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Currency Risk in the Long Run

Abstract

We study the long-horizon risk profile of a currency strategy, whereby a US investor

earns excess returns by entering in an unhedged long position in a foreign long-term

bond funded at the domestic risk-free rate. After showing the drivers of the strategy

returns, we derive and estimate their long-horizon predictive variance using data on

long-term bonds denominated in major currencies over the past two centuries. We find

that the long-horizon risk of such strategies increases with the investment horizon and

that it is mainly driven by the uncertainty associated with the predictions of future

returns originating from interest rate differentials and exchange rate returns.
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“Demand for longer-dated higher-yielding cash flows is very, very present.”

Scott Thiel, Head of Global Bonds at BlackRock, 2017.

“Insatiable demand for long bonds isn’t short term.”

The Wall Street Journal, 2017.

1 Introduction

Recent financial turmoils, like the ones associated with the collapse of Lehman Brothers and

the coronavirus outbreak, have been followed by unconventional monetary policy interven-

tions aiming at offsetting the negative impact of economic recessions on employment and

growth. These monetary stimuli have produced negative short-term interest rates in most

developed countries and pushed investors in search for higher yields to consider long-term

bonds around the world as an alternative asset class (e.g., Allen, 2017). Regulatory changes

have also contributed to increase market participants’ appetite for long-dated debt instru-

ments. For example, international banks have increased their demand for sovereign bonds

to meet the liquidity requirements arising from the post-crisis financial regulation, as they

carry little regulatory risk (e.g., Acharya and Steffen, 2015). Pension funds and other in-

stitutional investors, moreover, have also increased their exposure to long-duration assets to

better match their liabilities and hedge interest rate risk (e.g., IMF, 2019).

Furthermore, divergent monetary policy stances have also created an incentive for interna-

tional investors to increase their reliance on short-term dollar funding, thus increasing their

exposure to both interest rate and foreign exchange rate (e.g., Maggiori, Neiman and Schreger,

2020; Cenedese, Della Corte and Wang, 2021). Global bond and foreign exchange markets

have thus become increasingly more integrated and unexpected movements in short-term US
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interest rates can affect those investors that have exposure to both foreign exchange rate and

foreign long-term bonds (e.g., Maggiori, 2017; Greenwood, Hanson, Stein and Sunderam,

2019).1 A related literature studies the behavior of a carry trade strategy implemented with

long-term foreign bonds and finds a near zero average excess return, which conceals a large

negative profitability before the crisis followed by a sharp positive performance after the

global financial crisis (Lustig, Stathopoulos and Verdelhan, 2019; Andrews, Colacito, Croce

and Gavazzoni, 2021).

In this paper, we explore the long-horizon variance risk faced by a US investor holding an

unhedged position in a long-term foreign bond funded at the domestic risk-free rate. While

early academic studies suggest that investors would naturally hold short-term bonds and

demand a premium to hold long-term bonds (e.g., Keynes, 1930; Hicks, 1946), a more recent

literature argues that long-term bonds are more appropriate for investors that value stability

of income (Modigliani and Sutch, 1966) and lower risk (Campbell and Viceira, 2002; Viceira

and Wang, 2018). Although some studies have attempted to provide empirical evidence to

these issues, to date little is known about the risk profile of a strategy that relies on short-

term dollar funding and buys long-term foreign currency-denominated bonds. We first show

that the excess returns from this strategy are due to three main components: The bond

excess returns in local currency, the short-term real interest differential between the foreign

and domestic currency and the bilateral real exchange rate return.

We then adopt the predictive variance of the strategy returns as a notion of risk in our anal-

ysis. In fact, the predictive variance of returns is what really matters to investors, especially

for long-horizon portfolio decisions, as it requires the identification and estimation of suit-

able predictive models for asset returns (Pástor and Stambaugh, 2012; Avramov, Cederburg

and Lučivjanská, 2018). Investors construct their expectations of future returns using only

information available at the time the forecast is made. However, they do not know the true

1During the financial crisis in 2008, many developing economies received large waves of capital inflows,
which sharply reversed following the decision of the US Federal Reserve to start withdrawing monetary
stimulus. This lead Morgan Stanley to coin the term “fragile five” to refer a group of developing economies
that were suffering sharp outflows of foreign capital, exchange rate depreciation, and difficulty to roll-over
their debts.
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data generating process of future returns and, by relying on potentially misspecified em-

pirical models, observable predictors may deliver imperfect forecasts. Hence, the investors’

predictive variance of returns differ substantially from the true variance in that the former

encompasses a range of uncertainties which are absent in the latter. These uncertainties are

important for long-term investors as they are likely to offset the effects of mean reversion in

returns for longer investment horizons, even in the presence of return predictability.2

We carry out an empirical investigation exploring the long-term predictive variances of re-

turns from investments in long-term bonds denominated in major currencies over the past

two centuries. In the spirit of Pástor and Stambaugh (2009), we estimate these long-term

predictive variances in an environment with imperfect predictability, by allowing unobserved

predictors to join a set of observable predictors to help forecast the strategy returns at dif-

ferent horizons. As the variables to be forecast in our setting relate to interest rates and

exchange rates, we conjecture that the unobserved predictors in our framework can be po-

tentially associated with changes in monetary and exchange rate regimes that have occurred

over the past two centuries and are not already captured by the set of observable predictors.

Furthermore, we derive in closed form a range of uncertainties that affect the predictive vari-

ance for long horizons, in addition to the mean reversion component due to predictability

of returns, building upon and extending the theoretical frameworks proposed by Pástor and

Stambaugh (2012) and Avramov et al. (2018).

The estimations lead to a host of interesting results: First, over the full sample period and

across all countries, the predictive variance of the bond investment strategy is found to be

increasing with the investment horizon and this is mainly due to a growing predictive variance

for both short-term interest rate differentials and real exchange rate returns. Overall, the

predictive variance of real exchange rate returns exhibits the largest long-horizon value,

followed by that of interest rate differentials, while the predictive variance of bond excess

returns in foreign currency does not vary much across investment horizons. The predictive

2The effect of these uncertainties on the predictive variance may be even stronger if returns are only
partially predictable.
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covariances between the three components of the strategy returns are smaller in size and

negligible, with the exception of the covariance between interest rate differentials and real

exchange rate returns which is consistently negative across currency pairs and decreasing

over the investment horizon. This finding suggests that predictive co-movement between

bond excess returns in foreign currency and interest rates and exchange rate returns are less

important in determining the long-term risk profile of the strategy. The results also suggest

that the predictive co-movements between interest rate differentials and real exchange rate

returns are important in the long-run as they tend to reduce the overall expected risk of the

strategy, especially at longer horizons. Second, after decomposing the predictive variance of

the strategy returns into its key constituents, we observe that in all cases the uncertainty

about future returns unambiguously plays the leading role. All other components, especially

the one associated with mean reversion due to return predictability, are negligible in size and

do not provide any improvement in the risk profile of the strategy at longer horizons. Put

differently, when bond return, interest rate and foreign exchange rate predictability is taken

seriously into account, the notion that bond returns are less volatile in the long-run does not

apply. The range of uncertainties that affect the predictive variance more than offset any

potential benefit originating from mean reversion in returns.

Upon further exploration, across all of the currency pairs investigated, the uncertainty about

future returns is mainly due to the component of the predictive variance pertaining to the

unobserved predictors. The uncertainty associated with the expected future values of the

observable predictors is non-negligible but substantially smaller than the one documented for

unobserved predictors. Furthermore, as the uncertainty about future returns originating from

interest rate differentials and exchange rate returns is fairly similar, the shape of the predictive

variance over longer horizons can be interpreted as spurring from changes in monetary and

exchange rate regimes that are not captured by the set of observable predictors.

We do not find any tangible effects of mean reversion in the long-horizon predictive variance

as, for most of the currencies considered, the expected negative impact of the mean reversion

component on the predictive variance (only found for unobserved predictors) is completely
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offset by a similar but positive impact of the mean reversion component originating from

observable predictors. As the overall effect cancels out, the shape of the strategy’s predictive

variance is essentially due to the interplay between the various sources of uncertainties and

therefore increases with the investment horizon.

Our study builds on the findings of various strands of literature: First and foremost, a vast

body of research that has extensively explored the issue of whether bond returns and yields

are predictable over various investment horizons. In this body, several studies have found

evidence of predictability for US bond yields and returns provided by, but not limited to,

interest forward rates, macroeconomic fundamentals and principal components of bond yields

(Fama and Bliss, 1987; Cochrane and Piazzesi, 2005; Ludvigson and Ng, 2009; Joslin, Priebsch

and Singleton, 2014). Evidence of predictability for non-US bond returns is reported in some

studies, but it is overall less pervasive than that found for US bond returns (Ilmanen, 1995).

As we are concerned with the risk of investing in foreign long-term bonds, the predictability

of FX returns is also important. This literature, however, has not reached a consensus as

to whether, and to which extent, FX returns are at all predictable (Meese and Rogoff, 1983;

Engel and West, 2005). In our study, we allow for predictability in all components of the

strategy returns but we also take into account the possibility that such predictability is

less than perfect, à la Pástor and Stambaugh (2009), in order to encompass the different

levels of predictability that have been documented in the existing literature. The second

body of research we build on relates to the measurement of risk associated with portfolio

investments over long horizons, and the implications for asset allocation. In addition to the

pioneering works by Samuelson (1969) and Merton (1969), who show that investors should

choose the same asset allocation regardless of investment horizon whenever asset returns are

unpredictable, our empirical analysis builds upon the results of Siegel (1992, 2008), Barberis

(2000) and Campbell and Viceira (2002, 2005). These studies show that, in the presence of

return predictability, the perceived variability of asset returns is lower for longer horizons

because of the effect mean reversion of expected returns has on the long-horizon variance.

The two studies that are closest to our empirical investigation are the ones by Pástor and
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Stambaugh (2012) and Avramov et al. (2018), who show that asset returns are more volatile

over longer horizons if the predictive variance of returns is used as the main notion of long-

horizon risk. This novel result is due to the presence of an assortment of uncertainties that are

explicitly included in the framework for the predictive variance, but not for the true variance.

We improve upon these works in several important ways: We first show how the long-horizon

predictive covariances associated with a predictive system that includes both observable and

unobserved predictors can be decomposed into five main components, with accompanying

closed-form expressions. Thus, in contrast to Pástor and Stambaugh (2012) and Avramov

et al. (2018), who focus on the long-horizon predictive variance of a single asset, our focus

is on obtaining an informative decomposition for the long-horizon predictive covariance of

multiple assets. We then apply this framework to a multiple asset case, allowing for imperfect

predictability. This permits us to gain further insight into the long-horizon predictive variance

of the strategy returns and to directly link the main sources of uncertainty, including mean

reversion in expected returns, to the estimated parameters of the predictive system.

Our study is structured as follows: Section 2 presents our framework for deriving and com-

puting long-horizon predictive covariances in the presence of imperfect predictability, and

discusses the theoretical findings. Section 3 shows the components of the strategy returns

and introduces their long-horizon predictive variance. It also describes the long-span data

used in the empirical investigation and reports some preliminary statistics. Section 4 reports

the main results and discuss a number of robustness checks, respectively, whereas Section 5

concludes. A separate Internet Appendix describes the Bayesian estimation and presents the

derivation of the decomposition for the long-horizon predictive covariance.

2 Framework

This section presents our framework for long-horizon predictive variances and covariances.

It builds upon and extends the work of Pástor and Stambaugh (2012) and Avramov et al.

(2018). We start with a parsimonious predictive system that includes both observable and
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unobserved predictors. We then show how the long-horizon predictive covariances associated

with this system can be decomposed into five main components, with accompanying closed-

form expressions. Section 3 then uses this framework to empirically examine the predictive

return variance over long horizons of a strategy that buys a long-term bond in foreign cur-

rency while borrowing at the short-term domestic interest rate. The excess return on this

strategy can be seen as the sum of a bond excess return in local currency, a real interest

rate differential, and real exchange rate return. Hence its predictive return variance, by con-

struction, comprises both variance and covariance terms. Since variance is a special case of

covariance, we only present the framework for covariances here.

2.1 A Simple Currency Strategy

Similar to Andrews et al. (2021), we consider a simple strategy where a US investor buys

a long-term bond in foreign currency and sells a short-term bond in local currency. The

one-month excess return on this strategy, rxt+1, can be described as

rxt+1 = y⋆t+1 +∆st+1 − it+1, (1)

where y⋆t+1 is the one-month return on a constant maturity long-term bond denominated

in foreign currency, ∆st+1 is the one-month nominal exchange rate return, and it+1 is the

one-month return on a short-term bond denominated in domestic currency.

We can equivalently rewrite the excess return using real quantities, i.e., we add and subtract

the one-month return on a short-term bond denominated in foreign currency i⋆t+1, the one-

month domestic inflation rate ρt+1, and the one-month foreign inflation rate ρ⋆t+1 as

rxt+1 = y⋆t+1 − i⋆t+1︸ ︷︷ ︸
foreign bond
excess return

+ (i⋆t+1 − ρ⋆t+1)− (it+1 − ρt+1)︸ ︷︷ ︸
real interest

rate differential

+ ∆st+1 + ρ⋆t+1 − ρt+1︸ ︷︷ ︸
real exchange
rate retun

(2)
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or simply as the sum of three return components

rxt+1 = r1,t+1 + r2,t+1 + r3,t+1, (3)

where r1,t+1 = y⋆t+1 − i⋆t+1 is the foreign bond excess return in local currency, r2,t+1 = (i⋆t+1 −

ρ⋆t+1)− (it+1− ρt+1) is the real interest rate differential between the foreign and the domestic

country, and r3,t+1 = ∆st+1 + ρ⋆t+1 − ρt+1 is the real exchange rate return. All variables are

defined between times t and t+ 1 and the asterisk refers to foreign quantities.

2.2 Imperfect Predictability

Each return component in Equation (3) can be written as

rs,t+1 = µs,t + us,t+1 (4)

where µs,t denotes the expected return conditional on all information available at time t,

us,t+1 is the unexpected return with zero mean and constant variance, and s ∈ {1, 2, 3}. The

expected return µs,t is often defined as a linear combination of an observable predictor xs,t (or

a set of observable predictors) such that µs,t = as+bsxs,t. As noted by Pástor and Stambaugh

(2009), this approach is likely to understate the uncertainty faced by an investor assessing

the variance of future returns. This happens as the true expected return µs,t reflects more

information than what we assume an investor can observe, i.e., the history of rs,t and xs,t.

Put differently, any observable predictor xs,t is likely to be imperfect and unable to deliver

the true expected return, i.e., µs,t ̸= as + bsxs,t. On the basis of this arguments, we take the

presence of predictor imperfection into account by first defining the expected return as

µs,t = as + bsxs,t + πs,t, (5)

where πs,t denotes the unobserved predictor, and then considering a state-space model in

which rs,t, xs,t, and πs,t follow a first-order vector autoregression with coefficients restricted
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such that µs,t is the mean of rs,t.

2.3 Long-Horizon Variance and Parameter Uncertainty

We study the predictive variance over long horizons of rxt+1 and how the shape of the variance

curve is affected by its underlying components. Unlike the (ex post) realized variance, which

implicitly assumes full knowledge of the data generating process, the (ex ante) predictive

variance only conditions on information available to an investor and incorporates parameter

uncertainty to make forward-looking predictions.

Define the k-period return from period T + 1 through period T + k as

rks,T =
k∑
ℓ=1

rs,T+ℓ

and assess the predictive variance of our excess return as

V ar
(
rxkT | DT

)
=

3∑
i=1

3∑
j=1

Cov
(
rki,T , r

k
j,T | DT

)
, (6)

where rxkT = rk1,T + rk2,T + rk3,T is the k-period excess return and DT denotes a subset of all

information available at time T . In our empirical analysis, DT comprises the full history of

returns rs,t and observable predictors xs,t that an investor employs to forecast returns. It

does not contain, however, any information on the unobservable predictor πs,t and the vector

of parameters ϕ governing the joint dynamics of returns and predictors. The elements of ϕ

are considered as random, given that they are unknown to an investor.

We focus on V ar
(
rxkT | DT

)
, i.e., the predictive variance of rxkT given the information

set DT available to an investor at time T , which comprises both variance and covariance

terms. As the variance is a special case of the covariance, we present our framework for

Cov
(
rki,T , r

k
j,T | DT

)
, i.e., the predictive covariance between rki,T and rkj,T given the informa-

tion set DT available to an investor at time T . Given this framework, we can first calculate
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all predictive variances and covariances implied by Equation (6), and then the predictive

variance of rxkT .

In our setting, an investor is uncertain about πT and ϕ and it is helpful to decompose the

predictive covariance between rki,T and rkj,T as

Cov
(
rki,T , r

k
j,T | DT

)
= E

[
Cov

(
rki,T , r

k
j,T | πT , ϕ,DT

)
| DT

]
+ Cov

[
E
(
rki,T | πT , ϕ,DT

)
, E
(
rkj,T | πT , ϕ,DT

)
| DT

]
. (7)

The first term of this decomposition is the expectation of the conditional covariance of k-

period returns. While investors with a knowledge of the true values of πT and ϕ only care

about the conditional covariance, investors who are uncertain about πT and ϕ care about

its expectation and also also account for the covariance of the conditional expected k-period

returns, the second term in Equation (7). As a result, the perceived covariance can be

substantially higher, in absolute terms, at long horizons. To assess these effects, we first need

to define a predictive system that describes the evolution of our return components and then

dissect each of these components using closed-form solutions.

2.4 Predictive System

We model the return components underlying the excess return rxt using a parsimonious

predictive system in vector form defined as

rt+1 = a+ bxt + πt + ut+1 (8)

xt+1 = θ + γxt + vt+1 (9)

πt+1 = δπt + ηt+1, (10)

where rt = [r1,t, . . . , r3,t]
′ is a vector of returns, xt = [x1,t, . . . , x3,t]

′ is a vector of observable

predictors, and πt = [π1,t, . . . , π3,t]
′ is a vector of unobserved predictors. All vectors rt, xt

and πt have a size 3× 1. Also, a and θ denote 3× 1 vectors of intercepts whereas b, γ and δ
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represent 3 × 3 diagonal matrices of slope coefficients. For the main diagonal elements of γ

and δ, we assume that −1 < γs < 1 and 0 < δs < 1 for s ∈ {1, 2, 3}.

In our empirical investigation, the vectors containing the shocks of the system are assumed

to be independent and identically normally distributed over time
ut

vt

ηt

 i.i.d.∼ N




0

0

0

 ,


Σuu Σ
′
vu Σ

′
ηu

Σvu Σvv Σ
′
ηv

Σηu Σηv Σηη


 , (11)

where Σuu is the covariance matrix of the unexpected returns ut, Σvv is the covariance matrix

of the observable predictors’ shocks vt, Σηη is the covariance matrix of the unobserved predic-

tors’ shocks ηt, and the off-diagonal entries denote the cross-equations covariance matrices.3

All submatrices in (11) are of size 3 × 3. We refer to each element of, say, Σηu as σηiuj for

i, j ∈ {1, 2, 3}.

The predictive system presented above can be seen as a reduced-form model that is consistent

with a broad range of economic models, rational or behavioral, in which the expected return

changes over time in a persistent fashion. In particular, each return rs,t+1 is a linear function

of a lagged observable predictor xs,t and a lagged unobserved predictor πs,t. Each observable

predictor xs,t, in turn, follows a first-order autoregressive process, an assumption routinely

used in the predictability literature (e.g., Stambaugh, 1999). A special case arises when

the coefficients bs (the main diagonal elements of b) are zero, observable predictors are then

absent and returns are only driven by unobserved predictors. Finally, in Equation (10), we

postulate a persistent driftless process for each unobserved predictor πs,t. This equation

is particularly useful to study the role of predictor imperfection. To see this, notice that

unobserved predictors are absent in the limit as the main diagonal elements of Σηη (the

σ2
ηs) tend to zero. Equation (8) then reduces to a standard predictive regression used in a

wide range of empirical applications. We will conduct our empirical analysis using monthly

3Our theoretical results presented in sections 2.5-2.6, however, hold under the considerably less restrictive
assumption of a zero-mean vector white noise process for the shocks of the predictive system.
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observations between January 1800 and June 2017 for 10 major economies, and compute

posterior distributions for the parameters of our predictive system using the Markov Chain

Monte Carlo (MCMC) method discussed in Internet Appendix B.

2.5 Conditional Covariance

The conditional covariance Cov
(
rki,T , r

k
j,T | πT , ϕ,DT

)
on the right-hand side of Equation

(7) implies that the investor knows both πT and ϕ and, hence, takes neither uncertainty

about the current expected return nor parameter uncertainty into account. Assuming that

equations (8)–(11) hold, this important conditional covariance comprises three main sources

of uncertainty, denoted by S1 through S3, as

Cov
(
rki,T , r

k
j,T | πT , ϕ,DT

)
= S1 + S2 + S3, (12)

where

S1 = kσuiσujρuiuj (13)

S2 = kσuiσuj
[
biēiρviujAγi(k) + bj ējρuivjAγj(k)

]
+ kσuiσuj

[
d̄iρηiujAδi(k) + d̄jρuiηjAδj(k)

]
(14)

S3 = kσuiσujbibj ēiējρvivjBγi,γj(k) + kσuiσuj d̄id̄jρηiηjBδi,δj(k)

+ kσuiσuj
[
biēid̄jρviηjBγi,δj(k) + bj d̄iējρηivjBδi,γj(k)

]
, (15)

and

Aχs(k) = 1 +
1

k

(
−1− χs

1− χk−1
s

1− χs

)

Bχi,ψj
(k) = 1 +

1

k

(
−1− χi

1− χk−1
i

1− χi
− ψj

1− ψk−1
j

1− ψj
+ χiψj

1− χk−1
i ψk−1

j

1− χiψj

)
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d̄s =

(
1 + δs
1− δs

R2
s

1−R2
s

σ2
πs

σ2
rs − σ2

us

)1/2

ēs =

(
1 + γs
1− γs

R2
s

1−R2
s

σ2
xs

σ2
rs − σ2

us

)1/2

,

for χ, ψ = γ, δ and s = i, j and R2
s = (b2sσ

2
xs + σ2

πs + 2bsσxsπs)/σ
2
rs is the variance of µs,t to

the variance of rs,t+1 based on Equation (8). We report the corresponding derivation in the

Internet Appendix A.

The first source of uncertainty, S1 in Equation (13), can be interpreted as the uncertainty

arising from i.i.d. shocks and contributes the same per-period covariance at all horizons. The

two terms of the second source of uncertainty, S2 in Equation (14), reflect the correlation

between unexpected returns and shocks to expected future returns. The first term captures

the correlation between unexpected returns and shocks to observable predictors through ρviuj

and ρuivj , the second term represents the correlation between unexpected returns and shocks

to unobserved predictors by means of ρηiuj and ρuiηj . When these correlations are negative,

the terms on the right-hand side of Equation (14) will contribute negatively to long-horizon

covariance given typical parameter estimates, thus reflecting the mean-reverting dynamics

of expected returns. The literature on stock returns (e.g., Campbell, 1991; Campbell, Chan

and Viceira, 2003), for example, finds a negative correlation between unexpected returns and

shocks to expected returns and concludes that stocks have lower per-period variance and are

less risky for long-horizon investors.

The third source of uncertainty, S3 in Equation (15), reflects uncertainty about future ex-

pected returns and it contributes positively to long-horizon covariance given typical parame-

ter estimates. Even with perfect information on the parameters of the predictive system, and

on the current values of its predictors, an investor is still uncertain about future expected

returns (or, equivalently, about future values of the observable and unobserved predictors) in

each period. This uncertainty produces additional predictive covariance that is often ignored

in the literature. Specifically, the first term of S3 captures uncertainty about future values
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of the observable predictors while the second term reflects uncertainty about future values of

the unobserved predictors. The last term, instead, captures joint uncertainty about future

values of the observable and unobserved predictors.

When returns are unpredictable, S1 is the only non-zero source of uncertainty in Equation

(12). When returns are predictable (either via observable predictors, unobserved predictors,

or both), S1 is still the only non-zero source when k = 1, since both Aχs(1) and Bχi,ψj
(1)

are zero. As k increases, however, the terms of S2 and S3 involving Aχs(k) and Bχi,ψj
(k)

become increasingly important, since both functions are strictly increasing from zero to one

as k tends from one to infinity, and all three sources in Equation (12) play a role. When

asset s has no observable predictor (bs = 0), R2
s = σ2

πs/σ
2
rs , and the first term in Equation

(14) as well as the first and third terms in Equation (15) vanish.

Finally, when i = j and there are no observable predictors the conditional covariance in

Equation (12) becomes the conditional variance

V ar
(
rki,T | πT , ϕ,DT

)
= kσ2

ui

[
1 + 2d̄iρuiηiAδi(k) + d̄2iBδi,δi(k)

]
,

which coincides with the expression for the conditional variance presented in Pástor and

Stambaugh (2012, p. 438).

2.6 Components of Predictive Covariance

The long-horizon predictive covariance Cov
(
rki,T , r

k
j,T | DT

)
in Equation (7) comprises two

terms. The first term E
[
Cov

(
rki,T , r

k
j,T | πT , ϕ,DT

)
| DT

]
is the expectation of a conditional

covariance of k-period returns, which corresponds to the sum of the on DT conditional ex-

pectations of S1–S3, the three sources of uncertainty in Equation (12). The second term

Cov
[
E
(
rki,T | πT , ϕ,DT

)
, E
(
rkj,T | πT , ϕ,DT

)
| DT

]
on the right-hand side of Equation (7) is

the covariance of the true conditional expected returns given the investor’s information set

DT . In Internet Appendix A, we decompose this covariance into two components. The first
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component reflects uncertainty about the current πT (or predictor imperfection), and the

second reflects uncertainty about ϕ (or estimation risk).

From the perspective of an investor, an important consideration is whether the predictive

covariance of rki,T and rkj,T , the k-period returns of assets i and j starting at time T , increases

or decreases with the investment horizon k and, generally, what the shape of the covariance

curve is.

Analogous to Pástor and Stambaugh (2012), let cs,T denote the on ϕ andDT conditional mean

of the unobserved predictor πs,T and let qij,T denote the conditional covariance between the

unobserved predictors πi,T and πj,T . That is,

cs,T = E(πs,T | ϕ,DT )

qij,T = Cov(πi,T , πj,T | ϕ,DT ).

To gain further insight into the long-horizon predictive covariance, we can then express the

right-hand side of Equation (7) as the sum of five components. These components, denoted

by C1 through C5 in Equation (16) below, are discussed separately in sections 2.6.1–2.6.4.

Cov
(
rki,T , r

k
j,T | DT

)
= C1︷ ︸︸ ︷

i.i.d. uncertainty

+ C2︷ ︸︸ ︷
mean reversion

+ C3︷ ︸︸ ︷
future µs uncertainty

+ C4︷ ︸︸ ︷
current πs uncertainty

+ C5︷ ︸︸ ︷
estimation risk

. (16)

The derivation of Equation (16) is presented in Internet Appendix A.

15



2.6.1 i.i.d. uncertainty

The first component of the long-horizon predictive covariance in Equation (16), labeled i.i.d.

uncertainty, is

C1 = E
{
kσuiσujρuiuj | DT

}
.

This component can be interpreted as the uncertainty arising from the, by assumption, i.i.d.

unexpected returns. It contributes the same per-period expected covariance at all investment

horizons. To see this, notice that C1 can be written more compactly as kE
{
σuiuj | DT

}
. This

also shows that C1 contributes positively to the long-horizon predictive covariance when i = j

(and covariance is variance), but not necessarily so if i ̸= j.

2.6.2 Mean reversion

The second component of Equation (16), labeled mean reversion, is

C2 = E
{
kσuiσuj

[
biēiρviujAγi(k) + bj ējρuivjAγj(k)

]
| DT

}︸ ︷︷ ︸
mean reversion about xs

+ E
{
kσuiσuj

[
d̄iρηiujAδi(k) + d̄jρuiηjAδj(k)

]
| DT

}︸ ︷︷ ︸
mean reversion about πs

.

This component reflects mean reversion in returns. In view of the specification of our predic-

tive system in Section 2.4, we label the two parts of C2 mean reversion about xs and mean

reversion about πs, respectively.

16



2.6.3 Future µs uncertainty

The third component of Equation (16), labeled future µs uncertainty, is

C3 = E
{
kσuiσujbibj ēiējρvivjBγi,γj(k) | DT

}︸ ︷︷ ︸
future xs uncertainty

+ E
{
kσuiσuj d̄id̄jρηiηjBδi,δj(k) | DT

}︸ ︷︷ ︸
future πs uncertainty

+ E
{
kσuiσuj

[
biēid̄jρviηjBγi,δj(k) + bj d̄iējρηivjBδi,γj(k)

]
| DT

}︸ ︷︷ ︸
future xs and πs uncertainty

.

This component reflects uncertainty about future expected returns. We label the three parts

of C3 future xs uncertainty, future πs uncertainty, and future xs and πs uncertainty.

2.6.4 Current πs uncertainty

The fourth component of Equation (16), labeled current πs uncertainty, is

C4 = E

{
1− δki
1− δi

1− δkj
1− δj

qij,T | DT

}
.

This component reflects uncertainty about current unobserved predictors.

2.6.5 Estimation risk

The fifth and final component of Equation (16), labeled estimation risk, is

C5 = Cov

{
kEri +

1− γki
1− γi

bi,T +
1− δki
1− δi

ci,T , kErj +
1− γkj
1− γj

bj,T +
1− δkj
1− δj

cj,T | DT

}
.

This covariance component involves Ers = as + bsθs/(1 − γs) and bs,T = as + bsxs,T − Ers .

The unconditional mean return and the spread between the on DT conditional and the

unconditional mean return, respectively.
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2.6.6 Discussion

Parameter uncertainty plays a role in all five components of Equation (16). The first four

components, C1 through C4, are expectations of random quantities due to uncertainty about

ϕ (the parameters governing the joint dynamics of returns and predictors). If the values of

these parameters were known to the investor, the expectation operators could be removed

from these components. The last component, C5, is the covariance of quantities whose

randomness is also due to parameter uncertainty. In the absence of such uncertainty, the

fifth component is zero, which is why we similar to Pástor and Stambaugh (2009) assign it

the interpretation of estimation risk.

In our empirical analysis, we calculate the k-period covariance ratio defined as

CR(k) =
Cov

(
rki,T , r

k
j,T | DT

)
k Cov

(
r1i,T , r

1
j,T | DT

) , (17)

and evaluate the importance of each of the five components of Equation (16) that vary with

the investment horizon k to determine the shape of the long-horizon covariance curve.

3 Empirical Analysis

This section examines the long-horizon predictive variance of an investment strategy whereby

a US investor buys a local currency bond while borrowing at the US dollar deposit rate. We

first show that the excess returns from the strategy can be decomposed into three components:

bond excess returns in local currency, the real interest rate differential between home and

foreign currency, and the bilateral real exchange rate return. We then discuss the framework

used to estimate the long-horizon predictive variance of the strategy returns.
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3.1 Data and Preliminary Statistics

We focus on a sample of major countries relative to the US that exhibit a good degree of

homogeneity and have relatively liquid and developed bond markets, i.e., Australia, Canada,

Germany/Euro area, Japan, New Zealand, Norway, Sweden, Switzerland, and the UK. The

main source of our dataset is Global Financial Data and the sample ranges from January

1800 and June 2017. The starting date varies, depending on data availability, across countries

from January 1800 for the UK and January 1934 for Canada.

For each country in our sample, the set of returns rt includes the bond excess return in local

currency (r1,t), the short-term real interest rate differential relative to the US (r2,t), and the

real exchange rate return vis-á-vis the US dollar (r3,t). We construct r1,t using the log return

on the 10-year government bond total return index (y⋆t ) minus the log return on the total

return bills index, which we use as a proxy for the short-term rate (i⋆t ). Monthly data on

the total return US bills index (it) are only available from December 1835 trough Global

Financial data. We construct US short-term rates between January 1800 and December

1935 as in Siegel (1992) using yields from US commercial papers, US long-term bonds, UK

long-term bonds, and UK short-term bonds. For the construction of r2,t, we use the short-

term rates defined above and the year-on-year log change on the consumer price index of the

foreign country (ρ⋆t ) and the US (ρt), respectively. When monthly data are not available,

we retrieve monthly observations by linearly interpolating lower-frequency data. For the

calculation of the real exchange rate r3,t, we combine the nominal exchange rate return (∆st)

with the year-on-year log changes on the consumer price indices described above.

The set of observed predictors xt includes the term spread, the long-term yield differential,

and short-term yield differential. The term spread is measured as difference between the

10-year government bond yield minus the 3-month treasury bill yield. When the latter is

not directly available, we use the log return on the total return bills index as a proxy. The

long-term yield differential is quantified as the foreign country 10-year government bond yield

minus the US 10-year government bond yield. The short-term yield differential is computed
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as the foreign country 3-month treasury bill yield minus the corresponding rate for the US.

Table 1 about here

We present the descriptive statics for both returns and observed predictors in Table 1. We

also display descriptive statics for the cross-country average of rt and xt, respectively, which

we label as “1/N” in the table. The bond excess return in local currency rx⋆t is generally

positive across countries and ranges between 0.36 and 1.77 percent per annum for the UK

and Canada, respectively. The exceptions are New Zealand and Switzerland for which the

average bond excess return is negative and equal to −0.34 and −2.79 percent per annum,

respectively. The standard deviation, reported in percentage per annum, is fairly large and

goes from 8.35 for the UK to 4.99 for Switzerland. The short-term real interest rate differential

rrt is overall negative. For example, it is equal to −1.84 for Germany, −1.16 for the UK,

and −0.16 for Japan. This evidence points out that the short-term real interest rate for the

US has been, on average, higher than the short-term real interest rate abroad in our sample.

The cross-sectional variation of rrt as measured by the standard deviation is fairly small

and we record the largest value of 2.26 percent per annum for Japan. The real exchange

rate ∆qt evolves around zero, being negative for 5 countries and positive for the remaining

4 countries. We record the largest negative return for the UK (i.e., −1.16 percent per

annum) and the largest positive value for Germany (i.e., 0.60 percent per annum). The

standard deviation for ∆qt is generally larger than the standard deviation reported for rx⋆t .

For example, Australia displays a standard deviation of 16.38 percent per annum whereas

New Zealand has a standard deviation of 11.72 percent per annum.

In addition to sample averages and standard deviations, we also measure the sample higher

moments. The conventional measures of skewness and kurtosis, however, can be arbitrary

large especially when the sample is contaminated by large values. This is the case when

one works with long-span samples. Our sample is indeed are characterized by a number of

events, including financial crisis, different monetary policy regimes as well as periods with

fixed and floating exchange regimes. Rather than manually removing large values, we employ
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robust measures of skewness and kurtosis (e.g., Kim and White, 2004). In particular, the

coefficient of skewness is defined as skew = (µ − Q2)/σ, where µ is the sample mean, Q2 is

the sample mode, and σ is the sample standard deviation. The centred coefficient of kurtosis,

moreover, is computed as kurt = ((F−1
0.975 +F−1

0.025)/(F
−1
0.75 +F−1

0.25))− 2.91, where F−1 denotes

the quantile of the empirical distribution. We find that the coefficient of skewness is by and

large negative but small in size. In contrast, the coefficient of kurtosis is sizeable, especially

for the real exchange rate return. We also compute the first-order serial correlation. We find

that bond excess returns and real exchange rate returns have a relatively low coefficient of

serial correlation whereas the real interest rate differentials display a very high coefficient.4

Table 1 also reports descriptive statistics of the observable predictors used to forecast bond

excess returns, real interest rate differentials and real exchange returns. Term spreads are

overall positive, denoting upward sloping yield curves for the majority of the countries. Nom-

inal long- and short-term yield differentials are overall positive on average, suggesting that

nominal long- and short-term nominal interest rates have been on average higher than the

ones recorded in the US. As already reported in existing studies, all three predictors exhibit

high persistence, with first-order serial correlation coefficients above 0.91.

4 Estimation and Results

In this section we describe our results pertaining to the estimation of the long-horizon pre-

dictive variance of the strategy returns as discussed in Section 3.2. After estimating for

all countries in our sample the predictive system reported in Section 2.1, we compute the

quantities discussed in Section 2.4 to obtain values of the predictive variance of monthly re-

turns over an investment horizon up to 50 years. We also compute the results for a strategy

that invests equally in all foreign bonds in our sample, which we label 1/N in the spirit of

DeMiguel, Garlappi and Uppal (2009). Prior to discussing the main results regarding the

predictive variance of the strategy returns, it is instructive to look at the estimates of the

4The implications of this statistical features are discussed further in the next Section 5.
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predictive equation (8) reported in Table 2, in order to gauge the different degree of pre-

dictability exhibited by bond excess returns, interest rate differentials and real exchange rate

returns.

Table 2 about here

The estimates of the ceteris paribus parameters b1 associated with the predictability of bond

excess returns in local currency suggest that in all cases bond excess returns are predictable

by local-currency term spreads. In most of the countries the significance is at the 1 percent

statistical level, corroborating the evidence already reported in the existing literature for the

US Treasury bond market (e.g., Joslin et al., 2014). The recorded R2 are also consistent with

the ones recorded for the US at the monthly frequency (Gargano, Riddiough and Sarno, 2018).

Similar evidence of predictability is found for the short-term real interest rate differentials,

as all estimates b2, with the exception of Japan, are statistically significant. Given the

extreme persistence of the interest rate differential time series, the recorded R2 are all large

and exceeding 92 percent. The evidence of predictability of real exchange rate returns is less

pervasive as, consistently with much empirical evidence, the estimates of the slope parameter

b3 are only significant in 4 cases out of 10 with only one case significant at the 1 percent

level. Although there is compelling evidence of predictability for bond excess returns in

local currency and interest rate differentials, the predictive variance of the strategy returns

is likely to be affected by considerable uncertainty, as real exchange returns are not found

predictable by short-term interest rate differentials and the degree of predictability of bond

excess returns, measured by the R2, is relatively small. We complete the analysis of the

predictive model by reporting the model estimates for equations (9) and (10) of the main

text in Tables 3 and 4, respectively.

Tables 3 and 4 about here

The evidence reported in Table 3 confirms the high persistence of all observable predictors,

for all countries. In fact, the coefficients γi are all statistically significant at the 1 percent
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level and their value is close or exceed 0.94 across countries and predictors. Interestingly,

the high persistence of observable predictors is mimicked by the persistence of the estimated

unobserved predictors. In fact, although the coefficients δi reported in Table 4 are slightly

smaller than the ones reported in Table 3, their value is still substantially large. This suggests

that the predictable, potentially slow-moving, part of bond excess returns, real interest rate

differentials and real exchange rates require multiple persistent predictors to be captured.

The observable predictors employed in the empirical investigation, by themselves, are not

able to capture the features of future interest rates and returns. Given the long sample

period investigated, it is reasonable to hypothesize that those unobserved predictors may

be associated with abrupt by persistent changes in monetary and exchange rate regimes

experienced by the various countries during the past two decades.

Using the model estimates, we compute the predictive variances for all countries over the full

sample and then report the predictive variance ratios in Figure 1.

Figure 1 about here

The long-term risk profile of investments in long-term local currency bonds exhibits in all

cases an upward pattern: the longer the investment horizon, the larger the predictive variance.

Over a 50-year horizon, the monthly predictive variance of the strategy returns increases by

200 to 300 percent across countries. For example, in the case of US investment in UK long-

term bonds, the long-term predictive variance at 50 year horizon reaches the value of 4.24

percent per annum, a value that is comparable the long-horizon predictive variance of a US

equity buy and hold strategy computed over the same sample period. This result also echoes

early findings by Campbell and Viceira (2001, 2002) that show that long-term bonds are not

very different from equities over longer investment horizons.

In order to understand the main driver of the long-horizon predictive variance of the strategy

returns, we can we compute its constituents, in the spirit of the decomposition discussed in

Sections 2.4 and 3.2. For the sake of exposition, we focus our discussion on the case of the

1/N investment strategy in order to gauge patterns that are common across countries over
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the sample period. However, with very few exceptions, the results are broadly comparable

with the ones exhibited by investments in individual countries.

Figure 2 about here

The various constituents of the predictive variance are reported in the two panels of Figure

2. The top panel reports the constituents in terms of individual predictive variances of and

pairwise covariances among the three components of the strategy returns. In light of this

metric of assessment, the upward pattern exhibited by predictive variance of the strategy is

mostly due to the individual predictive variances of the real exchange rate returns and the

short-term interest rate differential, with the former playing a more prominent role. The

predictive variance of bond excess returns in local currency does not play a substantial role,

as its impact is relatively constant across investment horizons. Among the three predictive

covariances, only the one between real interest rate differentials and real exchange rate returns

is large and negative in sign. This finding suggests that predictive co-movement between

bond excess returns in foreign currency and interest rates and exchange rate returns are less

important in determining the long-term risk profile of the strategy. The results also suggest

that the predictive co-movements between interest rates and real exchange rate are important

in the long-run, as they tend to reduce the overall expected risk of the strategy, especially at

longer horizons. This negative sign is also in line with the recent evidence reported in Engel

(2016), whereby the correlation between long-term expected risk premia and real interest

rate differential is negative.

The bottom panel of Figure 2 reports an alternative decomposition of the predictive variance

that focuses on the mean reversion in returns and the set of uncertainties discussed in Section

2.4. The patterns exhibited by this decomposition are rather striking and they unambiguously

assign a dominant, if not exclusive role, to the uncertainty about future returns. This type

of uncertainty is found to be important for long horizons in the context of US equity markets

(e.g., Pástor and Stambaugh, 2012). However, its impact on the predictive variance of returns

is generally offset by the effect of mean reversion in returns, especially at short to medium
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horizons. In our context, the overall effect of the mean reversion components computed for

each predictive variance and covariance in equation (12) is very close to zero for all investment

horizons and, if anything, it exhibits a positive (rather than negative) value, adding to the

long-horizon risk profile of the strategy.

Figure 3 about here

This last finding raises the question of why the mean reversion in returns, even in the presence

of predictability of both bond excess returns and interest rate differentials, does not reduce

the overall risk profile of the strategy at longer horizon. Further light can be shed on this

issue by computing the mean reversion components of the predictive variance due to both

the observable and unobserved predictors, plotted in Figure 3. The rather flat profile of the

overall mean reversion component is due to the compensation that occurs between the mean

reversions originating from the observable and unobserved predictors. While unobserved

predictors exhibit a mean reversion effect on the predictive variance of the strategy that is

progressively more negative, albeit small in value, as the investment horizon increases, ob-

servable predictors generate mean reversion effects that increase over the investment horizon.

The sum of the two effects is therefore slightly positive, as the mean reversion of observable

predictors is larger in absolute value, but rather flat at medium to long investment horizons.

The lack of negative mean reversion effects on the predictive variance is at odd with the re-

sults reported in the existing literature (Pástor and Stambaugh, 2012; Avramov et al., 2018).

However it can be easily rationalized on the ground that in a multi-asset context, like the

one studied in this paper, the mean reversion effects originating from predictive covariances

ought not be necessarily negative.

Figure 4 about here

In fact, if we plot the mean reversion components computed from all predictive variances

and covariances needed to compute the predictive variance of the overall strategy as in

Section 3.2, it is evident that the mean reversion components for bond excess returns and
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interest rate differentials, for which we have found evidence of predictability, are indeed

negative. However, these effects are more than offset by the mean reversion components

associated with the various predictive covariances, especially the one between real interest

rate differentials and bond excess returns in local currency, that are large and positive in

value. It is important to emphasize that in a multi-asset context, and in the presence of

predictive covariances, there is no certainty that any evidence of predictability leads to mean

reversion effects reducing the predictive variance of the overall strategy. In fact, it all depends

on the potential but not certain occurrence of mean reverting effects to expected returns in

one asset market which are due to shocks originating in other asset markets. Exploring

further, we can understand the sources of the uncertainty about future expected returns by

performing a set of decompositions similar to the ones reported in Figures 3 and 4.

Figure 5 about here

Figure 5 shows the uncertainty about future expected returns components of the predictive

variance associated with both observable and unobserved predictors, and their joint interac-

tion. The overall effect is again dominated by th0e component associated with unobserved

predictors. In fact, albeit both increasing with the investment horizon, in the long run the

impact on the predictive variance from the unobserved predictors is 3 times larger the one

exhibited by observable predictors. Their joint interaction plays a minor role and it is only

moderately negative for very long horizon.

Figure 6 about here

Figure 6 allows us to attribute the pattern shown in Figure 5 to uncertainty about future

returns components originating from the predictive variances and covariances as in Section

3.2. It is evident that the dynamic range exhibited by the uncertainties associated with

unobserved predictors is much larger than the one associated with observable ones. Nonethe-

less, in both cases, the major contributors are due to the uncertainty about future expected

returns due to real interest rate differentials and real exchange rates returns. If we think of
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unobserved predictors as variables associated with changes in monetary and exchange rate

regimes that have occurred over the past two centuries and are not already captured by the

set of observable predictors, the evidence in Figure 6 suggests that those changes, especially

their logical unpredictable effect on future returns, exert first order effects on the overall risk

profile of the strategy. More specifically, given that the magnitude of the effects for both

components associated with real interest rate differentials and real exchange rate returns is

fairly comparable at longer horizons, both changes in monetary and exchange rate regimes

play an important role when investing in local currency bonds in the long run.

5 Conclusions

This study investigates the long-horizon risk profile of an international bond strategy whereby

a US investor earns excess returns from an unhedged position in a portfolio of long-term

foreign bonds funded at the domestic risk-free rate. After showing that the excess returns

from this strategy can be broken up into bond excess returns in local currency, the short-

term real interest differential between the foreign and domestic currency and the bilateral real

exchange rate return, we derive in closed-form and estimate an informative decomposition

for the predictive variance of the strategy returns over different investment horizons ranging

between 1 month and 50 years.

The empirical investigation is carried out by exploring investments in long-term bonds denom-

inated in major currencies over the past two centuries. We compute the long-term predictive

variances in an environment with imperfect predictability, by allowing unobserved predictors

to join in a menu of observable predictors to help forecast the strategy returns at different

horizons. We find a number of interesting results: First, over the full sample period and

across all countries, the predictive variance of the bond investment strategy is found to be

increasing with the investment horizon and this is mostly due to an upward sloping predictive

variance of both short-term interest rate differentials and real exchange rate returns. Overall,

the predictive variance of real exchange rate returns exhibits the largest long-horizon value,
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followed by interest rate differentials while the predictive variance of bond excess returns in

foreign currency does not vary much across investment horizons. Predictive co-movement

between bond excess returns in foreign currency and interest rates and exchange rate returns

are less important in determining the long-term risk profile of the strategy but the predictive

co-movements between interest rates and real exchange rate are important in the long-run,

as they tend to reduce the overall expected risk of the strategy, especially at longer horizons.

Second, we observe that in all cases the uncertainty about future returns plays unambiguously

the leading role in determining the shape of the predictive variance of the strategy returns

at all investment horizons. All other components, especially the one associated with the

mean reversion due to return predictability, are negligible in size and do not provide any

improvement in the risk profile of the strategy. This suggests that, even when bond returns,

interest rate and foreign exchange are found to be predictable, the range of uncertainties

present in the predictive variance more than offset any potential benefit originating from

any potential mean reversion in returns. Furthermore, in the multi asset context studied in

this paper, there is no certainty that any evidence of predictability leads to mean reversion

effects reducing the predictive variance of the overall strategy. In fact, it all depends on the

potential but not certain occurrence of mean reverting effects to expected returns in one asset

market which are due to shocks originating in other asset markets.

Across all currency pairs investigated, the uncertainty about future returns is mostly due

to the component pertaining to the unobserved predictors. The uncertainty associated with

the expected future values of the observable predictors is non-negligible but substantially

smaller than the one recorded for unobserved predictors. Furthermore, as the uncertainty

about future returns originating from interest rate differentials and exchange rate returns is

fairly similar, the shape of the predictive variance over longer horizons can be interpreted as

spurring from changes in monetary and exchange rate regimes that are not captured by the

set of observable predictors.

We cannot detect tangible effects of mean reversion on the long-horizon predictive variance

as, for most of the currencies considered, the expected negative impact of the mean reversion
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component on the predictive variance (only detected for unobserved predictors) is completely

offset by a similar but positive impact of the mean reversion component originating from

observable predictors. As the overall effect cancels out, the shape of strategy’s the predictive

variance is essentially due to the interplay between the various sources of uncertainties and

therefore increases with the investment horizon.
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Figure 1: Predictive Variance Ratios

The figure shows the predictive variance ratio V ar
(
rxk

T | DT

)
/
(
kV ar

(
rx1

T | DT

))
for local currency bond strategies, i.e., long-short strategies

that invest in long-term foreign bonds while borrowing at the US short-term interest rate. The predictive variance is based on Equation (6)

using the decomposition presented in Equation (16). The model parameters are reported in Tables 2–4 and are estimated via the Markov Chain

Monte Carlo (MCMC) method discussed in Internet Appendix B. The sample consists of monthly data ranging from January 1800 and June

2017. Data are collected from Global Financial Data.
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Figure 2: Decomposition of the Predictive Variance Ratio

The figure shows the decomposition of the predictive variance ratio V ar
(
rxk

T | DT

)
/
(
kV ar

(
rx1

T | DT

))
for

the 1/N international bond strategy. The predictive variance is based on Equation (6) using the decomposition

presented in Equation (16). The model parameters are reported in Tables 2–4 and are estimated via the

Markov Chain Monte Carlo (MCMC) method discussed in Internet Appendix B. The sample consists of

monthly data ranging from January 1800 and June 2017. Data are collected from Global Financial Data.
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Figure 3: Mean Reversion Components

The figure shows the mean reversion components of the predictive variance ratio due to both observed and

unobserved predictors for the 1/N international bond strategy. The predictive variance is based on Equation

(6) using the decomposition presented in Equation (16). The model parameters are reported in Tables 2–4

and are estimated via the Markov Chain Monte Carlo (MCMC) method discussed in Internet Appendix B.

The sample consists of monthly data ranging from January 1800 and June 2017. Data are collected from

Global Financial Data.
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Figure 4: Mean Reversion of Observed Predictors

The figure shows the mean reversion components of the predictive variance ratio due to observed predictors for

the 1/N international bond strategy. The predictive variance is based on Equation (6) using the decomposition

presented in Equation (16). The model parameters are reported in Tables 2–4 and are estimated via the

Markov Chain Monte Carlo (MCMC) method discussed in Internet Appendix B. The sample consists of

monthly data ranging from January 1800 and June 2017. Data are collected from Global Financial Data.
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Figure 5: Future Uncertainty Components

The figure shows the future uncertainty components of the predictive variance ratio due to both observed and

unobserved predictors for the 1/N international bond strategy. The predictive variance is based on Equation

(6) using the decomposition presented in Equation (16). The model parameters are reported in Tables 2–4

and are estimated via the Markov Chain Monte Carlo (MCMC) method discussed in Internet Appendix B.

The sample consists of monthly data ranging from January 1800 and June 2017. Data are collected from

Global Financial Data.
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Figure 6: Decomposing Future Uncertainty Components

The figure decomposes the future uncertainty components of the predictive variance ratio due to both observed

and unobserved predictors for the 1/N international bond strategy. The predictive variance is based on

Equation (6) using the decomposition presented in Equation (16). The model parameters are reported in

Tables 2–4 and are estimated via the Markov Chain Monte Carlo (MCMC) method discussed in Internet

Appendix B. The sample consists of monthly data ranging from January 1800 and June 2017. Data are

collected from Global Financial Data.
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Table 1: Summary Statistics

This table presents descriptive statistics of dependent variables (bond excess returns, real interest rate dif-

ferentials, and real exchange rate returns) and observed predictors (term spread, long-term yield differential,

and short-term yield differential) for nine major countries relative to the US. 1/N denotes the näıve average

across all countries. The mean and standard deviation (sdev) are in percentage per annum whereas skewness

(skew) and excess kurtosis (kurt) are robust to the impact of outliers (e.g., Kim and White, 2004). ac1

denotes the first-order autocorrelation coefficient. The sample period of monthly observations is reported in

parenthesis. Data are sourced from Global Financial Data.

mean sdev skew kurt ac1 mean sdev skew kurt ac1

Australia (12/1862–06/2017) Canada (01/1934–06/2017)

Bond excess return 1.66 6.73 0.00 4.12 -0.11 1.77 5.79 -0.03 1.82 0.08

Real interest rate differential -0.70 1.56 -0.08 1.18 0.98 0.55 0.74 0.06 1.60 0.95

Real exchange rate return -0.60 16.38 -0.01 10.61 -0.27 -0.36 5.60 -0.03 3.52 -0.05

Term spread 1.39 0.33 -0.08 1.61 0.95 1.46 0.37 -0.11 0.60 0.96

Long-term yield differential 0.90 0.34 0.19 1.07 0.98 0.70 0.17 -0.17 0.55 0.95

Short-term yield differential 0.45 0.70 0.14 0.48 0.98 0.78 0.40 0.19 1.62 0.95

Germany (12/1821–06/2017) Japan (10/1882–06/2017)

Bond excess return 1.43 6.99 -0.01 2.21 -0.01 1.13 7.76 0.00 3.28 -0.01

Real interest rate differential -1.84 2.15 -0.18 2.93 0.97 -0.16 2.26 -0.01 2.89 0.97

Real exchange rate return 0.60 10.26 0.00 5.72 0.12 0.32 9.10 -0.03 4.47 0.09

Term spread 1.28 0.41 -0.08 0.02 0.91 0.61 0.55 -0.25 0.09 0.96

Long-term yield differential 0.31 0.50 -0.01 -0.35 0.99 0.81 0.82 -0.24 -0.38 0.99

Short-term yield differential -0.29 0.65 -0.02 0.46 0.93 1.28 0.96 -0.21 -0.21 0.98

New Zealand (01/1923–06/2017) Norway (04/1822–06/2017)

Bond excess return -0.34 7.57 -0.01 3.08 0.09 0.58 8.15 0.04 2.30 0.03

Real interest rate differential 1.40 1.10 -0.20 -0.25 0.96 -0.76 1.87 -0.01 1.12 0.97

Real exchange rate return 0.07 11.72 -0.03 8.68 0.03 0.20 9.85 -0.01 5.60 0.11

Term spread -0.50 0.61 -0.08 -0.68 0.95 0.32 0.49 0.07 -0.76 0.98

Long-term yield differential 1.16 0.49 0.07 4.08 0.97 0.44 0.35 0.03 0.44 0.98

Short-term yield differential 3.15 0.92 0.04 1.38 0.97 0.78 0.63 -0.01 0.73 0.95

Sweden (10/1853–06/2017) Switzerland (12/1899–06/2017)

Bond excess return 0.88 5.30 0.01 2.76 0.03 -2.79 4.99 -0.06 2.21 0.11

Real interest rate differential -0.71 1.63 -0.02 1.52 0.95 -0.27 1.04 0.01 1.19 0.96

Real exchange rate return -0.23 8.26 -0.02 7.12 0.07 0.57 8.97 0.03 7.21 0.06

Term spread 0.98 0.31 0.08 1.81 0.93 1.00 0.33 -0.14 0.52 0.96

Long-term yield differential 0.60 0.29 -0.02 1.61 0.97 -0.78 0.64 -0.29 0.68 0.99

Short-term yield differential 0.46 0.57 0.20 1.03 0.96 -0.59 0.64 -0.22 0.69 0.98

UK (01/1800–06/2017) 1/N (01/1800–06/2017)

Bond excess return 0.36 8.35 0.00 2.36 -0.11 0.41 5.06 0.01 2.15 0.05

Real interest rate differential -1.16 1.91 -0.10 1.72 0.97 -1.25 1.56 -0.09 1.10 0.97

Real exchange rate return -0.39 8.44 0.00 4.52 0.10 0.10 7.19 -0.01 4.61 0.05

Term spread 0.49 0.44 0.11 0.36 0.95 0.43 0.30 -0.01 -0.56 0.98

Long-term yield differential 0.07 0.47 0.08 0.62 0.99 0.15 0.30 -0.08 -0.34 0.99

Short-term yield differential 0.15 0.56 0.03 2.08 0.93 0.30 0.42 -0.01 1.02 0.93
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Table 2: Posterior Estimates: Return Equations

This table presents the Bayesian posterior means of the parameters underlying Equation (8). The numbers in parentheses indicate the numerical

standard error (NSE). The superscripts *, **, and *** indicate that the 90%, 95%, and 99% highest posterior density (HPD) regions, respectively,

do not contain zero. The posterior means are obtained via a Gibbs Sampling algorithm that runs for 100,000 iterations (after an initial burn-in

of 100,000 iterations) and keeps one in ten iterations. The sample period for each country is presented in Table 1 and consists of monthly

observations. Data are sourced from Global Financial Data.

a1 a2 a3 b1 b2 b3 R2
1 R2

2 R2
3

Australia 0.220 -1.138*** -0.938 1.119** 0.446** 0.665 2.2 96.3 0.5

(0.013) (0.010) (0.006) (0.015) (0.011) (0.016)

Canada -1.093 -0.277 -0.911 1.920*** 1.190** 0.521 6.6 92.4 4.0

(0.008) (0.017) (0.010) (0.008) (0.026) (0.021)

Germania -0.648 -1.748*** 0.883 1.601*** -0.455*** 0.801 1.6 94.9 4.6

(0.011) (0.003) (0.006) (0.011) (0.004) (0.027)

Japan 0.375 -0.263 0.024 1.201*** 0.072 -0.135 1.7 95.2 6.9

(0.006) (0.005) (0.007) (0.009) (0.003) (0.014)

New Zealand 0.114 0.387*** -3.921*** 0.904* 0.841*** 1.132*** 3.1 93.5 2.3

(0.007) (0.005) (0.008) (0.021) (0.003) (0.009)

Norway 0.079 0.244 -0.525 1.843*** -2.666*** 0.983* 2.6 94.8 4.1

(0.005) (0.006) (0.008) (0.008) (0.013) (0.025)

Sweden -0.122 0.087 -0.357 0.974** -1.538*** 0.177 1.8 92.7 3.8

(0.013) (0.008) (0.007) (0.017) (0.014) (0.020)

Switzerland -4.729*** -0.077 0.865 1.956*** 0.285*** 0.434 15.3 93.3 3.3

(0.0068) (0.003) (0.006) (0.009) (0.002) (0.012)

UK -0.288 -1.016*** -0.495 1.267*** -2.425*** 1.353** 0.8 94.5 3.3

(0.007) (0.004) (0.006) (0.018) (0.009) (0.024)

1/N -0.074 -0.980*** -0.228 1.147*** -1.671*** 1.412** 3.2 94.0 4.1

(0.004) (0.003) (0.006) (0.009) (0.009) (0.023)
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Table 3: Posterior Estimates: Observed Predictor Equations

This table presents the Bayesian posterior means of the parameters underlying Equation (9). The numbers in parentheses indicate the numerical

standard error (NSE). The superscripts *, **, and *** indicate that the 90%, 95%, and 99% highest posterior density (HPD) regions, respectively,

do not contain zero. The posterior means are obtained via a Gibbs Sampling algorithm that runs for 100,000 iterations (after an initial burn-in

of 100,000 iterations) and keeps one in ten iterations. The sample period for each country is presented in Table 1 and consists of monthly

observations. Data are sourced from Global Financial Data.

θ1 θ2 θ3 γ1 γ2 γ3 R2
1 R2

2 R2
3

Australia 0.057*** 0.026*** 0.015*** 0.958*** 0.971*** 0.971*** 90.2 95.5 95.6

(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

Canada 0.079*** 0.035*** 0.031** 0.945*** 0.948*** 0.960*** 91.8 89.3 90.1

(0.002) (<.001) (<.001) (<.001) (<.001) (<.001)

Germania 0.075*** 0.002 -0.011 0.941*** 0.987*** 0.964*** 83.0 98.5 86.6

(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

Japan 0.017 0.005 0.019 0.976*** 0.988*** 0.981*** 91.2 98.6 96.5

(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

New Zealand -0.016 0.030** 0.097*** 0.963*** 0.975*** 0.969*** 90.5 94.9 94.2

(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

Norway 0.009 0.007 0.032** 0.975*** 0.981*** 0.956*** 95.4 96.5 90.7

(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

Sweden 0.065*** 0.018*** 0.020 0.935*** 0.970*** 0.957*** 86.8 94.5 91.3

(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

Switzerland 0.042*** -0.009 -0.010 0.961*** 0.988*** 0.984*** 92.3 98.8 96.0

(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

UK 0.019* 0.001 0.006 0.962*** 0.982*** 0.958*** 90.2 97.7 86.8

(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

1/N 0.010** 0.003 0.017 0.979*** 0.981*** 0.943*** 95.7 97.1 85.5

(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)
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Table 4: Posterior Estimates: Unobserved Predictor Equations

This table presents the Bayesian posterior means of the parameters underlying Equation (10). The numbers in parentheses indicate the

numerical standard error (NSE). The superscripts *, **, and *** indicate that the 90%, 95%, and 99% highest posterior density (HPD) regions,

respectively, do not contain zero. The posterior means are obtained via a Gibbs Sampling algorithm that runs for 100,000 iterations (after an

initial burn-in of 100,000 iterations) and keeps one in ten iterations. The sample period for each country is presented in Table 1 and consists of

monthly observations. Data are sourced from Global Financial Data.

δ1 δ2 δ3 R2
1 R2

2 R2
3

Australia 0.951*** 0.969*** 0.935*** 91.1 95.0 95.1

(0.001) (0.001) (0.003)

Canada 0.824*** 0.949*** 0.893*** 67.4 93.9 89.8

(0.003) (0.001) (0.002)

Germania 0.820*** 0.959*** 0.956*** 64.3 94.0 94.7

(0.004) (<.001) (0.001)

Japan 0.849*** 0.965*** 0.955*** 82.0 94.7 95.9

(0.005) (<.001) (0.001)

New Zealand 0.918*** 0.954*** 0.929*** 91.8 91.6 89.2

(0.003) (<.001) (0.001)

Norway 0.803*** 0.966*** 0.965*** 58.5 95.0 96.0

(0.004) (<.001) (<.001)

Sweden 0.844*** 0.959*** 0.949*** 76.5 94.3 93.0

(0.004) (<.001) (0.001)

Switzerland 0.869*** 0.947*** 0.946*** 88.4 92.4 94.2

(0.001) (0.001) (0.001)

UK 0.883*** 0.966*** 0.973*** 78.5 95.4 96.7

(0.003) (<.001) (<.001)

1/N 0.823*** 0.963*** 0.971*** 70.4 94.2 94.9

(0.002) (<.001) (<.001)
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Currency Risk in the Long Run

(not for publication)

Abstract

We present supplementary results not included in the main body of the paper.



A Decomposition of Cov
(
rki,T , r

k
j,T | DT

)
In Equation (16), we show that the long-horizon predictive covariance can be decomposed

into five main components: i.i.d. uncertainty, mean reversion, future µs uncertainty, current

πs uncertainty, and estimation risk. Here we derive the expressions for these components in

closed-form.

A.1 Derivation of Cov
(
rki,T , r

k
j,T | πT , ϕ,DT

)
Since xs,t (the observable predictor of asset s at time t) in Equation (9) follows a first-order

autoregression with −1 < γs < 1, we can rewrite xs,t as

xs,t =
1

bs
(Ers − as) +

∞∑
l=0

γlsvs,t−l, (A.1)

whenever bs ̸= 0. Similarly, since 0 < δs < 1, we can rewrite πs,t (the unobserved predictor

of asset s at time t) in Equation (10) as

πs,t =
∞∑
l=0

δlsηs,t−l. (A.2)

From equations (8)–(11), the k-period return of asset s can be written as

rs,T+k =as + (1− γk−1
s )(Ers − as) + bsγ

k−1
s xs,T + bs

k−1∑
l=1

γk−l−1
s vs,T+l

+ δk−1
s πs,T +

k−1∑
l=1

δk−l−1
s ηs,T+l + us,T+k. (A.3)

The k-period return from period T + 1 through period T + k is then

rks,T =
k∑
l=1

rs,T+l = kErs +
1− γks
1− γs

(as + bsxs,T − Ers) + bs

k−1∑
l=1

1− γk−ls

1− γs
vs,T+l

A–1



+
1− δks
1− δs

πs,T +
k−1∑
l=1

1− δk−ls

1− δs
ηs,T+l +

k∑
l=1

us,T+l. (A.4)

The conditional covariance Cov
(
rki,T , r

k
j,T | πT , ϕ,DT

)
of the k-period returns rki,T and rkj,T

can be obtained from (A.4) as

Cov
(
rki,T , r

k
j,T | πT , ϕ,DT

)
= kσuiuj+

bibj
σvivj

(1− γi)(1− γj)

(
k − 1− γi

1− γk−1
i

1− γi
− γj

1− γk−1
j

1− γj
+ γiγj

1− γk−1
i γk−1

j

1− γiγj

)
+

bi
σviηj

(1− γi)(1− δj)

(
k − 1− γi

1− γk−1
i

1− γi
− δj

1− δk−1
j

1− δj
+ γiδj

1− γk−1
i δk−1

j

1− γiδj

)
+

bj
σηivj

(1− δi)(1− γj)

(
k − 1− δi

1− δk−1
i

1− δi
− γj

1− γk−1
j

1− γj
+ δiγj

1− δk−1
i γk−1

j

1− δiγj

)
+

σηiηj
(1− δi)(1− δj)

(
k − 1− δi

1− δk−1
i

1− δi
− δj

1− δk−1
j

1− δj
+ δiδj

1− δk−1
i δk−1

j

1− δiδj

)
+

bi
σviuj
1− γi

(
k − 1− γi

1− γk−1
i

1− γi

)
+ bj

σuivj
1− γj

(
k − 1− γj

1− γk−1
j

1− γj

)
+

σηiuj
1− δi

(
k − 1− δi

1− δk−1
i

1− δi

)
+

σuiηj
1− δj

(
k − 1− δj

1− δk−1
j

1− δj

)
. (A.5)

We then break up the above conditional covariance into the three sources given by equations

(13)–(15) and write is as in Equation (12), where d̄s and ēs (s = i, j) arise, respectively, from

the relations

σ2
ηs = σ2

πs(1− δ2s) = σ2
rs(1− δ2s)R

2
s

σ2
πs

σ2
rs − σ2

us

= σ2
us(1− δ2s)

R2
s

1−R2
s

σ2
πs

σ2
rs − σ2

us

,

and

σ2
vs = σ2

xs(1− γ2s ) = σ2
rs(1− γ2s )R

2
s

σ2
xs

σ2
rs − σ2

us

= σ2
us(1− γ2s )

R2
s

1−R2
s

σ2
xs

σ2
rs − σ2

us

,

which hold when returns are predictable.
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A.2 Derivation of Cov
[
E
(
rki,T | πT , ϕ,DT

)
, E
(
rkj,T | πT , ϕ,DT

)
| DT

]
We finally derive a closed-form expression for the second term of the right-hand side of (7).

For ease of exposition, let Ek
s,T = E

(
rks,T | πT , ϕ,DT

)
. The covariance of Ek

i,T and Ek
j,T given

DT can be decomposed as

Cov
(
Ek
i,T , E

k
j,T | DT

)
= E

[
Cov

(
Ek
i,T , E

k
j,T | ϕ,DT

)
| DT

]
+ Cov

[
E
(
Ek
i,T | ϕ,DT

)
, E
(
Ek
j,T | ϕ,DT

)
| DT

]
. (A.6)

By (A.4),

Ek
s,T = kErs +

1− γks
1− γs

(as + bsxs,T − Ers) +
1− δks
1− δs

πs,T .

It follows that

E
(
Ek
s,T | ϕ,DT

)
= kErs +

1− γks
1− γs

(as + bsxs,T − Ers) +
1− δks
1− δs

cs,T , (A.7)

and

Cov
(
Ek
i,T , E

k
j,T | ϕ,DT

)
=

1− δki
1− δi

1− δkj
1− δj

qij,T . (A.8)

Substituting equations (A.7) and (A.8) into Equation (A.6) and adding the onDT conditional

expectation of Equation (12) gives Equation (16).

B Bayesian Estimation

B.1 Predictive System in Compact Form

The predictive system in Equations (8)–(11) can equivalently be written as

yt = Xt−1β + Zπt−1 + εt (A.9)

πt = δπt−1 + ηt, (A.10)
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with  εt

ηt

 i.i.d.∼ N

 0

0

 ,
 Σεε Σ′

ηε

Σηε Σηη

 , (A.11)

where yt = [rt, xt]
′ is a 2m × 1 vector that stacks together returns and observed predictors,

Xt is a 2m× 4m band matrix with Xi,t = [1, xi,t] and β is a 4m× 1 vector,

Xt =



X1,t 0 · · · · · · · · · 0

0
. . . . . . . . . . . .

...
...

. . . Xm,t
. . . . . .

...
...

. . . . . . X1,t
. . .

...
...

. . . . . . . . . . . . 0

0 · · · · · · · · · 0 Xm,t


, β =



vec

 a′

diag(b)′



vec

 θ′

diag(γ)′




,

Z = [I, 0]′ is a 2m ×m matrix, and εt = [ut, vt]
′ is a 2m × 1 vector that collects shocks to

unexpected returns and observed predictors. In our empirical analysis, we set m = 3.

B.2 An Equivalent Representation with Orthogonal Shocks

We also impose, as a robustness exercise, a negative prior on the covariance between ut and ηt

as in Pástor and Stambaugh (2012). It is then convenient to rewrite the system in equations

(A.9)–(A.11) with orthogonal shocks to yt and πt such that we can impose a given prior

distribution on the parameters determining the covariance between ut and ηt. To this end,

we define the m× 1 zero-mean random vector

ζt ≡ ηt − ΣηεΣ
−1
εε εt,

such that ζt ⊥ εt and Σζζ = Σηη − ΣηεΣ
−1
εε Σ

′
ηε. Substitution into Equation (A.10) gives

πt = δπt−1 + ΣηεΣ
−1
εε εt + ζt.
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We can then re-express the predictive system in equations (A.9)–(A.11) as

yt = Xt−1β + Zπt−1 + εt (A.12)

πt = Nt−1φ+ ζt (A.13)

with  εt

ζt

 i.i.d.∼ N

 0

0

 ,
 Σεε 0

0 Σζζ

 , (A.14)

where Nt is a m ×m(2m + 1) band matrix with Ni,t = [πi,t, κ
′
t+1], κt = Σ−1

εε εt is a 2m × 1

vector of scaled shocks, and φ is a m(2m+ 1)× 1 vector

Nt =


N1,t 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 Nm,t

 , φ = vec

 diag(δ)′

Σ′
ηε

 .

B.3 Summary of the Algorithm

We estimate ϕ = [β, φ,Σεε,Σζζ ], the unknown parameters of the predictive system in Equa-

tions (A.12)–(A.14), using a Gibbs Sampling algorithm that conditions on DT = {y1, . . . , yT}

and π = [π1, . . . , πT ]
′, where π is sampled in one block using the forward filtering, backward

sampling approach of Carter and Kohn (1994). We draw 100,000 iterations (beyond a burn-

in sample of 100,000 iterations) from the conditional posterior distributions and then keep a

draw every 10 draws for a total of 10,000 draws.

The algorithm consists of the following steps:

1. Initialize β,Σεε,Σζζ , and π0 using random draws from the prior distributions,

2. Sample φ | DT , π, ϕ−φ from a conditional Normal posterior distribution,
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3. Sample Σ−1
ζζ | DT , π, ϕ−Σζζ

from a conditional Wishart posterior distribution,

4. Sample β | DT , π, ϕ−β from a conditional Normal posterior distribution,

5. Sample Σ−1
εε | DT , π, ϕ−Σεε from a conditional Wishart posterior distribution,

6. Sample π | ϕ using Carter and Kohn (1994),

7. Go to step 2 and continue until you reach a total of 200,000 iterations.

We now describe the prior distributions, the posterior distributions and the algorithm of

Carter and Kohn (1994).

B.4 Prior Distributions

We define the following prior distributions:

� A truncated multivariate Normal distribution for β defined as

β ∼ N (b, B) and p(β) ∝ exp

[
−1

2
(β − b)′B−1(β − b)

]
· 1β∈R,

where 1 is an indicator function and R represents the acceptance region for β. For

a, diag(b), and θ, we use the sample OLS estimates as prior means while choosing a

prior variance of 0.5. We obtain the OLS estimates by estimating the predictive system

without πt. For γ, we use a prior mean of 0.90 and a prior variance of 0.02. The

distribution is then truncated to satisfy the stationarity requirement |γs| < 1. The

off-diagonal elements of B are set equal to zero.

� A truncated multivariate Normal distribution for φ defined as

φ ∼ T N
(
g,G

)
and p(φ) ∝ exp

[
−1

2
(φ− g)′G−1(φ− g)

]
· 1φ∈R.
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The prior hyperparameters of δ are identical to those of γ. Akin to Pástor and Stam-

baugh (2012), we wish to be informative about σusηs . We set the prior mean and

standard deviation of σusηs such that ρusηs has a prior mean of −0.50 and a prior stan-

dard deviation of 0.16 (i.e., a three standard deviation confidence interval between −1

and 0). For all other elements of φ, we use a prior mean of zero and a prior stan-

dard deviation of 1. The distribution is then truncated such that 0 < δs < 1 and

−1 < ρusηs < 0. The off-diagonal elements of G are set equal to zero.

� A Wishart distribution for Σ−1
εε defined as

Σ−1
εε ∼ W

(
S−1
ε , sε

)
and p(Σ−1

εε ) ∝
∣∣Σ−1

εε

∣∣ (sε−2m−1)

2 exp

[
−1

2
tr
(
Σ−1
εε Sε

)]
,

where S−1
ε is a positive definite scale matrix, sε > 2m− 1 is the degree of freedom, and

E (Σεε) = S−1
ε /(sε − 2m − 1). We set sε = 2m + 2 and S−1

ε equal to the sample OLS

estimate of Σεε while setting the off-diagonal elements equal to zero. We obtain the

OLS estimates by estimating the predictive system without πt.

� A Wishart distribution for Σ−1
ζζ defined as

Σ−1
ζζ ∼ W

(
S−1
ζ , sζ

)
and p(Σ−1

ζζ ) ∝
∣∣Σ−1

ζζ

∣∣ (sζ−m−1)

2 exp

[
−1

2
tr
(
Σ−1
ζζ Sζ

)]
,

where S−1
ζ is a positive definite scale matrix, sζ > m− 1 is the degree of freedom, and

E (Σζζ) = S−1
ζ /(sζ −m− 1). We set sζ = m+ 2 and S−1

ζ equal to an identity matrix.

� A Normal distribution for π0 defined as

π0 ∼ N (b0, Q0) and p(π0) ∝ exp

[
−1

2
(π0 − b0)

′Q−1
0 (π0 − b0)

]
.

We set each element of b0 equal to zero while Q0 is an identity matrix.
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B.5 Posterior Distributions

The joint posterior distribution is defined as

p (ϕ, π | DT ) ∝ p (DT | ϕ, π)× p(π | ϕ)× p(ϕ) (A.15)

where the likelihood p (DT | ϕ, π) is defined as

p (DT | ϕ, π) =
∏T

t=1
p(yt | πt, ϕ)

∝ |Σεε|−
T
2 exp

[
−1

2

∑T

t=1
(yt −Xt−1β − Zπt−1)

′ Σ−1
εε (yt −Xt−1β − Zπt−1)

]
,

the joint prior distribution p(ϕ) of the unknown parameters is simply

p (ϕ) = p (β) p (φ) p
(
Σ−1
εε

)
p
(
Σ−1
ζζ

)
,

and the prior distribution p (π | ϕ) of the state vector π is

p (π | ϕ) =
∏T

t=1
p (πt | πt−1, ϕ)

∝ |Σζζ |−
T
2 exp

[
−1

2

∑T

t=1
(πt −Nt−1φ)

′Σ−1
ζζ (πt −Nt−1φ)

]
.

While the joint posterior distribution does not take a convenient form, the conditional dis-

tributions are easy to derive. We now show the conditional posterior distributions.

B.5.1 Conditional Posterior of β

Start from the joint posterior distribution in Equation (A.15), set ỹt = yt − Zπt−1 and write

the conditional posterior distribution of β as

p (β | DT , π, ϕ−β) ∝ p (DT | ϕ, π)× p (β)
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∝ exp

−1

2

 ∑t (ỹt −Xt−1β)
′ Σ−1

εε (ỹt −Xt−1β)

+(β − b)′B−1(β − b)

 · 1β∈R

∝ exp

−1

2


∑

t ỹ
′
tΣ

−1
εε ỹt − 2

∑
t β

′X ′
t−1Σ

−1
εε ỹt

+
∑

t β
′X ′

t−1Σ
−1
εε Xt−1β

+β′B−1β − 2b′B−1β + b′B−1b


 · 1β∈R.

Remove the terms that do not contain β, set B = (B−1 +
∑

tX
′
t−1Σ

−1
εε Xt−1)

−1 and b =

B(B−1b+
∑

tX
′
t−1Σ

−1
εε ỹt), and obtain

p (β | DT , π, ϕ−β) ∝ exp
{
−1

2

[
(β − b)′B

−1
(β − b)

]}
· 1β∈R.

It follows that β has a conditional (truncated) normal posterior distribution

β | DT , π, ϕ−β ∼ N
(
b, B

)
· 1β∈R,

with

B =
(
B−1 +

∑
t
X ′
t−1Σ

−1
εε Xt−1

)−1

and

b = B
[
B−1b+

∑
t
X ′
t−1Σ

−1
εε (yt − Zπt−1)

]
.

B.5.2 Conditional Posterior of Σ−1
εε

Start from the joint posterior distribution, set ỹt = yt −Xt−1β − Zπt−1 and write the condi-

tional posterior distribution of Σ−1
εε as

p
(
Σ−1
εε | DT , π, ϕ−Σεε

)
∝ |Σεε|−

T
2 exp

[
−1

2

∑
t
ỹ′tΣ

−1
εε ỹt

]
×
∣∣Σ−1

εε

∣∣ (sε−2m−1)

2 exp

[
−1

2
tr
(
Σ−1
εε Sε

)]

∝
∣∣Σ−1

εε

∣∣ (T+sε−2m−1)

2 exp

[
−1

2

∑
t
ỹ′tΣ

−1
εε ỹt

]
× exp

[
−1

2
tr
(
Σ−1
εε Sε

)]
.
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Using the properties of the trace operator,5 we can rewrite the conditional posterior of Σ−1
εε

as

p
(
Σ−1
εε | DT , π, ϕ−Σεε

)
∝

∣∣Σ−1
εε

∣∣ (T+sε−2m−1)

2 exp

{
−1

2
tr
[
Σ−1
εε

(∑
t
ỹtỹ

′
t + Sε

)]}

∝
∣∣Σ−1

εε

∣∣ (sε−2m−1)
2 exp

{
−1

2
tr
[
SεΣ

−1
εε

]}
,

where Sε = Sε +
∑

t ỹtỹ
′
t and sε = T + sε. It follows that Σ−1

εε has a conditional posterior

Wishart distribution as

Σ−1
εε | DT , π, ϕ−Σεε ∼ W

(
S
−1

ε , sε

)
,

with

Sε = Sε +
∑

t
(yt −Xt−1β − Zπt−1) (yt −Xt−1β − Zπt−1)

′

sε = T + sε.

B.5.3 Conditional Posterior of φ

Start from the joint posterior distribution and write the conditional posterior of φ as

p (φ | DT , π, ϕ−φ) ∝ exp

−1

2

 ∑t (πt −Nt−1φ)
′Σ−1

ζζ (πt −Nt−1φ)

+(φ− g)′G−1(φ− g)

 · 1φ∈R

∝ exp

−1

2


∑

t π
′
tΣ

−1
ζζ πt − 2

∑
t π

′
tΣ

−1
ζζ Nt−1φ

+
∑

t φ
′N ′

t−1Σ
−1
ζζ Nt−1φ

+φ′G−1φ− 2g′G−1φ+ g′G−1g


 · 1φ∈R.

5Recall that i) the trace of a scalar is the scalar itself, i.e., tr(a) = a; ii) the trace operator is invariant under
cyclic permutation, i.e., tr(AB) = tr(BA); and iii) the trace is linear mapping, i.e., tr(A+B) = tr(A)+tr(B).
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Remove the terms that do not contain φ, set G = (G−1 +
∑

tN
′
t−1Σ

−1
ζζ Nt−1)

−1 and g =

G
(
G−1g +

∑
tN

′
t−1Σ

−1
ζζ πt

)
, and obtain

p (φ | DT , π, ϕ−φ) ∝ exp
{
−1

2

[
(φ− g)′G

−1
(φ− g)

]}
· 1φ∈R.

It follows that φ has a conditional posterior normal distribution as

φ | DT , π, ϕ−φ ∼ N
(
g,G

)
· 1φ∈R,

where

G =
(
G−1 +

∑
t
N ′
t−1Σ

−1
ζζ Nt−1

)−1

g = G
(
G−1g +

∑
t
N ′
t−1Σ

−1
ζζ πt

)
.

B.5.4 Conditional Posterior of Σ−1
ζζ

Start from the joint posterior distribution, set π̃t = πt − Nt−1φ and write the conditional

posterior of Σ−1
ζζ as

p
(
Σ−1
ζζ | DT , π, ϕ−Σζζ

)
∝ |Σζζ |−

T
2 exp

[
−1

2

∑
t
π̃′
tΣ

−1
ζζ π̃t

]
×
∣∣Σ−1

ζζ

∣∣ (sζ−m−1)

2 exp

[
−1

2
tr
(
Σ−1
ζζ Sζ

)]

∝
∣∣Σ−1

ζζ

∣∣ (T+sζ−m−1)

2 exp

{
−1

2
tr
[
Σ−1
ζζ

(∑
t
π̃tπ̃

′
t + Sζ

)]}

∝
∣∣Σ−1

ζζ

∣∣− (sζ−m−1)

2 exp

[
−1

2
tr
(
Σ−1
ζζ Sζ

)]
.

It follows that Σ−1
ζζ has a conditional posterior Wishart distribution as

Σ−1
ζζ | DT , π, ϕ−Σζζ

∼ W
(
S
−1

ζ , sζ

)
,
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where

Sζ = Sζ +
∑

t
(πt −Nt−1φ) (πt −Nt−1φ)

′

sζ = T + sζ .

B.6 Sampling π | ϕ using Carter and Kohn (1994)

We sample the vector π in one block from the full conditional posterior distribution p(π |

DT , ϕ) using the forward filtering, backward sampling method of Carter and Kohn (1994).

We will omit ϕ throughout this section for simplicity.

B.6.1 Forward Filtering

Recall the state space system in equations (A.9)–(A.11),

yt = Xt−1β + Zπt−1 + εt

πt = δπt−1 + ηt,

with  εt

ηt

 i.i.d.∼ N

 0

0

 ,
 Σεε Σ′

ηε

Σηε Σηη

 .

Let Dt = {yt, Dt−1} be the information set at time t. Forward filtering consists of the

following steps:

a) Initial condition at time t− 1

πt−1 | Dt−1 ∼ N (bt−1, Qt−1) .
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b) Prior at time t

πt | Dt−1 ∼ N (at, Pt) ,

where

at = E (πt | Dt−1) = δE (πt−1 | Dt−1) = δbt−1

Pt = V ar (πt | Dt−1) = δV ar (πt−1 | Dt−1) δ
′ + Σηη = δQt−1δ

′ + Σηη.

c) Prediction at time t

yt | Dt−1 ∼ N (ft, St) ,

where

ft = E (yt | Dt−1) = Xt−1β + ZE (πt−1 | Dt−1) = Xt−1β + Zbt−1

St = V ar (yt | Dt−1) = ZV ar (πt−1 | Dt−1)Z
′ + Σεε = ZQt−1Z

′ + Σεε.

d) Joint distribution at time t

 yt

πt
| Dt−1

 ∼ N

 ft

at

 ,
 St Gt

G′
t Pt

 ,

where

Gt = Cov (yt, πt | Dt−1)

= ZV ar (πt−1 | Dt−1) δ
′ + Cov (εt, ηt | Dt−1)

= ZQt−1δ
′ + Σ′

ηε.

e) Posterior at time t

πt | Dt ∼ N (bt, Qt) ,
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where

bt = E (πt | yt, Dt−1) = at +G′
tS

−1
t (yt − ft)

Qt = V ar (πt | yt, Dt−1) = Pt −G′
tS

−1
t Gt.

The posterior hyperparameters bt and Qt are easily derived since πt | Dt is equivalent to

πt | yt, Dt−1. Using the joint distribution of yt and πt presented above, it is easy to obtain

the conditional distributions from a multivariate normal distribution.

B.6.2 Backward Filtering

The backward sampling method builds on the following Markov property

p (ξ1, . . . , ξT | DT ) = p (ξT | DT ) p (ξT−1 | ξT , DT−1)× · · · × p (ξ1 | ξ2, D1) .

We sample πT from p (πT | DT ) and then πt from the conditional density p (ξt | ξt+1, Dt) for

t = T − 1, . . . , 1, where ξt = [yt, πt]
′. We derive the conditional density p (ξt | ξt+1, Dt) as

follows  yt

πt


︸ ︷︷ ︸

ξt

=

 0 Z

0 δ


︸ ︷︷ ︸

M

 yt−1

πt−1


︸ ︷︷ ︸

ξt−1

+

 0 β

0 0


︸ ︷︷ ︸

L

 1

Xt−1


︸ ︷︷ ︸

Λt−1

+

 εt

ηt


︸ ︷︷ ︸

et

and recall that

ξt+1 | Dt ∼ N


 ft+1

at+1


︸ ︷︷ ︸

at+1

,

 St+1 Gt+1

G′
t+1 Pt+1


︸ ︷︷ ︸

At+1
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and

ξt | Dt ∼ N


 yt

bt


︸ ︷︷ ︸

bt

,

 0 0

0 Qt


︸ ︷︷ ︸

Bt

 .

The joint density is then straightforward to derive as ξt

ξt+1

| Dt

 ∼ N

 bt

at+1

 ,
 Bt Gt

G
′
t At+1

 ,

where

Gt = Cov (ξt, ξt+1 | Dt)

= Cov (ξt,Mξt + LΛt + et+1 | Dt)

= V ar (ξt | Dt)M
′

= BtM
′.

Hence, we have obtained

ξt | ξt+1, Dt ∼ N (ht, Ht) ,

where

ht = E (ξt | ξt+1, Dt) = bt +GtA
−1

t+1 (ξt+1 − at+1)

Ht = V ar (ξt | ξt+1, Dt) = Bt −GtA
−1

t+1G
′
t.

B.6.3 Summary

We now summarize the forward filtering and backward filtering algorithm as
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a) Prediction Equations

E (πt | Dt−1) : at = δbt−1

V ar (πt | Dt−1) : Pt = δQ′
t−1δ + Σηη

E (yt | Dt−1) : ft = Xt−1β + Zbt−1

V ar (yt | Dt−1) : St = ZQt−1Z
′ + Σεε

Cov (yt, πt | Dt−1) : Gt = ZQt−1δ + Σ′
ηε.

b) Updating Equations

E (πt | yt, Dt−1) : bt = at +G′
tS

−1
t (yt − ft)

V ar (πt | yt, Dt−1) : Qt = Pt −G′
tS

−1
t Gt.

c) Sample π∗
T from p (πT | DT , ϕ)

π∗
T ∼ N (bT , QT ) .

d) Sample π∗
t from p (πt | πt+1, Dt, ϕ) starting from t = T − 1, . . . , 1

π∗
t ∼ N (ht,π, Ht,π) ,

where

E (ξt | ξt+1, Dt) : ht = bt +GtA
−1

t+1 (ξt+1 − at+1)

V ar (ξt | ξt+1, Dt) : Ht = Bt −GtA
−1

t+1G
′
t,

with

bt =

 yt

bt

 , Gt = BtM
′, Bt =

 0 0

0 Qt

 , M =

 0 Z

0 δ

 ,
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At+1 =

 St+1 Gt+1

G′
t+1 Pt+1

 , at+1 =

 ft+1

at+1

 , ξt+1 =

 yt+1

πt+1

 .
The generated vector [π∗

1, . . . , π
∗
T ]

′ corresponds to a random draw from p(π1, . . . , πT | DT ).
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