Human Frictions in the Transmission of Economic Policies

Francesco D'Acunto Boston College

Daniel Hoang Karlsruhe Institute of Technology

> Maritta Paloviita Bank of Finland

Michael Weber University of Chicago and NBER

May 25, 2022

Full Information Rational Expectations

• Policy assumes households understand economic incentives fully

Forward guidance
 Eggertsson & Woodford (2003)

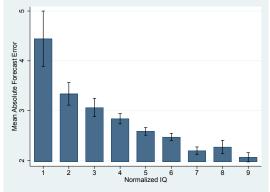
Unconventional fiscal policies
 D'Acunto, Hoang, & Weber (2021)

- Conventional fiscal policies
 Farhi & Werning (2017)
- BUT policies often ineffective: e.g., forward guidance puzzle Del Negro, Giannoni, & Patterson (2015)
- Recent progress: heterogeneous agents, incomplete markets
 Kaplan, Moll, & Violante (2018); McKay, Nakamura, & Steinsson (2016)

Theory: Cognition Matters BUT Representative Agent

- Households often reason differently than models and experts Agarwal and Mazumder (2013), Andre, Pizzinelli, Roth, Wohlfart (2021)
- Recent macro theory: limited cognitive abilities, bounded rationality Farhi & Werning (2018), Woodford (2018), Angeletos (2019), Laibson et al. (2021)
 - Obtain deviations from FIRE, discounted Euler equation
- <u>Issue</u>: representative-agent models BUT large heterogeneity in data
 - Need empirical evidence to inform advances in heterogeneous models with limited cognitive abilities
 - To what extent does het. cognition matter for policy transmission?
- Major empirical hurdles
 - Need to measure cognitive abilities for a representative population
 - Need to observe actual choices around fiscal, monetary policy measures

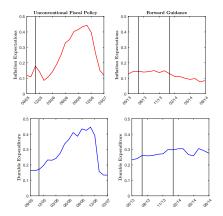
This Paper: Cognition and Reactions to Policy


Unique individual-level sample on cognition and reactions to policy

- Measure IQ for all men in Finland from Finnish Defence Forces (FDF)
- Match with unique administrative data on
 - Debt
 - ► Wealth
 - Stock and flow of cars
 - Participation in car scrappage scheme
 - Tax records
- Match with survey data on plans, attitudes, expectations

Cognitive Ability Data

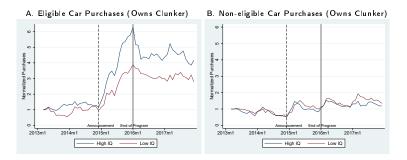
- Mandatory military service in Finland: FDF
- Around age 19, 120 questions to measure cognitive abilities
- FAF aggregates scores into a composite: IQ
- FAF standardizes IQ to follow a stanine distribution
 - 9 points to approximate normal
 - ▶ Lowest 4% of scores at least 1.75 std from mean: standardized IQ of 1
 - ▶ 4% with highest test scores: standardized IQ of 9


Heterogeneous Cognition \rightarrow Mistaken Expectations

Source: D'Acunto, Hoang, Paloviita, Weber, Restud (2022): "IQ, Expectations, and Choice"

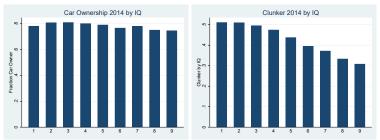
- Men with low IQ: absolute forecast error for inflation of 4.5%
- Forecast error still large for the highest-IQ group (2%)
- Economically and statistically different across the IQ distribution
- Effect barely changes when partialling out income and education levels

Simple Policies vs Complex Policies


Source: D'Acunto, Hoang, Weber, RFS (2022): "Managing Household Expectations with Unconventional Policies"

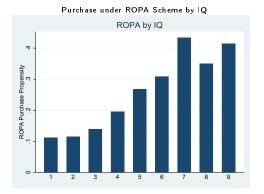
- Pre-announced VAT increase (left): inflation expectations AND spending react
- Fwd guidance announcements (right): nothing moves
- Both policies theoretically operate through identical channel: Euler equation

Differential Reaction to Economic Policies


- Heterogeneous cognitive abilities might be human frictions to the transmission of economic policies
 - Study reaction to conventional fiscal policy
 subsidy to purchase new cars
 - Study reaction to conventional monetary policy
 - propensity to take out loans and debt balance to changes in interest rates

Differential Uptake of Car Purchasing Policy

- Conditional on owning clunker at announcement
- Split by median IQ
- Reaction of high-IQ men twice as strong post announcement for eligible cars
- No differential reaction for non-eligible car by IQ


Clunker and Car Ownership

A. Ownership of Car in Dec 2014 by IQ B. Ownership of Clunker in Dec 2014 by IQ

- Stable car ownership across IQ distribution
- Decreasing likelihood of owning clunker by IQ

Actual Participation in Program

• Increasing propensity to participate in program in IQ

IQ and Car Purchase

 $ROPA_i = \alpha + \beta High \ IQ_i \times Clunker_i + \zeta High \ IQ_i + \gamma Clunker_i + X'_i \delta + \eta_s + \epsilon_i$

	(1)	(2)	(3)
High IQ $ imes$ Clunker	5.53**	6.12**	5.91**
-	(2.58)	(2.59)	(2.59)
High IQ	2.88***	4.46***	4.45***
	(1.11)	(1.18)	(1.18)
Clunker	24.65***	23.50***	23.78***
	(2.22)	(2.24)	(2.24)
Constant	12.59***	96.68***	95.70***
	(0.95)	(14.29)	(14.29)
Nobs	7,588	7,534	7,534
Controls	1,000	X	X
District FE			Х
R2	0.101	0.109	0.114

• High-IQ men 6 pp. more likely to take advantage of subsidy

IQ and Car Purchase: Unconstrained

 $\textit{ROPA}_i = \alpha + \beta \textit{High IQ}_i \times \textit{Clunker}_i + \zeta \textit{High IQ}_i + \gamma \textit{Clunker}_i + X'_i \delta + \eta_s + \epsilon_i$

	(1)	(2)	(3) Panel A. U	(4) nconstrained	(5)	(6)	
	Below-n	nedian Debt	-to-Income	Above-median Income			
High Q \times Clunker	10.52** (4.27)	11.23*** (4.24)	10.34** (4.24)	<mark>6.45</mark> *** (2.35)	<mark>6.64</mark> *** (2.32)	<mark>6.45</mark> ** (2.75)	
High∣Q	1.47 (1.91)	3.62* (2.08)	3.79* (2.08)	3.15*** (1.13)	4.62*** (1.28)	4.56*** (1.23)	
Clunker	21.52 ^{***} (3.68)	19.72 ^{***} (3.68)	20.25 ^{***} (3.67)	23.33 ^{***} (1.99)			
Constant	12.93 ^{***} (1.66)	132.19*** (25.07)	135.30 ^{***} (25.15)	12.12 ^{***} (0.94)	85.98 ^{***} (20.50)	86.49 ^{***} (17.97)	
Nobs Controls District	2,683	2,680 X	2,680 X X	6,997	6,988 X	6,988 X X	
R2	0.111	0.123	0.132	0.098	0.104	0.109	

• Large difference by IQ within likely unconstrained

IQ and Car Purchase: Constrained

 $\textit{ROPA}_i = \alpha + \beta \textit{High IQ}_i \times \textit{Clunker}_i + \zeta \textit{High IQ}_i + \gamma \textit{Clunker}_i + \textit{X}'_i \delta + \eta_{\textit{s}} + \epsilon_i$

	(1)	(2)	(3)	(4)	(5)	(6)		
	Panel B. Constrained							
	Above-m	nedian Debt	-to-Income	Belo	ow-median∣	ncome		
High IQ $ imes$ Clunker	1.59	2.04	1.67	4.69	4.69	4.07		
	(3.75)	(3.76)	(3.77)	(8.23)	(8.23)	(9.79)		
High∣Q	4.40***	5.41***	5.56***	2.82	1.03	-0.77		
	(1.59)	(1.66)	(1.66)	(4.51)	(4.47)	(5.50)		
Clunker	27.07***	26.27***	26.78***	29.98***	28.60***	33.26***		
	(3.20)	(3.24)	(3.25)	(6.38)	(6.46)	(7.54)		
Constant	11.94***	74.51***	73.70***	17.27***	118.08***	128.96***		
	(1.35)	(22.22)	(22.26)	(3.62)	(40.26)	(47.04)		
Nobs	3,585	3,578	3,578	551	546	478		
Controls		x	х		х	х		
District			х			х		
R2	0.095	0.100	0.106	0.119	0.166	0.323		

• No difference by IQ within likely constrained

IQ and Car Purchase: Intertemporal Substitution

 $\textit{Eligible Car}_{i,t} = \alpha + \beta_{1}\textit{High IQ}_{i} \times \textit{Clunker}_{i,t-1} \times \textit{ROPA}_{t} + \beta_{2}\textit{High IQ}_{i} \times \textit{Clunker}_{i,t-1} + \beta_{3}\textit{High IQ}_{i} \times \textit{ROPA}_{t}$

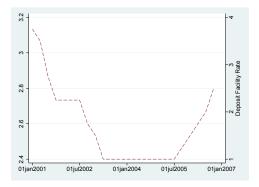
 $+ \beta_{\mathbf{4}} \textit{Clunker}_{i,t-1} \times \textit{ROPA}_t + \zeta \textit{High IQ}_i + \gamma \textit{Clunker}_{i,t-1} + \nu \textit{ROPA}_t + X'_{i,t} \delta + \eta_t + \eta_s + \eta_i + \epsilon_{i,t}$

High $ Q \times C $ unker $\times ROPA_t$	0.10***	0.10***	0.10***	0.10***
	(0.03)	(0.03)	(0.03)	(0.03)
High IQ $ imes$ Clunker	-0.09^{***}	-0.08***	-0.08***	
	(0.02)	(0.02)	(0.02)	
$High \ IQ imes ROPA_t$	0.04	0.04	0.04	0.03
	(0.03)	(0.03)	(0.03)	(0.03)
$Clunker imes ROPA_t$	0.09***	0.09***	0.09***	0.09***
	(0.02)	(0.02)	(0.02)	(0.02)
High ∣Q	0.13***	0.04**	0.04**	
	(0.02)	(0.02)	(0.02)	
Clunker	-0.20^{***}	-0.21^{***}	-0.20^{***}	
	(0.01)	(0.02)	(0.02)	
ROPAt	0.04**	0.03	0.03	0.03
	(0.02)	(0.02)	(0.02)	(0.03)
Constant	0.25***	-0.76^{***}	-0.73^{***}	1.47*
	(0.01)	(0.07)	(0.07)	(0.79)
Nobs	1,573,190	1,521,209	1,521,209	1,521,209
Controls		х	х	х
District FE			Х	х
Individ FE				Х

High-IQ men twice as sensitive during ROPA if owned clunker relative to others

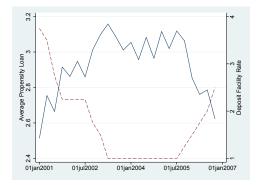
Survey evidence: plans to purchase cars change differentially

IQ and Survey Plans to Purchase Durables

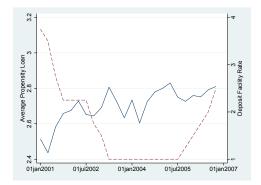

 $\textit{Willingness Purchase Car}_{i,t} = \alpha + \beta \textit{High IQ}_i \times \textit{Post Announcement} + \gamma \textit{Post Announcement} + \zeta \textit{High IQ}_i + \chi'_{i,t} \delta + \epsilon_{i,t}, \textit{High IQ}_i + \chi'_{i,t} \delta + \kappa'_{i,t}, \textit{High IQ}_i + \chi'_{i,t}, \textit{High IQ}_i + \chi'_$

	Want Purchase Car Within 1 year		Want Purchase Non-car Vehicle		Want Purchase Other Durables	
	(1)	(2)	(3)	(4)	(5)	(6)
High ∣Q × Post Announcement	0.05**	0.04*	-0.00	-0.01	-0.01	-0.01
	(0.02)	(0.02)	-0.02	(0.02)	(0.03)	(0.03)
High∣Q	-0.04***	* -0.03**	0.03*	0.03*	0.05***	* 0.04**
0	(0.01)	(0.02)	(0.01)	(0.02)	(0.02)	(0.02)
Post Announcement	-0.01	-0.00	0.03*	0.03*	-0.01	0.00
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Nobs	5,625	4,899	5,654	4,920	5,657	4,922
Controls		х		х		х
Expectations		х		х		х

Low-IQ men do not think good time to buy car during program


• High-IQ men no differential plan to purchase non-car vehicle or other large ticket item

Deposit Facility Rate: Beginning of Quarter

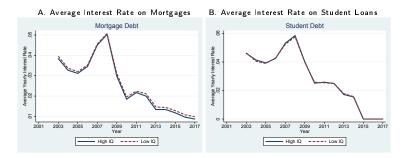

- Study propensity to take out loan by IQ
- Both for increase and decrease in rates
- Till end 2001: rate falls from 3.75% to 2.25%
- Trough of 1% in June 2003
- December 2005 rates start increasing; 2.5% end of 2006

Propensity to take out Loan: High IQ

- Early 2001: average propensity to take out loans of around 2.5
- Next 2.5 years: rates fall and propensities increase to more than 3
- Till mid 2005: rates and propensities flat
- Afterwards: rates increase, propensities fall

Propensity to take out Loan: Low IQ

- Early 2001: average propensity to take out loans of around 2.6
- Next 6 years: propensities hover around 2.8


Total Debt by IQ

- Do low IQ men react less because cut off financial markets?
- Measure total debt by IQ from Statistics Finland

Total Debt / Taxable Income by IQ								
Low IQ	2	3	4	5	6	7	8	High IQ
0.82	0.77	0.76	0.75	0.78	0.80	0.81	0.87	0.93

- Low IQ men and high IQ substantial amount of debt
- Restricted financial access unlikely driver of Δ propensity to Δ rate

Actual Interest Rates by IQ

• No differential pass through of policy rates to interest rates by IQ

Change in Debt and Changes in Interest Rates

• Family & friends or financial advisors shape actual decisions?

 $\textit{Debt Outcome}_{i,t} = \alpha + \beta \textit{High IQ}_i \times \textit{Rate}_t + \zeta \textit{High IQ}_i + \gamma \textit{Rate}_t + \textit{X}'_{i,t} \delta + \eta_t + \eta_i \epsilon_{i,t}$

	Debt Balance					
High IQ $ imes$ Rate		-1,143.9*** (341.2)				
High IQ	6,331.8*** (1,144.3)	7,534.8*** (1,136.5)				
Rate	-4,496.3*** (231.7)					
Nobs	254,480	254,480	254,480			
Controls	Х	Х	Х			
Year FE		Х	Х			
Individ FE			Х			

• High-IQ men decrease debt balance by 25% more to 1% increase in rate than others

Extensive Margin and Changes in Interest Rates

 $Debt \ Outcome_{i,t} = \alpha + \beta High \ IQ_i \times Rate_t + \zeta High \ IQ_i + \gamma Rate_t + X'_{i,t} \delta + \eta_t + \eta_i \epsilon_{i,t}$

	Ta	ke New Loar	ı	Pay Down Loans			
	(1)	(2)	(3)	(4)	(5)	(6)	
High IQ $ imes$ Rate	-0.008*** (0.002)	-0.008*** (0.002)	-0.007*** (0.002)	0.009*** (0.002)	0.009*** (0.002)	0.007*** (0.002)	
High IQ	-0.004 (0.004)	-0.006 (0.004)		0.002 (0.004)	0.004 (0.004)		
Rate	0.035*** (0.002)			-0.034*** (0.002)			
Nobs Controls Year FE Individ FE	213,473 X	213,473 X X	213,473 X X X X	213,473 X	213,473 X X	213,473 X X X	

• High-IQ men: less likely to take out new loan & more likely to repay loan following increases in rates

Conclusion

- Low cognitive abilities:
 - Less likely to take advantage of subsidies for buying new car
 - Less sensitive debt choices to changes in interest rates
 - IQ only relevant within subset of unconstrained men
- Cognitive abilities impediment to effectiveness of policy
- Unintended consequences: redistribution from low to high IQ agents
- If IQ innate, unintended discrimination by policy institutions

Next: do for behavioral macro models what HANK is for NK model