Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
	0000000000000	000000		00000000000

Information Acquisition and Expected Returns: Evidence from EDGAR Search Traffic

Frank Weikai Li¹ Chengzhu Sun²

¹Singapore Management University

²Hong Kong Polytechnic University

ABFER 2021

Introduction • 0	Data, Variables and Summary Statistics	Channels 000000	Alternative Explanations	Conclusion 00000000000
Motivati	on			

- Information acquisition (IA)/dissemination is key to understanding asset price movements and market efficiency.
- Theoretical models of costly IA predict (Grossman and Stiglitz (1980); Verrecchia (1982); Admati (1985)):
 - IA = f((Perceived) Benefits of Info., Cost of Gathering Info.)
 - Holding the cost of IA constant, more investors will choose to become informed when they perceive greater benefits from doing so
 - Analogy: restaurants with long queue should signal delicious food (holding the location and ease of access fixed)

Introduction •O	Data, Variables and Summary Statistics	Channels 000000	Alternative Explanations	Conclusion 00000000000
Motivati	on			

- Information acquisition (IA)/dissemination is key to understanding asset price movements and market efficiency.
- Theoretical models of costly IA predict (Grossman and Stiglitz (1980); Verrecchia (1982); Admati (1985)):
 - IA = f((Perceived) Benefits of Info., Cost of Gathering Info.)
 - Holding the cost of IA constant, more investors will choose to become informed when they perceive greater benefits from doing so
 - Analogy: restaurants with long queue should signal delicious food (holding the location and ease of access fixed)
- Direct empirical evidence is sparse in financial markets
 - IA activity is difficult to observe directly (Veldkamp 2011)

Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00	00000000000000	000000	00	0000000000
Motivati	on (cont'd)			

- Using investors' request of SEC filings through EDGAR system to measure IA :
 - EDGAR system is the main sources of firms' regulatory filings
 - Direct measure of IA for a broad cross-section of firms
 - EDGAR users tend to have higher education levels and are more likely to work in major cities with more accounting/finance jobs (Drake, Quinn, and Thornock 2017), so likely measuring sophisticated investors' IA

• Twofold research questions:

- Q1:What factors drive investors' IA through EDGAR? (Determinant analysis)
- Q2:Does costly IA reveal the value of information?

Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00		000000	00	00000000000
Data				

- EDGAR search volume data from SEC's EDGAR log file database:
 - Information on user's unique IP address (anonymized), timestamp, searched company and type of SEC filings
 - Extensive procedure to eliminate requests made by robots or automated webcrawlers

	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00	•••••	000000	00	00000000000
Data				

- EDGAR search volume data from SEC's EDGAR log file database:
 - Information on user's unique IP address (anonymized), timestamp, searched company and type of SEC filings
 - Extensive procedure to eliminate requests made by robots or automated webcrawlers
- We aggregate the number of unique IPs to firm-month level:
 - $\bullet~$ IP_total as the total number of unique IP addresses searching for all types of SEC filing
 - IP_funtl (IP_10K) counts only those searching for periodic accounting reports (10Q and 8K)and 10-K filing
 - Summary statistics (here)

	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00	•••••	000000	00	00000000000
Data				

- EDGAR search volume data from SEC's EDGAR log file database:
 - Information on user's unique IP address (anonymized), timestamp, searched company and type of SEC filings
 - Extensive procedure to eliminate requests made by robots or automated webcrawlers
- We aggregate the number of unique IPs to firm-month level:
 - IP_total as the total number of unique IP addresses searching for all types of SEC filing
 - IP_funtl (IP_10K) counts only those searching for periodic accounting reports (10Q and 8K)and 10-K filing
 - Summary statistics (here)
- Monthly stock returns from CRSP, accounting data from Compustat, analyst data from I/B/E/S, institutional holdings from Thompson Reuters Financial, and securities lending data from Markit

Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
	000000000000000000000000000000000000000			
Data Lim	nitations			

- EDGAR server log does not capture all the views/downloads that the entire universe of investors are conducting on company filings.
- Other sources of fundamental information including investor relation website, Yahoo! Finance, Bloomberg etc.

Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00		000000	00	00000000000
Data Lin	nitations			

- EDGAR server log does not capture all the views/downloads that the entire universe of investors are conducting on company filings.
- Other sources of fundamental information including investor relation website, Yahoo! Finance, Bloomberg etc.
- EDGAR server possesses several advantages:
 - Some firms forward investors directly to the EDGAR website to obtain their SEC filings.
 - Other sources often condense accounting information into pre-specified bins and lead to misclassification.
 - Investors could better assess firm's future prospects by reading the **qualitative** information and footnote contained in annual report (Loughran and McDonald 2011)

Introduction	Data, variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
T ' C				0000000000

Time Series of Average Number of IPs

Figure: Time Series of Num of IPs for a median firm

Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00	000000000000000000000000000000000000000	000000	00	00000000000
NI I		N / 1		

Number of IPs in Calendar Months

Li and Sun

7 / 37

Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00	000000000000000000000000000000000000000	000000	00	0000000000
$01 \cdot \lambda/k$	at factors drive inv	estors' IA	through ED(2AR2

F

- We develop a simple characteristics-based model of expected IA, motivated by theories:
 - Higher visibility and investor attention attract more IA as these stocks are more accessible in investors' mind
 - Information environment (positive/negative depending on whether public info complement/substitute private IA)
 - Higher valuation uncertainty attract more IA as additional information is more valuable

Introduction	Data, Variables and Summary Statistics	Channels Alternative Explanations	Conclusion
00	000000000000000000000000000000000000000	000000 00	0000000000
Q1: V	Vhat factors drive inve	estors' IA through ED	GAR?

- We develop a simple characteristics-based model of expected IA, motivated by theories:
 - Higher visibility and investor attention attract more IA as these stocks are more accessible in investors' mind
 - Information environment (positive/negative depending on whether public info complement/substitute private IA)
 - Higher valuation uncertainty attract more IA as additional information is more valuable
- Following the literature, we use:
 - Size proxy for investor visibility
 - Trading volume proxy for investor attention (Gervais, Kaniel, and Mingelgrin (2001); Barber and Odean (2008))
 - Analyst coverage proxy for information environment (Hong, Lim, and Stein (2000))
 - Idiosyncratic volatility proxy for valuation uncertainty (Zhang (2006))

Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00	000000000000000	000000	00	0000000000
Cross-S	ectional Determinar	nts of #	of IPs-Results	

• $Log(1 + IP_{i,t}) = \beta_0 + \beta_1 LnME_{i,t} + \beta_2 Coverage_{i,t} + \beta_3 Turnover 12_{i,t} + \beta_4 IVOL_{i,t} + \epsilon_{i,t}$

Panel A: Dependent Variable is $log(1+\# of unique IP adresses searching all EDGAR files)$									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
LnME	0.2713***	0.2356***	0.2475***	0.2943***	0.2992***	0.3015***	0.3026***	0.2608***	0.2628***
	(69.44)	(71.54)	(73.46)	(75.60)	(76.94)	(77.29)	(77.58)	(75.05)	(74.98)
Coverage		0.1310***	0.0422***	0.0382***	0.0321***	0.0332***	0.0360***	0.0337***	0.0399***
		(32.65)	(14.39)	(14.36)	(12.17)	(12.56)	(14.17)	(13.99)	(16.86)
Turnover12			1.0083***	0.7934***	0.7862***	0.7912***	0.7877***	0.8175***	0.8113***
			(30.21)	(29.08)	(30.04)	(29.75)	(30.52)	(30.68)	(30.92)
Ivol				9.1266***	9.0159***	9.0510***	9.0215***	8.5748***	8.0871***
				(34.65)	(33.38)	(33.16)	(32.36)	(31.55)	(31.65)
Mom					-0.0518***	-0.0529***	-0.0507***	-0.0508***	-0.0513***
					(-6.00)	(-6.19)	(-5.99)	(-6.38)	(-6.43)
LnBM						0.0171***	0.0158***	0.0087***	0.0108***
						(8.19)	(7.25)	(4.06)	(5.16)
IO							-0.0299**	0.0657***	0.0575***
							(-1.99)	(4.80)	(4.37)
SP500								0.3634***	0.3591***
								(58.81)	(58.60)
EAM									0.1587***
C	0.5050888	0.00000000	0.5057***	0.0700***	0.0402***	0.0400***	0.0440***	0.0164***	(9.62)
Constant	2.5352***	2.6342***	2.535/***	2.0730***	2.0483***	2.0408***	2.0449***	2.2164***	2.1892***
A . D	(39.20)	(40.68)	(40.19)	(33.45)	(33.37)	(33.32)	(32.62)	(34.26)	(34.03)
Ave.R-sq	0.404	0.483	0.520	0.554	0.558	0.559	0.563	0.574	0.582
N.of Obs.	010051	488129	488129	488123	488123	488123	484835	484835	484835

$\bigcirc 2 \cdot$	Abnormal IA and Eutur	Stock	Returns	
00	00000000000000	000000	00	00000000000
Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion

- Q2: Does costly information acquisition reveal investors' expected payoffs from using the information?
 - In theory, the direction of the information could be either positive or negative
 - In reality due to short-sale constraints, investors more likely engage in costly IA when expected payoff is positive

Q2:	Abnormal IA and Future	e Stock I	Returns	
00	0000000000000	000000	00	0000000000
Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion

- Q2: Does costly information acquisition reveal investors' expected payoffs from using the information?
 - In theory, the direction of the information could be either positive or negative
 - In reality due to short-sale constraints, investors more likely engage in costly IA when expected payoff is positive
- To test:
 - Abnormal number of IPs (AIP) proxy for abnormal IA
 - At month end, we sort stocks into deciles based on AIP and compute the Carhart(1997) four-factor alphas of each decile portfolio over the next month

EW portfolio strategies based on AIP

Figure: 4-factor alpha of EW Decile Portfolios, 2003-2014

• L/S portfolio based on AIP_10K generates 4-factor alpha of 82 basis points (t-stat=4.35).

Figure: 4-factor alpha of VW Decile Portfolios, 2003-2014

Returns to Portfolios Sorted on Raw Number of IPs

- Important to control for the expected level of information acquisition when uncovering investors' expected payoff.
- Large raw number of IPs could be driven by low costs of information acquisition, rather than high benefits (restaurants with long queue due to good location not necessarily delicious food).

	00		000000		
Introduction Data, variables and Summary Statistics Channels Alternative Explanations Conclusion	00	000000000000000	000000	00	00000000000
THE VERTICES TO THE AVERTICES AND ADDRESS AND ADDRESS ADDR	Introduction	Data, variables and Summary Statistics	Channels	Alternative Explanations	Conclusion

Robustness of Portfolio Sorts

)
)
,
)
Ś
)
ś
)
ś
)
Ś
)
5
)
5
)
Ĺ
)
Ĺ
)

• Positive expected return information in AIP is more pronounced among stocks with higher short-sale constraints and arbitrage frictions.

	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
	000000000000000			
Comple	xity of SEC Filings			

			-
	Low AIP_10K	High AIP_10K	High-Low
Large Filing Size	-0.65 (-4.22)	0.59 (3.23)	1.24 (4.88)
Small Filing Size	-0.27	0.38 (2.68)	0.66 (3.30)
Large Filing Size - Small Filing Size	~ /		0.58 (2.29)

Panel A: Double sort on residual file size and AIP_10K

Panel B: Double sort on word count and AIP_10K

	Low AIP_10K	High AIP_10K	High-Low
More word count	-0.48	0.52	1.00
	(-3.29)	(2.39)	(5.06)
Lesser word count	-0.36	0.20	0.56
	(-3.02)	(1.35)	(2.93)
More word count -			0.44
Lesser word count			(1.99)

- Use residual file size and word counts in 10-K to proxy for complexity (You and Zhang 2009; Loughran and McDonald 2014)
- Analogy: restaurants with long queue despite located far away should indicate very delicious food

C				
00	00000000000000000	000000	00	00000000000
Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion

Cross-sectional Variation at IP level

	Low AIP_10K	High AIP_10K	High-Low
Current filings	-0.41	0.21	0.61
	(-2.29)	(1.29)	(3.08)
Both current and historical filings	-0.45 [´]	0.55´	1.00´
	(-4.54)	(3.63)	(5.28)
Both current and historical filings - Current filings	. ,		0.39 (2.53)

Panel A: EDGAR searching for current and historical filings

Panel I	3: I	Daytime	and	Nighttime	searches
---------	------	---------	-----	-----------	----------

	Low AIP_10K	High AIP_10K	High-Low
Nighttime search	-0.39 (-3.25)	0.43	0.82 (4.71)
Daytime search	-0.35	0.45	0.79
Nighttime search - Daytime search	()	()	0.03 (0.25)

Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00	0000000000000	000000	00	0000000000

Fama-MacBeth Regressions

	A	II EDGAR Filir	ıgs	10	10-K, 10-Q and 8-K			10-K		
AIP	(1) 0.0060*** (2.68)	(2) 0.0053*** (2.64)	(3) 0.0050*** (2.88)	(4) 0.0047*** (2.70)	(5) 0.0041*** (2.78)	(6) 0.0042*** (2.94)	(7) 0.0051*** (3.73)	(8) 0.0046*** (3.81)	(9) 0.0044*** (3.74)	
Rev	()	-0.0247***	-0.0283***	()	-0.0245***	-0.0281***	(0.00)	-0.0247***	-0.0284***	
LnME		-0.0006	-0.0014**		-0.0006	-0.0014**		-0.0006	-0.0014**	
LnBM		0.0019	0.0014		0.0019	0.0013		0.0019	0.0013	
Mom		-0.0058	-0.0048		-0.0057	-0.0047		-0.0058	-0.0048	
Ivol		(=0.93)	-0.0015		(=0.94)	-0.0025		(=0.94)	-0.0007	
Turnover12			-0.0094			-0.0091			-0.0089	
ю			(-1.37) 0.0122***			(-1.32) 0.0119***			(-1.28) 0.0114***	
Constant	0.0123**	0.0122	(4.00) 0.0119** (2.22)	0.0122**	0.0122*	(3.94) 0.0120** (2.36)	0.0122**	0.0123*	(3.86) 0.0119** (2.25)	
Ave.R-sq N.of Obs.	0.003 483667	0.030 483667	0.046 480793	0.003 483667	0.030 483667	0.046 480793	0.003 483667	0.030 483667	0.046 480793	

- $Ret_{i,t+1} = \beta_0 + \beta_1 AIP_{i,t} + \gamma X_{i,t} + \epsilon_{i,t}$
- Coefficient of AIP_10K implies a monthly return spread of 105 basis points between extreme deciles

Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00		••••••	00	00000000000
Channels	of Return Predicta	ability		

• Under short-sale constraints, investors rationally allocate more effort toward undervalued firms with large price appreciation potential.

Channels	of Return Predict	ability		
00	00000000000000	00000	00	0000000000
Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion

- Under short-sale constraints, investors rationally allocate more effort toward undervalued firms with large price appreciation potential.
- Two non-mutually exclusive channels to identify mispricing:
 - Investors identify firms with improving fundamentals
 - Investors observe shocks to stock prices that are unwarranted by firms' fundamentals

Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00	0000000000000	00000	00	00000000000

Channel 1: Predicting Fundamental Performance

- Change of quarterly Return-on-Assets (ROA) from four quarters ago
- Standardized unexpected earnings (SUE)
- Monthly forecast revision of analysts' consensus annual EPS forecast
- Results help rule out change of visibility (Merton 1987) or risk-based explanations

Change of ROA				SUE			Forecast Revision		
AIP	AIP_total 0.0017* (1.96)	AIP_fundl 0.0026** (2.51)	AIP_10K 0.0028*** (2.92)	AIP_total 0.0013 (1.42)	AIP_fundl 0.0026** (2.22)	AIP_10K 0.0043*** (3.57)	AIP_total 0.0007*** (2.78)	AIP_fundl 0.0016*** (6.19)	AIP_10K 0.0019*** (5.28)
LROA	-0.3425***	-0.3428***	-0.3430***	(1.12)	(2.22)	(0.07)	(2.10)	(0.15)	(0.20)
LnME	0.0008	0.0008	0.0008	-0.0022*** (-3.73)	-0.0021*** (-3.68)	-0.0021*** (-3.63)	-0.0005	-0.0005	-0.0005
LnBM	-0.0013	-0.0012	-0.0012	-0.0009	-0.0009	-0.0008	-0.0008**	-0.0008**	-0.0009**
Mom	0.0100***	0.0099***	0.0100***	0.0220***	0.0220***	0.0219***	0.0025***	0.0025***	0.0025***
Cov	0.0004	0.0004	0.0005	0.0002	0.0003	0.0003	0.0021***	0.0021***	0.0021***
Turnover12	-0.0118**	-0.0117**	-0.0117**	0.0316***	0.0318***	0.0319***	-0.0082***	-0.0082***	-0.0082***
ю	(-2.43) -0.0010	(-2.42)	(-2.43) -0.0013	(3.45) -0.0093***	(3.47)	(3.47) -0.0096***	(-3.15) 0.0049***	(-3.16) 0.0051***	(-3.17) 0.0052***
IVOL	(-0.48) -0.0777	(-0.51) -0.0773	(-0.61) -0.0775	(-3.75) 0.2287**	(-3.87) 0.2330**	(-3.97) 0.2365**	(5.47) -0.1111**	(5.61) -0.1115**	(5.73) -0.1138**
Time FE Adj.R-sq N.of Obs.	(-1.41) yes 0.056 128504	(-1.41) yes 0.056 128504	(-1.42) yes 0.056 128504	(2.29) yes 0.023 150712	(2.32) yes 0.023 150712	(2.34) yes 0.023 150712	(=2.35) yes 0.002 348130	(-2.37) yes 0.002 348130	(-2.41) yes 0.002 348130

Channel 2: Mutual Fund Outflows Induced Underpricing

- Mutual fund outflow-induced fire-sale as exogeneous shock to stock price
- Outflow is calculated following Edmans, Goldstein, and Jiang (2012)

Figure: Effect of Mutual Funds Hypothetical Sales on Stock Prices

		nd Summary Sta	Channels	Alternative Explanations	Conclusion
00	0000000000	00000	000000	00	0000000000

Channel 2: Mutual Fund Outflows Induced Underpricing

• $dAIP_{i,q+1} = \beta_0 + \beta_1 Outflows_{i,q} + \beta_2 X_{i,q} + \epsilon_{i,q+1}$

	dAIP_total		dAIP	_funtl	dAIP_10K	
	(1)	(2)	(3)	(4)	(5)	(6)
Outflows	-2.4242***	-1.7256***	-1.9145***	-1.3527***	-1.9303**	-1.5459**
	(-4.02)	(-4.92)	(-3.36)	(-3.27)	(-2.06)	(-2.31)
LnME	. ,	-0.0091****		-0.0094***		-0.0093***
		(-6.03)		(-5.68)		(-5.81)
LnBM		0.0013		-0.0014		-0.0017
		(0.56)		(-0.57)		(-0.75)
Coverage		0.Ò080***		0.0076***		0.0087* [*] **
-		(4.50)		(4.28)		(3.70)
lvol		-1.8233***		-1.9963***		-1.8354***
		(-6.48)		(-7.68)		(-6.19)
Turnover12		-0.0015		0.0158		0.0203
		(-0.09)		(1.13)		(1.56)
IO		-0.0023		-0.0141**		-0.0143**
		(-0.36)		(-2.54)		(-2.28)
Mom		-0.0336***		-0.0370***		-0.0398***
		(-5.17)		(-5.70)		(-7.68)
Constant	0.0007	0.0901***	0.0050**	0.1036***	0.0049**	0.Ò967* [*] **
	(0.29)	(7.79)	(2.09)	(8.54)	(2.06)	(6.54)
Ave.R-sq	0.001	0.03Í	0.001	0.034	0.001	0.026
N.of Obs.	131863	131041	131863	131041	131863	131041

	C		1 8 4 *			
00	00000	00000000	00	000000	00	0000000000
Introduction	Data, Var	iables and Su	mmary Statistics	Channels	Alternative Explanations	Conclusion

EDGAR Search and Mispricing

- If investors already know which firms are potentially undervalued even before analyzing SEC filings, what is the incremental value of acquiring information through EDGAR?
- Conjecture: acquiring fundamental information through EDGAR could help investors identify truely mispriced stocks.
- Use the composite mispricing measure constructed by Stambaugh, Yu, and Yuan (2015) to identify mispricing

ED CAD	~ .				
00	000000000000	000	000000	00	00000000000
Introduction	Data, Variables and S	ummary Statistics	Channels	Alternative Explanations	Conclusion

EDGAR Search and Mispricing

- If investors already know which firms are potentially undervalued even before analyzing SEC filings, what is the incremental value of acquiring information through EDGAR?
- Conjecture: acquiring fundamental information through EDGAR could help investors identify truely mispriced stocks.
- Use the composite mispricing measure constructed by Stambaugh, Yu, and Yuan (2015) to identify mispricing

• Accessing EDGAR filings could help investors identify truly mispriced stocks among those with similar mispricing measures.

Figure: Two-way Independent Sorts on AIP and Composite Mispricing Measure

00	0000000000000	000000	••	00000000000
Ruling of	out alternative expla	anations		

- Firm Events(here)
- Breadth of Ownership and Extreme Returns (here)
- News Coverage(here)
- Attention-Driven Price Pressure (here)
- Investor Recognition
- Omitted risk factors (here)

Introduction	Data, Variables and Su	mmary Statistics	Channels	Alternative Explanations	Conclusion
00	0000000000000	000	000000	0•	00000000000
EDCAD (∼ ।	1.1.	- 10		

EDGAR Search and Investor Trading

	Net Purc	Net Purchases by Mutual Funds			Retail Order Imbalance			
AIP_total	(1) 0.0030 (0.52)	(2)	(3)	(4) 0.0090*** (7.16)	(5)	(6)		
AIP_funtl		0.0046 (0.77)		(0.0079*** (6.89)			
AIP_10K		. ,	0.0065 (1.00)		. ,	0.0076*** (7.81)		
LnME	-0.0003 (-1.07)	-0.0003 (-1.08)	-0.0003	-0.0002 (-0.20)	-0.0002 (-0.22)	-0.0002 (-0.25)		
LnBM	0.0003 (0.32)	0.0004 (0.38)	0.0003 (0.34)	0.0045*** (4.95)	0.0045*** (4.96)	0.0044*** (4.84)		
Coverage	-0.0008	-0.0007	-0.0005	-0.0025***	-0.0026***	-0.0027***		
IVOL	-0.1965*	-0.1975*	-0.2012*	-0.3268***	-0.3257***	-0.3243***		
Turnover12	-0.0069**	-0.0068**	-0.0064**	-0.0350*** (-12.83)	-0.0351*** (-12.79)	-0.0352*** (-12.75)		
ю	0.0739*** (2.86)	0.0736*** (2.90)	0.0728*** (2.92)	0.0109*** (3.01)	0.0117*** (3.26)	0.0124*** (3.42)		
MOM	0.0066*** (6.44)	0.0067*** (6.29)	0.0065*** (7.74)	-0.0030 (-1.67)	-0.0031* (-1.73)	-0.0031* (-1.70)		
Constant	0.0048 [*] (1.95)	0.0050* (1.91)	0.0053* (1.96)	0.0469*** (6.63)	0.0467*** (6.61)	0.0465*** (6.58)		
Ave.R-sq N.of Obs.	0.113 131795	0.113 131795	0.113 131795	0.010 184715	0.010 184715	0.010 184715		

- More information acquisition activities through the EDGAR system leads to significant net buying from retail investor, but not mutual funds
- EDGAR searches mainly capture individual investors' information acquisition

	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00	00000000000000	000000	00	•0000000000
Conclus	ion			

- Use a novel dataset containing investors' access of EDGAR filings to measure IA.
- Abnormal number of IPs searching for EDGAR filings strongly predict future returns and fundamentals
- Provide direct evidence supporting theoretical models of endogenous information acquistion.
- Highlights the promise of using the collective wisdom of investors to study important economic outcomes.

Eirm	overte	Droadth	of Owno	rchin on	d Extrama	Doturne
00	0000	00000000000	0	00000	00	000000000
Introduction	Data, V	ariables and Summary S	Statistics Cl		Alternative Explanations	Conclusion

	i eve	nis,	Diea	iutii (where	sub-	anu	ΣXU	eme	Rell	ims
_											
-					 						

	AIP_total	AIP_tundi	AIP_10K	AIP_total	AIP_tundi	AIP_10K	AIP_total	AIP_tundi	AIP_IUK
AIP	0.0041**	0.0045***	0.0043***	0.0042**	0.0047***	0.0043***	0.0053***	0.0047***	0.0046***
	(2.45)	(3.09)	(3.81)	(2.49)	(3.10)	(3.94)	(3.38)	(3.14)	(4.20)
Rev	-0.0312***	-0.0309***	-0.0312***	-0.0316***	-0.0312***	-0.0315***	-0.0352***	-0.0351***	-0.0358***
	(-4.26)	(-4.23)	(-4.27)	(-4.34)	(-4.29)	(-4.34)	(-4.46)	(-4.48)	(-4.54)
LnME	-0.0018***	-0.0018***	-0.0018***	-0.0018***	-0.0018***	-0.0018***	-0.0018***	-0.0018***	-0.0017***
	(-3.69)	(-3.74)	(-3.72)	(-3.69)	(-3.72)	(-3.72)	(-3.67)	(-3.71)	(-3.73)
LnBM	0.0016	0.0015	0.0015	0.0016	0.0015	0.0015	0.0015	0.0014	0.0014
	(1.50)	(1.44)	(1.46)	(1.52)	(1.46)	(1.47)	(1.48)	(1.43)	(1.41)
Mom	-0.0065	-0.0064	-0.0064	-0.0065	-0.0064	-0.0063	-0.0065	-0.0065	-0.0064
	(-1.15)	(-1.14)	(-1.12)	(-1.14)	(-1.12)	(-1.11)	(-1.16)	(-1.16)	(-1.14)
Ivol	0.0169	0.0131	0.0174	0.0240	0.0209	0.0220	-0.0636	-0.0692	-0.0768
	(0.24)	(0.18)	(0.24)	(0.34)	(0.29)	(0.31)	(-0.69)	(-0.74)	(-0.78)
Turnover12	-0.0087	-0.0082	-0.0084	-0.0091	-0.0086	-0.0089	-0.0085	-0.0079	-0.0080
	(-1.25)	(-1.18)	(-1.19)	(-1.29)	(-1.22)	(-1.24)	(-1.22)	(-1.13)	(-1.14)
IO	0.0118***	0.0113***	0.0110***	0.0120***	0.0115***	0.0112***	0.0120***	0.0114***	0.0111***
	(3.58)	(3.52)	(3.40)	(3.55)	(3.50)	(3.37)	(3.56)	(3.51)	(3.38)
SUE	0.0028***	0.0028***	0.0027***	0.0028***	0.0028***	0.0027***	0.0027***	0.0028***	0.0027***
	(8.48)	(8.52)	(8.57)	(8.57)	(8.62)	(8.64)	(8.49)	(8.53)	(8.54)
EAM	0.0033***	0.0035***	0.0028**	0.0031**	0.0033**	0.0028**	0.0031**	0.0032**	0.0027**
	(2.61)	(2.69)	(2.33)	(2.55)	(2.60)	(2.31)	(2.51)	(2.56)	(2.27)
Upgrade	0.0023***	0.0023***	0.0025***	0.0023***	0.0023***	0.0024***	0.0024***	0.0024***	0.0025***
	(2.76)	(2.76)	(2.95)	(2.79)	(2.77)	(2.94)	(2.89)	(2.90)	(3.03)
Downgrade	-0.0010	-0.0011	-0.0013	-0.0009	-0.0010	-0.0012	-0.0013	-0.0012	-0.0015*
	(-1.00)	(-1.16)	(-1.38)	(-0.90)	(-1.03)	(-1.29)	(-1.54)	(-1.36)	(-1.78)
DM	0.0030***	0.0031***	0.0031***	0.0031***	0.0032***	0.0031***	0.0031***	0.0031***	0.0031***
	(2.78)	(2.77)	(2.75)	(2.95)	(2.96)	(2.86)	(2.87)	(2.89)	(2.83)
num_8K				-0.0010	-0.0012*	-0.0004	-0.0010	-0.0012*	-0.0004
				(-1.55)	(-1.80)	(-0.64)	(-1.51)	(-1.76)	(-0.63)
dBreadth							0.0722	0.0825	0.0836
							(0.94)	(1.06)	(1.11)
Maxret							-0.0308	-0.0317	-0.0346
							(-1.52)	(-1.60)	(-1.53)
Constant	0.0121**	0.0124**	0.0123**	0.0125**	0.0128**	0.0125**	0.0123**	0.0127**	0.0124**
	(2.46)	(2.52)	(2.50)	(2.50)	(2.56)	(2.53)	(2.41)	(2.48)	(2.46)
Ave.R-sq	0.053	0.053	0.053	0.054	0.054	0.053	0.057	0.057	0.057
N of Obs	443261	443261	443261	443261	443261	443261	442698	442698	442698

Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00	00000000000000	000000	00	000000000000000000000000000000000000000
D 11 11		× .		

Predicting Long-horizon Returns

	Ret(2,4)	Ret(5,7)	Ret(8,13)	Ret(14,25)
AIP_10K	0.0102***	0.0068**	0.0150	0.0175
	(2.95)	(2.05)	(1.57)	(0.64)
Rev	-0.0072	0.0037	0.0033	-0.0451
	(-0.53)	(0.21)	(0.11)	(-0.93)
LnME	-0.0023	-0.0013	-0.0015	-0.0048
	(-1.64)	(-1.03)	(-0.61)	(-1.11)
LnBM	0.0046*	Ò.0041	0.0118**	0.0197*
	(1.72)	(1.57)	(2.36)	(1.79)
Mom	-0.0193	-0.0117	-0.0300*	-0.0421
	(-1.24)	(-0.88)	(-1.75)	(-1.26)
lvol	0.0407	-0.0184	0.2652	0.5759
	(0.20)	(-0.10)	(0.73)	(0.84)
Turnover12	-0.0165	-0.0312*	-0.0451	-0.0488
	(-0.92)	(-1.95)	(-1.53)	(-1.08)
IO	0.0116	0.0152**	0.0414**	0.0956**
	(1.63)	(2.18)	(2.42)	(2.47)
Constant	0.0370**	0.0281*	0.0451	0.0947
	(2.41)	(1.72)	(1.53)	(1.51)
Ave.R-sq	0.051	0.044	0.036	0.035
N.of Obs.	469185	456068	425505	360584

• Return predictability of AIP not from transitory price pressure that reverses subsequently (Da, Engelberg and Gao, 2011) (back to altern)

	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00	0000000000000	000000	00	000000000000

Controlling for News Coverage and News Sentiment

	(1)	(2)	(3)	(4)	(5)	(6)
AIP_total	0.0043**			0.0041**		
	(2.33)			(2.40)		
AIP_funtl		0.0040**			0.0044***	
		(2.13)			(2.86)	
AIP_10K			0.0050***			0.0052***
			(3.65)			(3.95)
REV	-0.0250***	-0.0232***	-0.0252***	-0.0270***	-0.0267***	-0.0276***
	(-2.95)	(-2.83)	(-2.96)	(-3.21)	(-3.18)	(-3.24)
LnME	-0.0013***	-0.0013**	-0.0012**	-0.0015***	-0.0016***	-0.0015***
	(-2.62)	(-2.60)	(-2.27)	(-2.67)	(-2.74)	(-2.72)
LnBM	0.0011	0.0012	0.0012	0.0006	0.0005	0.0003
	(1.03)	(1.05)	(1.05)	(0.59)	(0.45)	(0.27)
MOM	-0.0053	-0.0051	-0.0052	-0.0050	-0.0049	-0.0046
	(-0.84)	(-0.81)	(-0.81)	(-0.75)	(-0.74)	(-0.69)
IVOL	0.1334*	0.1171	0.1363*	0.1338*	0.1290*	0.1396*
	(1.66)	(1.52)	(1.68)	(1.73)	(1.69)	(1.74)
Turnover12	-0.0083	-0.0093	-0.0070	-0.0116	-0.0110	-0.0105
	(-0.96)	(-1.01)	(-0.82)	(-1.11)	(-1.08)	(-1.05)
10	0.0082**	0.0084***	0.0070**	0.0110***	0.0111***	0.0105***
	(2.56)	(2.82)	(2.12)	(3.74)	(3.71)	(3.61)
News Coverage	-0.0004	-0.0005	-0.0005			
	(-0.66)	(-0.71)	(-0.72)			
News Sentiment				0.0161***	0.0161***	0.0171***
				(3.88)	(3.86)	(3.48)
Constant	0.0153***	0.0155***	0.0153***	0.0122**	0.0122**	0.0115**
	(2.88)	(2.92)	(2.91)	(2.26)	(2.27)	(2.10)
Ave.R-sq	0.055	0.055	0.055	0.056	0.055	0.056
N.of Obs.	264816	264816	264816	264816	264816	264816

Control for news coverage and news sentiment using RavenPack (back to altern)

Li and Sun

30 / 37

Dradiati	ar Earninga Annau	opport E	Daturna	
00	0000000000000	000000	00	00000000000
	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion

Predicting	Earnings A	Annoucement	R	Returns
------------	------------	-------------	---	---------

	Market-adjusted $CAR(-1,+1)$		DGTW-adjusted CAR(-1,+1)			
	AIP_total	AIP_fundI	AIP_10K	AIP_total	AIP_fundI	AIP_10K
AIP	0.0020	0.0025*	0.0036***	0.0019	0.0024*	0.0033***
	(1.39)	(1.90)	(2.74)	(1.45)	(1.93)	(2.93)
Rev	-0.0001	0.0003	0.0002	0.0000	0.0004	0.0004
	(-0.02)	(0.13)	(0.08)	(0.01)	(0.17)	(0.19)
LnME	0.0001	0.0000	0.0001	0.0003	0.0003	0.0003
	(0.17)	(0.05)	(0.16)	(0.54)	(0.46)	(0.52)
LnBM	0.0025**	0.0024**	0.0022***	0.0023**	0.0022**	0.0021**
	(2.56)	(2.61)	(2.71)	(2.55)	(2.61)	(2.67)
Mom	-0.0021	-0.0020	-0.0019	-0.0013	-0.0013	-0.0012
	(-1.54)	(-1.48)	(-1.46)	(-1.25)	(-1.18)	(-1.13)
Turnover12	-0.0188***	-0.0193***	-0.0203***	-0.0208***	-0.0211***	-0.0220***
	(-2.68)	(-2.95)	(-3.65)	(-3.83)	(-4.10)	(-5.12)
Ivol	-0.0395	-0.0420	-0.0402	-0.0219	-0.0244	-0.0228
	(-1.17)	(-1.30)	(-1.11)	(-0.54)	(-0.63)	(-0.53)
10	0.0153***	0.0157***	0.0158***	0.0147***	0.0150***	0.0151***
	(6.75)	(6.98)	(7.27)	(6.53)	(6.66)	(6.93)
Constant	-0.0041	-0.0037	-0.0049	-0.0051	-0.0048	-0.0058
	(-1.37)	(-1.32)	(-1.36)	(-1.39)	(-1.36)	(-1.36)
Ave.R-sq	0.051	0.051	0.051	0.050	0.050	0.050
N.of Obs.	121929	121929	121929	121530	121530	121530

• 27% of abnormal return by AIP is concentrated on the three-day earnings window (back to

Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00		000000	00	000000000000
Double s	orts on Firm Size ar	id Abnori	mal Number o	f IPs

Panel A: Equal-weighted 4 factor alpha					
	Small firms	2	3	4	Large firms
Low AIP	-0.51	-0.14	-0.27	-0.17	-0.19
2	-0.19	-0.17	-0.22	-0.04	-0.23
3	-0.13	0.09	-0.04	0.01	-0.02
4	0.17	0.11	0.10	0.16	0.20
High AIP	0.64	0.22	0.16	0.20	-0.26
High-Low	1.14	0.36	0.43	0.37	-0.07
t-stat	5.38	1.72	2.01	1.68	-0.26
	Panel B: Va	lue-weight	ted 4 facto	or alpha	
	Small firms	2	3	4	Large firms
Low AIP	-0.57	-0.20	-0.27	-0.19	-0.20
2	-0.28	-0.17	-0.21	-0.04	-0.19
3	-0.15	-0.04	-0.02	-0.01	-0.02
4	-0.03	0.09	0.11	0.15	0.23
High AIP	0.41	0.02	0.19	0.21	-0.30
High-Low	0.98	0.22	0.46	0.40	-0.10
t-stat	4.80	0.97	2.18	1.78	-0.37

Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00	0000000000000	000000	00	000000000000

Alternative Specifications of AIP

	E\//	1/1//
		~ ~ ~ ~
Model (9) of Expected IP Regression	0.656	0.043
	(3.95)	(0.22)
Nonlinear functional form of Expected IP Regression	0.689	0.552
	(4.30)	(2.39)
Change in AIP relative to 12 months average	0.883	0.388
	(4.82)	(1.44)
Control for lagged $\#$ of IPs in Expected IP Regression	0.698	0.508
	(5.44)	(2.03)

 The last two specifications are equivalent to using the innovation in # of IP to predict returns, suggesting the results unlikely explained by (omitted) risk factors

Introduction	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
				000000000000

Which Types of EDGAR Filings

	(1)	(2)
AIP_total	-0.0014	-0.0003
AIP_fundl	(-0.63) 0.0022 (1.11)	(-0.17) 0.0012 (0.70)
AIP.10K	0.0049***	0.0043***
Rev	(3.96)	(4.02) -0.0287***
LnME		(-3.80) -0.0014**
LnBM		(-2.52) 0.0013
Mom		(1.24) -0.0048
Ivol		(-0.88) -0.0027
Turnover12		(-0.04) -0.0088
ю		(-1.27) 0.0112***
Constant	0.0122**	(3.84) 0.0120** (2.34)
Ave.R-sq N.of Obs.	0.005 483667	0.048 480793

 Return predictability of AIP comes mainly from those searching for firms' annual report 10-K, which are more difficult to analyze and digest compared to other types of financial filings

Introduction 00	Data, Variables and Summary Statistics	Channels 000000	Alternative Explanations	Conclusion 0000000000000
IPs or Se	earches?			

- Number of searches is dominated by a small fraction of investors who access EDGAR very frequently, and their activities are over-represented (Drake, Roulstone, and Thornock 2015)
- Private information is dispersed among a large group of market participants (Hayek (1945))

	All EDG	AR Files	10K, 1	0Q, 8K	10	Ж
Asearch	0.0014	-0.0004	0.0020*	-0.0024	0.0033***	-0.0039
AIP	(1.54)	0.0055**	(1.90)	0.0062***	(3.93)	0.0084***
Rev	-0.0283***	-0.0284***	-0.0283***	-0.0284***	-0.0284***	-0.0289***
LnME	(-3.73) -0.0014**	(-3.76) -0.0014***	(-3.74) -0.0014**	(-3.77) -0.0014**	(-3.75) -0.0014***	(-3.75) -0.0013***
LnBM	(-2.59) 0.0013	(-2.63) 0.0014	(-2.61) 0.0014	(-2.52) 0.0014	(-2.64) 0.0012	(-3.11) 0.0015*
Mom	(1.26) -0.0049	(1.31) -0.0048	(1.34) -0.0048	(1.36) -0.0049	(1.13) -0.0048	(1.71) -0.0049
lvol	(-0.89)	(-0.88)	(-0.87)	(-0.89) -0.0033	(-0.86)	(-1.15)
T	(0.07)	(-0.02)	(0.09)	(-0.05)	(0.05)	(-0.03)
Turnover12	(-1.46)	-0.0096 (-1.39)	-0.0095	(-1.33)	-0.0095	(-1.33)
ю	0.0127*** (4.10)	0.0123*** (4.04)	0.0122*** (4.06)	0.0115*** (3.86)	0.0120*** (4.03)	0.0109*** (3.57)
Constant	0.0115** (2.26)	0.0120** (2.35)	0.0116** (2.29)	0.0119** (2.33)	0.0117** (2.32)	0.0120*** (3.19)
Ave.R-sq N.of Obs.	0.046 480793	0.047 480793	0.046 480793	0.048 480793	0.046 480793	0.049 480793

Within-Industry Return Predictability of AIP

• Return predictability of AIP exists in 10 out of 12 Fama-French Industries.

	Data, Variables and Summary Statistics	Channels	Alternative Explanations	Conclusion
00	0000000000000	000000	00	0000000000

Summary Statistics-Full Sample

Panel A: Summary Statistics					
Variable	Mean	Median	STD	P25	P75
	Number of	^r IP searching t	for EDGAR filin	ngs	
IP_total	155	94	317	56	159
IP_funtl	107	64	213	37	111
IP_10K	60	32	135	17	60
IP_10Q	37	24	61	13	42
IP_8K	33	19	79	10	36
	St	ock-level chara	octeristics		
LnME	6.16	6.08	1.98	4.74	7.47
LnBM	-0.66	-0.56	0.84	-1.11	-0.12
Mom	16.67%	7.64%	57.57%	-12.06%	31.78%
Coverage	1.49	1.59	1.01	0.59	2.30
IVOL	0.02	0.02	0.02	0.01	0.03
Turnover12	0.17	0.12	0.19	0.05	0.21
IO	55.30%	59.15%	31.41%	28.92%	80.58%
dROA (%)	0.032	-0.018	4.844	-0.684	0.599
FREV (%)	-0.106	-0.001	22.185	-0.070	0.052
Outflows	-0.10%	-0.05%	0.19%	-0.11%	-0.02%
Lendable Supply	13.96%	14.46%	8.98%	5.85%	20.89%
DCBS	1.48	1.00	1.22	1.00	1.17

• 10-K is the most frequently searched type of SEC filings (back to data)

