calibration

We calibrate our model in general equilibrium. We set β = 0.98, consistent with an annual

real interest rate of 2%, δ = 0.06, and assume N = 1 and P = 1 as a normalization.

Following standard assumptions, we set η = 4 and σu = ∞ (that is, firms do not have any

additional prior information about future productivity). Finally, we set (σε, ρ, α) equal to

(0.358, 0.903, 0.280) respectively, based on estimates directly from the data.27

This leaves two key parameters: the cost of information acquisition ξ and the cost of

deviation of investment plans χ. We jointly calibrate ξ and χ to two identifying moments:

(i) dispersion of TFP shocks relative to the volatility of TFP and (ii) the dispersion of

investment deviations.28 Finally, we solve for the endogenous wages and aggregate output

such that these values are consistent with our market clearing conditions (i.e., aggregate

labor demand and output is consistent with N = 1 and P = 1), as well as the calibrated

values for ξ and χ.

We note one important concern in calibrating our model pertaining to the empirical

measures of TFP and investment. In Section 2, we discussed that our empirical measures

of TFP shocks and investment plan deviations are mismeasured due to the exact variable

definitions in the survey. To address the issue of constructing expected TFP from expected

sales, we recreate this exact same bias in our calibration step. When computing TFP shocks

in our model, we compute expected TFP as we would in the data. For the truncation bias

in our observed gross investment expenditures, for any firms that do negative investment (or

planned on doing negative investment), we replace I and Ip with zeros when calibrating.

From our simulated method of moments calibration, we find that (χ, ξ) = (0.212, 8.76×10−5)

27For σε and ρ, we fit an AR(1) regression to our measure of TFP with industry and year fixed effects; for
α, having imposed η = 4, we compute the median labor share and back out α via the firm’s first order
conditions (Section 2 and Appendix A.3 for more details).

28We define investment deviations as k′

kp . Since we observe capital stock and realized (planned) investment,
we simply compute realized (planned) next-period capital directly using a perpetual inventory method
using the appropriate parameter values.
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best fits our data.29 Panel A of Table V shows our calibration results, which shows a perfect

model fit. We provide further validation of our model by running the same regressions as

our earlier specifications for Predictions 1 and 2 in Section 4, and comparing the model

predicted regression results against the data, again using the same mismeasured variables

as in the data. We report our results in Panel B of Table V. Our preferred comparison uses

a regression specification that includes industry-by-year fixed effects, since this matches our

model structure best. Given the simplicity of our model, we believe the model fit is close.

[Table V Here]

Figure A.1 shows the full distribution of firm uncertainty in terms of the posterior un-

certainty V as a fraction of prior uncertainty σ2
ε . We find that the median (mean) firm

has a posterior variance that is approximately 27% (38%) of its prior. There is also large

dispersion, with an interquartile range of 41%. In contrast, if we had simply assumed a

homogenous uncertainty, we would have imposed that all firms face a posterior uncertainty

that is 39% that of the prior.30 Translating our model parameter values into dollars, we

find that the aggregate cost of signal acquisition and investment plan adjustment cost is

approximately US$5.1 billion and US$1.4 billion respectively, based on GDP data from 2019

and exchange rates as of November 10, 2020.

5.2 Trading Off Better Ex-Ante Information or More Ex-Post Ad-

justments

In our model, firms can get around their imperfect information either by investing in higher-

precision signals ex-ante (and therefore make precise plans) or by adjusting their actual

investments ex-post. In both cases, the resulting ex-post outcome would be identical in

terms of investment decisions. However, the costs of each strategy differ across firms.

29To compute model moments in the steady-state, we simulate a panel of 10,000 firms for 50 years, and drop
the first 30 years as a burn-in.

30This can be computed directly from equation 11 by taking the variance of ∆z and inverting the equation
to back out the variance of ε̃. With homogenous uncertainty, the bias term drops out from this calculation.
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[Figure III Here]

To provide greater insight into which strategies firms prefer, Figure III shows the distri-

bution of costs paid out in signal acquisition and investment plan adjustments (henceforth

“σ-cost” and “kp-cost” respectively). The distribution of σ-cost has a much thicker and longer

tail than that of kp-cost. In fact, reflecting the endogenous distributions, the average σ-cost

paid is almost five-times that of kp-cost. This result reflects a strong preference by firms to

be correct ex-ante instead of fixing their errors ex-post.

Given our rich heterogeneity in firm characteristics, we also explore which firms are more

likely to incur a σ-cost or kp-cost. In Figures IIa and IIb, we plot the joint distribution

of revenue and σ-cost or kp-cost in the form of a scatterplot. Figure IIa shows revenue

is strongly positively correlated with σ-cost, while Figure IIb shows revenue is negatively

correlated with kp-cost. In other words, high revenue firms endogenously choose better

information ex-ante and are thus likely to depend on ex-post corrections to their investment

plans. This reflects our earlier intuition that expected investment plan adjustment cost is

increasing in productivity for a given level of uncertainty. Therefore, in equilibrium, high

productivity firms (who are high revenue on average) want to avoid paying this cost in

equilibrium, and do so by preemptively acquiring better signals. Consequently, the average

cost paid out in plan adjustments becomes negatively correlated with revenue.

[Figure II Here]

Overall, based on the distribution of costs incurred, firms prefer to make better plans

ex-ante rather than adjust ex-post. While our simple set up does not exactly identify what

these costs are in a practical sense, we believe our model provides a reference point as to what

form policy could take. This result suggests better improvement of information provision

might be more desirable to firms even if they can adjust corporate policies ex-post. For

instance, one policy intervention may be in the form of improving management practices a

la Bloom et al. (2013).
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5.3 Imperfect Information and Capital Misallocation

Firm uncertainty has often been proposed as a source of capital misallocation. In this

section, we explore the role of these two levers of corporate policy (i.e., endogenous learning

and investment plan flexibility) in mitigating misallocation.

We consider a counterfactual where uncertainty is a model primitive and homogenous

across firms, and that investment plans are completely immutable. This amounts to imposing

a fixed V for every firm, and setting χ =∞. We consider this as our primary counterfactual

because this framework is conceptually most similar to common assumptions used in the

literature.31 We proxy for capital misallocation using two measures: aggregate TFP and

aggregate wages.

Our quantitative exercise begins by first computing the two aforementioned measures for

our baseline calibration in our model, and comparing that relative to a frictionless economy

(i.e., χ = 0 and ζ = 0). This comparison provides a sense of how much misallocation

there is in our baseline calibration. We then re-parametrize our model by imposing V as

a fixed fraction of σ2
ε , and setting χ = ∞. We set V to replicate our targeted moment

of σẑ−z
σε

. This alternative parametrization provides a counterfactual scenario to study how

much misallocation is present when we simply aim to replicate the overall level of uncertainty,

ignoring the heterogenous responses of firms to mitigate uncertainty.

Columns 1 and 2 of Panel A in Table VII show that capital misallocation from informa-

tion imperfection is overstated by around seven to ten times in the counterfactual, depending

on the measure of misallocation. Notably, in our baseline model, misallocation due to un-

certainty appears economically insignificant, generating TFP losses of only 0.26%, compared

to 2.59% in the counterfactual.

31In our model, firm managers made investment plans under uncertainty about contemporaneous and future
productivity, and while they make investment choices under uncertainty only about future productivity.
This is different from the standard literature, where managers either make investment choices (e.g. David
and Venkateswaran (2019)) or plans (e.g. Tanaka et al. (2020)) under uncertainty over “future” productivity.
Our timing assumption arises due to the necessity to match how capital budgets are actually formed in
practice. Given these differences, we defer a brief discussion, connecting our mechanisms to the literature,
to the end of this subsection.

32



Why do the alternative assumptions lead to such a large overstatement in misallocation

driven by imperfect information? This result relates to Proposition 1. On the one hand, firms

with higher initial productivity face a marginally larger distortion from the same uncertainty

compared to firms with lower productivity. When we impose a common level of uncertainty,

on the one hand, high-productivity firms which would have chosen to pay to lower V are

now forced to face higher uncertainty, therefore generating increased misallocation among

this group of firms. On the other hand, while misallocation is lower for low-productivity

firms (since they now face lower uncertainty relative to our model), the effect of improving

information imperfection for these firms is marginally smaller. In net, misallocation would be

overstated. This effect is magnified by the assumption that investment plans are immutable,

as high-productivity firms cannot overcome their high amount of initial uncertainty via ex-

post adjustments.

We further quantify the separate contributions of allowing for learning and allowing

for investment flexibility in reducing capital misallocation. Specifically, we consider two

additional counterfactuals, one where we again set a fixed V for all firms, but χ is set to our

calibrated value (henceforth referred to as “Fixed V”); and the other where V is endogenous

but χ = ∞ (henceforth referred to as “Fixed Plans”). In other words, we quantify the

extent to which misallocation is ameliorated if we only allowed for investment flexibility as

we estimated using our data; and alternatively, if we allowed for learning but no investment

flexibility.

Columns 3 and 4 of Panel A in Table VII reports a sharp result: the bulk of the reduction

in misallocation arises from firms trying to make correct plans ex-post. For instance, the

difference in the relative change in wages for our baseline calibration and this counterfactual

is only 0.12 percentage points. In other words, simply being given the option to learn –

even if costly – sharply reduces misallocation. In contrast, having the flexibility to adjust

investment only reduces about a third of the excess misallocation. For perspective, the

difference in the relative change in wages for our baseline calibration and this counterfactual
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is about 2.14 percentage points.

[Table VII Here]

We now analyze our results in the context of costs incurred to achieve these reductions

in misallocation. Panel B of Table VII reports the total σ-cost and kp-cost incurred in our

respective counterfactual economies relative to our baseline. For the economies with fixed V,

we assume that firms exogenously pay for information using our imposed value of V. Three

results emerge.

First, comparing Column 2 to 1, we see that the total σ-cost incurred, if we assumed

homogenous learning, is only 30% that of the baseline, even though both models generate

the same average uncertainty. This result speaks to the importance of accounting for hetero-

geneity in learning. Specifically, this implies that while some firms do choose to buy lower

quality information, their cost-reduction choices are overwhelmed by the group of firms who

wish to purchase better information, and are willing to pay a high price for it. This is most

evident in Figure A.1 of Appendix A.4, where we plot the endogenous distribution of signal

precisions, and contrast that with the no learning counterfactual.

Second, when comparing Column 3 to 1, we see that investment plans are in fact highly

inflexible. We infer this from the fact that, even though firms are able to reduce losses

by adjusting their investment, the total cost incurred is only slightly higher than in the

baseline. This implies that the marginal benefit of ex-post adjustment is small relative to

the cost. That said, despite few firms taking advantage of plan flexibility, the gains are still

quite substantial. This is because the firms who actually utilize this margin of adjustment

are the ones that matter, specifically, high-productivity firms. In Figure IVb, we plot the

same scatterplot as in Figure IIb for this counterfactual. We see that the correlation of

revenue and kp-cost essentially falls to 0, whereas it was strongly negatively correlated in our

baseline (elasticity of about −0.36). Critically, if we zoom in to the upper-right quadrant,

we see that the bulk of this reduction is driven by high-revenue firms incurring larger costs

of ex-post adjustment. This happens because high-productivity firms have the most to lose
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when they are wrong; and since they cannot compensate by acquiring better information in

our counterfactual, they compensate for this by adjusting their actual investment ex-post.

Because only a small fraction of firms increase their expenses, the total increase in cost is

small. However, as these are the firms that matter most for the aggregate economy, aggregate

factor allocation improves substantially.

[Figure IV Here]

Third, and related to our second point, learning is comparatively cheap. We infer this

from the fact that the increase in σ-cost is large relative to the baseline (about 16% increase).

Unlike in the case with fixed V, this increase is driven by across-the-board increase in spend-

ing on information acquisition. We can see this in Figure IVa, where the joint distribution

σ-cost and revenue is shifted upwards relative to the baseline (that is, firms with the same

revenue now spend a larger amount on information acquisition). As this spending increase is

relatively across-the-board, the overall correlation between cost and revenue does not change

much (an elasticity of 0.60 in the counterfactual, compared to 0.62 in the baseline).

5.4 Relation to literature on capital misallocation

As our model does not nest the standard framework, and thus our quantitative results cannot

be directly compared prior estimates directly. That said, our findings are still qualitatively

important. As David and Venkateswaran (2019) note, misallocation arising due to uncer-

tainty is relatively low because some fraction of uncertainty is usually resolved ahead of

time. Our paper provides further nuance to this argument in two ways. First, we show

that firms do not passively face uncertainty. Critically, the heterogenous response of firms

to uncertainty can further mitigate economic losses, even holding fix the overall aggregate

level of economic uncertainty. Second, the fact that firm managers have the ability to adjust

capital spending in the face of real time shocks further dampens the effect of uncertainty

on capital misallocation. In this context, a direct translation of our framework into a more

conventional model would further reduce uncertainty as a source of capital misallocation.
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That said, we note an important caveat. In our model, all resources spent in informa-

tion acquisition (and investment plan adjustment) are productive, and does not compete for

productive labor inputs. This mirrors the assumption of David and Venkateswaran (2019),

where a fraction of uncertainty is costlessly resolved ahead of time. Future work should

explore whether alternative market structures for information might lead to different con-

clusions regarding the impact of uncertainty on capital misallocation.

6 Aggregate Risk
We now extend our baseline model to include aggregate risk. Our goal is to show that our

model of endogenous learning in the face of costly investment plan adjustment naturally

predicts two well documented stylized facts, that (1) (subjective) uncertainty is counter-

cyclical and (2) misallocation is counter-cyclical.

6.1 Model

As our model with aggregate risk largely replicates the structure of our stationary model,

we will only discuss the key modifications to our model in the interest of brevity and focus

on key changes to our model solution. We modify the physical production function to allow

for aggregate shocks to productivity, namely

yit = Atzitk
α
itl

1−α
it ,

where At is an aggregate shock to productivity. As in the literature, we will assume that At

follows an AR(1) process in logs, given by

logAt = ρA logAt−1 + σε,AεA,

and that aggregate productivity is orthogonal to the process for idiosyncratic productivity.

We extend our assumptions on uncertainty over idiosyncratic productivity to uncertainty

over aggregate productivity. In other words, we assume At is also not observable to the
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firm manager in the day, but she can observe a noisy signal sA of At prior to making her

investment plans. Moreover, we assume that she can improve on her signal quality by paying

a cost given by

CA (σA) = ξA

(
1

VA

− 1

σ2
ε,A

)
,

where V−1
A =

(
1
σ2
A

+ 1
σ2
ε.A

)−1

is the posterior variance of the aggregate shock given the choice

of signal precision 1
σA

(over aggregate conditions). Finally, we derive our results here under

partial-equilibrium. This allows us to focus the discussion on directly mapping our micro-

level mechanisms, as discussed in the earlier sections, to the aggregate results here. Except

for these modifications, the rest of the model remains the same.

Forms of uncertainty in our model At this point, it is useful to take stock of the

four forms of uncertainty in our model with aggregate shocks. First, there is idiosyncratic

uncertainty over idiosyncratic fundamentals (i.e., over zit). Second, there is idiosyncratic

uncertainty over aggregate fundamentals (i.e., over At). These are given by σ and σA re-

spectively, and are heterogeneous across firms. Third, there is aggregate uncertainty over

idiosyncratic fundamentals. Fourth, there is aggregate uncertainty over aggregate funda-

mentals. We define the latter two forms of aggregate uncertainty as σ̄ ≡
∫
σdΛ = σ̄ and

σ̄A ≡
∫
σAdΛ = σ̄A respectively; that is, aggregate uncertainty is an unweighted average of

all the individual choices across the distribution Λ.

6.2 Predictions

We now discuss two key predictions of our extended model. To begin, we first present our

second proposition.

Proposition 2. Under a log-linear approximation for next period capital choice k′,

1. the ex-ante (day) expected value of the firm, gross of all signal acquisition costs, is

strictly decreasing in the posterior uncertainty VA.
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2. the value of increasing signal precision over idiosyncratic productivity (i.e. decreasing

V) is increasing in initial aggregate productivity A−1.

3. the value of increasing signal precision over aggregate productivity (i.e. decreasing VA)

is increasing in initial aggregate productivity A−1.

Appendix B.2 presents the full proof. Proposition 2 is in fact simply the “aggregate risk”

counterpart to Proposition 1, where we studied a stationary model. With Propositions 1

and 2 in hand, we now state our next two corollaries.

Corollary 2. The optimal signal precision over idiosyncratic and aggregate productivity is

increasing in initial aggregate productivity.

From Propositions 1 and 2, and our assumptions on the cost of signal acquisition, we

see that the optimal signal precision must be increasing in A−1. Appendix B.2.1 shows the

formal proof.

Corollary 3. Aggregate subjective uncertainty, both over idiosyncratic and aggregate TFP,

is persistent and counter-cyclical.

This corollary follows naturally from the one before. Corollary 2 implies ∂σ
∂A−1

< 0 and

∂σA
∂A−1

< 0 for all firms, meaning that all firms respond to positive (negative) aggregate shocks

by investing in better (poorer) signals. Consequently, aggregate uncertainty is counter-

cyclical. Moreover, since A−1 is itself an autocorrelated process, σ̄ and σ̄A are also trivially

autocorrelated, that is, subjective uncertainty is persistent. Appendix B.2.3 shows the formal

proof. With our extended proposition and corollaries in hand, we now provide two more sets

of predictions:

Prediction 3. The dispersion of firm forecast errors over TFP, at both the individual and

aggregate levels, is persistent and counter-cyclical.

Prediction 4. Misallocation, as measured by the dispersion of log ARPK, is counter-

cyclical.
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Prediction 3 arises trivially from Corollary 3. Prediction 4 also arises from Corollary 3:

Since subjective uncertainty is counter-cyclical, misallocation will also be counter-cyclical.

Although this is intuitive, this claim requires a formal proof which we show in Appendix

B.2.3. Our main point here is that misallocation arises because firms endogenously choose to

acquire bad information in bad times, rather than because uncertainty itself is fundamentally

counter-cyclical.

We verify our predictions, which we report in Appendix C. Our empirical results mirror

the multitude of recent research on firm uncertainty. That said, we emphasize that our

findings do not simply verify prior results. Instead, we contribute to the literature by arguing

for a relatively simple and intuitive economic mechanism relating optimal capital budget

planning to aggregate uncertainty. Since our model is fully informed by direct evidence,

we view this as an important first step towards understanding why uncertainty is counter-

cyclical and persistent.

7 Conclusion
In this paper, we show that investment planning and deviations are not irrelevant. Using a

unique panel of a nationally representative sample of both public and private Japanese firms,

we find that because of timing differences between when an investment plan is made and

when capital expenses are actually decided and incurred, firm managers generally have the

ability to reverse some of their plans. We study the implications of partially flexible plans

with a parsimonious model of firm dynamics featuring endogenous information acquisition

and partially flexible investment plans. Importantly, our unique data can be used to directly

verify the model’s predictions. Our calibrated model shows although investment plans are

flexible, firms prefer to make better plans ex-ante as opposed to adjusting investment on

the fly in response to new information. This effect is especially salient for high-productivity

firms. We also show how our model relates to uncertainty as a source of capital misallocation.
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8 Tables and Figures

Table I: Summary Statistics

The table below shows the summary statistics of our firm-year panel. The total number of firms in our sample is 5,989, of which
2,273 are publicly listed and the rest are private companies. To reduce the influence of outliers on these summary statistics, we
winsorize variables at the 1% level. Capital stock is the Net Plants, Property & Equipment. Profits are reported ordinary profits
according to Japanese Generally-Accepted Accounting Principles (GAAP). The Wage Bill is the sum of total salary cost for
employees and company officers as well as the bonus for employees and company officers. Investment plans are represented as
a percentage of end-of-previous-fiscal-year capital stock. Employment is the number of employees is represented as the number
of full-time equivalent workers and may include fractions. When calculating residualized AR(1) and TFP shocks, we use the
MoF industry-level Cobb-Douglas estimated labor cost shares with additional details Appendix Section A.3. All numbers are
rounded to three significant digits or three decimal points, whichever results in fewer decimal points.

Panel A: Firm Fundamentals

Percentile

Variable Mean SD Skew 25th 50th 75th

Total Assets (mn) 88,100 205,000 4.81 11,060 26,700 67,300

Capital Stock (mn) 50,000 131,000 5.14 4,590 12,300 33,100

Employment (count, FTE) 1,180 2,100 3.63 162 466 1,180

COGS (mn) 57,100 125,000 4.62 4,950 17,400 49,800

Wage Bill (mn) 1,670 3,120 4.11 229 649 1,650

Sales (mn) 72,700 152,000 4.47 7,810 23,800 66,300

Expected Sales (mn) 75,300 157,000 4.43 8,100 24,700 68,800

Profits (mn) 3,760 9,050 4.56 207 920 3,070

Expected Profits (mn) 3,700 8,650 4.57 247 930 3,000

Total Capital Investment (mn) 3,060 8,500 5.23 121 545 1,990

Total Capital Investment Plan (mn) 3,250 9,160 5.20 100 554 2,030

Panel B: Constructed Variables

Investment (% of Capital) 7.63 9.55 2.67 1.63 4.58 9.76

Capital Investment Plan (% of Capital) 7.73 9.78 2.67 1.40 4.69 10.1

Investment Plan Deviations (% of Capital) -0.140 5.55 0.63 -1.64 -0.0610 0.947

log TFP Shock -0.127 0.480 -1.06 -0.275 -0.043 0.082
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Table II: Investment Plans and Expected Firm Performance.

The table below shows the relation between realized investment rates and expected performance measures as well as investment
plans. The subscript t denotes a fiscal year and i denotes a firm. VA stands for value added and is defined as total sales minus
costs of goods sold which is assumed to be known ex-ante (so expected VA is expected sales minus realized costs of goods
sold). E(x) is the expectation based on the beginning of the fiscal year. Where there is no confusion, we drop unnecessary
subscripts. Additional controls include the cash to total assets, book leverage ratio, and log total assets from the previous fiscal
year. Expectations, actual values, and shocks are winsored at the 1% level. All regressions include industry-year fixed effects.
Standard errors are clustered by firm and shown in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Dependent Variable: i/k

Performance Measure: log(E [Sales] /k) log(E [V A] /k) log (E [z])

(1) (2) (3) (4) (5) (6)

Expected Performance 2.610*** 0.874*** 2.231*** 0.676*** 1.719*** 0.493***

(0.223) (0.140) (0.199) (0.135) (0.198) (0.127)

ip 0.634*** 0.638*** 0.644***

(0.051) (0.051) (0.050)

Observations 26,718 26,718 26,718 26,718 26,718 26,718

R2 0.107 0.476 0.098 0.474 0.080 0.473

Table III: Investment Plans, Investment Errors, and TFP Shocks.

The table below shows the relation between firm-level annual investment errors and sales, value-added, and TFP shocks. The
subscript time t denotes a fiscal year. The variable ∆i =

i−E[i]
k

is the annual investment plan deviation relative to the initial full-
year investment plan made in the first quarter survey, scaled by previous fiscal year’s total net plants, property, and equipment.
∆ logSales is defined as log(Sales/K)− log(E[Sales]/K), ∆ log V A is defined as log(V A/K)− log(E[V A]/K) where VA stands
for value added and is defined as total sales minus costs of goods sold which is assumed to be known ex-ante (so expected VA is
expected sales minus realized costs of goods sold), and ∆ log z is defined in Section 2.2.1. Where there is no confusion, we drop
unnecessary subscripts. Additional controls include the cash to total assets, book leverage ratio, and log total assets from the
previous fiscal year. Expectations, actual values, and shocks are winsored at the 1% level. All regressions include industry-year
fixed effects. Standard errors are clustered by firm and shown in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Performance Measure: ∆ logSales ∆ log V A ∆ log z

Dependent Variable: ∆ i
k

i
k

∆ i
k

i
k

∆ i
k

i
k

(1) (2) (3) (4) (5) (6)

Performance Shock: 2.337*** 2.301*** 5.023*** 3.381*** 0.782*** 0.532***

(0.633) (0.568) (1.267) (1.144) (0.168) (0.155)

ip 0.648*** 0.649*** 0.649***

(0.050) (0.050) (0.050)

Observations 26,718 26,718 26,718 26,718 26,718 26,718

R2 0.033 0.471 0.034 0.470 0.034 0.471
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Table IV: Investment Plan Deviations and Future Profitability

The table below shows the relation between firm-level annual investment plan deviations and future gross profit margins. The
subscript time t denotes a fiscal year. Future Gross Profit Margin is the ordinary income divided by sales in the next year.
∆ log (z−1) is the TFP shock from the previous year. Where there is no confusion, we drop unnecessary subscripts. Additional
controls include the cash to total assets, book leverage ratio, and log total assets from the previous fiscal year. Expectations,
actual values, and shocks are winsored at the 1% level. All regressions include industry-year fixed effects. Standard errors are
clustered by firm and shown in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Dependent Variable: Future Gross Profit Margin (% of Sales)
(1) (2) (3)

log
(
1 + |∆ i

k |
)

-0.334*** -0.355*** -0.351***
(0.118) (0.121) (0.122)

i -0.028*** -0.033*** -0.030***
(0.010) (0.010) (0.010)

log (z) 2.649*** 2.602*** 2.189***
(0.159) (0.166) (0.206)

∆ log (z−1) 1.094*** 1.116***
(0.133) (0.134)

Observations 20,082 20,082 20,082
Fixed Effects Industry×Year Industry×Year Industry×Year
Additional Controls Yes
R2 0.322 0.328 0.333

Table V: Model Fit

In panel A, we reported model fit per our targeted moments. Note that we also clear the market for labor and output down
to a tolerance of 10−8. In panel B, we report model fit per untargeted moments, namely, our two predictions from the earlier
section.

Panel A: Targeted Moments Panel B: Untargeted Moments
Moments Data Model Moments Data Model

σẑ−z
σε

1.347 1.347 Prediction 1 -0.051 -0.12

σ
(
k′

kp

)
0.073 0.073 Prediction 2 0.17 0.27

(N,P ) = (1, 1) — (1, 1)
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Figure I: Marginal Benefit and Marginal Cost of Improving Signal Precision

Graphs are plotted against V−1 (i.e., increasing signal precision). Marginal cost is a constant ξ by assumption.
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Figure II: Revenue and Distributions of σ-cost & kp-cost

The joint probability distribution of cost and revenue. The grey solid line represents a best fit line from ordinary least squares.

(a) σ-cost and Revenue (b) kp-cost and Revenue
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Figure III: Cost Distributions

Distribution of signal acquisition (blue bars connected with circles) and investment adjustment costs (red bars connected with
lines) incurred by firms.

Table VI: Model Predictions

The table below tests predictions 1 and 2 from Section 4.2. Where there is no confusion, we drop unnecessary subscripts. The
measure of dispersion of a variable is the log of one plus the absolute value of the variable. The estimated constants in the
regressions with no fixed effects are suppressed for space. Expectations, actual values, and shocks are winsored at the 1% level.
Standard errors are clustered by firm and shown in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Panel A: Prediction 1 – TFP Shock Dispersion and Productivity

Dependent Variable: Dispersion of ∆ log z

(1) (2)

log (z−1) -0.011*** -0.051***

(0.003) (0.003)

Observations 26,718 26,718

Fixed Effects Industry×Year

R2 0.002 0.234

Panel B: Prediction 2 – Investment Plan Deviation and Productivity

Dependent Variable: Dispersion of ∆i

(1) (2)

Dispersion of ∆ log z 0.194*** 0.170***

(0.029) (0.030)

Observations 26,718 26,718

Fixed Effects Industry×Year

R2 0.003 0.079
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Table VII: Counterfactual Moments

Panel A: Aggregate TFP, and wages, relative to a frictionless model. The measures are reported as decreases relative to
frictionless reference. Panel B: Change in costs incurred relative to baseline model. For columns 2 and 3, the change in σ cost
is the same by construction.

Baseline Fixed V, χ =∞ Fixed V, χ < 0 Endogenous V, χ =∞
(1) (2) (3) (4)

Panel A: Effect on misallocation
∆TFP 0.26% 2.59% 1.75% 0.34%

∆w 0.39% 3.74% 2.53% 0.51%
Panel B: Costs (relative to baseline)

kp-cost 1 0.000 1.025 0.000
σ-cost 1 0.297 0.297 1.155

Figure IV: Revenue and Distributions of σ-cost & kp-cost

Scatterplot of (left) σ-cost and (right) kp-cost against revenue. Blue circles and solid grey reference line are from the baseline
model as in Figure IIa; Red crosses and dashed grey reference line are from the relevant counterfactual comparison models.
Reference lines correspond to predicted values of a univariate regression of log cost on log revenue. For σ-cost, the counterfactual
is assuming fixed plans. For kp-cost, the counterfactual is assuming fixed V.

(a) σ-cost and Revenue (b) kp-cost and Revenue
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Online Appendix

A Empirical Methodology and Data Details

A.1 Detailed Summary Statistics

Table A.1: Additional Summary Statistics

The table below shows the summary statistics of our firm-year panel. The total number of firms in our sample is 5,989, of which
2,273 are publicly listed and the rest are private companies. To reduce the influence of outliers on these summary statistics,
we winsorize variables at the 1% level. Capital stock is the Net Plants, Property & Equipment. Profits are reported ordinary
profits according to Japanese Generally-Accepted Accounting Principles (GAAP). The Wage Bill is the sum of total salary cost
for employees and company officers as well as the bonus for employees and company officers. Investment plans are represented
as a percentage of end-of-previous-fiscal-year capital stock. Employment is the number of employees represented as the number
of full-time equivalent workers and may include fractions. When calculating residualized AR(1) and TFP shocks, we use the
MoF industry-level Cobb-Douglas estimated labor cost shares with additional details Appendix Section A.3. All numbers are
rounded to three significant digits or three decimal points, whichever results in fewer decimal points.

Panel A: Firm Fundamentals

Percentile

Variable Mean SD Skew 25th 50th 75th

Land Investment (mn) 135 583 5.88 0.000 0.000 0.000

Land Investment Plan (mn) 59.7 308 6.34 0.000 0.000 0.000

Software Spending (mn) 190 562 4.89 0.000 15 100

Software Spending Plan (mn) 191 580 4.99 0.000 9 100

Panel B: Constructed Variables

Investment Plan Deviations (% of Capital) -0.140 5.55 0.63 -1.64 -0.0610 0.947

Land Purchasing Plan (% of Assets) 0.127 0.631 6.05 0.000 0.000 0.000

Land Purchasing Plan Deviations (% of Assets) 0.187 0.964 5.38 0.000 0.000 0.000

Software Spending Plan (% of Assets) 0.867 2.650 5.64 0.000 0.0690 0.557

Software Spending Plan Deviations (% of Assets) 0.003 1.160 0.725 -0.080 0.000 0.083
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Table A.2: Additional Summary Statistics on Gross Investment Rates From Financial Statements

The table below shows the summary statistics of our firm-year panel. The total number of firms in our sample is 5,989, of which 2,273 are publicly listed and the rest are private
companies. To calculate gross investment rates from financial statements (which are reported annually), we assume a capital depreciation rate of 6%. All investment rates in
this table come from financial statements and not the BOS. All numbers are rounded to three decimal points when in percentages and four decimal point sin probabilities.

Panel A: Across Years

(%) (%) Capital Sales Inaction Region From BOS

Fiscal Year E
[
i
k

]
E
[
i
k
| i
k
< 0

]
P
(
i
k
< 0

)
P
(
i
k
< −1%

)
P
(
i
k
< −5%

)
P
(
|i|
k
< 1%

)
P
(
|i|
k
< 5%

)
P
(
i
k
< 1%

)
P
(
i
k
< 5%

)
2005 4.655 -4.261 0.1809 0.1056 0.0396 0.1684 0.4807 0.2070 0.5246

2006 4.491 -3.428 0.1962 0.1216 0.0322 0.1656 0.4956 0.1932 0.5041

2007 5.697 -2.771 0.1440 0.0757 0.0206 0.1477 0.4493 0.1917 0.5034

2008 5.901 -5.400 0.1297 0.0716 0.0244 0.1311 0.4300 0.1776 0.5036

2009 3.970 -3.493 0.1603 0.0826 0.0303 0.1905 0.5274 0.2500 0.6075

2010 2.947 -2.794 0.2351 0.1305 0.0285 0.2252 0.5996 0.2238 0.5868

2011 3.631 -2.277 0.1763 0.0844 0.0144 0.2135 0.5654 0.2203 0.5750

2012 3.885 -3.612 0.1866 0.1006 0.0273 0.1930 0.5363 0.1974 0.5366

2013 5.359 -4.079 0.1355 0.0771 0.0237 0.1524 0.4618 0.1820 0.5177

2014 5.196 -3.693 0.1288 0.0690 0.0226 0.1539 0.4659 0.1931 0.5176

2015 5.414 -4.333 0.1230 0.0736 0.0256 0.1326 0.4501 0.1817 0.5033

2016 4.406 -3.508 0.1617 0.0953 0.0285 0.1693 0.5022 0.1827 0.5087

Total 4.591 -3.579 0.1631 0.0908 0.0267 0.1695 0.4957 0.2000 0.5314

Panel B: Public versus Private Companies

(%) (%) Capital Sales Inaction Region From BOS

E
[
i
k

]
E
[
i
k
| i
k
< 0

]
P
(
i
k
< 0

)
P
(
i
k
< −1%

)
P
(
i
k
< −5%

)
P
(
|i|
k
< 1%

)
P
(
|i|
k
< 5%

)
P
(
i
k
< 1%

)
P
(
i
k
< 5%

)
Publicly-Listed 4.916 -3.265 0.1326 0.0785 0.0216 0.1321 0.4836 0.1525 0.5410

Private Companies 4.232 -3.767 0.1891 0.1013 0.0310 0.2015 0.5061 0.2401 0.5232
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A.2 How Good are Forecasts and Plans?

We show that the forecasts and plans that a firm reports do in fact predict its realized

counterparts; in other words, these forecasts and plans are relevant. To do so, we use

regressions of the form:

yi,t = αj(i),t + αi + βE [yi,t] + εi,t (9)

where the i subscript indexes a firm, j(i) indexes the MoF industry of the firm, and t indexes

a fiscal year. The variables E [yi,t] is the forecast or plan of the outcome variable yi,t made

from the first quarter of the same fiscal year, αi denotes firm fixed effects, and αj(i),t denotes

industry-by-year fixed effects. Standard errors are clustered by firm. The outcome variables

considered are realized capital investment, land investments, software expenses, profits, and

sales. As discussed, for investment, land investment, and software expenses, the expectation

variable is interpreted as a spending plan; while for profits and sales, the expectation variable

is interpreted as a forecast.

The empirical specification in Equation 9 controls for industry and macroeconomic shocks

and compares firms with higher expected spending plans with those in the same industry and

year with lower investment plans. The coefficient of interest is β – capturing the importance

of plans on actual realizations across different fiscal years. β = 1 corresponds to perfectly

sticky plans which do not permit ex-post adjustments while β = 0 corresponds to completely

uninformative plans for actual spending. Finally, in addition to reporting the point estimate,

we also consider the statistical importance represented by the relative improvement of the

R2 in the regressions compared against a regression specification without the expectation

variable.

Our empirical results suggest the BOS corporate plans and forecasts are good predictors

of actual realizations, and hence economically relevant. Columns 1 through 3 of Panel A

in Table A.3 study spending plans for physical capital investment, land investment, and

software spending, while Columns 4 and 5 evaluate profits and sales forecasts. For realized
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physical capital investment, plans have an estimated coefficient of 0.666 and increases the

R2 by 28% relative to a model with only firm and industry-by-quarter fixed effects. For

land investment, plans have an estimated coefficient of 0.904 and increases the R2 by 32%.

For software expenses, plans have an estimated coefficient of 0.494 and increases the R2 by

only 7%. These results for both the point estimates and relative statistical fit improvements

are consistent with an intuitive ranking of how costly it is to adjust your investment plans:

changing a firm’s land purchasing plan incurs the highest cost, followed by physical capital

investment, and then by software spending. Notably, spending for which deviation from

plans is more costly will carry a coefficient closer to one and account for a larger statistical

variation of actual realized investment.

Table A.3: Spending Plans and Forecasts

The table below shows the relation between expected firm measures as the explained variable and actual realized firm measures
as the explanatory variable. Investment and the change in software spending is scaled by previous end of period capital while
changes in land investment, profits, and sales are scaled by previous end of period total assets. The subscript t denotes a fiscal
year and i denotes a firm. VA stands for value added and is defined as total sales minus costs of goods sold which is assumed to
be known ex-ante (so expected VA is expected sales minus realized costs of goods sold). E(x) is the expectation based on the
beginning of the fiscal year. Expectations, actual values, and shocks are winsored at the 1% level. Where there is no confusion,
we drop unnecessary subscripts. All regressions include firm and industry-by-year fixed effects. Standard errors are clustered
by firm and shown in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Dependent Variable: yt

yt = PP&E Land Software Profits Sales

Purchases Spending

(1) (2) (3) (4) (5)

E [yt] 0.666*** 0.904*** 0.494*** 0.759*** 0.915***

(0.015) (0.0401) (0.028) (0.030) (0.012)

Observations 26,718 26,588 26,412 26,718 26,718

R2 0.739 0.442 0.839 0.885 0.995

R2 without Expected Value 0.578 0.335 0.787 0.802 0.940

Relative % Increase 28% 32% 7% 10% 36%

A.3 Estimating α, and TFP

In this section, we detail our estimation strategy. For the most part, we follow Asker et al.

(2014) in our measurement strategy. The basic assumption in our model is that we have a

physical production function given by y = zkαl1−α. Under assumptions of constant elasticity

of substitution (CES) across goods and monopolistic competition, we get the “sales” produc-
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tion function py = zθkαθl(1−α)θ, where θ ≡ η−1
η
. However, this is a “value-added” production

function. Therefore, to map the data to the model, we need to compute value added in

the data. We consider three specifications of economic value added: (1) Total sales minus

the costs of goods sold (which includes materials), (2) total sales scaled by one minus the

fraction of material costs to total sales based on aggregate statistics, following David and

Venkateswaran (2019), and (3) total sales. Our main specification in the paper uses method

(1), but our reported empirical results are robust to using (2) or (3).

A.3.1 Estimating α

As in Asker et al. (2014), we assume that capital is quasi-fixed (like in our model) but labor

is free to adjust every period after productivity z has been observed. Let profits net of labor

cost be py − wl. Then the optimality condition for labor is

MRPL ≡ (1− α) θzθkαθl(1−α)θ = w

=⇒ wl

py
= (1− α) θ.

In other words, we can identify (1− α) θ by simply computing the labor share in value

added. We follow Asker et al. (2014) by computing the industry median from the individual

firm-year level labor cost shares:

̂(1− α) θ = median

{
wl

py

}
.

Finally, we estimate α by assuming that θ = 0.75 (i.e., the elasticity of demand is 4), and

then directly back out α.

A.3.2 Estimating TFP, Expected TFP and TFP Shocks

With θ and α in hand, we compute realized TFP (in levels) as

z =
( py

kαθl(1−α)θ

) 1
θ
,
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where py is value added for the fiscal year, used in computing α. To compute expected TFP

ze (in levels), we assume that

ze =

(
pye

kαθl(1−α)θ

) 1
θ

,

where pye is forecasted value added for the fiscal year. As discussed in the main text,

forecasted value added is computed by simply subtracting forecasted sales from realized

costs of goods sold. Finally, we define TFP “shocks” as

∆ log z ≡ log z − log ze

It is clear that our measured ze is only an approximation of the “true” expected TFP. To

be precise, our measurement strategy gives a value of expected TFP that can be expressed

as

ze =

E
[
zθ+

θ2(1−α)
1−(1−α)θ

]
z
θ2(1−α)

1−(1−α)θ


1
θ

,

which is not E [z]. In the next section, we proceed to explain why this mismeasurement is

not an area of concern for us.

A.3.3 Mismeasured Expected TFP: Why It Happens and Why It Does Not

Matter For Our Results

We structure our discussion here in three stages. First, we show that under certain circum-

stances, measured expected TFP will always exhibit a negative bias, but the bias is small

and irrelevant. Second, we show why, due to our data limitations, the bias in ze can be

large, and cannot be signed in general. In particular, we derive here equation 10 in the

main text. Finally, we show that the bias in ∆ log z (i.e., TFP shocks) can always be signed.
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Specifically, the bias is only in one direction: our mismeasured TFP shocks is always smaller

(or more negative) than the true TFP shock. Importantly, because our focus is on studying

∆ log z, not ze, this means that our qualitative results in Section 2, and quantitative results

in Section 5, are not affected by the mismeasurement in ze.

Best case scenario: Bias in ze is small and can be signed We begin by emphasizing

here that it is impossible to directly estimate an unbiased measure of expected TFP using

just balance data alone, even if we observe all possible expectations of these balance sheet

variables. For instance, in our setup, suppose we observed expected labor or α = 1. In both

cases, the expression above is reduced to

ze
∗

=
(
E
[
zθ
]) 1

θ ,

where we denote ze∗ as the expected TFP one would back out under the assumptions above.

Due to Jensen’s inequality, ze∗ < E [z] since θ < 1. That is to say, the mismeasured expected

TFP is always smaller than the true expected TFP. For example, suppose we assume that

the firm’s expectations follow our model, then

ze
∗

=

[
zρθ−1 exp

(
σ2
ε

σ2 + σ2
ε

θs

)
exp

(
1

2
θ2V

)] 1
θ

= zρ−1 exp

(
σ2
ε

σ2 + σ2
ε

s

)
exp

(
1

2
θV
)
,

where s is the private signal as observed by the firms in our model, and σ (and corresponding

V) are the endogenous choice of uncertainty. The unbiased expected value of z is

E [z] = zρ−1 exp

(
σ2
ε

σ2 + σ2
ε

s

)
exp

(
1

2
V
)
.
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This gives us a biased estimated of expected TFP, specifically,

ze
∗ − E [z] = zρ−1 exp

(
σ2
ε

σ2 + σ2
ε

s

)[
exp

(
1

2
θV
)
− exp

(
1

2
V
)]

< 0,

where the bias shows up because of the terms in the square brackets. However, because the

volatility of TFP (i.e, σε) is typically small, and V < σ2
ε , the bias will be relatively small. In

other words, ze∗ ≈ E [z].

The generic case: Bias in ze is large and cannot be signed In our case, we do not

observe expected labor, and α is clearly less than unity. However, if we follow our model’s

assumptions (as in Section 3), we can make further headway into understanding the source

of the bias, by expressing expected TFP as

ze =

z
ρθ+ρθ̂
−1 exp

(
σ2
ε

σ2+σ2
ε

(
θ + θ̂

)
s
)

exp

(
1
2

(
θ + θ̂

)2

V
)

zθ̂


1
θ

,

where θ̂ ≡ θ2(1−α)
1−(1−α)θ

. The above expression can be further reduced to

ze = zρ−1 exp

(
σ2
ε

σ2 + σ2
ε

s

)exp

(
1
2

(
θ + θ̂

)2

V
)

exp
(
θ̂ε̃
)


1
θ

= ze
∗

exp
((
θθ̂ + 1

2
θ̂2
)
V
)

exp
(
θ̂ε̃
)


⇔ log ze = log ze

∗
+

(
θθ̂ +

1

2
θ̂2

)
V− θ̂ε̃ (10)

where we utilize the fact that z = zρ−1 exp
(

σ2
ε

σ2+σ2
ε
s
)

exp (ε̃) with ε̃ ∼ N (0,V) being the

mean 0 innovations arising under the posterior distribution, per our model assumptions;

and we further substituted in the definition for ze∗ . Notice that even after taking ze∗ as
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our reference, there is no clear direction for the bias in expected TFP, which depends on

the exact innovation the firm receives. Notably, the implication here is that ε̃ introduces

attenuation bias into our regression framework (specifically, in Section A.2). That said, as

we reported in Table II, we find that investment is positively and significantly correlated

with log ze despite the attenuation bias, suggesting that the bias might not be that severe.

Large unsigned bias in ze does not matter for our results We now turn to relating

mismeasurement in ze to mismeasurement in the forecast errors. Specifically, we can derive

a bias for forecast errors as

ze

z
=

z
ρθ+ρθ̂
−1 exp

(
σ2
ε

σ2+σ2
ε

(
θ + θ̂

)
s
)

exp

(
1
2

(
θ + θ̂

)2

V
)

zθ̂+θ


1
θ

=

z
ρθ+ρθ̂
−1 exp

(
σ2
ε

σ2+σ2
ε

(
θ + θ̂

)
s
)

exp

(
1
2

(
θ + θ̂

)2

V
)

z
ρ(θ̂+θ)
−1 exp

(
σ2
ε

σ2+σ2
ε

(
θ + θ̂

)
s
)

exp
((
θ + θ̂

)
ε̃
)


1
θ

=

exp

(
1
2

(
θ + θ̂

)2

V
)

exp
((
θ + θ̂

)
ε̃
)


1
θ

⇔ ∆ log z ≡ log z − log ze =
1

θ

((
θ + θ̂

)
ε̃− 1

2

(
θ + θ̂

)2

V
)

=
θ + θ̂

θ

(
ε̃− 1

2

(
θ + θ̂

)
V
)
. (11)

Note that the corresponding unbiased measure of TFP shocks is simply ε̃.

It is clear now why neither our main empirical results in Section 2 nor that in our

calibration in Section 5 are affected by the bias in expected values — the bias in ∆ log z

is constant (it is shifted by 1
2

(
θ + θ̂

)
V). For our empirical results, we are interested in

mapping deviations from expected value, that is to say how higher than expected TFP (or
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lower than expected TFP) affects investment. Since the bias is constant, it is absorbed

empirically by the fixed effects.

Relationship to Section 2 As an example, consider two firms with V, one that

receives an innovation of ε̃ = 0 and another with an innovation of ε̃ = 1
2

(
θ + θ̂

)2

V. Our

shocks measure is biased: For the first firm, we record it as having a negative shock, whereas

for the second firm, it has a shock of zero. However, since our regressions use cross-sectional

variations in identifying the effect of shocks to investment deviations (or investment itself),

relative to the first firm, the second firm still receives a “larger” shock, so our regressions are

still consistent. To be precise, suppose we fit a regression of the form

y = α + β∆ log z + u,

where u is the usual error term, and y is either ∆i
k

or i
k
. Our interest is in using ε̃ as a

regressor, which we do not observe, and is thus replaced with ∆ log z as in our empirical

strategy. Then this gives us,

β̂ =
cov (∆ log z, y)

var (∆ log z)

=

cov

(
1
θ

((
θ + θ̂

)
ε̃− 1

2

(
θ + θ̂

)2
V
)
, y

)
var

(
1
θ

((
θ + θ̂

)
ε̃− 1

2

(
θ + θ̂

)2
V
))

=
θ

θ + θ̂

var (ε̃)

var (ε̃) + var
(

1
2

(
θ + θ̂

)
V
)
− 2cov

(
ε̃, 1

2

(
θ + θ̂

)2
V
)
β − cov

(
1
2

(
θ + θ̂

)
V, y

)
var (ε̃)

 .
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Note that ε̃ ∼ N (0,V); therefore, E [ε̃ | V] = E [ε̃], implying cov (ε̃,V) = 0. Therefore, the

expression above reduces to

β̂ =
θ

θ + θ̂

var (ε̃)

var (ε̃) + var
(

1
2

(
θ + θ̂

)
V
)
β − cov

(
1
2

(
θ + θ̂

)
V, y

)
var (ε̃)

 . (12)

If we assume that V is homogenous across firms, as is typically done in the literature (for

example, Bloom et al. (2018); Tanaka et al. (2020)), equation 12 reduces to

β̂ =
θ

θ + θ̂
β.

In other words, our estimated β̂ will be smaller than the true unbiased elasticity of investment

with respect to TFP shocks β; however, the qualitative correlation will always remain the

same (i.e., investment is positively correlated with realized shocks).

However, as we show in our model, V is heterogeneous across firms. That said, if y

is investment deviations (∆i
k
), cov

(
V, ∆i

k

)
≈ 0. This is because, through the lens of our

model, firms with higher uncertainty make larger ex-post mistakes in both directions. In

other words, while the absolute size of investment deviations are increasing in V, it is not

correlated with V. Therefore, the mismeasurement is not an issue for us when studying

investment deviations.

For the case when y is just investment rates ( i
k
), our model does predict that firms that

face higher uncertainty will have lower investment (i.e., cov
(

1
2

(
θ + θ̂

)
V, i

k

)
< 0). This

negative bias will then bias us towards finding a positive correlation between investment and

our measure of TFP shocks. Unfortunately, it is not possible for us to directly address this

concern, given our data limitations. That said, as we note in the main text, our findings are

robust to both sales and value added shocks, as well as when we include investment plans

as a regressor. The latter in practice controls partly for the extra covariance term, since

investment plans are themselves a proxy for V, as we show in our theory. More importantly,
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our overall message is that firms are able to adjust to ex-post news in a consistent way

(i.e., positive surprises lead to higher-than-planned investment, and negative surprises lead

to lower-than-planned investment). This is indeed what we find across all our measures for

“shocks”.

Relationship to Section 5 In the case of our calibration, a similar logic follows. For

simplicity, again first assume that all firms have the same V. Our calibration strategy then

depends solely on the dispersion of TFP shocks being proportional to the posterior variance.

Specifically, if we could observe “correct” TFP shocks, then our identification strategy would

simply be to map var (ε̃) to our model parameters (i.e., we directly observe the posterior

variance). For our shocks measure, we observe, assuming that firms have the same V ,

var (∆ log z) =
(
θ+θ̂
θ

)2

var (ε̃) — but this is simply a scaled measure of the true posterior

variance. As such, our indirect inference strategy will remain consistent in estimating the

true amount of posterior variance.

However, as we note, V is heterogenous across firms, and so we cannot directly invert out

var (ε̃). Specifically, as we already derived,

var (∆ log z) =

(
θ + θ̂

θ

)2 [
var (ε̃) + var

(
1

2

(
θ + θ̂

)
V
)]

.

As such, in our model calibration, we choose var (∆ log z) as a target for calibration, rather

than simply invert var (ε̃) directly from the data.

A.3.4 Issues with the investment variable

We briefly discuss the issue with our investment variable here.

To be precise, there are three cases when this happens, as briefly summarized in Table

A.4 below.
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Case I Case II Case III
True i and ip i > 0 and ip < 0 i < 0 and ip < 0 i < 0 and ip > 0

Observed i and ip i > 0 and ip = 0 i = 0 and ip = 0 i = 0 and ip > 0

Table A.4: Three cases where ∆I is mismeasured.

We account for this issue using three strategies. First, the crudest of the three, we simply

drop any observation for which i or ip is reported as zero.32 We find that our main results

are robust to this data treatment. Second, we use the fact that we observe actual capital

expenses in the Annual Financial Statistics survey to impute actual (dis)investment done

by the BOS firms. This would in theory address the bias generated in Case III. However,

the capital expenses in the Financial Statements do not line up perfectly with the BOS due

to discrepancies in accounting treatment in the two surveys. Moreover, this approach does

not address Case I or II. As such, we consider this imputation method only as a robustness

check. We do find that our results are robust to this alternative source of capital expenses

data.33 Third, we use an indirect inference approach similar to how we address the bias in

estimating expected TFP. As this is a model driven approach, we will delay discussing it

until we have presented the model. Crucially, we follow this last strategy in calibrating our

model, whereby all three cases are addressed.

A.4 Additional Model-Implied Figures and Tables

We report here the additional figures referenced in the main text, namely the distribution of

firm uncertainty and associated descriptive statistics. Figure A.1 below plots the distribution

of firm uncertainty, and the table below reports broad descriptive statistics associated with

this distribution.

32This strategy borrows from Bachmann et al. (2017) with details from footnote 12 of their paper.
33This does points to an advantage of our data relative to prior data sources like the German IFO data,
which does not appear to provide any information about the firm’s balance sheet. Consequently, such a
correction would not be possible.
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Percentile
Mean SD Skew 25th 50th 75th

0.3756 0.3069 7.1806 0.1326 0.2665 0.5439

Figure A.1: The distribution of endogenously acquired signal precision. Solid red line is a
reference for the signal precision under the “no learning” case.

B Model Proofs

B.1 Proof of proposition 1

To prove our proposition, we will first prove the following two lemmas, which will establish

that the value of the firm, gross of the signal acquisition cost but net of adjustment costs, is

strictly increasing in the posterior uncertainty.

Lemma 1. The expected ex-ante adjustment cost is increasing in V.

Lemma 2. The expected ex-ante value of the firm, gross of adjustment costs, is decreasing

in V.

We first derive some common terms that will be useful in proving the two lemmas. We

begin by deriving the solution to k′. To do so, first recall that under the assumption that
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σu =∞, the Euler equation for investment reduces to

exp

(
1

2
Θ2
zσ

2
ε

)
ΘkA (w) zΘzρk′Θk−1 − (1 + r)χ

k′

kp
= r + δ − (1 + r)χ. (13)

The log-linear approximate solution for k′, around the non-stochastic steady state, is there-

fore given by

∆k′ = φz∆z + φk∆k
p

=⇒ k′ = k̄1−φkzφz (kp)φk , (14)

where for some generic variable x and steady state value x̄, ∆x ≡ x−x̄; φz = Θzρ(r+δ)
(1+r)χ+(r+δ)(1−Θk)

and φk = (1+r)χ
(1+r)χ+(r+δ)(1−Θk)

; and k̄ =
[

ΘkA(w)
r+δ

] 1
1−Θk

(with exp
(

1
2
Θ2
zσ

2
ε

)
ΘkA (w) zΘzρk′Θk−1 = r + δ in the non-stochastic steady-state). We see

that φz > 0 and φk ∈ (0, 1), where in particular, limχ→0 φz = ρ
1−Θk

and limχ→0 φk = 0 returns

us to the usual frictionless model, and limχ→∞ φz = 0 and limχ→∞ φk = 1 moves us to a

model where only plans matter.

Next, we can substitute this solution for k′ into the Bellman equation in the main text,

and obtain

W (k, s, z−1, σ) = max
kp

E

[
π + (1− δ) k − k′ − χ

2

(
k′

kp
− 1

)2

kp + βE
[
V
(
k′, z̃′, z

)
|z
]
|s, z−1, σ

]

s.t.

log z ∼ N
(
ρ log z−1 +

σ2
ε

ς2 + σ2
ε

s,V
)
,

where we write k′ as a function of kp and z. This gives us the expected value of the firm after

a signal has been observed, but before a plan has been made. Taking first order conditions,
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and following some algebra, we can obtain the optimal kp as

kp =
√

E [k′2|s]

=⇒ kp =

√
E
[(
k̄1−φkzφz (kp)φk

)2
]

=⇒ kp = k̄z
ρφz

1−φk
−1

(√
E [exp (2φzε) |s]

) 1
1−φk ,

where ε is the underlying innovations of z. Noting that the posterior distribution of ε (i.e.,

after the signal s has been observed) is given by ε ∼ N
(

σ2
ε

σ2+σ2
ε
s,V

)
, we can express kp as

kp = k̄z
ρφz

1−φk
−1

(√
exp

(
2φz

σ2
ε

σ2 + σ2
ε

s+ 2φ2
zV
)) 1

1−φk

= k̄z
ρφz

1−φk
−1 exp

(
φz

1− φk
σ2
ε

σ2 + σ2
ε

s

)
exp

(
φ2
z

1− φk
V
)
.

Before moving on, it is useful to note that the planned investment is increasing in V for

small enough s (in particular, it is always increasing in V when s→ 0). This reflects a pre-

cautionary term coming from insurance against any upside risk, which becomes increasingly

dominant as s becomes smaller (in the limit, there is only upside risk and no downside risk).

This term exists, in part, because our specific formulation of the adjustment cost is bounded

below while unbounded above. We can now formally derive a proof for Lemma 1.

Proof. We begin by substituting the solution for k′ and kp back into the original cost function,

which gives

φ (k′, kp) =
χ

2

(
k′

kp
− 1

)2

kp

=
χ

2

(
exp (φzε) exp

(
− φzσ

2
ε

σ2 + σ2
ε

s

)
exp

(
−φ2

zV
)
− 1

)2

...

...

(
k̄z

ρφz
1−φk
−1 exp

(
1

1− φk
φzσ

2
ε

σ2 + σ2
ε

s

)
exp

(
φ2
z

1− φk
V
))

.

The ex-ante cost function prior to the realization of signals is therefore
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E
[
φ
(
k′, kp

)
|σ
]

= E

[
χ

2

(
k′

kp
− 1

)2

kp|σ

]

= E

[
E

[
χ

2

(
k′

kp
− 1

)2

kp|s

]
|σ

]

= E

[
χ

2
E

[(
exp

(
−φz

σ2
ε

σ2 + σ2
ε

s

)
exp

(
−φ2

zV
)

exp (φzε)

)2

...

...− 2 exp

(
−φz

σ2
ε

σ2 + σ2
ε

s

)
exp

(
−φ2

zV
)

exp (φzε) + 1|s...
]

...

(
k̄z

ρφz
1−φk
−1 exp

(
1

1− φk
φzσ

2
ε

σ2 + σ2
ε

s

)
exp

(
φ2
z

1− φk
V
))
|σ
]

= χk̄z
ρφz

1−φk
−1 FA (V) , (15)

where we define FA (V) ≡ exp

[
1
2

(
φz

1−φk

)2

σ2
ε

] (
1− exp

(
−1

2
φ2
zV
))

exp
(
φ2
z

2

(
1−2φk

(1−φk)2

)
V
)

for

notational convenience, and noting that χk̄z
ρφz

1−φk
−1 > 0.

We see that the FA term is the only term in the expression that depends on V. To study

the impact of V on the expected adjustment cost, it therefore suffices to study the marginal

effect of changing V on FA. To do so, we can take the derivative of FA with respect to V,

obtaining,

∂FA (V)

∂V
= exp

[
1

2

(
φz

1− φk

)2

σ2
ε

](
exp

(
−1

2
φ2
zV
)

1

2
φ2
z exp

(
φ2
z

2

(
1− 2φk

(1− φk)2

)
V
)

+ ...

...

(
1− exp

(
−1

2
φ2
zV
))

exp

(
φ2
z

2

(
1− 2φk

(1− φk)2

)
V
)
φ2
z

2

(
1− 2φk

(1− φk)2

))
= exp

[
1

2

(
φz

1− φk

)2

σ2
ε

]
exp

(
φ2
z

2

(
1− 2φk

(1− φk)2

)
V
)

1

2

(
φz

1− φk

)2

...

... (2φk − 1)

(
exp

(
−1

2
φ2
zV
)(

φ2
k

2φk − 1

)
− 1

)
.

We now proceed to show our proof for three cases.

Case 1: φk ≤ 1
2
.
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In this case, 2φk − 1 < 0 and likewise exp
(
−1

2
φ2
zV
) ( φ2

k

2φk−1

)
− 1 < 0. Therefore, it is

clear from the above expression that ∂FA(V)
∂V > 0 for all V. In other words, the expected

adjustment cost is always strictly increasing in V if φk ≤ 1
2
.

Case 2: 1
2
< φk < 1

In this case, 2φk − 1 > 0 and likewise φ2
k

2φk−1
> 1. To show that ∂FA(V)

∂V > 0, we need

to show that exp
(
−1

2
φ2
zV
) ( φ2

k

2φk−1

)
− 1 > 0. This implies that V < 2

φ2
z

log
(

φ2
k

2φk−1

)
, or

equivalently, V < 2
(

1
ρ(η−1)

)2 (
1

1−φk

)2

log
(

φ2
k

2φk−1

)
. Now recall that because V < σ2

ε , as long

as σ2
ε < 2

(
1

ρ(η−1)

)2 (
1

1−φk

)2

log
(

φ2
k

2φk−1

)
is satisfied, we can establish case 2. Keeping in

mind that
(

1
1−φk

)2

log
(

φ2
k

2φk−1

)
> 1 when 1

2
< φk < 1, this implies that for most reasonable

calibrations, σ2
ε � 2

(
1

ρ(η−1)

)2 (
1

1−φk

)2

log
(

φ2
k

2φk−1

)
. Therefore, ∂FA(V)

∂V > 0 for all feasible

choices of V. In other words, the expected adjustment cost is again always strictly increasing

in V if 1
2
< φk < 1.

Case 3: φk = 1

Note that this is the limiting case for which χ → ∞, where we also have φz = 0. In

this limiting case, we see from the expression that limχ→∞ exp
(
−1

2
φ2
zV
) ( φ2

k

2φk−1

)
− 1 = 0,

so limχ→∞
∂FA(V)
∂V = 0. Intuitively, since adjustment costs are infinitely large, the marginal

effect of improving information is trivially zero. In other words, we have shown that the

expected cost of violating the adjustment friction is increasing in the posterior uncertainty

V. This concludes the proof for Lemma 1.

We can also now formally derive a proof for Lemma 2.

Proof. To begin, recall that since the choice of V only affects next-period profits, this implies

that V only affects the value of the firm through this channel. Recalling that expected profits

net of investment cost (but gross of the adjustment cost), πe, is given by the expression

πe ≡ E
[
−k′ + 1

1 + r

(
E
[
A (w, Y ) z′Θzk′Θk |z

]
+ (1− δ) k′

)
|σ
]
,

it suffices to show that ∂πe

∂V < 0 to show that higher posterior uncertainty has a negative
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impact on the firm’s value gross of adjustment cost. To do so, it is convenient to rewrite the

expected next-period profit as

πe =
1

1 + r
E
[
E
[
A (w, Y ) z′Θzk′Θk |z

]
− (r + δ) k′|σ

]
.

We will now proceed to derive this as a function of V (and other initial conditions and

parameters). We can show that

E [k′|σ] = k̄z
ρφz

1−φk
−1 exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)
exp

(
−1

2

(
φz

1− φk

)2

φ2
kV

)

and

E
[
E
[
A (w) z′Θzk′Θk |z

]
|σ
]

= A (w, Y ) exp

(
1

2
Θ2
zσ

2
ε

)
k̄Θkz

ρ φz
1−φk
−1 exp

(
1

2
ϑσ2

ε

)
...

... exp

(
−1

2
Θ2
k

(
φz

1− φk

)2

φ2
k

2−Θk

Θk
V

)
,

with ϑ ≡ (ρΘz)
2 + 2ρΘzΘk

φz
1−φk

+
(

Θk
φz

1−φk

)2

.

Before proceeding, it is worth discussing briefly the economic intuition here. Notice

that the E [k′|σ] term is decreasing in V, that is, expected investment is decreasing in the

posterior uncertainty. This contrasts with the 1
2

(
φz

1−φk

)2

σ2
ε term, which says that expected

investment is increasing in the dispersion of productivity. This term is the usual volatility

effect that predicts investment increasing with uncertainty, whereas subjective uncertainty

V drives down expected investment. Notice however that the term here is pre-multiplied by

φk, which is the weight on the investment plan in the manager’s investment policy function.

A more standard model of Bayesian learning would imply that φk = 1. In our model, we

nest this standard framework by allowing partial flexibility of plans. As such, the ability

to weakly deviate from planned investment (i.e., φk < 1) dampens the effect of subjective

uncertainty.

Moreover, notice that E
[
E
[
A (w) z′Θzk′Θk |z

]
|σ
]
(expected revenue) is also decreasing in
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V. Since expected investment is decreasing in V, this result is not surprising. Now with

these two terms in hand, we can rewrite the expected profits as

πe =
1

1 + r

[
A (w, Y ) exp

(
1

2
Θ2
zσ

2
ε

)
k̄Θkz

ρ φz
1−φk
−1 exp

(
1

2
ϑσ2

ε

)
...

... exp

(
−1

2
Θ2
k

(
φz

1− φk

)2

φ2
k

2−Θk

Θk
V

)
−

... (r + δ) k̄z
ρφz

1−φk
−1 exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)

... exp

(
−1

2

(
φz

1− φk

)2

φ2
kV

)]

=
1

1 + r
k̄z

ρφz
1−φk
−1 exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)
Fπ (V), (16)

where Fπ (V) is a function of the posterior uncertainty and other model parameters. Criti-

cally, this function does not include z−1, which pre-multiplies this function. Therefore, the

effect of V is always scaled by z−1. To show that increasing posterior uncertainty decreases

expected profits, we simply need to show that ∂Fπ(V)
∂V < 0 . We derive

∂Fπ (V)

∂V
=

(
1

2

(
φz

1− φk

)2

φ2
k

)
exp

(
−1

2

(
φz

1− φk

)2

φ2
kV

)
...[

A (w, Y ) exp

(
1

2
Θ2
zσ

2
ε

)
k̄Θk−1 exp

(
1

2

(
ϑ−

(
φz

1− φk

)2
)
σ2
ε

)
...

... (−Θk (2−Θk)) exp

(
1

2

(
φz

1− φk

)2

φ2
k (1−Θk (2−Θk))V

)
+ (r + δ)

]
,

which means that for the previous condition to hold, we need the following condition

A (w, Y ) exp

(
1

2
Θ2
zσ

2
ε

)
k̄Θk−1 exp

(
1

2

(
ϑ−

(
φz

1− φk

)2
)
σ2
ε

)
... > r + δ

... (Θk (2−Θk)) exp

(
1

2

(
φz

1− φk

)2

φ2
k (1−Θk (2−Θk))V

)
.
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But recall that k̄ =
[

ΘkA(w)
r+δ

] 1
1−Θk , which means that k̄Θk−1 = r+δ

ΘkA(w,Y )
. Substituting this

back into the equation above, we get

exp

(
1

2
Θ2
zσ

2
ε

)
exp

(
1

2
(ρΘz)

2 Θk

1−Θk

σ2
ε

)
(2−Θk) exp

(
1

2

(
φz

1− φk

)2

φ2
k (1−Θk (2−Θk))V

)
> 1.

Further substituting in ϑ−
(

φz
1−φk

)2

= (ρΘz)
2 Θk

1−Θk
, we reduce the expression to,

exp

(
1

2
Θ2
zσ

2
ε +

1

2
(ρΘz)

2 Θk

1−Θk
σ2
ε +

1

2

(
ρΘz

1−Θk

)2

φ2
k

(
1−Θk

(
1− 1

2
Θk

))
V

)
>

1

2−Θk
.

Notice that since Θk ∈ (0, 1), 1
2−Θk

∈
(

1
2
, 1
)
, the above relation is trivially true for all

parameter values, so ∂Fπ(V)
∂V < 0. Therefore, expected profits, gross of adjustment cost, is

decreasing in the posterior variance. This concludes the proof for Lemma 2.

With Lemma 1 and 2 in hand, we can now derive a proof for our proposition.

Proof. First, Lemma 2 tells us that the ex-ante value of the firm, gross of signal acquisi-

tion costs but net of adjustment cost, is strictly decreasing in V. This gives us point 1 in

Proposition 1.

To show part 2 of Proposition 1, we can simply combine both the expected adjustment

cost and expected profits and take the first derivative with respect to V. To recall, the first

derivative of the expected adjustment cost is

∂E [φ (k′, kp) |σ]

∂V
= χk̄z

ρφz
1−φk
−1

∂FA (V)

∂V
,

and recall ∂FA(V)
∂V > 0. The marginal effect of V on firm value, net of adjustment cost, can

then be expressed as
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−∂E [φ (k′, kp) |σ]

∂V
+
∂πe

∂V
= −χk̄z

ρφz
1−φk
−1

∂FA (V)

∂V
+

1

1 + r
k̄z

ρφz
1−φk
−1 exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)
∂Fπ (V)

∂V

= k̄z
ρφz

1−φk
−1

(
−χ∂F

A (V)

∂V
+

1

1 + r
exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)
∂Fπ (V)

∂V

)

where we see that the term −χ∂F
A(V)
∂V + 1

1+r
exp

(
1
2

(
φz

1−φk

)2

σ2
ε

)
∂Fπ(V)
∂V < 0 , and does not

depend on z−1. In other words, initial productivity z−1 has a pure scaling effect—that is—

firms with higher initial productivity face a steeper cost of having a more dispersed signal.

Conversely, the benefits to get a better signal is increasing in initial productivity. Formally,

this statement is seen in the cross-derivative, which is given by

∂

∂z−1

(
−∂E [φ (k′, kp) |σ]

∂V
+
∂πe

∂V

)
=

ρφz
1− φk

k̄z
ρφz

1−φk
−1

−1 ...

...

(
χ
∂FA (V)

∂V
+

1

1 + r
exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)
∂Fπ (V)

∂V

)

< 0

Therefore, the benefits of having a lower posterior uncertainty is increasing in initial firm

productivity z−1. This thus concludes the proof of point 2 in Proposition 1.

B.1.1 Proof of Corollary 1

From Proposition 1, we already showed that the marginal benefit of a lower posterior variance

is increasing in z−1. The marginal cost is given by

− ∂

∂V
ξ

(
1

V
− 1

σ2
ε

)
= ξ

(
1

V

)2

where the cost of lowering posterior uncertainty is increasing, but does not depend on

z−1.34 Equating the marginal cost and benefit, and with some trivial rearrangement of terms,

34Here, we directly impose that σu =∞.
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gives us

k̄z
ρφz

1−φk
−1 = −ξ

(
1

V

)2
(
−χ∂F

A (V)

∂V
+

1

1 + r
exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)
∂Fπ (V)

∂V

)−1

,

where V solves the implicit equation above. Note that the left-hand side term is strictly

increasing in z−1; and the right-hand side term is strictly decreasing in V (i.e., decreasing

marginal benefit), and importantly, not a function of z−1. Therefore, an application of the

inverse function theorem tell us that the choice of V is decreasing in z−1. Since the posterior

variance is decreasing in z−1, trivially then, the dispersion of forecast errors is decreasing in

initial productivity.

B.2 Proof Of Proposition 2

Like in our stationary model, we begin our proof by deriving explicit analytical forms for

the ex-ante expected gross profits at the firm level. First, we derive the log-linear solution

to k′. From the Euler Equation,

exp

(
1

2
Θ2
zσ

2
ε +

1

2
Θ2
Aσ

2
ε,A

)
ΘkA (w, Y ) zΘzρAΘAρAk′Θk−1 − (1 + r)χ

k′

kp
= r + δ − (1 + r)χ.

(17)

The log-linear approximate solution for k′, around the non-stochastic steady state, is there-

fore given by

k̂′ = φAÂ+ φz ẑ + φkk̂p

=⇒ k′ = k̄1−φkAφAzφz (kp)φk , (18)
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where φA = ΘAρA(r+δ)
(1+r)χ+(r+δ)(1−Θk)

, φz = Θzρ(r+δ)
(1+r)χ+(r+δ)(1−Θk)

and φk = (1+r)χ
(1+r)χ+(r+δ)(1−Θk)

, and k̄ =[
ΘkA(w)
r+δ

] 1
1−Θk . Notice that this solution is very similar to the solution for the model aggregate

risk. With this solution for k′, we can substitute the solution back into the Bellman equation,

obtaining

W (k, s, A, z−1, σ) = max
kp

E

[
π + (1− δ) k − k′ − χ

2

(
k′

kp
− 1

)2

kp...

... +βE
[
V
(
k′, z̃′, Ã′, z, A

)
|z,A

]
|s, sA, z−1, A−1, σ, σA

]
s.t.

log z ∼ N
(
ρ log z−1 +

σ2
ε

ς2 + σ2
ε

s,V
)

logA ∼ N

(
ρ−1 logA−1 +

σ2
ε,A

σ2
A + σ2

ε,A

sA,VA

)
,

where sA is the signal associated with aggregate conditions, and VA is the endogenously

chosen posterior variance of A. Taking first order conditions and following some algebra, we

can obtain the optimal kp as

kp =
√
E [k′2|s, sA]

=⇒ kp =

√
E
[(
k̄1−φkAφAzφz (kp)φk

)2
]

=⇒ kp = k̄1−φkAρAφA−1 zρφz−1 (kp)φk
√
E [exp (2φAεA) |sA]

√
E [exp (2φzε) |s]

=⇒ kp = k̄A
ρAφA
1−φk
−1 z

ρφz
1−φk
−1

(√
E [exp (2φAεA) |sA]

) 1
1−φk

(√
E [exp (2φzε) |s]

) 1
1−φk ,

where εA is the underlying innovations of A. Similar to ε, the posterior distribution of εA is

given by εA ∼ N
(

σ2
ε,A

σ2
A+σ2

ε,A
sA,VA

)
, and we can express kp as
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kp = k̄A
ρAφA
1−φk
−1 z

ρφz
1−φk
−1


√√√√exp

(
2φA

σ2
ε,A

σ2
A + σ2

ε,A

sA + 2φ2
AVA

)√
exp

(
2φz

σ2
ε

σ2 + σ2
ε

s+ 2φ2
zV
)

1
1−φk

= k̄A
ρAφA
1−φk
−1 z
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1−φk
−1 exp
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1− φk
σ2
ε,A

σ2
A + σ2

ε,A

sA +
φz

1− φk
σ2
ε

σ2 + σ2
ε

s+
φ2
A

1− φk
VA +

φ2
z

1− φk
V

)
.

Like the solution for k′, because of our assumption that aggregate conditions are orthogonal

to idiosyncratic conditions, we have an expression for kp that is very much similar to that in

the model without aggregate risk. We obtain (similar to our stationary model) expressions

for the ex-ante cost function,

E
[
φ
(
k′, kp

)
|σ
]

= E

[
χ

2

(
k′

kp
− 1

)2

kp|σ

]

= χk̄z
ρφz

1−φk
−1 A

ρAφA
1−φk
−1 FsFA, (19)

where

Fs ≡ exp

[
1

2

(
φz

1− φk

)2

σ2
ε

](
1− exp

(
−1

2
φ2
zV
))

exp

((
φ2
z − 2φ2

zφk

2 (1− φk)2

)
V
)

FA ≡ exp
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1

2
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1− φk

)2

σ2
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](
1− exp

(
−1

2
φ2
AVA

))
exp

((
φ2
A − 2φ2

Aφk

2 (1− φk)2

)
VA
)
.

Note that χk̄z
ρφz

1−φk
−1 F s is simply our expression for the ex-ante cost function when there

is no aggregate risk. Likewise, expected profits net of investment cost (but gross of the

adjustment cost), πe, can be expressed as

πe =
1

1 + r
k̄z

ρφz
1−φk
−1 exp

(
1

2

(
φz

1− φk

)2

σ2
ε

)
Fπ (V)...

...A
ρAφA
1−φk
−1 exp

(
1

2

(
φA

1− φk

)2

σ2
ε,A

)
FπA (VA) , (20)
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with

FπA ≡ A (w, Y ) exp

(
1

2
Θ2
Aσ

2
ε,A

)
k̄Θk−1 exp

(
1

2

(
ϑA −

(
φA

1− φk

)2
)
σ2
ε,A

)
...

... exp
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(
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1− φk

)2
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Θk
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)
...

... (r + δ) exp

(
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(
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1− φk

)2

φ2
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)
,

and ϑA ≡ (ρΘA)2 + 2ρΘAΘk
φA

1−φk
+
(

Θk
φA

1−φk

)2

. Fπ (V) is the same function as that in

the stationary case. The expressions in equations 19 and 20 are simply the formula in the

stationary case, extended to account for aggregate shocks. It becomes trivial, given our

earlier derivations, to see that ∂E[φ(k′,kp)|σ]
∂VA

> 0, and ∂πe

∂VA
< 0, and therefore,

−∂E [φ (k′, kp) |σ]

∂VA

+
∂πe

∂VA

< 0.

That is, the ex-ante value of the firm (gross of signal acquisition cost) is increasing in signal

precision over aggregate conditions. This gives us point 1 of Proposition 2. For the next two

points, it is also straightforward, given our earlier derivations, to see that

∂

∂A−1

(
−∂E [φ (k′, kp) |σ]

∂V
+
∂πe

∂V

)
< 0

and

∂

∂A−1

(
−∂E [φ (k′, kp) |σ]

∂VA

+
∂πe

∂VA

)
< 0.

That is, the value of increasing signal precision over idiosyncratic and aggregate productivity

is increasing in initial aggregate productivity. This gives us points 2 and 3 of Proposition 2,

and therefore concludes the proof.
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B.2.1 Proof Of Corollary 2

This proof is exactly the same as that for Corollary 1. To be precise, because we assume

that the signal acquisition cost over idiosyncratic and aggregate productivity are linearly

additive, we can derive similar first-order conditions to the earlier proof, namely,

∂

∂V
ξ

(
1

V
− 1

σ2
ε

)
=
∂E [φ (k′, kp) |σ]

∂V
+
∂πe

∂V
,

where we equate the marginal cost and marginal benefit of acquiring better signals over

idiosyncratic productivity. Likewise, for aggregate productivity, we have

∂

∂VA

ξA

(
1

VA

− 1

σ2
ε,A

)
=
∂E [φ (k′, kp) |σ]

∂VA

+
∂πe

∂VA

.

Similar to the proof earlier, these two relations give us an implicit solution for V and VA

where the optimal choice is decreasing in A−1, that is to say, ∂V
∂A−1

< 0,and ∂VA
∂A−1

< 0. This

concludes the proof of Corollary 2.

B.2.2 Proof Of Corollary 3

To prove this corollary, we follow from Corollary 2 and note that the inequalities ∂V
∂A−1

< 0

and ∂VA
∂A−1

< 0 are true for all z−1 (i.e., all firms). Therefore, this also implies that

E
[
∂V
∂A−1

|A−1

]
< 0 =⇒ ∂E [σ|A−1]

∂A−1

< 0 =⇒ ∂E [V|A−1]

∂A−1

< 0,

where the term E [σ|A−1] is nothing but the unweighted average idiosyncratic uncertainty.

In other words,

cov (E [σ|A−1] , A−1) < 0.
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Recall that A follows an AR(1) process. Therefore, we have

cov (E [σ|A−1] , logA) = cov (E [σ|A−1] , ρA logA−1 + σε,AεA)

= cov (E [σ|A−1] , ρA logA−1)

= ρAcov (E [σ|A−1] , logA−1)

< 0,

that is to say, average idiosyncratic uncertainty is counter-cyclical. To show that σ̄ is persis-

tent, recall that σ = σ (z−1, A−1), implying that E [σ|A] = σ̄ (A−1) . Trivially, cov (σ̄−1, σ̄) =

cov (σ̄ (A−2) , σ̄ (A−1)) > 0,which shows that average idiosyncratic uncertainty is persistent.

The proof of counter-cyclical uncertainty for aggregate conditions, as well as its persistence,

are exactly the same as that for the idiosyncratic case.

B.2.3 Proof of Prediction 5

Here, we prove that misallocation, as measured by the dispersion in marginal product of

capital, is counter-cyclical. To begin, note E [τ 2] (the implicit “wedge” as discussed in the

main text), can be reinterpreted as the dispersion of ARPK given (A−1, z−1). Next, note

that E [τ 2|A] = E [τ 2|A−1] because k′

kp
does not depend on A. Therefore, the dispersion of

ARPK (in levels), which is E [E [τ 2|A, z−1] |A] is given by,

E
[
E
[
τ2|A, z−1

]
|A
]

= ((1 + r)χ)2

(
2− 2E

[
exp

(
−1

2
φ2
zV
)
|A−1

])
.

We now need to establish that
∂E[E[τ2|A,z−1]|A]

∂A
< 0. Note that

∂E [E [τ 2|A, z−1] |A]

∂A
= −2

((1 + r)χ)2

ρAρ−1
−1 exp (σε,AεA)
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[
exp
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2
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]
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,

76



so it is sufficient to just show that
∂E[exp(− 1

2
φ2
zV)|A−1]

∂A
> 0. As we already showed in deriving

the proof of Corollary 3, ∂E[V|A−1]
∂A−1

< 0. Therefore, this implies that

∂E
[
exp

(
−1

2φ
2
zV
)
|A−1

]
∂A−1

<
∂ exp

(
−1

2φ
2
zE [V|A−1]

)
∂A−1

= −1

2
φ2
z exp

(
−1

2
φ2
zE [V|A−1]

)
∂E [V|A−1]

∂A−1

> 0,

where the first line follows from Jensen’s inequality, and the second line uses the fact that

exp
(
−1

2
φ2
zE [V|A−1]

)
> 0 while ∂E[V|A−1]

∂A−1
< 0. Therefore, the dispersion of ARPK is decreas-

ing in A. That is, misallocation is counter-cyclical.

C Evidence On Counter-cyclicality of Uncertainty
We test our predictions in our data. Dispersion of TFP forecast errors and ARPK, at the

aggregate level, is computed as the log of the inter-quartile range of TFP forecast errors (or

log ARPK). For dispersion of forecast errors at the firm level, we proxy for dispersion using

the log of one plus the absolute value of firm TFP forecast errors. Finally, for “aggregate”

variables, we compute them at two levels of aggregation: (i) at the annual level, and (ii) at

the industry-year level. Our second specification allows us to address the fact that we only

have twelve observations at the annual level.

To test our predictions at the aggregate industry-year level, we run regressions of the

form:

yj,t = αj(i) + xt + εj,t, (21)

where i indexes a firm, t indexes a fiscal year, j(i) indexes the MoF industry group that

a firm is in, and αj(i) capture industry fixed effects. The dependent variable xt is either a

recession indicator from the St. Louis Federal Reserve when studying counter-cyclicality, or

lagged yi,t when studying persistence. For regressions at the yearly aggregation, we simply

77



modify equation 21 as appropriate.

To test our predictions at the firm-level, we use a specification of the form:

yi,t = αi + αj(i) + xt + εi,t, (22)

where the subscripts follow from Equation 21, and the dependent variable xt is again either

a recession indicator or lagged yi,t, where appropriate. We consider specifications with both

industry or firm fixed effects (αi), and standard errors are clustered by firm and year to

account for within-firm correlated error dispersions and cross-sectionally correlated error

dispersions due to common aggregate shocks.

Table C.1: Cyclicality and Persistence of TFP Shock Dispersions

The table below shows the dispersion of TFP shocks depending on whether the economy is in a recession. Observations are
either at the year, industry-by-year level, or firm-by-year level. Recessions are defined according to data from the St. Louis
Federal Reserve. The estimated constants in the regressions with no fixed effects are suppressed for space. Where there is no
confusion, we drop unnecessary subscripts. Expectations, actual values, and shocks are winsored at the 1% level. Standard
errors are clustered by industry and year in Panel A and firm and year in Panel B, and are shown in parentheses below the
estimated coefficient. * p < 0.10, ** p < 0.05, *** p < 0.01.

Panel A: Counter-cyclicality of TFP Shock Dispersion

Dependent Var: Dispersion of ∆ log z

(1) (2) (3)

Recession 0.102* 0.066*** 0.036***

(0.047) (0.020) (0.003)

Observation Level Year Industry-Year Firm-Year

Fixed Effects Industry Firm

Observations 12 103 26,718

R2 0.323 0.475 0.540

Panel B: Autocorrelation of TFP Shock Dispersion

Dependent Var: y = Dispersion of ∆ log z

(1) (2) (3)

y−1 0.140 0.058 0.004***

(0.259) (0.083) (0.001)

Observation Level Year Industry-Year Firm-Year

Fixed Effects Industry Firm

Observations 11 94 24,541

R2 0.031 0.595 0.264

Prediction 3. The dispersion of forecast errors is persistent and counter-cyclical, both at
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the firm- and aggregate- levels. Columns 1 and 2 of Panel A of Table C.1 show that dispersion

in forecast errors at aggregate levels is counter-cyclical, while column 3 of the same panel

shows that dispersion in forecast errors at the firm level is counter-cyclical. Specifically, we

see that in all three cases, the dispersion in TFP forecast errors is higher in recessionary

times relative to times of expansion.

Columns 1 and 2 of Panel B of Table C.1 shows that the dispersion in forecast errors

at the aggregate level is persistent, while column 3 of the same panel shows that dispersion

in forecast errors at the firm level is persistent. Unfortunately, our short time series makes

it impossible for us to verify this (in a statistically significant sense) at the aggregate level,

but the coefficient remains positive. Moreover, since this behavior at the firm level is what

ultimately drives our aggregate results, we see this as corroborating model Prediction 4.

Prediction 4. The dispersion of ARPK is counter-cyclical. Table C.2 shows that the

dispersion of the ARPK is higher in recessionary times relative to times of expansion. Un-

fortunately, given the length of our time series is only 12 years, column 1 using observations

at the year level is not statistically significant with a noisy point estimate. However, col-

umn 2 shows that the dispersions at the industry-by-year level is statistically significant and

positive at the 10% level.

Table C.2: Cyclicality of ARPK Dispersions

The table below shows the dispersion of log ARPK depending on whether the economy is in a recession. Observations are
either at the year or industry-by-year level. When using industry-by-year level observations, we include industry fixed effects.
Recessions are defined according to data from the St. Louis Federal Reserve. Where there is no confusion, we drop unnecessary
subscripts. Expectations, actual values, and shocks are winsored at the 1% level. Standard errors are are shown in parentheses
below the estimated coefficient. * p < 0.10, ** p < 0.05, *** p < 0.01.

Fact 5 – Counter-cyclicality of ARPK Dispersions

Dependent Var: Dispersion of ARPK

(1) (2)

Recession -0.047 0.012*

(0.036) (0.007)

Observation Level Year Industry-Year

Fixed Effects Industry

Observations 12 103

R2 0.147 0.841
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Not Intended For Publication

D Details of the Business Outlook Survey
The Ministry of Finance (MoF) and Cabinet Office of Japan conduct the Business Outlook

Survey (BOS) in order to help forecast the economy and inform fiscal planning. The survey

is implemented primarily to evaluate the investment condition of firms and is conducted

separately from other Japanese survey data that have been used by existing researchers such

as the Tankan survey conducted by the Bank of Japan that “aims to provide an accurate

picture of business trends of enterprises in Japan, thereby contributing to the appropriate

implementation of monetary policy”. The MoF uses some information from the BOS in

producing its Monthly Economic Report, which is made publicly available in the form of

aggregated statistics. None of the disaggregated individual firm-level data ever become

public.

The BOS has been conducted from the first quarter of Fiscal Year (FY) 2004 as a General

Statistical Survey under the Statistics Act. The first Statistics Act (Act No. 18 of 1947)

was later revised in Act No. 53, which was passed on May 23, 2007 and implemented in

April 2009. The survey targets are non-financial corporations with paid-in-capital of at least

10 million yen (approx. 100,000 USD) and utilities and financial institutions with paid-in-

capital of at least 100 million yen (approx. 1 million USD). Responses are collected both via

mail and online, and the sampling is based on the corporations covered by quarterly surveys

of Financial Statements Statistics of Corporations by Industry. Industries in the aggregated

survey result are based on Japanese SIC (J-SIC) codes (the 2-digit figure for manufactur-

ing firms and larger “alphabet” group classifications for non-manufacturing industries) and

grouped into 45 MoF industries. This means that some 2-digit J-SIC industries are grouped

into a larger classification for reporting. In all our analyses, we use these MoF industry

definitions as our definition of industries.

The survey is administered as repeated cross sections with stratified sampling across seven
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categories by registered capital and industry to be representative of the Japanese economy.

The seven categories are (1) 0.01 - 0.02 billion, (2) 0.02 - 0.05 billion, (3) 0.05 - 0.1 billion,

(4) 0.1 - 0.5 billion, (5) 0.5 - 1 billion, (6) 1 - 2 billion, (7) over 2 billion. Before FY2010,

the border between (4) and (5) was 0.6 billion yen. In the aggregated results, firms are

grouped by size into three categories: “small-medium” corporations (1, 2, 3), “medium-sized”

corporations (4, 5) and “large” corporations (6, 7). In addition, the Twelfth revision of the

J-SIC (November 2007) was enforced on April 1, 2008, and the stratification by industry

changed from the first quarter (April - June) of FY 2009. Originally, the sampling was

stratified into 43 categories by industry for non-financial corporations.

Table D.1 shows the sampling probabilities for each broad size strata. Due to the high

sampling probability among middle to large firms, we are able to construct a panel. The

overall response rate is nearly 80% on average and nears 90% for large firms. Table D.2 shows

the average annual response rates by year from FY 2005 to FY 2016. Firms are sampled

on an annual basis, aligned with standard fiscal period ends for Japanese firms. Firms that

are sampled are assigned a unique company identifier that is only for use in the MOF. The

disaggregated information and responses at the firm-level do not leave the MoF building and

are stored on air-gapped computers.

The BOS asks both qualitative and quantitative questions quarterly. Surveys start in the

late of first month in each quarter. Firms are required to answer their forecasts and plans

in the middle of the second month in each quarter as a reference date. Qualitative questions

ask about the business condition, domestic economic conditions, employment, and others.

These questions provide options like “up”, “same”, “down”, and “unknown”. For example,

“what is your business condition of the current quarter (the next quarter, the one after next)

compared with the previous one?” Respondents can answer one of the four choices “up, same,

down and unknown.”
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Table D.1: Survey Sampling

The table below shows the sampling procedure for non-financial and financial corporations. Financial corporations include
both banks, insurance companies, and other financial institutions. * means that 60% of overall small corporations selected by
quarterly surveys of Financial Statements Statistics for Corporations by Industry must be sampled and the target number in
the sample is around 6,000 firms. In addition, when the number of total sampled corporations with capital less than 500 million
yen is less than 30 for each stratum, more firms will be additionally sampled to increase the total number in that stratum to
30.

Panel A: Non-Financial Corporations

Corporation Type Size (Yen) Approx. Size (USD) Sample Probability

Large ≥ 2 billion ≥ 18 million 100%

1 - 2 billion 9-18 million 50%

Medium-Sized 0.5 - 1 billion 4.5 - 9 million 50%

0.1 - 0.5 billion 1 - 4.5 million Remaining

Small-Medium 0.01 - 0.1 billion 0.1 - 1 million to hit 6,000 firms*

Panel B: Financial Corporations

Corporation Type Size (Yen) Approx. Size (USD) Sample Probability

Large ≥1 billion 9 million 100%

Medium-Sized 0.5 - 1 billion 4.5 - 9 million 50%

0.1 - 0.5 billion 1 - 4.5 million Remaining

Small-Medium 0.01 - 0.1 billion 0.1 - 1 million 0%

Quantitative questions are about realized and expected values of sales, profits, and invest-

ment spending. A key feature of the survey is that full fiscal year values are always reported

at all horizons. Questions about intra-year forecasts of quantitative items are different ac-

cording to quarter. Regarding sales and current profit, the surveys in the first quarter (April

- June) and second quarter (July - September) asks the first and second half-year forecasts

for the current fiscal year. The survey in the third quarter (October - December) has real-

izations in the first half-year and forecasts for the second half-year for the current fiscal year.

The survey in the fourth quarter (January - March) has realizations in the first half-year and

forecasts for the second half-year for the current fiscal year as well as the first and second

half-year forecasts in the next fiscal year. All surveys ask the semi-annual realizations in the

previous fiscal year.
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Table D.2: Response Rates

The table below shows the average annual response rate of the BOS, which was administered from FY 2005 (April 2005 to
March 2006) to FY 2016 (April 2016 to March 2017).

Fiscal Year Response Rate (%) Response Rate (%) Fiscal Year Response Rate (%) Response Rate (%)

(All Firms) (Large Firms) (All Firms) (Large Firms)

2005 78.9 88.8 2011 78.6 87

2006 78.7 88.1 2012 79.2 88.1

2007 78.6 86.8 2013 80.2 88.4

2008 79.2 87.3 2014 81.0 88.1

2009 79.4 87.2 2015 80.9 88.6

2010 79.0 87.1 2016 80.9 88.1
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