CORPORATE LOAN SPREADS AND ECONOMIC ACTIVITY

Anthony Saunders NYU Stern

Alessandro Spina Copenhagen Business School

> Sascha Steffen Frankfurt School

Daniel Streitz IWH Halle; Jena; Copenhagen Business School

June 2021

 Credit spreads widely used to forecast business cycle (e.g., Bernanke, 1990; Friedman and Kuttner, 1992, 1993; Gertler and Lown, 1999; Gilchrist and Zakrajšek, 2012; López-Salido, Stein, and Zakrajšek, 2017)

- Credit spreads widely used to forecast business cycle (e.g., Bernanke, 1990; Friedman and Kuttner, 1992, 1993; Gertler and Lown, 1999; Gilchrist and Zakrajšek, 2012; López-Salido, Stein, and Zakrajšek, 2017)
- Motivated by the role of financial market frictions in propagating and amplifying shocks to the economy (e.g., Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997)

- Credit spreads widely used to forecast business cycle (e.g., Bernanke, 1990; Friedman and Kuttner, 1992, 1993; Gertler and Lown, 1999; Gilchrist and Zakrajšek, 2012; López-Salido, Stein, and Zakrajšek, 2017)
- Motivated by the role of financial market frictions in propagating and amplifying shocks to the economy (e.g., Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997)
- Focus on corporate bond markets due to data availability but large part of the economy is dependent on bank debt

- Credit spreads widely used to forecast business cycle (e.g., Bernanke, 1990; Friedman and Kuttner, 1992, 1993; Gertler and Lown, 1999; Gilchrist and Zakrajšek, 2012; López-Salido, Stein, and Zakrajšek, 2017)
- Motivated by the role of financial market frictions in propagating and amplifying shocks to the economy (e.g., Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997)
- Focus on corporate bond markets due to data availability but large part of the economy is dependent on bank debt
- "we have in mind that the pricing of credit risk in the bond market is [...] linked to the pricing of credit risk in the banking system. Although the former is easier for us to measure empirically, we suspect that the latter may be as or more important in terms of economic impact" (López-Salido, Stein, and Zakrajšek, 2017)

- Credit spreads widely used to forecast business cycle (e.g., Bernanke, 1990; Friedman and Kuttner, 1992, 1993; Gertler and Lown, 1999; Gilchrist and Zakrajšek, 2012; López-Salido, Stein, and Zakrajšek, 2017)
- Motivated by the role of financial market frictions in propagating and amplifying shocks to the economy (e.g., Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997)
- Focus on corporate bond markets due to data availability but large part of the economy is dependent on bank debt
- "we have in mind that the pricing of credit risk in the bond market is [...] linked to the pricing of credit risk in the banking system. Although the former is easier for us to measure empirically, we suspect that the latter may be as or more important in terms of economic impact" (López-Salido, Stein, and Zakrajšek, 2017)
- $\rightarrow\,$ This paper: Novel dataset to explore the ability of corporate *loan* spreads to forecast economic developments

Panel A. Industrial Production and Loan Spread over 2019

1. We develop a new credit spread based on secondary loan market prices

- 1. We develop a new credit spread based on secondary loan market prices
 - Useful? Yes!
 - Most firms don't have access to bond markets; countries with less developed capital markets; Goodhart's law

- 1. We develop a new credit spread based on secondary loan market prices
 - Useful? Yes!
 - Most firms don't have access to bond markets; countries with less developed capital markets; Goodhart's law
 - Key result: A 1 SD ↑ loan spread predicts a 0.41 SD ↓ industrial production. Twice the economic magnitude of the bond spread. Even when included jointly.

- 1. We develop a new credit spread based on secondary loan market prices
 - Useful? Yes!
 - Most firms don't have access to bond markets; countries with less developed capital markets; Goodhart's law
 - Key result: A 1 SD ↑ loan spread predicts a 0.41 SD ↓ industrial production. Twice the economic magnitude of the bond spread. Even when included jointly.
 - Robust to:
 - Other economic aggregates; different time horizons; other benchmark measures; other countries; OOS

2. We investigate possible channels as to the loan spread's differential predictive power informed by theory

- 2. We investigate possible channels as to the loan spread's differential predictive power informed by theory
 - We show the joint role of borrower and intermediary balance sheet constraints

- 2. We investigate possible channels as to the loan spread's differential predictive power informed by theory
 - We show the joint role of borrower and intermediary balance sheet constraints
 - 2/3 of the predictive power of the loan spread is coming from deterioration of borrower balance sheets.

- 2. We investigate possible channels as to the loan spread's differential predictive power informed by theory
 - We show the joint role of borrower and intermediary balance sheet constraints
 - 2/3 of the predictive power of the loan spread is coming from deterioration of borrower balance sheets.
 - We can link this to borrower financial frictions (size, age, private, rating).
 - See e.g. Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Gertler and Kiyotaki (2010)

3. We highlight possible benefits of exploring lower aggregation levels when forecasting economic outcomes.

- 3. We highlight possible benefits of exploring lower aggregation levels when forecasting economic outcomes.
 - Bottom-up spreads are aggregated using simple means in the literature (e.g., Gilchrist and Zakrajšek, 2012; López-Salido, Stein, and Zakrajšek, 2017)

- 3. We highlight possible benefits of exploring lower aggregation levels when forecasting economic outcomes.
 - Bottom-up spreads are aggregated using simple means in the literature (e.g., Gilchrist and Zakrajšek, 2012; López-Salido, Stein, and Zakrajšek, 2017)
 - We document substantial cross-industry heterogeneity as to the predictive power of credit spreads.

- 3. We highlight possible benefits of exploring lower aggregation levels when forecasting economic outcomes.
 - Bottom-up spreads are aggregated using simple means in the literature (e.g., Gilchrist and Zakrajšek, 2012; López-Salido, Stein, and Zakrajšek, 2017)
 - We document substantial cross-industry heterogeneity as to the predictive power of credit spreads.
 - We show that forecasts can be improved when incorporating alternative aggregation methods.

DATA

- Daily secondary market prices (mid quotes) of loans from the Loan Syndication and Trading Association (LSTA)
 - 1999 to Q1 2020 period, U.S. non-financial firms, TL, >300,000 loan-month observations (\sim 1,200 loans outstanding per month)
- LPC Dealscan matched to LSTA using LIN
 - Loan amount/spread > cash flows + contract terms
- Bond information
 - Gilchrist and Zakrajšek (2012), TRACE and Mergent FISD
- Macro variables: FRED, Bureau of Economic Analysis (BEA), Bureau of Labour Statistics

▶ Loan Market - Volume 🚺 ▶ Loan Market - Liquidity

CONSTRUCTING THE AGGREGATE LOAN SPREAD

- "Bottom-up" spread (Gilchrist and Zakrajšek, 2012)
 - Qrt. cash flows: coupon using 3m forward LIBOR + AISD \rightarrow yield-to-maturity $y_{it}[k]$
 - Synthetic risk-free loan w/ same cash-flow profile \rightarrow yield-to-maturity $y_{it}^{f}[k]$
 - DCF using cont. comp. zero-coupon Treasury yields (Gürkaynak, Sack, and Wright, 2007)
 - \rightarrow Loan spread (for each loan): $S_{it}[k] = y_{it}[k] y_{it}^{f}[k]$
 - \rightarrow Aggregate loan spread: $S_t^{Loan} = \frac{1}{N_t} \sum_i \sum_k S_{it}[k]$

AGGREGATE CREDIT SPREADS (1999-2020)

- Aggregate loan and bond spreads.
- ρ=0.76 [ρ=0.65 ex '08-'09 financial crisis]
- Loan spreads are more volatile than bond spreads (σ=2.28% vs. σ=1.04%)
- Loan spreads an order of magnitude larger than bond spreads (different borrower types)

• Borrower Rating • Borrower Size/Age

FORECASTING ECONOMIC DEVELOPMENTS

$$\Delta y_{t+h} = \alpha + \sum_{i=1}^{p} \beta_i \Delta y_{t-i} + \gamma_1 \Delta S_t + \lambda_2 T S_t + \lambda_3 RFF_t + \epsilon_{t+h},$$

- Δy is the log growth rate of industrial production (in this talk; various other macro variables in the paper)
- *S_t* is a credit spread {*Loan*, *Bond*}
- TS_t is the term spread and RFF_t real effective fed fund rate
- Estimated with OLS, *p* based on AIC, Newey-West/H-H s.e., coefficients are standardized

	Industrial Production; Forecast horizon: 3 months		
	(1)	(2)	(3)
ΔS_t^{Loan}	-0.410 (-5.727)		-0.396 (-3.831)
ΔS_t^{Bond}	× /	-0.198 (-2.257)	-0.030 (-0.267)
Adjusted R ²	0.313	0.198	0.311
Incremental R ²	+0.150	+0.035	+0.148
Observations	241	241	241

	Industrial Production; Forecast horizon: 3 months		
	(1)	(2)	(3)
ΔS_t^{Loan}	-0.410 (-5.727)		-0.396 (-3.831)
ΔS_t^{Bond}		-0.198 (-2.257)	-0.030 (-0.267)
Adjusted R ²	0.313	0.198	0.311
Incremental R ²	+0.150	+0.035	+0.148
Observations	241	241	241

• 1 std dev \uparrow in $S_t^{Loan} \to 0.410$ std dev \downarrow in industrial production in subsequent three months

	Industrial Production; Forecast horizon: 3 months			
	(1)	(2)	(3)	
ΔS_t^{Loan}	-0.410 (-5.727)		-0.396 (-3.831)	
ΔS_t^{Bond}	, , , , , , , , , , , , , , , , , , ,	-0.198 (-2.257)	-0.030 (-0.267)	
Adjusted R ²	0.313	0.198	0.311	
Incremental R ²	+0.150	+0.035	+0.148	
Observations	241	241	241	

• 1 std dev \uparrow in $S_t^{Loan} \to 0.410$ std dev \downarrow in industrial production in subsequent three months

	Industrial Production; Forecast horizon: 3 months		
	(1)	(2)	(3)
ΔS_t^{Loan}	-0.410 (-5.727)		-0.396 (-3.831)
ΔS_t^{Bond}	(-0.198 (-2.257)	-0.030 (-0.267)
Adjusted R ²	0.313	0.198	0.311
Incremental R ²	+0.150	+0.035	+0.148
Observations	241	241	241

• 1 std dev \uparrow in $S_t^{Loan} \to 0.410$ std dev \downarrow in industrial production in subsequent three months

	Industrial Production; Forecast horizon: 3 months		
	(1)	(2)	(3)
ΔS_t^{Loan}	-0.410 (-5.727)		-0.396 (-3.831)
ΔS_t^{Bond}	, , , , , , , , , , , , , , , , , , ,	-0.198 (-2.257)	-0.030 (-0.267)
Adjusted R ²	0.313	0.198	0.311
Incremental R ²	+0.150	+0.035	+0.148
Observations	241	241	241

- 1 std dev \uparrow in $S_t^{Loan} \to 0.410$ std dev \downarrow in industrial production in subsequent three months
- $R^2 \uparrow 15$ pp relative to benchmark

► Hansen Hodrick SE ► Out of sample

DYNAMICS - LOCAL PROJECTIONS

	Industrial Production; Forecast horizon: 3 months		
	Coefficient	Incremental R ²	
Alt. bond spreads			
Δ Baa-Aaa spread	-0.277 (-3.918)	+0.077	
(-3.918) ∆ HY-Aaa spread -0.248 (-4.013)		+0.062	
Equity market			
S&P500 return	0.216 (2.921)	+0.041	
Adj. for contract terms			
Residual ΔS_t^{Loan}	-0.405 (-5.646)	+0.120	
Ex. financial crisis			
ΔS_t^{Loan}	-0.207 (-3.047)	+0.034	
ΔS_t^{Bond}	-0.058 (-0.720)	+0.001	

Europe Industry level Alt

	Industrial Production; Forecast horizon: 3 months		
	Coefficient	Incremental R ²	
Alt. bond spreads			
Δ Baa-Aaa spread	-0.277 (-3.918)	+0.077	
Δ HY-Aaa spread	-0.248 (-4.013)	+0.062	
Equity market			
S&P500 return	0.216 (2.921)	+0.041	
Adj. for contract terms			
Residual ΔS_t^{Loan}	-0.405 (-5.646)	+0.120	
Ex. financial crisis			
ΔS_t^{Loan}	-0.207 (-3.047)	+0.034	
ΔS_t^{Bond}	-0.058 (-0.720)	+0.001	

Europe Industry level Alt

	Industrial Production; Forecast horizon: 3 months		
	Coefficient	Incremental R ²	
Alt. bond spreads			
Δ Baa-Aaa spread	-0.277	+0.077	
Δ HY-Aaa spread	-0.248 (-4.013)	+0.062	
Equity market			
S&P500 return	0.216 (2.921)	+0.041	
Adj. for contract terms			
Residual ΔS_t^{Loan}	-0.405 (-5.646)	+0.120	
Ex. financial crisis			
ΔS_t^{Loan}	-0.207 (-3.047)	+0.034	
ΔS_t^{Bond}	-0.058 (-0.720)	+0.001	

Europe Industry level Al

	Industrial Production; Forecast horizon: 3 months		
	Coefficient	Incremental R ²	
Alt. bond spreads			
Δ Baa-Aaa spread	-0.277 (-3.918)	+0.077	
∆ HY-Aaa spread -0.248 (-4.013)		+0.062	
Equity market			
S&P500 return	0.216 (2.921)	+0.041	
Adj. for contract terms			
Residual ΔS_t^{Loan}	-0.405 (-5.646)	+0.120	
Ex. financial crisis			
ΔS_t^{Loan}	-0.207 (-3.047)	+0.034	
ΔS_t^{Bond}	-0.058 (-0.720)	+0.001	

▶ Europe 🔶 ト Industry level 🔶 ト Al

	Industrial Production; Forecast horizon: 3 months		
	Coefficient	Incremental R ²	
Alt. bond spreads			
Δ Baa-Aaa spread	-0.277 (-3.918)	+0.077	
△ HY-Aaa spread -0.248 (-4.013)		+0.062	
Equity market			
S&P500 return	0.216 (2.921)	+0.041	
Adj. for contract terms			
Residual ΔS_t^{Loan}	-0.405 (-5.646)	+0.120	
Ex. financial crisis			
ΔS_t^{Loan}	-0.207 (-3.047)	+0.034	
ΔS_t^{Bond}	-0.058 (-0.720)	+0.001	

• Europe 🔶 Industry level 🔶 A

MECHANISM I: INTERMEDIARY BALANCE SHEETS

- Loan market borrowers may have limited funding alternatives and hence are particularly sensitive to shocks to the balance sheets of financial intermediaries
- Reduced capacity and/or willingness of intermediaries to provide credit to the economy which is reflected in credit spreads
 - A deterioration in the health of intermediaries (e.g. Holmström and Tirole, 1997)
 - Frictions in raising new capital (e.g. He and Krishnamurthy, 2013; Gertler and Kiyotaki, 2010)
 - Fluctuations in collateral value (e.g. Kiyotaki and Moore, 1997)

CREDIT CONDITIONS AND BANK HEALTH

	SLOSS (1)	SLOSS (2)	SLOSS (3)	Commit (4)	Commit (5)	Commit (6)
ΔS_t^{Loan}	0.430^{***} (3.810)		0.418^{***} (5.176)	-0.351^{**} (-2.435)		-0.287^{**} (-2.166)
ΔS^{Bond}_t	(0.010)	0.290^{*} (1.879)	0.019 (0.118)	(1100)	-0.306^{*} (-1.922)	(-0.223) (-1.512)
Adjusted R ² Observations	$0.174 \\ 81$	$0.073 \\ 81$	$\substack{0.164\\81}$	$\begin{array}{c} 0.112\\ 81 \end{array}$	$0.082 \\ 81$	$\begin{array}{c} 0.148\\ 81 \end{array}$

- Loan spread associated with tightening of lending standards and a reduction of credit lines (bonds do not)
- Consistent with a reduction in the supply of credit

Bank Health
CREDIT SPREAD DECOMPOSITION

	Forecast horizon: $h = 3$ months		
	(1)	(2)	(3)
Panel A. Industrial Production			
$\Delta \hat{S}_{i}^{Loan}$	-0.376^{***}		-0.401^{***}
	(-5.084)		(-3.143)
ΔELP_t	-0.268***		-0.276***
	(-4.720)		(-4.149)
$\Delta \hat{S}^{Bond}_{t}$. ,	-0.191^{**}	0.038
t		(-2.027)	(0.320)
ΔEBP_t		-0.182**	0.043
		(-2.116)	(0.303)
Adjusted R^2	0.332	0.196	0.328
Incremental R ²	+0.169	+0.030	0.165
Contribution from ΔS_t	0.67	0.69	
Observations	241	241	241

- Excess loan premium (ELP) has some predictive power (intermediary balance sheets frictions)
- Predicted spread has economically larger effect (borrower balance sheet frictions)

Decomposition

MECHANISMS II: BORROWER BALANCE SHEETS

- Loan market borrowers may be particularly sensitive to financial frictions that emanate from their own balance sheet
- Wedge between the cost of external funds and the opportunity cost of internal funds, labelled the "external finance premium" (e.g. Bernanke and Gertler, 1989)
- A deterioration in the health of borrower balance sheets is further amplified via a "financial accelerator" effect (e.g. Bernanke, Gertler, and Gilchrist, 1999), which is subsequently reflected in the borrower's cost of credit

BORROWER SIZE AND AGE

- Loan borrowers younger (29% <= 5yrs) and smaller (67% <= 2bill)
- Loan spread capturing borrower balance sheet frictions

Industrial Production; Forecast horizon: 3 months				
(1)	(2)	(3)		
-0.391 (-4.479)				
	-0.212 (-1.762)			
		-0.429 (-5.465)		
0.306	0.204	0.320		
+0.143 241	+0.041 241	+0.157 241		
	0.306 +0.143 241	Industrial Production; Forecast horizo (1) (2) -0.391 -0.212 (-4.479) -0.212 (-1.762) -0.214 0.306 0.204 +0.143 +0.041 241 241		

	Industrial Production; Forecast horizon: 3 months				
	(1)	(2)	(3)		
ΔS_t^{Loan} [Small & young firms]	-0.391 (-4.479)				
ΔS_t^{Loan} [Large & old firms]		-0.212 (-1.762)			
ΔS_t^{Loan} [Private firms]		, , , , , , , , , , , , , , , , , , ,	-0.429 (-5.465)		
Adjusted R ²	0.306	0.204	0.320		
Incremental R ² Observations	+0.143 241	+0.041 241	+0.157 241		

	Industrial Production; Forecast horizon: 3 months				
	(1)	(2)	(3)		
ΔS_t^{Loan} [Small & young firms]	-0.391 (-4.479)				
ΔS_t^{Loan} [Large & old firms]		-0.212 (-1.762)			
ΔS_t^{Loan} [Private firms]			-0.429 (-5.465)		
Adjusted R ²	0.306	0.204	0.320		
Incremental R ² Observations	+0.143 241	+0.041 241	+0.157 241		

	Industrial Production; Forecast horizon: 3 months				
	(1)	(2)	(3)		
ΔS_t^{Loan} [Small & young firms]	-0.391 (-4.479)				
ΔS_t^{Loan} [Large & old firms]		-0.212 (-1.762)			
ΔS_t^{Loan} [Private firms]			-0.429 (-5.465)		
Adjusted R ²	0.306	0.204	0.320		
Incremental R ² Observations	+0.143 241	+0.041 241	+0.157 241		

 Consistent with smaller, private firms being more sensitive to changes in economic conditions (Cloyne, Ferreira, Froemel, and Surico, 2020; Begenau and Salomao, 2019; Asker, Farre-Mensa, and Ljungqvist, 2015; Davis, Haltiwanger, Jarmin, and Miranda, 2006; Pflueger, Siriwardane, and Sunderam, 2020)

Size sort Age sort Small-Large Spread

BORROWER RATING

 Half of loan market borrowers are private/unrated firms. Limited overlap between bond and loan borrowers.

BORROWER RATING

	Forecast horizon: $h = 3$ months				
	(1)	(2)	(3)	(4)	
Panel A. Industrial Production					
$\Delta S_t^{Loan}[\text{BBB}]$	-0.105 (-1.557)				
$\Delta S_t^{Loan}[{\rm BB}]$	· · · ·	-0.260^{***} (-3.538)			
$\Delta S_t^{Loan}[{\rm B} ~{\rm and} ~{\rm below}]$		· · /	-0.425^{***} (-5.425)		
ΔS_t^{Loan} [Not Available]				-0.415^{***} (-4.040)	
Adjusted R ²	0.170	0.226	0.322	0.315	
Incremental R ²	+0.007	+0.063	+0.159	+0.152	
Observations	241	241	241	241	

• Repricing of risk by banks may be better reflected in loan spread

SUMMARY OF MECHANISMS

- Evidence consistent with the *joint* role of borrower and intermediary constraints (Rampini and Viswanathan (2019)).
- 2/3 of the predictive power of the loan spread is coming from deterioration of borrower balance sheets.
- Next.... We explore alternative aggregation methods.

Uncertainty Sentiment

INDUSTRY LOAN SPREADS

Industry prediction

INDUSTRY HETEROGENEITY

_	Forecast horizon: $h = 3$ months				
	(1)	(2)	(3)		
S_{bt}^{Loan} x Top 5 EFD	-0.311^{***} (-4.527)				
S^{Loan}_{bt} x Continuous EFD	. ,	-0.319***			
$S_{bt}^{Loan} \ge {\rm Top}$ 3 EFD		(-2.698)	-0.519***		
$S_{bt}^{Loan} \ge {\rm Middle}\; 4 \ {\rm EFD}$			(-5.408) -0.269***		
S_{bt}^{Loan} x Bottom 4 EFD			(-2.754) -0.139 (-1.606)		
Industry fixed effects	Yes	Yes	Yes		
Time fixed effects	Yes	Yes	Yes		
Adjusted R ²	0.271	0.268	0.269		
Observations	803	803	803		

• Industries with firms that are more dependent on external finance (Rajan and Zingales (1998)) account for most of the predictive power of the loan spread.

ALTERNATIVE WEIGHTING SCHEMES

	Forecast horizon: $h = 3$ months					
	(1)	(2)	(3)	(4)	(5)	
ΔS_t^{Loan} [Base]	-0.410^{***} (-5.727)					
ΔS_t^{Loan} [GDP]	()	-0.396^{***} (-5.006)				
$\Delta S_t^{Loan}~[{\rm Industry}]$		(,	-0.445^{***} (-6.236)			
ΔS_t^{Loan} [EFD]			(,	-0.443^{***} (-4.805)		
ΔS_t^{Loan} [Elastic Net]				(1000)	-0.449^{***} (-5.162)	
Adjusted R ²	0.313	0.305	0.343	0.337	0.339	
Incremental R ²	+0.150	+0.142	+0.180	+0.174	+0.176	
OOS RMSE	0.0132	0.0118	0.0115	0.0117	0.0115	
Observations	241	241	241	241	241	

• Thinking about how to aggregate measures from microdata can help improve business cycle forecast.

CONCLUSION

- Introduce a novel measure of credit spreads using secondary loan market prices. Loan spreads contain information about the future business cycle above and beyond other credit spread indicators
- Differential predictive power is (in part) driven by compositional differences btw loan and bond markets (borrower and bank frictions)
- Useful? Most firms don't have access to bond markets; countries with less developed capital markets; Goodhart's law

Thanks!

SECONDARY LOAN MARKET TRADING VOLUME

Back

SECONDARY LOAN MARKET LIQUIDITY

- Pre-GFC bid-ask-spread: 68bps (vs. 34bps in the bond market)
- Secondary loan market is highly liquid.

Rating distribution - bond vs loan market

Back

Age/Size distribution - bond vs loan market

• Back

HANSEN HODRICK SE

	Industrial Production; Forecast horizon: 3 months				
	(1)	(2)	(3)		
ΔS_t^{Loan}	-0.410 (-7.027)		-0.396 (-4.519)		
ΔS_t^{Bond}		-0.198 (-3.842)	-0.030 (-0.353)		
Adjusted R ²	0.313	0.198	0.311		
Incremental R ²	+0.150	+0.035	+0.148		
Observations	241	241	241		

• Results remain highly significant with Hansen-Hodrick standard errors.

▶ Back

OUT OF SAMPLE

	(1) (Baseline)	$^{(2)}_{(\Delta S^{Loan}_t)}$	(3) (ΔS_t^{Bond})	(4) (Both)
Panel A. Industrial Production				
RMSE DM Test p-value (Col(2) = Col(3))	0.0132	0.0118	0.0131 (0.03)	0.0118
Observations	91	91	91	91

 Training set on 150 observations. Expanding rolling window RMSE

• Loan spread significantly better at OOS forecasting

► Back

EVIDENCE FROM EUROPE

_	Manufacturing Index; Forecast horizon: $h = 3$ months				
	Germany (1)	France (2)	Spain (3)		
ΔS_{t}^{Loan}	-0.360	-0.340	-0.200		
	(-2.300)	(-2.100)	(-1.900)		
ΔS_t^{Bond}	-0.048	-0.009	-0.130		
	(-0.690)	(-0.100)	(-1.000)		
Adjusted R ²	0.260	0.190	0.190		
Incremental R ²	+0.111	+0.071	+0.058		
% Contribution from ΔS_t^{Loan}	0.86	0.91	0.62		
Observations	227	188	186		

EVIDENCE FROM EUROPE

2000 2005 2010 2015 2020

INDUSTRY FORECASTING RESULTS

	Industry employment; Forecast horizon: 3 months			
	(1)	(2)	(3)	
SLoan St	-0.130 (-3.491) -0.239 (-3.818)	-0.171 (-3.534)	-0.292 (-4.609)	
Year × quarter fixed effects Industry fixed effects Adjusted R ² Incremental R ² Observations	No No 0.452 + 0.086 803	Yes No 0.558 +0.192 803	Yes Yes 0.590 +0.224 803	

INDUSTRY FORECASTING RESULTS

	Industry er	Industry employment; Forecast horizon: 3 months		
	(1)	(2)	(3)	
SLoan St	-0.130 (-3.491) -0.239 (-3.818)	-0.171 (-3.534)	-0.292 (-4.609)	
Year x quarter fixed effects Industry fixed effects Adjusted R ² Incremental R ² Observations	No No 0.452 + 0.086 803	Yes No 0.558 +0.192 803	Yes Yes 0.590 +0.224 803	

FROM SPREAD TO PREMIA

DECOMPOSING THE LOAN SPREAD

	(1)	(2)	(3)	(4)	(5)
DD _{bt}	-0.357	-0.434	-0.435	-0.417	
	(-35.251)	(-51.707)	(-52.299)	(-51.264)	
\overline{DD}_{bt}^2	0.022	0.028	0.028	0.027	
	(26.631)	(41.476)	(41.888)	(39.779)	
σDD_{bt}	0.023	0.010	0.010	0.010	
	(6.965)	(3.648)	(3.582)	(4.734)	
Ln(AISD)		0.735	0.732	0.642	0.685
		(38.270)	(34.482)	(29.518)	(32.143)
Ln(Age)		0.075	0.075	0.067	0.040
· - /		(31.564)	(31.618)	(30.144)	(13.797)
Ln(Amount)		-0.078	-0.078	-0.061	-0.093
		(-12.127)	(-11.963)	(-9.842)	(-13.592)
Secured(0/1)			-0.018	0.012	0.086
			(-0.760)	(0.499)	(3.284)
Covenants(0/1)			-0.011	0.011	0.035
			(-0.826)	(0.870)	(2.611)
Senior(0/1)			0.018	0.089	0.025
			(0.404)	(1.006)	(0.464)
Loan type fixed effects	No	No	No	Yes	No
Industry fixed effects	No	No	No	Yes	No
Rating fixed effects	No	No	No	Yes	No
Adjusted R ²	0.087	0.407	0.407	0.456	0.315
Observations	287,811	287,811	287,811	287,811	287,811

• Use decomposition in (4): $ELP = S_t^{Loan} - \hat{S}_t^{Loan}$

🕩 Back

ALTERNATIVE WEIGHTING SCHEMES

		Industrial Production; Forecast horizon: 3 months			
	(1)	(2)	(3)	(4)	
ΔS_t^{Loan} [Base]	-0.410 (-5.727)				
ΔS_t^{Loan} [Industry]		-0.445 (-6.236)			
ΔS_t^{Loan} [EFD]		. ,	-0.443 (-4.805)		
ΔS_t^{Loan} [ML]				-0.449 (-5.162)	
Adjusted R ² Incremental R ²	0.313 +0.150	0.343 +0.180	0.337 +0.174	0.339 +0.176	
Observations	241	241	241	241	

• Use insight to improve aggregate level forecasting?

🕨 Back

LOAN SPREAD - SMALL V LARGE FIRMS

• Back

EFFECT BY FIRM SIZE

	Industrial Production; Forecast horizon: 3 months		
	(1)	(2)	(3)
ΔS_t^{Loan} [Small firms]	-0.377 (-4.177)		
ΔS_t^{Loan} [Large firms]	× ,	-0.263 (-3.411)	
ΔS_t^{Loan} [Private firms]			-0.429 (-5.465)
Adjusted R ²	0.296 +0.133	0.227	0.320
Observations	241	241	241

- Size based on total assets
- Private = issuer cannot be matched to Compustat

41 / 30

EFFECT BY FIRM AGE

	Industrial Production; Forecast horizon: 3 months		
	(1)	(2)	(3)
ΔS_t^{Loan} [Young firms]	-0.340 (-4.525)		
ΔS_t^{Loan} [Old firms]	(),	-0.290 (-2.795)	
ΔS_t^{Loan} [Private firms]			-0.429 (-5.465)
Adjusted R ² Incremental R ² Observations	0.270 +0.107 241	0.255 +0.078 241	0.320 +0.157 241

CREDIT CONDITIONS – EUROPE

	Credit conditions based on loan officer surveys		
	(1)	(2)	
Germany			
ΔS_t^{Loan}	0.376 (3.748)		
ΔS_t^{Bond}		0.159 (1.182)	
Adjusted R ²	0.128	0.011	
Observations	70	70	
France			
ΔS_{t}^{Loan}	0.480		
	(3.545)		
ΔS_t^{Bond}		0.329 (1.436)	
Adjusted R ²	0.218	0.094	
Observations	64	64	
Spain			
ΔS_{t}^{Loan}	0.370		
	(2.018)		
ΔS_t^{Bond}		0.176 (1.008)	
Adjusted R ²	0.122	0.015	
Observations	63	63	

CREDIT CONDITIONS AND BANK HEALTH II

	ROA (7)	ROA (8)	ROA (9)	LLP (10)	LLP (11)	LLP (12)
ΔS_t^{Loan} ΔS_t^{Bond}	-0.430^{**} (-2.163)	-0.282 (-1.234)	-0.492^{**} (-2.118) 0.084 (0.286)	0.465^{**} (2.203)	0.442 (1.604)	0.304^{**} (2.454) 0.216 (0.613)
Adjusted R ² Observations	$\begin{array}{c} 0.174\\ 81 \end{array}$	0.068 81	0.167 81	$\begin{array}{c} 0.206\\ 81 \end{array}$	0.185 81	0.217 81

- Bank profitability and LLP/Loans more strongly correlated with loan spreads
- Loan spread appears to better reflect balance sheet frictions of intermediaries, which reduce the supply of credit

Back

ALTERNATIVE EXPLANATION I: UNCERTAINTY

-	Forecast horizon: 3 months					
	(1)	(2)	(3)	(4)	(5)	(6)
ΔS_t^{Loan}	-0.410^{***}	-0.261***	-0.442^{***}	-0.389***	-0.325***	-0.243^{***}
VIX	(-0.121)	(-4.403) -0.367^{***} (-3.329)	(-4.303)	(-0.400)	(-0.271)	(-3.001)
PVS Index		. ,	0.267^{**} (2.404)			
EPU Index			. ,	-0.109 (-1.633)		
FU Index				. ,	-0.399^{***} (-3.311)	
'Recession' Index						-0.514^{***} (-4.408)
Adjusted R ²	0.313	0.393	0.386	0.320	0.432	0.518
Incremental R ² Observations	$^{+0.150}_{-241}$	$^{+0.230}_{-241}$	+0.223 76	$^{+0.157}_{-241}$	$^{+0.269}_{-241}$	$^{+0.355}_{211}$

- Uncertainty proxies contain predictive power for future economic conditions
- Uncertainty can, however, not explain the incremental predictive power of the loan spread

Back

ALTERNATIVE EXPLANATION II: SENTIMENT

- Investor sentiment appears important to understand credit spreads:
 - Credit spreads are too narrow during booms and proceed economic downturns (Greenwood and Hanson (2013)), López-Salido, Stein, and Zakrajšek (2017))
 - Investors under-price risk in good times, creating a credit boom. During downturns spreads overract in the opposite direction (Bordalo, Gennaioli, and Shleifer (2018)).
- Our focus in on the *relative* predictive power vis-a-vis bond spreads
- Borrower fundamentals drive relative predictive power of the loan spread (not excess loan premium, which would capture sentiment)

REFERENCES I

ASKER, FARRE-MENSA, AND LJUNGQVIST (2015): "Corporate Investment and Stock Market Listing: A Puzzle?," *Review of Financial Studies*, 28(2), 342–390.

- BEGENAU, J., AND J. SALOMAO (2019): "Firm Financing over the Busines Cycle," *Review of Financial Studies*, 32(4), 1235–1274.
- BERNANKE, B. S. (1990): "On the Predictive Power of Interest Rates and Interes Rate Spreads," *New England Economic Review*, pp. 51–68.
- BERNANKE, B. S., AND M. GERTLER (1989): "Agency Costs, Net Worth, and Business Fluctuations," *American Economic Review*, 79(1), 14–31.
- BERNANKE, B. S., M. GERTLER, AND S. GILCHRIST (1999): The Financial Accelerator in a Quantitative Business Cycle Frameworkchap. 21, pp. 1341–1393. Amsterdam: North-Holland.

REFERENCES II

- BORDALO, P., N. GENNAIOLI, AND A. SHLEIFER (2018): "Diagnostic Expectations and Credit Cycles," *Journal of Finance*, (1), 199–227.
- CLOYNE, J., C. FERREIRA, M. FROEMEL, AND P. SURICO (2020): "Monetary Policy, Corporate Finance and Investment," *Working Paper, University of California Davis.*
- DAVIS, HALTIWANGER, JARMIN, AND MIRANDA (2006):
 "Volatility and Dispersion in Business Growth Rates: Publicly Traded versus Privately Held Firms," *NBER Macroeconomics Annual*, 21, 107–179.
- FRIEDMAN, B. M., AND K. N. KUTTNER (1992): "Money, Income, Prices and Interest Rates," *American Economic Review*, 82, 472–492.
REFERENCES III

(1993): "Economic Activity and the Short-Term Credit Markets: An Analysis of Prices and Quantities," *Brookings Papers on Economic Activity*, 24, 192–283.

- GERTLER, M., AND N. KIYOTAKI (2010): "Financial Intermediation and Credit Policy in Business Cycle Analysis," *Handbook of Macroeconomics*.
- GERTLER, M., AND C. S. LOWN (1999): "The Information in the High Yield Bond Spread for the Business Cycle: Evidence and Some Implications," *Oxford Review of Economic Policy*, 15(3), 132–150.
- GILCHRIST, S., AND E. ZAKRAJŠEK (2012): "Credit Spreads and Business Cycle Fluctuations," *American Economic Review*, 102(4), 1692–1720.

REFERENCES IV

- GREENWOOD, R., AND S. G. HANSON (2013): "Issuer Quality and Corporate Bond Returns," *Review of Financial Studies*, 26, 1438 – 1525.
- GÜRKAYNAK, R. S., B. SACK, AND J. H. WRIGHT (2007):
 "The U.S. Treasury yield curve: 1961 to the present," *Journal of Monetary Economics*, 54(8), 2291–2304.
- HE, Z., AND A. KRISHNAMURTHY (2013): "Intermediary Asset Pricing," *American Economic Review*, 103(2), 732–770.
- HOLMSTRÖM, B., AND J. TIROLE (1997): "Financial Intermediation, Loanable Funds, and the Real Sector," *Quarterly Journal of Economics*, 112(3), 663–691.
- KIYOTAKI, N., AND J. MOORE (1997): "Credit Cycles," *Journal* of *Political Economy*, 105(2), 211–248.

REFERENCES V

LÓPEZ-SALIDO, D., J. C. STEIN, AND E. ZAKRAJŠEK (2017): "Credit-market sentiment and the business cycle," *Quarterly Journal of Economics*, 132(3), 1373–1426.

PFLUEGER, C., E. SIRIWARDANE, AND A. SUNDERAM (2020): "Financial Market Risk Perceptions and the Macroeconomy," *Quarterly Journal of Economics*, 135(3), 1443 – 1491.

RAJAN, R. G., AND L. ZINGALES (1998): "Financial Dependence and Growth," *American Economic Review*, 88(3), 559–586.

RAMPINI, A. A., AND S. VISWANATHAN (2019): "Financial Intermediary Capital," *Review of Economic Studies*, 86, 413–455.