Capital-Reallocation Frictions and Trade Shocks

Andrea Lanteri Duke University and CEPR Pamela Medina University of Toronto Eugene Tan University of Toronto

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

ABFER Trade, Growth and Development May 2021

Motivation

Effects of trade liberalization on domestic production

- Literature focuses on long-run productivity and welfare gains
 Reallocation of factors, selection
- ▶ Pervasive evidence of "frictions" in capital reallocation
- What are short/medium-run effects of import-competition shock on

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- firm dynamics
- and aggregate productivity?

This Paper

Effects of China import competition on Peru's manufacturing (2000-2015)

- Empirics
 - Stylized facts about capital, productivity, and selection

 partial investment irreversibility
 - Effects of import competition on capital reallocation
 - measured "misallocation", investment inaction, exit ↑
- Quantitative Model
 - GE transitional dynamics in response to import-competition shock
 - Irreversibility accounts for intensive and extensive margin evidence
 - Short-run productivity gain pprox half long-run gain
 - However, welfare gains materialize early on

Related Literature

Capital "misallocation":

Restuccia and Rogerson (2008), Hsieh and Klenow (2009), Asker, Collard-Wexler and De Loecker (2014), Midrigan and Xu (2014), David and Venkateswaran (2018)

Investment irreversibility:

Ramey and Shapiro (2001), Veracierto (2002), Cooper and Haltiwanger (2006), Eisfeldt and Rampini (2006), Bloom (2009), Lanteri (2018), Tan (2020)

Trade and reallocation:

Melitz (2003), Buera and Shin (2013), Dix-Carneiro (2014), Artuc, Brambilla and Porto (2017), Medina (2018), Alessandria, Choi and Ruhl (2018), Brooks and Dovis (2020)

Outline

- 1. Empirical Evidence
 - Key facts about capital, productivity, selection

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Effects of trade shocks on reallocation
- 2. Model
- 3. Quantitative Analysis

Empirics

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Data

Encuesta Economica Anual, Peru, annual frequency 2000-2015

- Approx. 1,500 firms per year. Focus on 6 largest industries: Food, Textiles, Apparel, Printing, Chemical, Machinery
- Value added, employment, capital stock (and composition) → Revenue Productivity (ω), Marginal revenue product of capital (MRPK)

- Firm registry, Peru, annual frequency, 2007-2015.
 - Legal dates of operations.
- UN Comtrade, annual frequency 2000-2015
 - China import penetration in Peru at industry level
 - and in other countries (instruments)

Measurement Framework

Consistent with our structural model.

Production: $y_{jt} = s_{jt} k_{jt}^{\alpha} n_{jt}^{1-\alpha}$

Value added, with CES demand:

$$p_{jt}y_{jt} = B_t^{\frac{1}{\epsilon}} s_{jt}^{\theta} k_{jt}^{\theta\alpha} n_{jt}^{\theta(1-\alpha)} \quad \theta = \frac{\epsilon - 1}{\epsilon}$$

Revenue Productivity: $\omega_{jt} \equiv rac{p_{jt}y_{jt}}{k_{jt}^{ heta\alpha}n_{jt}^{ heta(1-lpha)}}$

Marginal Revenue Product of Capital:

$$MRPK_{jt} \equiv \frac{\partial p_{jt} y_{jt}}{\partial k_{jt}} = \theta \alpha \frac{p_{jt} y_{jt}}{k_{jt}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Summary of Empirical Evidence

Key facts about capital, productivity, selection:

- 1. MRPKs highly dispersed and persistent
- 2. Low MRPKs more persistent than high MRPKs
- 3. Probability of exit decreasing in k, conditional on productivity

Effects of trade shock:

- ► MRPK dispersion ↑
- Inaction \u03c1, little disinvestment (reallocation)
- Exit \uparrow , of firms with low ω and firms with low k

Fact 2. MRPK Mobility

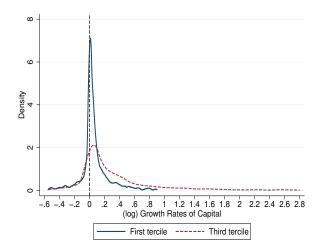
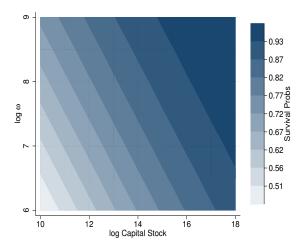

		at <i>t</i> + 1		
		1	2	3
	1	0.82	0.16	0.02
Tercile at <i>t</i>		(0.01)	(0.01)	(0.00)
	2	0.19	0.69	0.12
		(0.01)	(0.01)	(0.01)
	3	0.03	0.20	0.77
		(0.00)	(0.01)	(0.01)

TABLE: Transition probabilities for terciles of MRPK.

► High persistence of *MRPK*

► Higher persistence of low *MRPK*


Fact 2. MRPK Mobility and Investment

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Fact 3. Capital Predicts Survival

Conditional on productivity, firms with higher level of capital less likely to exit

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Capital Composition and Utilization

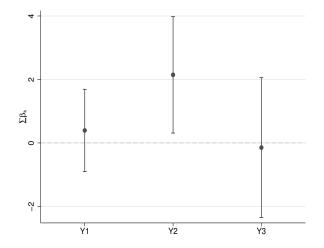
- 1. We use firm-level capital composition: Land, Fixed Installations, Machinery, Computers, Vehicles, among others.
 - To measure firm-level depreciation rates
 - Using US Fixed Assets Table depreciation rates
 - Both Fact 2 and Fact 3 stronger for firms with low depreciation rate
 - To analyze which type of capital drives low-MRPK persistence

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Fixed Installation and Machinery
- 2. We measure utilization using
 - Energy
 - Intermediates
 - Asymmetry in MRPK persistence goes away

Trade Shock

Two alternative measures of import-penetration "shock" - with similar results:

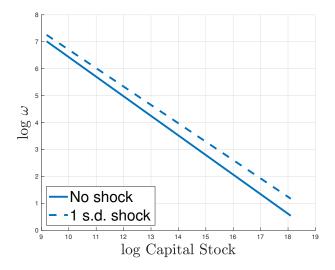

•
$$ChComp_{nt} = \frac{Imports_{China,nt}}{Imports_{World,nt}}$$
, where *n* is 4-digit industry.

Deviations from 2-digit trend of ChComp_{nt}.

Both instrumented using import penetration in border South American countries. Results also robust to other upper-middle income countries not in South America.

Graph 2-digit IV Back

Trade Shock and MRPK Dispersion


Regression

Trade Shock and Investment

	Inaction	Positive Investment	Negative Investment
ChComp _{nt}	0.456	-0.537	0.081
	(0.092)	(0.107)	(0.065)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Trade Shock and Selection

Model

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ

Key Ingredients

Representative household

$$U_0 \equiv \sum_{t=0}^{\infty} \beta^t \left(\log(C_t) - N_t \right)$$

CES demand structure

$$C_t = \left(\int_0^{M_t} c_{jt}^{\theta} dj + \int_{M_t}^{M_t + M_t^F} c_{jt}^{\theta} dj\right)^{\frac{1}{\theta}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Heterogeneous manufacturing firms

- Idiosyncratic productivity shocks, fixed continuation costs, fixed entry costs
- Endogenous entry and exit
- Partial investment irreversibility

Export sector (commodities) produces output using labor

Production function

$$y_{jt} = s_{jt} k^{lpha}_{jt} n^{1-lpha}_{jt}$$

Capital accumulation

$$k_{j,t+1} = (1-\delta) k_{jt} + i_{jt}$$

with marginal cost of investment

$$Q(i_{jt}) = \begin{cases} Q, & \text{if } i_{jt} \ge 0\\ q(< Q), & \text{if } i_{jt} < 0 \end{cases}$$

• Continuation cost $f \sim G(f; s)$. If exit, recover scrap value

$$(1-\zeta)q(1-\delta)k$$

Dynamic Program

Static labor choice:

$$\pi(k, s, Z) \equiv \max_{n} P(Z)C(Z)^{\frac{1}{c}}s^{\theta}k^{\theta\alpha}n^{\theta(1-\alpha)} - n$$

Incumbents: If firm continues,

$$V^{c}(k, s, f, Z) = \max_{i,k'} P(Z)^{-1} (\pi(k, s, Z) - f - Q(i)i) + \beta \mathbb{E} \left[\frac{C(Z)}{C(Z')} V(k', s', f', Z') | s, Z \right]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dynamic Program (cont'd)

If firm exits,

$$V^{x}(k, s, Z) = P(Z)^{-1}(\pi(k, s, Z) + q(1 - \zeta)(1 - \delta)k)$$

Value function

$$V\left(k, s, f, Z\right) = \max\left\{V^{c}\left(k, s, f, Z\right), V^{x}\left(k, s, Z\right)\right)\right\}$$

Entrants: Constant mass of potential entrants draw entry cost f^e and initial condition s^e

$$P(Z)^{-1}f^{e} \leq \max_{k'} - P(Z)^{-1}Qk' + \beta \mathbb{E}\left[\frac{C(Z)}{C(Z')}V(k', s', f', Z') | s^{e}, Z\right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

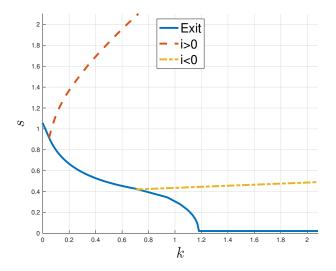
Equilibrium

- Household consumption and labor supply
- Firms decision rules for labor demand, investment, entry/exit
- Commodities labor demand and output
- Manufacturing prices

such that

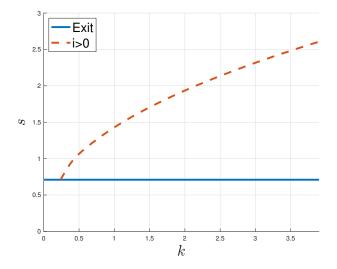
- 1. Labor market clears
- 2. Market for each variety clears (c = y)
- 3. Value of exported commodities equals value of imports (capital and manufacturing)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00


Quantitative Analysis

Calibration

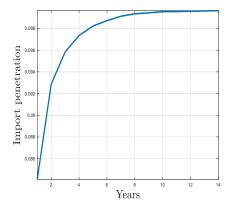
PARAMETER	VALUE	TARGET / SOURCE
β	0.96	Standard (annual frequency)
χ	2.15	Hours worked
ϵ	4	LITERATURE
α	0.396	CAPITAL SHARE
δ	0.105	DEPRECIATION RATE
ρ	0.783	Autocorrelation of ω
σ	0.797	Standard deviation of ω
q/Q	0.567	FREQUENCY OF NEGATIVE INVESTMENT
ζ	0.186	SLOPE OF EXIT THRESHOLDS
η_0	0.0744	EXIT RATE
η_1	4.861	Relative size at exit
η2	4.864	Relative productivity at exit


TABLE: Parameter Values.

Thresholds

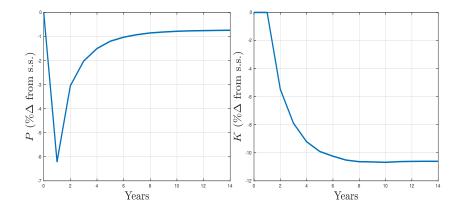
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Thresholds (Frictionless)

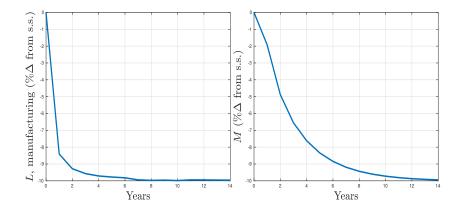

MRPK Dispersion and Mobility

S.D. of log MRPK is 1.47 in the data, 1.29 in the baseline, and 1.09 in the frictionless model

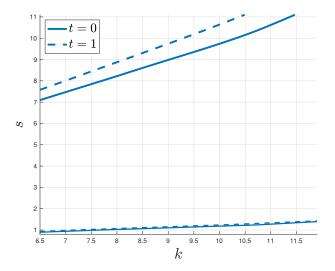
Baseline		at $t+1$		
		1	2	3
Tercile at t	1	0.62	0.28	0.10
	2	0.36	0.38	0.26
	3	0.15	0.35	0.50
Frictionless		at <i>t</i> + 1		
Frictionless		at $t+1$	2	3
Frictionless Tercile at <i>t</i>	1	at $t + 1$ 1 0.33	2 0.33	3 0.33
	1 2	1		


Import Penetration

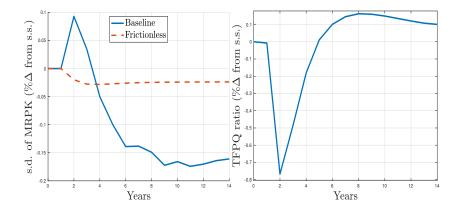
One-time unexpected, permanent increase in M^f


◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

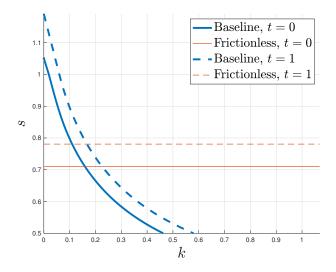
Aggregate Dynamics (P and K)


▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣ん(で)

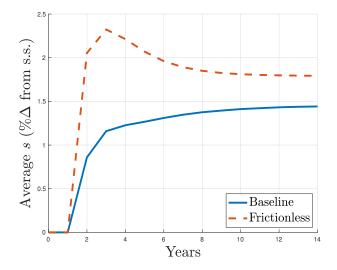
Aggregate Dynamics (N in manuf. and M)


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Inaction


◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

MRPK Dispersion and TFPQ Losses



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Selection

Average Firm TFPQ

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Extensions and Sensitivity

Add quadratic capital adjustment cost (and fixed costs)

- Recalibrate all parameters with additional investment targets
 - Standard deviation of investment
 - "Lumpiness"
- Estimates of irreversibility (q, ζ) robust
- Similar effects of trade shock, larger increase in $\sigma(MRPK)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Continuation cost f distribution independent of s

Worse fit, same results

Conclusions

Capital reallocation is costly

- MRPKs dispersed and persistent, especially when low
- Selection does not depend only on productivity
- To quantify short- and medium-run effects of trade shocks, need to account for capital-reallocation frictions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Productivity gains from trade come gradually over time
- Welfare gains emerge early in the transition

Extra

Definitions of Revenue Productivity

Notice

$$\omega_{jt} \equiv \frac{p_{jt}y_{jt}}{k_{jt}^{\theta\alpha}n_{jt}^{\theta(1-\alpha)}} = B_t^{\frac{1}{e}}s_{jt}^{\theta}$$

Different from:

$$TFPR_{jt} \equiv \frac{p_{jt}y_{jt}}{k_{jt}^{\alpha}n_{jt}^{1-\alpha}}$$

which in turn is tightly linked to $MPRK_{jt}$ (e.g., Hsieh and Klenow, 2009)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

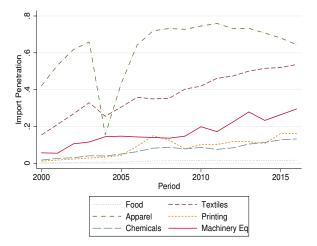
Fact 3. Capital Matters for Selection

We estimate the probability of survival as a function of k_{jt} and s_{jt} .

$$\mathit{Survival}_{jnt,t+1} = egin{cases} 1 & \mathsf{if} & z^*_{jnt} > 0 \ 0 & \mathsf{otherwise} \end{cases}$$

and

$$z_{jnt}^{*} = \alpha + \beta_1 \log \omega_{jnt} + \beta_2 \log K_{jnt} + \gamma_n + \gamma_t + \epsilon_{jnt}$$


Fact 3. Capital Matters for Selection

	P(<i>surv_{jnt}</i>) Full Sample (1)	P(surv _{jnt}) Matched Sample (2)	P(surv _{jnt}) Matched Sample 2007 and 2011 (3)
$\log \omega_{int}$	0.257	0.291	0.302
·	(0.017)	(0.041)	(0.054)
log K _{int}	0.189	0.121	0.145
,	(0.008)	(0.019)	(0.024)
N. Observations	12,401	6,180	2,586

TABLE: Effect on Survival.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Chinese Import Competition

Trade Shock and Instruments

Objective: instrument *ChComp_{nt}* and its deviations from trend.

Endogeneity concern: Peru's economic activity attracts both imports from China and affects selection and investment behavior of Peruvian firms.

Solution: Use measures of $ChComp_{nt}$ and its deviations from trend in other South American border countries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Trade shock and Selection

$$\mathit{Survival}_{jnt,t+1} = egin{cases} 1 & \mathsf{if} & z^*_{jnt} > 0 \ 0 & \mathsf{otherwise} \end{cases}$$

and

$$z_{jnt}^{*} = \beta_{0} + \beta_{1}ChComp_{nt} + \beta_{2}\log\omega_{jnt} + \beta_{3}ChComp_{nt} * \log\omega_{jnt} + \beta_{4}\log K_{jnt} + \beta_{5}ChComp_{nt} * \log K_{jnt} + \eta X_{jnt} + \gamma_{n} + \gamma_{t} + \epsilon_{jnt}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Trade Shock and Instruments (cont'd)

- 1. Create the vector *ChComp^{other}* as deviations from each country's industry trends of import penetration. The countries are Ecuador, Colombia, Brazil, Bolivia and Chile.
- 2. Regress $ChComp_{nt}^{Peru}$ on $ChComp_{nt}^{other}$, X_{jnt} , Y_{jnt} , γ_n and γ_t , where X_{jnt} are exogenous variables in the selection equation and Y_{jnt} are exogenous variables in the main specification, and γ_n and γ_t are the industry and year fixed effects, respectively.

- Get the predicted value of the first stage regression *ChComp_{nt}^{Peru}*.
- 4. Use those predicted values as a new measure of import competition shock.

 Back

MPRK Transition with Exit State

		at <i>t</i> + 1			
		1	2	3	exit
	1	0.62	0.12	0.01	0.25
Tercile at <i>t</i>		(0.01)	(0.00)	(0.00)	(0.01)
	2	0.15	0.55	0.10	0.20
		(0.00)	(0.01)	(0.00)	(0.01)
	3	0.02	0.13	0.52	0.33
		(0.00)	(0.00)	(0.01)	(0.01)

 $\ensuremath{\mathrm{TABLE}}$: Transition probabilities of MRPK

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Productivity ω Transition

			at $t+1$	
		1	2	3
	1	0.71	0.23	0.06
Tercile at <i>t</i>		(0.01)	(0.01)	(0.00)
	2	0.23	0.60	0.17
		(0.00)	(0.01)	(0.00)
	3	0.04	0.20	0.76
		(0.00)	(0.00)	(0.00)

TABLE: Transition probabilities of ω

Fact 2. MRPK Conditional Autocorrelation

Another way to see Fact 2 \rightarrow

-

$$\log MRPK_{jnt} = \alpha + \sum_{q \in \{1,2,3\}} \left(\rho_q \log MRPK_{jnt-1} \times \mathcal{I}_{jnt-1,q} \right) + \gamma_n + \gamma_t + \epsilon_{jnt}$$

	MRPK	TFPR
ρ	0.742	0.720
	(0.026)	(0.018)
ρ_{MRPK-1}	0.843	0.513
	(0.017)	(0.026)
$ ho_{MRPK-2}$	0.641	0.565
	(0.025)	(0.024)
$ ho_{MRPK-3}$	0.546	0.608
	(0.050)	(0.023)

MPRN "Mobility"

			at $t+1$	
		1	2	3
	1	0.71	0.23	0.06
Tercile at <i>t</i>		(0.01)	(0.01)	(0.01)
	2	0.25	0.59	0.17
		(0.01)	(0.01)	(0.01)
	3	0.07	0.24	0.69
		(0.01)	(0.01)	(0.01)

 $\ensuremath{\mathrm{TABLE}}$: Transition probabilities of MRPN. Standard errors in parenthesis.

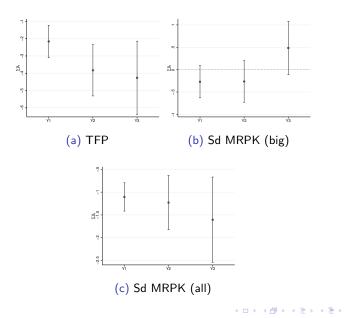
(ロ)、(型)、(E)、(E)、 E) の(()

Industry Regressions

$$\Delta y_{jt} = \alpha_j + \sum_{k=[0,5]} \beta_k \Delta Shock_{jt-k} + \epsilon_{jt}$$

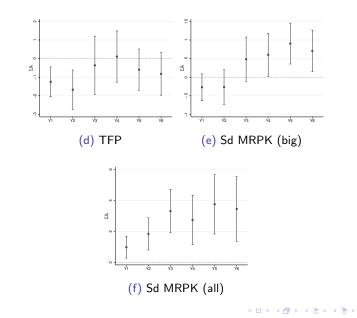
where

- Δy_{jt} : Change in outcome variable between period t and t 1. This could be defined by 4 digit-industry or 2-digit industry (better and consistent).
- $\Delta Shock_{jt-k}$: Change in Shock variable between period t-k and t-k-1. This shock is defined at the 4-digit industry level.
- α_j : Fixed effect of industry at 2-digit.


such that the cumulative effect up to year t from t - k is

$$\tilde{\beta}_k = \sum_k \beta_k$$

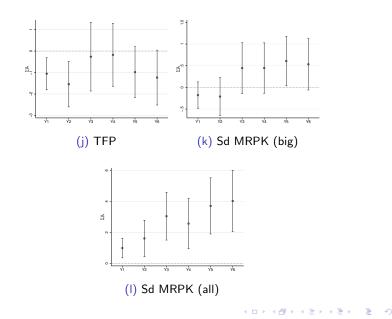
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00


2-digit industries — 3 lags

SAC

æ

2-digit industries — 6 lags


DQC

æ.

2-digit industries — 3 lags — Import Penetration

2-digit industries — 6 lags — Import Penetration

