

Dividend Policy in the Era of Big Data

Yancheng Qiu

HKUST Business School

Tao Shu

School of Management and Economics
Shenzhen Finance Institute
Chinese University of Hong Kong, Shenzhen

Shujing Wang

School of Economics and Management Tongji University

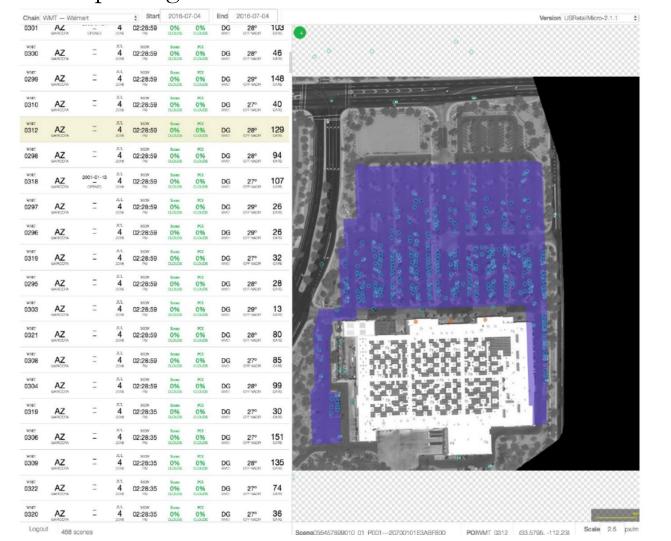
ABFER 8th Annual Conference 2021

Alternative Data and Finance

- Alternative data, or big data, refers to large and complex data that cannot be collected or processed by traditional methods.
- Existing literature shows that alternative data can play important role in financial markets and asset management.
 - > Chen et al. (2014): Seeking alpha.
 - Froot et al. (2017): Customer activity measured mobile devices.
 - ➤ Da et al. (2017): Industrial electricity usage.
 - Today, over half of global hedge funds use alternative data.

Alternative Data and Corporate Policies

- Alternative data can also have substantial impact on corporate policies.
 - The severe information asymmetry between corporate insiders and outside investors has large impact on corporate policies.
 - Alternative data can help outside investors close their information gap relative to firm managers and more effectively monitor the firms' operations.
 - > Only limited evidence to this date.
- We examine if the emergence of alternative data affects firms' corporate policies through alleviated information asymmetry.



Satellite-Based Parking Lot Traffic

Parking lot of a Walmart store in Arizona at 2:29 pm on July 4, 2016. The number of cars on this Walmart store's parking lot is 129.

Satellite Data and Dividend Policies

- Staggered releases of satellite-based parking lot traffic data by two vendors, RS Metrics and Orbital Insight, for 142 public retail firms during 2011 to 2017.
 - ➤ Zhu (2019) provides novel evidence that the satellite data contain valuerelevant information, improve information transparency, and help outside investors monitor managers.
- Why do we examine satellite data release and dividend policy?
 - Dividend is major corporate policy and a puzzle especially for U.S. firms (Allen and Michaely 1997).
 - The three major dividend theories center on information asymmetry and agency costs.
 - ➤ Provides a unique setting for us to investigate both the effect of alternative data and the dividend theories.

Main Findings

- Difference-in-differences regressions show that retail firms substantially increase dividend payouts after their satellite-based traffic data are released.
 - The increase in dividends is concentrated in firms with poor investment opportunities.
 - Support the "outcome model": Outside investors, concerned about agency problem, push managers to pay dividends which reduces the amount of free cash flows and in turn agency costs.
- Further analyses also support the "outcome" model of dividend policy.
 - The effect of satellite data release is stronger when firms have more entrenched managers, less severe financial constraints, or higher ownerships by sophisticated investors.
 - Firms finance the dividend increase by cutting general investment while their "good" investment (R&Ds) remains intact.

Data and Sample Construction

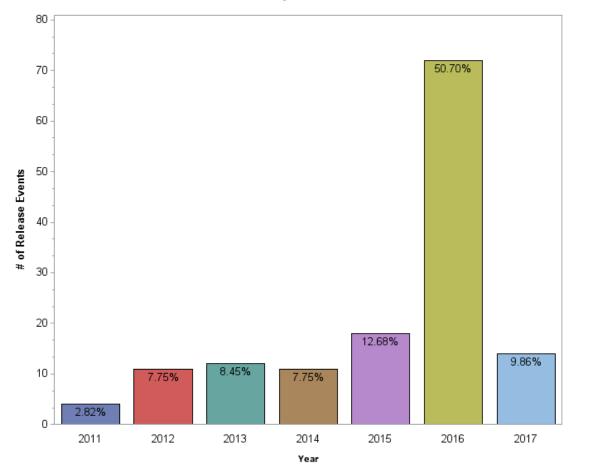
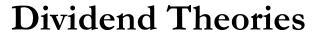

- Satellite imagery data of parking lot traffic for U.S. retailers.
 - RS Metrics (RS) is the first U.S. data vendor that releases real-time parking lot traffic data based on satellite image from the first quarter of 2011.
 - ➤ Orbital Insight (OB), RS' most prominent competitor, started to release similar data from the second quarter of 2015.
 - Daily store- and firm-level parking lot car counts and parking lot utilization for major U.S. retailers.
- Zhu (2019): The satellite data releases increase the retail firms' stock price efficiency, reduce the profitability of insider trading, and reduce investment inefficiency.
 - The satellite data serve as an additional mechanism for outside investors to monitor firm managers.
 - ➤ Katona et al. (2020) find that the satellite data contains value-relevant information about firm performance.
 - > We verify these findings in our sample (Appendix).

Figure 2: Staggered Data Releases

Satellite data releases for 142 U.S. retail firms from 2011 to 2017.



Data and Sample Construction

- Difference-in-differences analysis.
 - > We select control firms as those in the same industry but not covered by either vendor.
 - Delete firms in the first two years from IPOs (Fama and French 1993).
 - ➤ Other data sources; CRSP, COMPUSTAT, Thomson Reuter's 13F, I/B/E/S, Execucomp, ISS/RiskMetrics.
- 6,323 firm-years from 2009 to 2018: 1,211 firm-years for treated firms; 5,112 firm-years for control firms.
 - Dividend yield: Cash dividend scaled by market value of common equity, average 1.09% for sample firms.
 - Dividend payout ratio: Cash dividend scaled by earnings, average 21.6% for sample firms.
 - > 43.4% of sample firms pay dividends.

- In a frictionless world, dividend policy is irrelevant to firm value (Modigliani and Miller 1958).
 - However, firms follow deliberately designed dividend policies (Black 1976).
 - Dividend is especially puzzling for U.S. firms because shareholders pay higher taxes on dividends than on capital gains (Allen and Michaely 1997).

• "Outcome model" (La Porta et al. 2000)

- Decause of agency problem, firm managers have incentives to misuse their firms' profits. As a result, outside investors will push managers to pay dividends which reduces the amount of free cash flows.
- This phenomenon concentrates in firms with poor investment opportunities where resources are likely to misused.
- ➤ Predicts an **increase** in dividends for event firms: Satellite data provides a new source of timely and value-relevant information that helps outsider investors better monitor firm managers.

Dividend Theories

• "Substitute model" (e.g., Myers 2000).

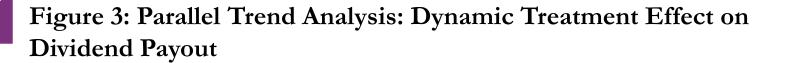
- Also based on the premise of agency problem.
- Managers want to establish a reputation for not expropriating outside investors so that they can raise financing at a low cost. Dividend serves as a costly commitment of managers to not misuse corporate earnings.
- ➤ Predicts a decrease in dividend for event firms: Satellite data reduces information asymmetry in turn the need for managers' costly commitment.

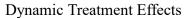
• "Signaling model" (e.g., Grullon et al. 2002).

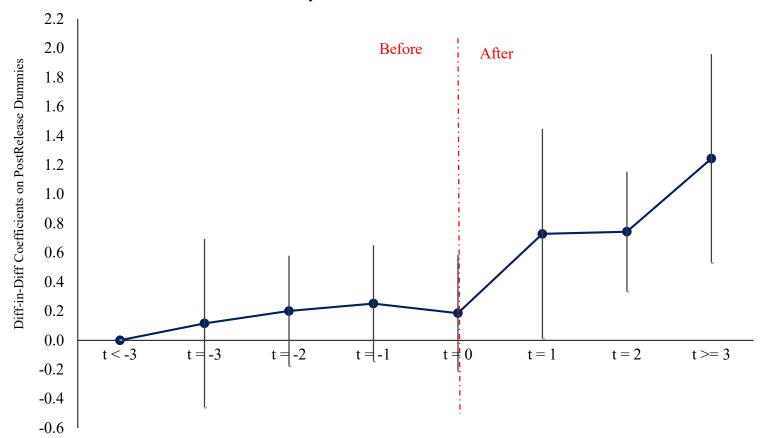
- Decause of information asymmetry, managers of high-quality firms use dividends as a costly signal of private information about future cash flows or risk.
- Predicts a decrease in dividend for event firms: Satellite data reduces information asymmetry and in turn firms' incentives of costly signaling.

Table 2: Difference-in-Differences Regression of Dividend Payout on Satellite Data Release


	Dividend	Yield (%)	Div/I	Ξ (%)
_	(1)	(2)	(3)	(4)
PostRelease	0.630***	0.663***	10.315**	11.009**
	(3.39)	(3.26)	(2.43)	(2.53)
Size		0.019		-0.452
· ·		(0.19)		(-0.16)
Leverage		-0.866**		-12.304
_		(-2.22)		(-1.13)
Tobin Q		-0.058		-0.618
		(-1.35)		(-0.59)
Profitability		0.565		-3.337
		(1.16)		(-0.41)
Tangibility		-0.872		-3.058
		(-1.40)		(-0.26)
Cash		0.286		13.825
		(0.54)		(1.19)
InstOwn		0.099		2.813
		(0.73)		(0.74)
AnalystCoverage		0.065		3.418***
		(0.97)		(2.72)
RetainedEarn		-0.004		-0.123
		(-0.79)		(-0.96)
RetVol		-1.749***		-21.728
		(-3.25)		(-1.52)
Firm FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
Observations	6,229	6,089	6,010	5,880
$Adj. R^2$	0.488	0.506	0.383	0.390




	Divider	nd Yield (%)	Div/E (%)		
	(1)	(2)	(3)	(4)	
$PostRelease_{\{i, -2 < = t < = -1\}}$	0.184	0.169	2.109	2.039	
	(1.18)	(1.07)	(0.57)	(0.58)	
$PostRelease_{\{i,\ 0 < = t < = 1\}}$	0.372**	0.387**	4.997	5.801	
	(2.19)	(2.11)	(0.98)	(1.14)	
$PostRelease_{\{i, t>=2\}}$	0.825***	0.882***	13.441**	14.489**	
,	(3.68)	(3.93)	(2.14)	(2.46)	
Controls	No	Yes	No	Yes	
Firm FE	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	
Observations	6,229	6,089	6, 010	5,880	
$Adj. R^2$	0.487	0.505	0.383	0.390	



Year Before or After the Release of Satellite Data

Robustness Tests

• Pseudo firm or pseudo event analyses.

- ➤ Pseudo treated firms: Randomly chosen control firms whose satellite data have never been released by the end of 2018.
- Pseudo treatment events: Assume that the onset of satellite data release occurs 10 years before it actually started.

• Alternative sample constructions.

- > Treated firms only.
- Matched firms using the PSM approach.
- Matched firms using 2-digit SICs
- Exclude firms with negative earnings.

Alternative dividend measures.

- Dummy of paying dividends.
- Dividend/Asset ratio.

Outcome Model and Investment Opportunities

- As emphasized by La Porta et. al. (2000), investment opportunity is critical in the outcome model.
 - Dutside investors will push firms with poor investment opportunities to pay dividends so that the cash will not otherwise be wasted.
 - For firms with good investment opportunities, outside investors are willing to accept low dividends to support high reinvestment rates.
- The outcome model predicts that the increase in dividends will be much larger among firms with poor investment opportunities than among firms with good investment opportunities.
 - Measures of growth opportunities: Sales growth and Q.

Table 5: Satellite Data Release and Dividend Payout: The Role of Investment Opportunities

		Dividend '	Yield (%)		Div/E (%)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
PostRelease x LowSG	0.462**	0.461**		•	11.518***	11.141***		
	(2.52)	(2.53)			(2.67)	(2.60)		
LowSG	0.152***	0.182***			2.889**	3.542***		
	(3.00)	(3.36)			(2.18)	(2.61)		
PostRelease x LowQ			0.536**	0.548**			15.213***	15.106**
			(2.24)	(2.30)			(2.58)	(2.48)
LonQ			0.155*	0.199**			0.804	1.127
			(1.85)	(2.47)			(0.53)	(0.65)
PostRelease	0.366*	0.400*	0.391***	0.411***	3.923	4.866	4.148	4.845
	(1.79)	(1.76)	(3.00)	(2.80)	(1.07)	(1.24)	(0.97)	(1.05)
Controls	No	Yes	No	Yes	No	Yes	No	Yes
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	6,229	6,089	6,229	6,089	6,010	5,880	6,010	5,880
$Adj. R^2$	0.490	0.509	0.490	0.508	0.385	0.392	0.385	0.392

Consistent with the outcome model, the increase in dividends is much stronger among firms with poor investment opportunities (measured by sales growth or Q).

Cross-sectional Analyses

- The outcome model predicts that the increase in dividends among firms with poor investment opportunities to be stronger for:
 - Firms with *higher levels of managerial entrenchment*: The improved monitoring will have a larger marginal effect.
 - Firms with *less severe financial constraints*: Managers have more flexibility to waste resources.
 - Firms with *more sophisticated institutional ownership*: Sophisticated institutional investors are able to access and utilize the satellite data in their monitoring.

Table 6: Dividend Payout of Low-Growth firms after Satellite Release: The Effect of Managerial Entrenchment

	Entrenchment Measured by E-Index				Er	ntrenchment l	Measured by A	ATI
	Div. Yield (%)		Div/E (%)		Div. Yield (%)		Div/E (%)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
PostRelease imes Low SG imes High Entrench	0.690***	0.598***	18.261***	16.336***	0.788***	0.694***	17.161**	15.268**
-	(3.88)	(4.39)	(4.02)	(4.13)	(3.13)	(3.13)	(2.45)	(2.31)
$PostRelease \times LowSG \times LowEntrench$	0.249	0.099	2.173	-0.888	-0.284	-0.414	6.923	3.443
	(0.33)	(0.13)	(0.09)	(-0.04)	(-0.55)	(-0.74)	(0.47)	(0.23)
PostRelease×HighEntrench	0.318*	0.383**	0.393	1.931	0.282*	0.354**	2.241	3.662
	(1.81)	(2.09)	(0.10)	(0.47)	(1.68)	(2.02)	(0.58)	(0.85)
PostRelease×LowEntrench	0.631	0.777	17.048	19.426	0.822	0.940	6.864	9.672
	(1.18)	(1.44)	(1.49)	(1.59)	(1.19)	(1.37)	(0.55)	(0.79)
LowSG×HighEntrench	0.067	0.081	3.226	3.784*	0.071	0.090	4.066*	4.641**
	(1.35)	(1.49)	(1.38)	(1.68)	(0.95)	(1.22)	(1.69)	(2.05)
LowSG×LowEntrench	0.035	0.051	-0.831	-0.472	0.020	0.013	-4.649	-4.348
	(0.20)	(0.29)	(-0.17)	(-0.09)	(0.17)	(0.11)	(-0.85)	(-0.79)
HighEntrench	0.002	0.016	-0.996	-0.830	-0.363**	-0.362**	-7.383*	-8.595*
_	(0.02)	(0.14)	(-0.44)	(-0.34)	(-2.09)	(-2.04)	(-1.67)	(-1.85)
Controls	No	Yes	No	Yes	No	Yes	No	Yes

Table 7: Dividend Payout of Low-Growth firms after Satellite Release: The Effect of Financial Constraints

	KZ]	Index	HP	HP Index		Index
	Div. Yield	Div/E	Div. Yield	Div/E	Div. Yield	Div/E
	(1)	(2)	(3)	(4)	(5)	(6)
PostRelease×LowSG×LowConstraints	1.102***	26.098**	0.734***	13.095**	0.505**	14.685***
	(3.39)	(2.45)	(3.10)	(2.32)	(2.23)	(2.72)
$PostRelease \times LowSG \times High Constraints$	-0.024	2.103	-0.117	7.079	0.432	5.174
	(-0.18)	(1.04)	(-0.43)	(0.58)	(1.00)	(0.71)
PostRelease×LowConstraints	0.513	12.564**	0.303	4.544	0.407*	5.331
	(1.45)	(1.98)	(1.25)	(0.94)	(1.92)	(1.36)
PostRelease×HighConstraints	0.295**	-3.253	0.514**	5.181	0.348	3.005
	(2.11)	(-0.88)	(2.07)	(1.09)	(0.94)	(0.52)
LowSG×LowConstraints	0.327***	6.984***	0.142***	3.421***	0.192***	3.351**
	(4.08)	(2.66)	(2.61)	(2.64)	(3.88)	(2.14)
LowSG×HighConstraints	0.065	1.068	0.230***	3.690	0.173**	3.815**
	(1.51)	(0.67)	(2.61)	(1.56)	(2.23)	(2.08)
LowConstraints	0.813***	14.281***	0.145	2.986	0.554***	10.804***
	(3.98)	(3.44)	(1.10)	(0.95)	(3.89)	(3.00)
Controls	Yes	Yes	Yes	Yes	Yes	Yes
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	5,809	5,612	6,089	5,880	6,084	5,875
Adj . \mathbb{R}^2	0.548	0.417	0.509	0.392	0.516	0.396

	Hedge Fund Ownership			Mo	nitoring Insti	tutional Owne	ership	
	Div. Y	ield (%)	Div/Earn (%)		Div. Yield (%)		Div/Earn (%)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
PostRelease×LowSG ×HighOwn	0.571*	0.584*	16.141**	16.114***	0.647***	0.639***	13.018**	12.178**
	(1.83)	(1.92)	(2.55)	(2.64)	(2.72)	(2.77)	(2.49)	(2.38)
PostRelease×LowSG ×LowOwn	0.301	0.295	5.307	4.737	-0.010	-0.004	11.533	11.712
	(0.97)	(0.93)	(0.80)	(0.67)	(-0.03)	(-0.01)	(1.26)	(1.28)
PostRelease× HighOwn	0.419**	0.437**	4.308	4.876	0.292*	0.337**	4.643	5.627
	(2.30)	(2.15)	(1.35)	(1.43)	(1.94)	(1.99)	(1.33)	(1.53)
PostRelease×LowOwn	0.289	0.340	3.114	4.490	0.555	0.566	-2.318	-1.778
	(1.15)	(1.22)	(0.59)	(0.80)	(1.10)	(1.06)	(-0.30)	(-0.23)
LowSG× HighOwn	0.151***	0.163**	3.767**	4.163**	0.158***	0.175***	3.183*	3.582**
	(2.69)	(2.56)	(2.37)	(2.42)	(2.86)	(3.03)	(2.15)	(2.28)
LowSG×LowOwn	0.149**	0.195**	1.878	2.708	0.133	0.202*	1.442	2.907
	(1.97)	(2.54)	(0.85)	(1.22)	(1.21)	(1.92)	(0.45)	(0.95)
HighOwn	-0.102	-0.132	-4.129*	-5.226*	0.082	0.109	3.405	5.123*
· · · · · ·	(-1.39)	(-1.64)	(-1.74)	(-1.91)	(0.74)	(0.92)	(1.32)	(1.82)
Controls	No	Yes	No	Yes	No	Yes	No	Yes

External Financing and Corporate Investment

- Under the outcome model, the increased dividend payments is financed by the reduction in value-destroying investment projects rather than the increase in external financing.
- We attempt to distinguish between general investment and "good" investment.
 - General investment as measured by asset growth: Existing literature shows that general investment is associated with lower future stock returns.
 - Good investment (R&D): R&D is widely documented as "good" investment associated with positive future performance.

Table 10A: Difference-in-Difference Regressions of Financing Decisions on Satellite Data Release

(2) (3) 0.134 -0.227 0.25) (-1.32) 740*** -2.760*** 3.24) (-5.28) 157*** 4.150*** 8.35) (4.79) 203*** 0.752***
0.25) (-1.32) 740*** -2.760*** 3.24) (-5.28) .157*** 4.150*** 8.35) (4.79)
740*** -2.760*** 3.24) (-5.28) 4.150*** 8.35) (4.79)
3.24) (-5.28) 157*** 4.150*** 8.35) (4.79)
157*** 4.150*** 8.35) (4.79)
8.35) (4.79)
Note that the second se
203*** 0.752***
(3.52)
2.680 -10.155***
0.97) (-3.06)
330*** -2.026
4.00) (-1.20)
3.771 -3.470***
(-2.68)
0.248 1.158**
0.25) (2.59)
0.139
0.38) (1.03)
0.030 -0.031
(-0.91)
3.277
(1.40)
2. C 3 4 3 C C C (). C C C ().

Table 10B: Difference-in-Difference Regressions of Investment Decisions on Satellite Data Release

	Asset Growth	Investment	Inventory	R&D
	(1)	(2)	(3)	(4)
PostRelease	-5.051**	-1.537**	-0.919***	0.017
	(-2.55)	(-2.47)	(-3.46)	(0.20)
Size	-22.255***	-2.199	-1.324***	-0.749**
	(-5.98)	(-1.54)	(-4.67)	(-2.16)
Leverage	-21.785***	-8.348***	-1.171*	0.589
	(-3.66)	(-3.89)	(-1.89)	(1.08)
Tobin Q	5.882***	1.214***	0.269**	0.219*
	(6.03)	(3.74)	(2.43)	(1.87)
Profitability	22.834***	17.218***	8.248***	-0.847
	(3.91)	(3.40)	(6.50)	(-0.96)
Tangibility	5.385	-27.293***	1.886**	-0.962
	(0.52)	(-4.08)	(1.96)	(-1.02)
Cash	-3.663	4.281**	4.557***	-1.707
	(-0.41)	(2.21)	(3.21)	(-1.13)
InstOwn	3.182	2.717***	0.442	0.310
	(1.08)	(3.39)	(1.56)	(1.42)
AnalystCoverage	0.414	0.792**	0.058	0.022
	(0.33)	(2.34)	(0.30)	(0.53)
RetainedEarn	0.173	0.104	0.026	-0.012
	(1.52)	(1.25)	(1.28)	(-0.63)
RetVol	4.065	-0.305	1.147	0.820
	(0.45)	(-0.06)	(0.53)	(1.00)

- We examine how the emergence of alternative data affects firms' corporate policies.
 - Firms significantly increase their dividend payouts after the release of their satellite data, especially for firms with poor investment opportunities.
 - Larger increase in dividends for firms with higher levels of managerial entrenchment, less severe financial constraints, or higher ownerships by sophisticated investors.
 - Event firms finance the increased dividends by cutting overall corporate investment but not R&D which is considered "good" corporate investment.
- Taken together, these results support the outcome model of dividends.
- Our findings provide new evidence that the emergence of alternative data can close the information gaps between outside investors and firm managers and have significant impact on corporate policies.