Discounted Selfish Mining: Is It Profitable?

Jing Huang University of Chicago

Ling Ren University of Illinois Urbana-Champaign

June 3, 2021 ABFER 8th Annual Conference Blockchain & Cryptocurrency

Introduction

Rational Agents

▶ *Protocols*≠*mechanisms* that implement equilibrium

- Protocols to solve fault tolerant replication
- Honest parties: follow what the protocols "program" them to do
- Rational agents and exploitation of protocols

Selfish Mining

- Block holding attack under Nakamoto Protocol
 - Strategically times block dissemination to orphan others
 - Payoff larger than fair share

Selfish Mining

Question: Why haven't we observed selfish mining in practice? Some explanations

- Stakeholders: care about Bitcoin value.
- Computation power to attack still demanding.
- But... agents could rent computation power to attack, and short sell.

This paper: discounted payoff in selfish mining not profitable!

▶ At 3% annual rate, threshold computation power increases by 20%.

This Paper

Analytical tractable framework

- Incorporate "time" for a general class of selfish mining strategies
 - Cash flow arrivals, difficulty adjustment

Tradeoffs within selfish mining

- Accumulate strategic advantage
- Time preference, uncertainty in cash flow arrival, (other financial frictions, limits of arbitrage)
- Inventory policies

Incentive for attacking

- Higher computation power threshold
- Sensitivity to γ

Implications

- Forking
- Safety vs liveness

Related Literature

Selfish Mining

 Eyal and Sirer (2014), Nayak, Kumar, Miller, and Shi (2016), Sapirshtein, Sompolinsky, and Zohar (2016)

Mitigation of Selfish Mining

Zhang and Preneel (2019), Pass and Shi (2017)

Blockchain Incentives

Eyal (2015), Carlsten, Kalodner, Weinberg, and Narayanan (2016)

Links to Economic Literature

Folk Theorem in repeated games, Shleifer and Vishny (1997)

Road Map

Background

- Nakamoto Protocol
- Selfish Mining

Analytical Framework

- Model setup
- Discounted payoffs

Strategies and Attack Incentive

- Different strategies and difficulty adjustment
- Incentive to attack

Implications and Conclusion

- Safety vs. liveliness
- Folk theorem in repeated games

Bitcoin Blockchain

Bitcoin Blockchain

- Decentralized ledger keeping (script: BTC transactions)
- Miners: permissionless network

Nakamoto Protocol

- Randomly choosing leader via PoW crypto puzzles; BTC reward.
- 1. Longest chain rule.
- 2. Immediate dissemination.
- Important details
 - Fork of equal length: randomly choose one.
 - Difficulty adjustment: per 2016 blocks to target speed at 10min/ block
 - Flexibility for open network vs. Randomness

Selfish mining: rational miner's incentive to follow 2. immediate disemmination?

Selfish Mining

Eyal and Sirer (2014)

Withhold mined blocks and time the publishing: higher payoff

- $s = 0, 1, 2, \dots$: # withheld blocks on private chain
- ▶ 0': two forks of equal length under public view
- Where do the gains come from? Forking rule.
 - ▶ Lead s ≥ 2: longest chain rule. Orphan others, and withheld blocks are rewarded.
 - Lead s = 1: risky. Who mines the next block? (α) Which fork to follow? (γ)
- Our baseline strategy in the presentation.

Selfish Mining: Markovian Strategy

Why does hurting others benefit myself?

• Riskiness in the reward for s = 1. Delaying payoff.

Zero-Sum Game

- Fixed total stock of BTC. Selfish mining till the end.
- Increase my mining efficiency: difficulty adjustment.

Why haven't we observed any selfish mining attacks?

Long-term deviation.

Road Map

Background

- Nakamoto Protocol
- Selfish Mining

Analytical Framework

- Model setup
- Discounted payoffs

Strategies and Attack Incentive

- Different strategies and difficulty adjustment
- Incentive to attack

Implications and Conclusion

Safety vs. liveliness

Model Setup (1)

Players

Fixed set of agents. One active agent —selfish "miner", and "others" who follow Nakamoto.

Mining

- Crypto puzzle is randomly solved with Poisson intensity λ, which is subject to difficulty adjustment.
- Miner has α fraction of computation power.
 - w.p. $\alpha \lambda dt$, miner solves first and thus mines a block.
- Upon concensus that a block is on the longest chain, reward 1 BTC=\$1 to whoever mined it.
 - No transaction delay
 - Equal-length forks: w.p. γ , concensus is on the miner's chain.

Miner's utility

$$U = rV \equiv r \mathbb{E}_0 \left[\int_0^\infty \left(e^{-rt} \underbrace{c_t}_{\text{cash flow}} \right) dt
ight],$$

r: instantaneous time discount. Relatively high for experts: funding cost, outside options and etc.

Model Setup (2)

Difficulty adjustment

- Crypto difficulty starts with $\lambda = \lambda_0$.
- Approximation: with Poisson intensity β, evaluate block arrival rate λ^{disseminate} on the longest chain.
 - Assume states have reached stationary distribution.
 - If $\mathbb{E}_t \left[\lambda^{\text{disseminate}} \right] = \lambda_0$, do not adjust; otherwise, crypto difficulty adjusts $\lambda_1 = \frac{\lambda_0}{\mathbb{E}_t [\lambda^{\text{disseminate}}]}$.
- Follow Nakamoto: effectively never adjusts, $\lambda = \lambda_0$.
- Selfish mining: λ = λ₀ before adjustment; crypto difficulty adjusts to λ₁ at t = τ once and for all.

Start with benchmarks $oldsymbol{eta} \in \{0,1\}$

• $\beta = 0$: cash flow arrives more slowly under selfish mining.

Incorporate Time Discount (1)

 $\textbf{Dynamic Programming} {\rightarrow} \text{difference equations for value functions}$

s: payoff relevant state variables. V(s): value to miner evaluated at t = 0.

Follow Nakamoto

There is no state transition. HJB

$$\underbrace{(r+1)\,dt}_{\text{gross return}} V^0 = \underbrace{\alpha\lambda\,dt}_{\text{my block}} \left(\underbrace{1}_{\text{flow continuation}} + \underbrace{V^0}_{\text{continuation}}\right) \\ + (1-\alpha)\,\lambda\,dt \cdot V^0 + (1-\lambda)\,dt \cdot V^0$$

Hence,
$$V^0 = \frac{\alpha \lambda}{r}$$

Incorporate Time Discount (2)

Selfish Mining

State variable $s = 0, 1, 1', 2, 3, \cdots$: stock of blocks in private chain.

• When $s \ge 3$, assume cashing in upon miner's publishing

• Analytical solution for V(s)

- Second order difference equation.
- Two boundary conditions: $s = \infty$, transitions s = 0, 0', 1, 2.
- But, is the published block cashed in immediately?

Cash-in Time of Private Blocks (1)

Without discount: are blocks eventually rewarded?

• Yes, for $s \ge 2$. At s = 2: publish 2 once others mine a block.

With discount: γ also matters for block values when $s \ge 3$!

Rewarded eventually due to s=2 strategy

- Cash in time: upon concensus that block is on the longest chain.
 - Qualitative benchmark.
- *m*: # of unrewarded, published blocks. When s > 2 and m > 0,

$$rV(s, m) = \underbrace{(1-\alpha)\lambda}_{\text{public chain gains}} \left[\underbrace{\gamma}_{\text{win}} \left(\underbrace{m+1}_{\text{cash in}} + V(s-1, 0) - V(s, m) \right) + \underbrace{(1-\gamma)}_{\text{lose}} (V(s-1, m+1) - V(s, m)) \right] + \underbrace{\alpha\lambda}_{\text{private chain gains}} (V(s+1, m) - V(s, m))$$

Cash-in Time of Private Blocks (2)

Same value v(s) for each postponed reward in m: V(s,m) satisfy

$$V(s,m) = h(s) + m \cdot v(s).$$
(1)

• One state variable! For $s \ge 3$, per postponed reward v(s)

$$rv(s) = \underbrace{\alpha\lambda \left[v(s+1) - v(s)\right]}_{\text{private chain gains}} + \underbrace{(1-\alpha)\lambda}_{\text{public chain gains}} \left[\underbrace{\gamma(1+0-v(s))}_{\text{win: cash in}} + \underbrace{(1-\gamma)\left(v(s-1) - v(s)\right)}_{\text{lose: continuation value}} \right]$$
Intercept value $h(s)$

$$rh(s) = \underbrace{\alpha\lambda \left[h(s+1) - h(s)\right]}_{\text{private chain gains}} + \underbrace{(1-\alpha)\lambda}_{\text{public chain gains}} \left[\underbrace{\gamma(1+h(s-1) - h(s))}_{\text{win: cash in}} + \underbrace{(1-\gamma)\left(v(s-1) + h(s-1) - h(s)\right)}_{\text{lose: +1 delayed payoff}} \right]$$

Analytical solution!

Road Map

Background

- Nakamoto Protocol
- Selfish Mining

Analytical Framework

- Model setup
- Discounted payoffs

Strategies and Attack Incentive

- Different strategies and difficulty adjustment
- Incentive to attack

Implications and Conclusion

Safety vs. liveliness

Tradeoffs in Selfish Mining Strategies

Strategic advantage

Accumulate private lead: stubborn mining, short-term loss

On the other hand, discount and uncertainty in reward time

- linventory policy: stop accumulating when s = k, immediate publish.
 - Boundary condition at k

$$\begin{split} r V\left(k,m\right) &= \underbrace{\alpha\lambda\left(m+1\right)}_{\text{immediate publish, no state transition}} \\ &+ (1-\alpha)\lambda\left[(m+1) + \gamma V\left(k-1,0\right) + (1-\alpha)\lambda\left(1-\gamma\right)V\left(k-1,m+1\right)\right] \end{split}$$

- We find that k does not increase value when k ≥ k. In contrast, without discount, tail states s ≥ k brings in positive gain.
- Uncertainty in reward time: if $\gamma \rightarrow 0$, may even publish 2 blocks at $s \geq 3$.

Others Concerns

Borrowing frictions: unable to take short-term loss.

Incentive to Attack

Without difficulty adjustment

▶ If BTC stock sufficiently large, never attack.

Incorporating difficulty adjustment

• $V(s, m; \lambda_1)$: continuation value after adjustment. When $s \ge 3$,

$$r\tilde{V}(s,m) = \underbrace{\beta\left(V(s,m;\lambda_{1}) - \tilde{V}(s,m)\right)}_{\text{difficulty adjustment}} + \underbrace{(1-\alpha)\lambda}_{\text{public chain gains}} \left[\underbrace{\gamma}_{\text{win}} \left(\underbrace{m+1}_{\text{eash in}} + \tilde{V}(s-1,0) - \tilde{V}(s,m)\right) + \underbrace{(1-\gamma)}_{\text{lose}} \left(\tilde{V}(s-1,m+1) - \tilde{V}(s,m)\right)\right] + \underbrace{\alpha\lambda}_{\text{private chain gains}} \left(\tilde{V}(s+1,m) - \tilde{V}(s,m)\right)$$

► 2016 rule and small
$$r: \tilde{V}(s,m) \approx V(s,m;\lambda_1)$$
.

Incentive to Attack (2)

Relative payoff of selfish mining to honest mining (3% annual)

- Small r: $\gamma = 0.5$, hurdle $\alpha \uparrow 20\%$; $\gamma \to 1$, require significant α .
- Intermediate r: compensated by difficulty adjustment.
 - annual r=40%, two-week effect small.

Mitigating Selfish Mining

Safety vs. Liveliness

- ▶ ↓ Postpone difficulty adjustment: β
- \blacktriangleright \downarrow Block generation intensity λ_0

Protocols

- Selfish mining takes advantage of forking
- Difficulty adjustment: count orphaned blocks (these are solved crypto puzzles)

Economics

"Off-equilibrium strategies"

- Desirable outcome: immediate dissemination.
- Miner takes advantage of forking rules. Forking: trembling hand path.
- Properly define strategies upon long forks: restrict selfish mining strategy space.

Folk Theorem and Repeated Games

- If the players are patient enough and far-sighted (r → 0), then repeated interaction can result in virtually any average payoff in an SPE equilibrium.
- Importance of discount!

Conclusions

- The long-term feature of selfish mining has important financial implications
 - Discount, (limits of arbitrage and etc)
 - Ex ante contract
- Importance of "off-equilibrium" strategies
 - Unable to design
 - Neglected to design

References

Carlsten, Miles, Harry Kalodner, S Matthew Weinberg, and Arvind Narayanan, 2016, On the instability of bitcoin without the block reward, in *Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security* pp. 154–167.

Eyal, Ittay, 2015, The miner's dilemma, in *2015 IEEE Symposium on Security and Privacy* pp. 89–103. IEEE.

———, and Emin Gün Sirer, 2014, Majority is not enough: Bitcoin mining is vulnerable, in *International conference on financial cryptography and data security* pp. 436–454. Springer.

- Nayak, Kartik, Srijan Kumar, Andrew Miller, and Elaine Shi, 2016, Stubborn mining: Generalizing selfish mining and combining with an eclipse attack, in 2016 IEEE European Symposium on Security and Privacy (EuroS&P) pp. 305–320. IEEE.
- Pass, Rafael, and Elaine Shi, 2017, Fruitchains: A fair blockchain, in *Proceedings of the ACM Symposium on Principles of Distributed Computing* pp. 315–324.

Sapirshtein, Ayelet, Yonatan Sompolinsky, and Aviv Zohar, 2016, Optimal selfish mining strategies in bitcoin, in *International Conference on Financial Cryptography and Data Security* pp. 515–532. Springer.