The China – U.S. Valuation Gap

ABFER 2021

Geert Bekaert Shuojia Ke Xiaoyan Zhang

Valuation Gap at Market Level

Valuation Gap at Sector Level

Valuation Gap at Firm Level A-Share vs. China Concept Stocks

P/E ratios for the China A-share and the China Concept Stocks listed in the US, December 31, 2020

Research Question and Hypothesis

- What drives the time-series and cross-section valuation differentials between China and the U.S.?
 - Bekaert, Harvey, Lundblad and Siegel (2011): with complete economic and financial integration, valuation differences should be small for same industries.

Hypotheses

- A changing sector composition: the relative importance of high multiple (low multiple) industries has changed over time.
- Changing growth opportunities in China: may explain a "China Premium" before 2009, and "China Discount" after 2009.
- A gradual liberalization and financial development process, combined with different classes of investors, may result in the observed valuation gap variation.

Literature and Contribution

- Market integration: Errunza and Losq (1985), Bekaert and Harvey (2003), etc.
- A-B premium: Bailey, Chung and Kang (1999), Chan, Menkveld and Yang (2008)
- Valuation differentials: Erb, Harvey and Viskanta (1996), Bekaert, Harvey, Lundblad and Siegel (2011)
- Chinese equity market: Chan and Kwok (2018), Liu, Stambaugh, and Yuan (2019), Allen, Qian, Shan and Zhu (2019), Carpenter, Lu and Whitelaw (2021)
- Unique contribution:
 - Valuation differentials between the largest two economies.
 - The importance of international accessibility.

Valuation Framework

- Gordon model: with constant expected cash flow growth rates and discount rates, and full payout of earnings, the earnings yield reflects the difference between the discount rate and cash flow growth rate.
- BHLS (2011) extension:
 - Discount rate: $\delta_{c,j,t} = r_f (1 \beta_{c,j}) + \beta_{c,j} \delta_{w,t}$.
 - □ Growth shocks: $\Delta \ln(\text{Earn}_{c,j,t}) = GO_{w,j,t} + \epsilon_{c,j,t}$.
 - $PE_{c,j,t} = \sum_{k=1}^{\infty} exp(a_{c,j,k} + \boldsymbol{b_{j,k}} \delta_{w,t} + \boldsymbol{g_{j,k}} GO_{w,j,t}).$
- The earnings yield, as reciprocal of PE, is a function of discount rate and growth rate.

Our Specification

We calculate earnings yields for portfolio j as follows:

$$EY_{j,t} = \frac{\sum_{i=1}^{N_j} Total \ annualized \ net \ income_{i,j,t}}{\sum_{i=1}^{N_j} Price_{i,j,t} \times Number \ of \ common \ equity_{i,j,t}}$$

We explain earnings yield differentials, DIFEY:

$$DIFEY_{j,t} = EY_{j,t}^{CN} - EY_{j,t}^{US} = a + b'DIFX_{j,t} + c'Control_{j,t} + e_{j,t}$$

- \Box $X_{i,t}$ represent our proxies for competing hypotheses;
- □ $DIFX_{j,t}$ represent differences in country proxies of competing hypotheses.

A Structural Break

- With the structural break test from Bai, Lumsdaine and Stock (1998), we identify a structural break in EY differentials in 2009Q3.
- Therefore, we modify our estimation to be:

$$DIFEY_{j,t} = a + \gamma Break_t + b'DIFX_{j,t} + c'Control_{j,t} + e_{j,t}$$
.

- The break dummy is set to be 1 after 2009Q3.
- ☐ If the competing hypothesis can fully explain the time variation in the earnings yield differential, it should also account for the break, and render the break dummy coefficient insignificant.

Data

- Data Sources
 - Chinese firm-level data: CSMAR, WIND, Suntime, Factset Lionshares and Datastream
 - US firm-level data: CRSP and COMPUSTAT, IBES, Factset Lionshares and Datastream
 - GDP growth, interest rate, political ratings: Various sources
- Sample coverage
 - □ Time: 1995 2018, quarterly
 - □ We adopt filters from Liu, Stambaugh and Yuan (2019)

Hypothesis I: Industry Structure

Hypothesis I: Industry Structure

Market share of Banks & Life Insurance sector

Hypothesis I: Industry Structure

Consider the following decomposition:

$$DIFEY_{t} = \sum_{j=1}^{33} w_{j,t}^{CN} (EY_{j,t}^{CN} - EY_{j,t}^{US}) + \sum_{j=1}^{33} (w_{j,t}^{CN} - w_{j,t}^{US}) EY_{j,t}^{US}$$
$$= DIF_{VAL_{t}} + DIF_{STRUC_{t}}.$$

- □ The first term represents a pure valuation differential;
- The second term represents the valuation effect of a different industry structure.

	DIFEY	DIF_VAL	DIF_STRUC
	$(^{0}/_{0})$	$(^{0}\!/_{0})$	$(^{0}/_{0})$
Variance Decomposition		0.99	0.01

Hypothesis II: Growth Prospects

- Growth measures
 - GDP growth rate
 - Sales growth expectations

Hypothesis III: Discount Rate Variables

- Category I: Market Development
 - Development regulation dummy, zeros, turnover, number of public firms, adjusted market development, MYY R2, idiosyncratic volatility, industry concentration ratio.
- Category II: Financial Openness
 - Openness regulation dummy, international accessibility, real interest rate, political ratings, A-B premium, A-H premium.
- Category III: Investor Base
 - State ownership, institutional ownership, retail ownership, turnover, standardized number of shareholders

International Accessibility Measures

- IA1: sum of dummies for B shares, H shares, an ADR and membership of the Mainland - Hong Kong Connects
- IA2: ratio of the market capitalization of B shares, H shares and ADRs to the firm's total market capitalization
- IA3: measures the market share of firms with positive firm level IA1

The Most Important Variables: PcGets

	1995-2018	
	Coef.	Var. Decomp.
Growth Expectations		
GDP growth rate	-0.176***	4.7%
Financial Development		
Zeros	0.073***	10.0%
MYY R ² synchronicity	0.018***	-1.3%
Adjusted market development	-0.002***	0.6%
Financial Openness		
IA2: MV(B,H and ADR)/total MV	0.118***	55.1%
Regulatory financial openness	0.002***	13.2%
A-H premium	-0.001**	5.3%
Investor base		
Turnover rate	-0.005***	12.4%
Adjusted R-square	0.330	100%

Model Fit over 1995-2018

The Most Important Variables: PcGets

	2003-2018	
	Coef.	Var. Decomp.
Growth Expectations		
GDP growth rate	-0.284***	15.80%
Sales growth expectation	-0.027***	6.40%
Forecast dispersion	-0.034***	10.80%
Financial Development		
Zeros	0.205***	12.90%
MYY R ² synchronicity	0.017^{***}	1.40%
Idiosyncratic volatility	0.023***	-5.70%
Financial Openness		
IA2: MV(B,H and ADR)/total MV	0.101***	42.50%
Investor base		
Turnover rate	-0.007***	15.90%
Adjusted R-square	0.418	100%

Robustness Checks

- Without assumption of integration:
 - Explain single country (Chinese) valuation ratios
 - □ Full segmentation, partial segmentation model for discount rates
- Without assumption of unit betas:
 - Cross-sectional differences
 - Time-variation in betas
 - Unconditional vs. conditional betas
- Our main results stay.

Conclusions

- Using data from 1995 to 2018, we examine the dynamics and sources of valuation differentials between comparable Chinese and U.S. firms.
- Before 2009, the market average PE of Chinese firms is higher than that of the U.S. firms, while after 2009, the valuation gap reverses.
- Growth expectations, financial openness, financial development, and the investor base, all contribute to the cross-sector and timeseries variation of the valuation differentials
 - Financial openness and changing growth expectations are the most important contributors.