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Introduction

Rational Agents
I Protocols̸=mechanisms that implement equilibrium

I Protocols to solve fault tolerant replication
I Honest parties: follow what the protocols “program”them to do

I Rational agents and exploitation of protocols

Selfish Mining
I Block holding attack under Nakamoto Protocol

I Strategically times block dissemination to orphan others
I Payoff larger than fair share



Selfish Mining

Question: Why haven’t we observed selfish mining in practice?

Some explanations

I Stakeholders: care about Bitcoin value.

I Computation power to attack still demanding.

But... agents could rent computation power to attack, and short sell.

This paper: discounted payoff in selfish mining not profitable!

I At 3% annual rate, threshold computation power increases by 20%.



This Paper

Analytical tractable framework
I Incorporate“time” for a general class of selfish mining strategies

I Cash flow arrivals, difficulty adjustment

Tradeoffs within selfish mining

I Accumulate strategic advantage

I Time preference, uncertainty in cash flow arrival, (other financial
frictions, limits of arbitrage)

I Inventory policies

Incentive for attacking

I Higher computation power threshold

I Sensitivity to γ

Implications

I Forking

I Safety vs liveness
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Bitcoin Blockchain

Bitcoin Blockchain

I Decentralized ledger keeping (script: BTC transactions)

I Miners: permissionless network

Nakamoto Protocol

I Randomly choosing leader via PoW crypto puzzles; BTC reward.

1. Longest chain rule.

2. Immediate dissemination.

I Important details
I Fork of equal length: randomly choose one.
I Difficulty adjustment: per 2016 blocks to target speed at 10min/

block
I Flexibility for open network vs. Randomness

Selfish mining: rational miner’s incentive to follow 2. immediate
disemmination?



Selfish Mining

Eyal and Sirer (2014)
I Withhold mined blocks and time the publishing: higher payoff

I s = 0,1,2, · · · : # withheld blocks on private chain
I 0′: two forks of equal length under public view

I Where do the gains come from? Forking rule.
I Lead s ≥ 2: longest chain rule. Orphan others, and withheld blocks

are rewarded.
I Lead s = 1: risky. Who mines the next block? (α) Which fork to

follow? (γ)

I Our baseline strategy in the presentation.



Selfish Mining: Markovian Strategy

Why does hurting others benefit myself?

I Riskiness in the reward for s = 1. Delaying payoff.

Zero-Sum Game

I Fixed total stock of BTC. Selfish mining till the end.

I Increase my mining efficiency: difficulty adjustment.

Why haven’t we observed any selfish mining attacks?

I Long-term deviation.
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Model Setup (1)
Players
I Fixed set of agents. One active agent —selfish“miner”, and“others”

who follow Nakamoto.

Mining
I Crypto puzzle is randomly solved with Poisson intensity λ , which is

subject to difficulty adjustment.
I Miner has α fraction of computation power.

I w.p. αλdt, miner solves first and thus mines a block.
I Upon concensus that a block is on the longest chain, reward 1

BTC=$1 to whoever mined it.
I No transaction delay
I Equal-length forks: w.p. γ, concensus is on the miner’s chain.

Miner’s utility

U = rV ≡ rE0

∫ ∞

0

e−rt ct︸︷︷︸
cash flow

dt

 ,

I r : instantaneous time discount. Relatively high for experts: funding
cost, outside options and etc.



Model Setup (2)

Difficulty adjustment

I Crypto difficulty starts with λ = λ0.

I Approximation: with Poisson intensity β , evaluate block arrival rate
λ disseminate on the longest chain.
I Assume states have reached stationary distribution.
I If Et

[
λdisseminate

]
= λ0, do not adjust; otherwise, crypto difficulty

adjusts λ1 =
λ0

Et [λ disseminate]
.

I Follow Nakamoto: effectively never adjusts, λ = λ0.

I Selfish mining: λ = λ0 before adjustment; crypto difficulty adjusts to
λ1 at t = τ once and for all.

Start with benchmarks β ∈ {0,1}
I β = 0: cash flow arrives more slowly under selfish mining.



Incorporate Time Discount (1)

Dynamic Programming→difference equations for value functions

I s: payoff relevant state variables. V (s): value to miner evaluated at
t = 0.

Follow Nakamoto

I There is no state transition. HJB

(r + 1)dt︸ ︷︷ ︸
gross return

V 0 = αλdt︸ ︷︷ ︸
my block

 1︸︷︷︸
flow

+ V 0︸︷︷︸
continuation


+(1−α)λdt ·V 0+(1−λ )dt ·V 0

Hence, V 0 = αλ
r



Incorporate Time Discount (2)
Selfish Mining

I State variable s = 0,1,1′,2,3, · · · : stock of blocks in private chain.

I When s ≥ 3, assume cashing in upon miner’s publishing

rV (s)︸ ︷︷ ︸
required return

= (1−α)λ︸ ︷︷ ︸
public chain gains

 1︸︷︷︸
flow

+ V (s−1)−V (s)︸ ︷︷ ︸
continuation/capital gain


+ αλ︸︷︷︸

private chain gains

(V (s+1)−V (s))

I Analytical solution for V (s)
I Second order difference equation.
I Two boundary conditions: s = ∞, transitions s = 0,0′,1,2.

I But, is the published block cashed in immediately?



Cash-in Time of Private Blocks (1)
Without discount: are blocks eventually rewarded?

I Yes, for s ≥ 2. At s = 2: publish 2 once others mine a block.

With discount: γ also matters for block values when s ≥ 3!

I Cash in time: upon concensus that block is on the longest chain.
I Qualitative benchmark.

I m: # of unrewarded, published blocks. When s > 2 and m > 0,

rV (s,m) = (1−α)λ︸ ︷︷ ︸
public chain gains

 γ︸︷︷︸
win

m+1︸ ︷︷ ︸
cash in

+V (s−1,0)−V (s,m)

+(1− γ)︸ ︷︷ ︸
lose

(V (s−1,m+1)−V (s,m))


+ αλ︸︷︷︸

private chain gains

(V (s+1,m)−V (s,m))



Cash-in Time of Private Blocks (2)
I Same value ν (s) for each postponed reward in m: V (s,m) satisfy

V (s,m) = h (s)+m ·ν (s) . (1)

I One state variable! For s ≥ 3, per postponed reward ν (s)

rν (s) =αλ [ν (s+1)−ν (s)]︸ ︷︷ ︸
private chain gains

+ (1−α)λ︸ ︷︷ ︸
public chain gains

γ(1+0−ν (s))︸ ︷︷ ︸
win: cash in

+(1− γ) (ν (s−1)−ν (s))︸ ︷︷ ︸
lose: continuation value



Intercept value h (s)

rh (s) = αλ [h (s+1)−h (s)]︸ ︷︷ ︸
private chain gains

+ (1−α)λ︸ ︷︷ ︸
public chain gains

γ (1+h (s−1)−h (s))︸ ︷︷ ︸
win: cash in

+(1− γ) (ν (s−1)+h (s−1)−h (s))︸ ︷︷ ︸
lose: +1 delayed payoff


I Analytical solution!
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Tradeoffs in Selfish Mining Strategies

Strategic advantage

I Accumulate private lead: stubborn mining, short-term loss

On the other hand, discount and uncertainty in reward time
I Inventory policy: stop accumulating when s = k, immediate publish.

I Boundary condition at k

rV (k,m) = αλ (m+1)︸ ︷︷ ︸
immediate publish, no state transition

+(1−α)λ [(m+1)+ γV (k−1,0)+ (1−α)λ (1− γ)V (k−1,m+1)]

I We find that k does not increase value when k ≥ k.
In contrast, without discount, tail states s ≥ k brings in positive gain.

I Uncertainty in reward time: if γ → 0, may even publish 2 blocks at
s ≥ 3.

Others Concerns

I Borrowing frictions: unable to take short-term loss.



Incentive to Attack

Without difficulty adjustment

I If BTC stock sufficiently large, never attack.

Incorporating difficulty adjustment

I V (s,m;λ1): continuation value after adjustment. When s ≥ 3,

r Ṽ (s,m) =β
(
V (s,m;λ1)− Ṽ (s,m)

)︸ ︷︷ ︸
difficulty adjustment

+ (1−α)λ︸ ︷︷ ︸
public chain gains

 γ︸︷︷︸
win

m+1︸ ︷︷ ︸
cash in

+Ṽ (s−1,0)− Ṽ (s,m)

+(1− γ)︸ ︷︷ ︸
lose

(
Ṽ (s−1,m+1)− Ṽ (s,m)

)
+ αλ︸︷︷︸

private chain gains

(
Ṽ (s+1,m)− Ṽ (s,m)

)

I 2016 rule and small r : Ṽ (s,m) ≈ V (s,m;λ1).



Incentive to Attack (2)

I Small r : γ = 0.5, hurdle α ↑ 20%; γ → 1, require significant α.

I Intermediate r : compensated by difficulty adjustment.
I annual r=40%, two-week effect small.



Mitigating Selfish Mining

Safety vs. Liveliness

I ↓ Postpone difficulty adjustment: β
I ↓ Block generation intensity λ0

Protocols

I Selfish mining takes advantage of forking

I Difficulty adjustment: count orphaned blocks (these are solved
crypto puzzles)



Economics

“Off-equilibrium strategies”

I Desirable outcome: immediate dissemination.

I Miner takes advantage of forking rules. Forking: trembling hand
path.

I Properly define strategies upon long forks: restrict selfish mining
strategy space.

Folk Theorem and Repeated Games

I If the players are patient enough and far-sighted (r → 0), then
repeated interaction can result in virtually any average payoff in an
SPE equilibrium.

I Importance of discount!



Conclusions

I The long-term feature of selfish mining has important financial
implications
I Discount, (limits of arbitrage and etc)
I Ex ante contract

I Importance of“off-equilibrium”strategies
I Unable to design
I Neglected to design
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