Housing Finance, Boom-Bust Episodes, and Macroeconomic Fragility

Carlos Garriga Federal Reserve Bank of St. Louis

Aaron Hedlund University of Missouri Federal Reserve Bank of St. Louis

ABFER Household Finance May 24, 2022

The views expressed are those of the authors and not necessarily of the Federal Reserve Bank of St. Louis or the Federal Reserve System.

BOOM-BUST EPISODES: A GLOBAL PHENOMENON

 Some empirical regularities (Jordá, Schularick, and Taylor (2019)): coincide with credit expansion (low borrowing costs and low return to safe assets).
 INTRODUCTION
 THE MODEL
 PARAMETRIZATION
 BOOM-BUST DYNAMICS
 HOUSING FINANCE
 Conclusions

 0000
 0000000
 000
 0000000
 0000000
 00000000

BROADER AGENDA (FINANCE/ECON ⇔ HOUSING) 1. What drives real estate markets (especially prices)?

- ► Fundamentals (population, preferences, income, etc.)
- Expectations
- Credit
- ► Liquidity

$$P_{t} = \underbrace{R_{t}}_{\text{fundamentals}} + \underbrace{\mathbb{E}}_{\text{expectations}} \left\{ \Gamma_{t,t+1} \underbrace{[1 - \tau(\Omega)]}_{\text{liquidity}} P_{t+1} \right\} + \underbrace{\mu_{t} \theta P_{t}}_{\text{credit}}$$

2. How does housing impact financial and macro behavior?

- Household portfolio choice and risk management; consumer default; financial fragility; etc.
- 3. What are the implications for policy?
 - Macroprudential policies; transmission of monetary and fiscal policy; inequality and safety net policies.

TODAY'S TALK

Question: *How does the housing finance landscape (e.g. regulations, mortgage design) shape boom-bust episodes and financial fragility?*

- 1. **Borrowing costs:** quantify the role of low mortgage rates in the housing boom using a quantitative macro model.
 - Extensive and intensive margins for housing/borrowing: easy credit affects marginal buyers and existing owners.
- 2. **Mortgage structure:** consequences of contract features and institutions that vary across time, person, and place.
 - First-order implications for housing dynamics; strong consumption spillovers.
- 3. **Regulations:** evaluate how macroprudential policies impact housing and credit dynamics as well as fragility.
 - ► Fragility trade-off: safer debt distribution vs. less insurance.

 INTRODUCTION
 THE MODEL
 PARAMETRIZATION
 BOOM-BUST DYNAMICS
 HOUSING FINANCE
 Conclusions

 0000
 000
 000
 0000000
 0000000
 0000000
 00000000

WHICH CONTRACT FEATURES AND REGULATIONS?

- Interest Rate Exposure: fixed vs. adjustable rate loans. Distinguish between periods of rising and falling rates.
- Equity extraction: low-cost equity extraction ("housing as an ATM") vs. no cash-out refinancing.
- **Rollover Risk:** long-term contracts vs. short-term debt.
- Macroprudential Policies: loan-to-value constraints vs. payment-to-income constraints.

MODEL SUMMARY: I

Households

- ▶ Preferences $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t, c_{h,t})$ over consumption *c* and housing services c_h that come from renting or owning.
- Segmented owner and rental markets: own $h \in \mathcal{H}$ with $c_h = h$ or rent apartment space $c_h = a \in [0, \overline{a}]$, where $\overline{a} \leq \underline{h}$.
- Uninsurable income risk with persistent and transitory components: $e \cdot s$ with cdf F(e) and transitions $\pi_s(s'|s)$.

Production

- Wage $w = z_c$ pinned down by the goods-producing sector. Output goes to final consumption, structures for Y_h , and rentals (elastic $Y_a \Rightarrow$ supply-determined rents).
- New owner-occupied housing $Y_h = F_h(\overline{L}, S_h, N_h)$.

MODEL SUMMARY: II

Banking Sector: issues bonds for saving; mortgages.

- Long-term: distinction between stock vs. flow of credit; down payments vs. collateral constraints.
- Defaultable: equilibrium foreclosure risk priced into loans at origination.
- Borrower interest rate risk: FRM vs. ARM. Lenders face prepayment risk.
- Can toggle ease of equity extraction and loan duration.
- Banks actively manage foreclosure inventories.

Housing Market Frictions: endogenous trading delays.

- Directed search by price and house type.
- Agents face a trade-off between the terms of trade and probability/speed of a successful transaction.

HOUSEHOLD TIMELINE

- ► State $(y, (\bar{r}_m, m), h, s, f)$ for owners; state (y, s, f) for renters.
 - Cash at hand y = wes + b, mortgage rate \bar{r}_m and balance m, housing h, persistent labor efficiency s, credit flag f.
- Subperiod 1: owners decide whether to sell; non-sellers decide whether to default.
- Subperiod 2: non-owners decide whether to buy.
- ► Subperiod 3: consumption and portfolio choice decisions.

 INTRODUCTION
 THE MODEL
 PARAMETRIZATION
 BOOM-BUST DYNAMICS
 HOUSING FINANCE
 Conclusions

 0000
 000
 000
 00000000
 00000000
 00000000
 000000000

HOUSEHOLD PORTFOLIO CHOICE New originations (m' > m or to lower rate $r_m < \bar{r}_m$):

 $V_{own}^{R}(y,(\bar{r}_{m},m),h,s,0) = \max_{m',b',c\geq 0} u(c,h) + \beta \mathbb{E} \left[(W_{own} + R_{sell})(y',(r_{m},m'),h,s',0) \right]$ subject to $c + \gamma p(h) + qb' + m \leq y + \underbrace{q_{m}((r_{m},m'),b',h,s)}_{=1+r_{m}+\text{default premium}} m'$ $q_{m}((r_{m},m'),b',h,s)m' \leq \vartheta_{LTV}p(h)$ $r_{m}m' \leq \vartheta_{PTI}\bar{c}s$

Owners making a regular payment ($m' \leq m, \bar{r}_m$ unchanged):

 $V_{own}^{C}(y,(\bar{r}_{m},m),h,s,0) = \max_{l,b',c\geq0} u(c,h) + \beta \mathbb{E} \left[(W_{own} + R_{sell})(y',(\bar{r}_{m},m'),h,s',0) \right]$ subject to $c + \gamma p(h) + qb' + l \leq y$ $l \geq \frac{\bar{r}_{m}}{1 + \bar{r}_{m}}m$ $m' = (m-l)(1 + \bar{r}_{m})$

HOUSE BUYING AND SELLING

- Search by price (sellers p_t^{list} , buyers p_t^{bid}) and house type *h*.
- ► Sellers face a trade-off between price and their probability $\eta_t^{sell}(\cdot)$ of a successful transaction. Analogous for buyers.
- Probabilities η^{sell}(p^{list}_t, h; Φ_t) and η^{buy}(p^{bid}_t, h; Φ_t) depend on choices and aggregate conditions, including heterogeneity.
- ► The option value of trying to sell is

 $\max\{0, \max_{p_s} \eta_s(\theta_s(p_s, h)) \left[(V_{rent} + R_{buy}) \left(y + p_s - m, s, 0 \right) - V_{own}(y, m, h, s, 0) \right] \}$

such that

$$p_s + y \ge m$$

► Heavily indebted sellers forced to post high list prices.

HOUSE BUYING AND SELLING

- At low leverage, list prices insensitive to mortgage debt.
- Distressed sellers with some equity cushion who cannot borrow on good terms set firesale price.
- Debt overhang for very high leverage \Rightarrow long delays.

MORTGAGE PRICING

- Key features: endogenous default premia, prepayment, equity extraction through costly refinancing.
- For ARMs, $\bar{r} = r_t$ adjusts every period.

$$(1+\zeta)q_{t}((\bar{r},m_{t+1}),b_{t+1},h,z_{t}) = \frac{1}{1+r_{t+1}} \mathbb{E} \left\{ \underbrace{\sup_{q \in Il} \operatorname{repay} \text{ no house sale}}_{q_{t+1}^{sell} + (1-\eta_{t+1}^{sell})} \left[\underbrace{\operatorname{default}}_{d_{t+1}^{*}} \varphi \operatorname{min} \left\{ 1, \underbrace{J_{t+1}^{REO}(h)}_{m_{t+1}} \right\} \right\} + \underbrace{d_{t+1}^{*}(1-\varphi)(1+\zeta)q_{t+1}^{elinq}}_{\operatorname{continuation value of delinquency}} + (1-d_{t+1}^{*}) \left\{ \underbrace{1_{[\operatorname{Ref},t+1]}}_{\operatorname{repay in full}} + 1_{[\operatorname{No \ Ref},t+1]} \left(\underbrace{I_{t+1}^{*} + (1+\zeta)q_{t+1}^{cont}m_{t+2}^{*}}_{p_{ayment + \operatorname{continuation value}}} \right) \right\} \right\}$$

such that

$$\begin{split} \eta_{l+1}^{sell} &\equiv \eta_s(\theta_s(p_{l+1}^{list_{+1}},h;p_{l+1})) \text{ (probability of house sale)} \\ q_{l+1}^{delinq} &\equiv q_{l+1}((\bar{r},m_{l+1}), b_{l+2}^{delinq*},h,z_{l+1}) \text{ (mark-to-market price for delinquent } m_{l+1}) \\ q_{l+1}^{cont} &\equiv q_{l+1}((\bar{r},m_{l+2}^*),b_{l+2}^*,h,z_{l+1}) \text{ (mark-to-market price for updated } m_{l+2}^*) \\ m_{l+2}^* &= (m_{l+1}-l_{l+1}^*)(1+\bar{r}) \text{ (endogenous amortization)} \end{split}$$

PARAMETRIZATION I

Parametrize the economy to match aggregate and cross-sectional moments from the late 1990s.

Description	Parameter	Value	Source/Reason				
Tendom on Josef Domenators							
	muepenuem	1 afaiitetef	5				
Autocorrelation	ρ	0.952	Storesletten et al (2004)				
SD of Persistent Shock	σ_{ϵ}	0.17	Storesletten et al (2004)				
SD of Transitory Shock	σ_{e}	0.49	Storesletten et al (2004)				
IES	ν	0.13	Flavin and Nakagawa (2008)				
Risk Aversion	σ	2	Standard				
Structure Share	0 c	30%	Favilukis et al. (2016)				
Land Share	a	33%	Lincoln Inst Land Policy				
Holding Costs	n	0.7%	Moody's				
Depreciation (Annual)	δ_h	1.4%	BEA				
Rent-Price Ratio (Annual)	r_h	5%	Sommer et al. (2013)				
Risk-Free Rate (Annual)	r	1.0%	Federal Reserve Board				
Servicing Cost (Annual)	ϕ	3.1%	3.2% Real Mortgage Rate				
Mortgage Origination Cost	ζ	0.4%	FHFA				
Maximum LTV	θ	125%	Fannie Mae				
Prob. of Repossession	φ	0.5	2008 OCC Mortgage Metrics				
Credit Flag Persistence	λ_f	0.9500	Fannie Mae				

INTRODUCTION	The Model	PARAMETRIZATION	BOOM-BUST DYNAMICS	HOUSING FINANCE	Conclusions
0000	0000000	000	0000000	000000	00000000000000

PARAMETRIZATION II

 Important to match households' balance sheets (especially the LTV distribution), homeownership, and foreclosures.

Description	Parameter	Value	Target	Model	Source/Reason			
Jointly D	etermined Para	imeters						
Homeownership Rate	ā	2.005	67.0%	67.2%	Census			
Starter House Value	h_1	2.4250	1.75	1.75	American Housing Survey			
Housing Wealth (Owners)	ω	0.8177	2.49	2.49	1998 SCF			
Borrowers with $LTV \ge 80\%$	β	0.9657	25.0%	24.2%	1998 SCF			
Months of Supply*	£	0.0016	5.40	5.42	Nat'l Assoc of Realtors			
Avg Buyer Search (Weeks)	· ·	0.0940	10.00	9.95	Nat'l Assoc of Realtors			
Maximum Bid Damium	1b	0.0171	2.5%	2.50	Cardo an and Martin (2002)			
Maximum Bid Premium	κ_b	0.0171	2.5%	2.5%	Gruber and Martin (2003)			
Maximum List Discount	κ_s	0.1029	15%	15%	RealtyTrac			
Foreclosure Discount	χ	0.0980	21%	21%	Pennington-Cross (2006)			
Foreclosure Starts (Annual)	γ_s	0.6550	1.60%	1.87%	Nat'l Delinquency Survey			
Model Fit								
Median Borrower LTV			62.90%	65.51%	1998 SCF			
Borrowers with $LTV \ge 70\%$			40.00%	43.43%	1998 SCF			
Borrowers with $LTV \ge 80\%$			25.0%	24.2%	1998 SCF			
Borrowers with $LTV \ge 90\%$			14.50%	11.27%	1998 SCF			
Borrowers with $LTV \ge 95\%$			9.20%	7.97%	1998 SCF			
Median Owner Liq. Assets/Earn			0.16	0.15	1998 SCF			

LOAN-TO-VALUE DISTRIBUTION: PURCHASE VS. REFI

- ▶ Downpayments cluster at 95–100% and 80–85% LTVs.
- ► High LTV loans are expensive because of default risk.
- Refinance originations have a more uniform distribution.

The Boom, Bust, and Recovery in Housing

The boom is caused by higher TFP and lower interest rates. Households perceive the boom to be permanent but are surprised by a sequence of temporary negative shocks.

		С	Real			
Regime	Dates	Rates (R/R_m)	Down Payment	Prod	Inc Risk	
Baseline	Pre-2001	2.9%/7.5%	None	Initial	Normal	
Boom	2001-2006	0.9%/5.5%	None	+5%	Normal	
Bust	2006-2011	Mixed* 10%		$-5\%^{*}$	↑ Left Tail	
Recovery	Post-2011	0.9%/5.5%	0.9%/5.5% None		Normal	
L						
t = 0 1	2 3	4 5	6 7			
$\longleftarrow \text{Interest Rate Shock } i \longrightarrow$						
← Productivity Shock Z₂ →						
← Credit Limit Shock to ϑ − →						
Skewness Shock to $\pi_{z'}$ Skewness Shock to $\pi_{z'}$ Phase 1 (Deterioration) Phase 2 (Reversal)						

 INTRODUCTION
 THE MODEL
 PARAMETRIZATION
 BOOM-BUST DYNAMICS
 HOUSING FINANCE
 Conclusions

 0000
 0000000
 000
 0000000
 0000000
 00000000
 00000000

The Stability of LTVs in the Boom

Figure: Mortgage debt. Davis and Van Nieuwerburgh (2015)

- ▶ Boom: ↑ debt-to-income (DTI), stable loan-to-value (LTV).
- ▶ Bust: ↑ LTV as house prices fell. Long-term debt important.

RECESSIONARY SHOCKS TO GENERATE THE BUST

- The skewness shocks increase downside earnings risk.
- They are calibrated to generate aggregate labor supply (employment) that is consistent with the data.
- Interest rates during the bust and recovery follow a smoothed version of the path from the data.

THE BOOM, BUST, AND RECOVERY

	Воот			Bust		
	Δ Prices	ΔC	Own	Δ Prices	ΔC	Own
Model	+44.6%	+12.2%	68.1%	-24.5%	-18.5%	64.3%
Data	+41.9%	+5.1%	69.2%	-25.9%	-15.0%	64.2%

PRODUCTIVITY BOOMS VS. CREDIT BOOMS

- "Typical" productivity-driven business cycles cannot generate large house price increases.
- The reduction in borrowing costs is key to the price boom.
- However, cheaper credit need not stimulate ownership.
 Price increases neutralize the direct effect.

INTRODUCTION	The Model	PARAMETRIZATION	BOOM-BUST DYNAMICS	HOUSING FINANCE	Conclusions
0000	0000000	000	00000000	000000	000000000000000000000000000000000000000

CREDIT AND THE "NEW NARRATIVE"

	Low Income	Middle Income	High Income
Average Borrower LTV			
Pre-Boom	59.3%	61.3%	70.3%
Productivity Only	56.4%	58.9%	57.1%
Productivity + Credit	60.9%	65.8%	69.3%
$\Delta Credit$	+4.5%	+6.9%	+12.2%
High-LTV Share*			
Pre-Boom	13.9%	14.6%	36.3%
Productivity + Credit	16.7%	22.7%	31.1%
Consumption Change			
Productivity Only	4.8%	4.2%	1.3%
Productivity + Credit	6.0%	11.7%	13.3%
$\Delta Credit$	+1.2%	+7.5%	+12.0%

*The percentage of borrowers with mortgage debt exceeding 80% LTV.

- Broad-based credit expansion, not just subprime.
- Little extensive margin change in ownership, but a shift toward larger houses. • Extensive vs. Intensive Margin following LTV Tightening

BALANCE SHEET EFFECTS IN THE BOOM AND BUST

 Asymmetric balance sheet effects: equity evaporation far more damaging to consumption.

LIQUIDITY RISK AND FINANCIAL SPILLOVERS

- Mortgage default affected by house prices and housing liquidity: the liquidity-adjusted double trigger. • 3-D Maps
- ► Each additional month of time on the market is associated with a 0.81pp rise in default (Garriga and Hedlund 2020): ΔDefaultRateⁱ₀₆₋₁₀ = β₀ + β₁%ΔHNWⁱ₀₆₋₁₀ + β₂ΔIlliquidⁱ₀₅₋₀₈.
- The result is amplified financial market spillovers.

MORTGAGE STRUCTURE: EQUITY EXTRACTION

- Without the ability to refinance, the house price boom is 40% smaller and exhibits less overshooting.
- When houses can't be used as ATMs, the spillover to consumption is smaller and more gradual.
- ► Impact on consumption most stark for high LTV owners.

MORTGAGE STRUCTURE: INTEREST RATE EXPOSURE

- ► FRM vs. ARM: no difference during the boom.
- ► Homeowners face higher debt servicing costs under ARMs when rates rise ⇒ steeper homeownership decline, bigger foreclosure spike, more severe consumption drop.
- ARM holders automatically benefit from post-QE lower rates. FRM holders must refinance to benefit. • More QE

INTEREST RATE EXPOSURE IN THE CROSS SECTION

 Consumption is more sensitive to interest rates in the ARM economy, particularly among highly leveraged owners.

MORTGAGE STRUCTURE: ROLLOVER RISK

- Mortgage duration has almost no impact on housing dynamics during the boom.
- A wave of margin calls during the bust creates involuntary deleveraging and a crisis in ownership and consumption.

ROLLOVER RISK IN THE CROSS SECTION

- Homeowners with equity are largely shielded from rollover risk during the bust.
- Highly leveraged owners experience a consumption disaster with short-term debt.

MACROPRUDENTIAL POLICY: LTV VS. PTI CAPS

- Two factors affect fragility: the debt distribution and the ability to insure against shocks.
- ► LTV and PTI caps both reduce debt. LTV Caps: Portfolio Dynamics
- LTV caps reduce fragility, but PTI caps more severely limit insurance during the bust and *increase* fragility.

CONCLUSIONS

- Credit expansions/reversals are key to explaining real estate swings, which in turn create strong spillovers to financial markets and the macroeconomy.
- Mortgage structure has significant, asymmetric aggregate and distributional consequences.
- Equity extraction contributes significantly to swings in housing and consumption.
- ► Interest-rate exposure and roll-over risk also important.
- Macroprudential policies impact fragility by altering the debt distribution and the ability to insure against shocks.

THE LIQUIDITY-ADJUSTED DOUBLE TRIGGER

THE LIQUIDITY-ADJUSTED DOUBLE TRIGGER

▶ Go Back

TIGHTER LTVS AND HOMEOWNERSHIP DYNAMICS

- Consider a permanent tightening in LTVs. In the short run, homeownership falls, but it recovers in the long run.
- The short-run decline is due more to lower rent-to-own flows rather than higher own-to-rent flows. The long-term nature of mortgage contracts is key.

Go Back

LTV CAPS: HOME PURCHASE PORTFOLIO DYNAMICS

- Tighter credit conditions create a longer build-up period of assets and by a steeper decline after purchase.
- This behavior also shows up in the cross-section distribution of liquid assets.

"QUANTITATIVE EASING"

▶ Go Back

 INTRODUCTION
 THE MODEL
 PARAMETRIZATION
 BOOM-BUST DYNAMICS
 HOUSING FINANCE
 Conclusions

 0000
 0000000
 00000000
 0000000
 0000000
 00000000

The Deterioration of Housing Liquidity: 2005

The Deterioration of Housing Liquidity: 2006

Days on the Market Level (2006)

The Deterioration of Housing Liquidity: 2007

Days on the Market Level (2007)

The Deterioration of Housing Liquidity: 2008

Days on the Market Level (2008)

The Deterioration of Housing Liquidity: 2009

Days on the Market Level (2009)

The Deterioration of Housing Liquidity: 2010

Days on the Market Level (2010)

 INTRODUCTION
 THE MODEL
 PARAMETRIZATION
 BOOM-BUST DYNAMICS
 HOUSING FINANCE
 Conclusions

 0000
 0000000
 000
 0000000
 00000000000
 000000000000

The Deterioration of Housing Liquidity: 2011

Days on the Market Level (2011)

▶ Go Back