ABFER Annual Conference

The Coming Battle of Digital Currencies

Lin William Cong

Cornell University and NBER

Simon Mayer

Chicago Booth and HEC Paris

May 2022

New Era of Electronic Payments and Digital Currencies

- Digitization, P2P networks, and on-demand economy.
- Rise of private payment systems: PayPal, Alipay, M-Pesa, etc. Digitization of money (Brunnermeier, James, & Landau, 2019).
- Blockchain technology (e.g., Cong & He, 2019, Chen, Cong, & Xiao, 2020), cryptocurrencies, & DeFi (Harvey, Ramachandran, & Santoro, 2021; Cong, He, & Tang, 2022).
 - Cryptocurrency market cap has surpassed 3T\$ in November 2021.
 - ▶ Stablecoins (200B\$) and DeFi (TVL 21B \$ Oct 2020 \rightarrow 326B \$, Oct 2021).
 - Categories and Functions of Crypto-tokens (Cong & Xiao, 2020; Cong et al., 2021).
 - Platform tokens, general payment tokens, ownership tokens, & cash-flow tokens.

New Era of Electronic Payments and Digital Currencies

- Digitization, P2P networks, and on-demand economy.
- Rise of private payment systems: PayPal, Alipay, M-Pesa, etc. Digitization of money (Brunnermeier, James, & Landau, 2019).
- Blockchain technology (e.g., Cong & He, 2019, Chen, Cong, & Xiao, 2020), cryptocurrencies, & DeFi (Harvey, Ramachandran, & Santoro, 2021; Cong, He, & Tang, 2022).
 - Cryptocurrency market cap has surpassed 3T\$ in November 2021.
 - ▶ Stablecoins (200B\$) and DeFi (TVL 21B \$ Oct 2020 \rightarrow 326B \$, Oct 2021).
 - Categories and Functions of Crypto-tokens (Cong & Xiao, 2020; Cong et al., 2021).
 - Platform tokens, general payment tokens, ownership tokens, & cash-flow tokens.
- Academics and central banks (\approx 100) actively research CBDCs (Bech & Garratt, 2017; Duffie and Gleeson, 2021; Chiu et al., 2021; Fernandez-Villaverde et al., 2021).
- March 9th, 2022: President Biden signs Executive Order on Ensuring Responsible Development of Digital Assets.

CBDC Initiatives around the World (CBDCTracker.org)

Introduction

Dynamic Model

Implications & Predictions

Conclusion

Cornell Universit

Example of CBDC: China's e-CNY

- Public debates: Concern that e-CNY challenges USD dominance.
 - Ehrlich (2020, Forbes): "Not a cold war: China is using a digital currency insurgency to unseat the US dollar."

The (Coming) Battle of (Digital) Currencies

- How does the emergency of crypto shape international currency competition?
- Will digital currencies challenge the supremacy of USD?
- Should countries implement CBDC and, if so, which countries, when, and why? What are the relevant trade-offs?
- What is the role of stablecoins in these developments? Is reserve requirement an effective policy?

The (Coming) Battle of (Digital) Currencies

- How does the emergency of crypto shape international currency competition?
- Will digital currencies challenge the supremacy of USD?
- Should countries implement CBDC and, if so, which countries, when, and why? What are the relevant trade-offs?
- What is the role of stablecoins in these developments? Is reserve requirement an effective policy?

This Paper: Dynamic currency competition among countries involving fiat currencies, private cryptocurrencies, and CBDCs.

- Game-theoretical analysis of currency digitization.
- Rationalize recent events in digital currency development.
- Implications on the effects and benefits of CBDC issuance and digitization of money.

Overview of Model

• Two-period & dynamic models of currency competition:

- ► Two countries with currencies: A ("strong") and B ("weak").
- One representative cryptocurrency *C*.

• Currencies fulfill three functions of money:

- 1. Store of Value: Households store wealth.
- 2. Medium of Exchange: Convenience yield.
- 3. Unit of account: Contracts denominated in strong (reserve) currency.

Overview of Model

• Two-period & dynamic models of currency competition:

- ► Two countries with currencies: A ("strong") and B ("weak").
- One representative cryptocurrency *C*.

• Currencies fulfill three functions of money:

- 1. Store of Value: Households store wealth.
- 2. Medium of Exchange: Convenience yield.
- 3. Unit of account: Contracts denominated in strong (reserve) currency.
- Endogenous and dynamic growth of cyber/crypto sector & adoption of cryptocurrencies.
- Countries strategically "innovate" by launching CBDC.

Introduction

Main Results

- Feedback effects: Vicious circle of inflation and depreciation; dollarization.
- Rise of cryptocurrencies hurts strong currencies, but mitigates dollarization and may benefit weaker currencies.

Introduction

Main Results

- Feedback effects: Vicious circle of inflation and depreciation; dollarization.
- Rise of cryptocurrencies hurts strong currencies, but mitigates dollarization and may benefit weaker currencies.
- CBDC issuance pecking order:
 - 1. Non-dominant currencies (e.g., RMB): First mover advantage.
 - 2. Dominant currency: Killer adoption or unavoidable digitization.
 - 3. Very weak currencies (e.g., El Salvador): Adopt crypto instead.

Main Results

- Feedback effects: Vicious circle of inflation and depreciation; dollarization.
- Rise of cryptocurrencies hurts strong currencies, but mitigates dollarization and may benefit weaker currencies.
- CBDC issuance pecking order:
 - 1. Non-dominant currencies (e.g., RMB): First mover advantage.
 - 2. Dominant currency: Killer adoption or unavoidable digitization.
 - 3. Very weak currencies (e.g., El Salvador): Adopt crypto instead.
- \implies Digitization of money in the long run:
 - Weaker country's CBDC hurts crypto sector more.
 - Countries with weak currencies prone to digital dollarization.
 - Strong currencies as potential beneficiaries.
- \implies Rise of cryptocurrencies spurs financial innovation; the impact of CBDCs depends on fiat strength.

Additional Results

Representative cryptocurrency also describes stablecoins

- Cryptocurrencies (typically) pegged to USD.
- Some stablecoins (e.g., USDC) backed by US Dollar assets.
- Regulatory reserve/backing requirements on USD stablecoins:
 - US captures part of the "crypto" seigniorage: Strengthens USD but weakens other currencies ("digital dollarization").
 - Viable alternative to CBDC issuance: Delegate digital dollar development to private sector.
 - ⇒ Potential for USD to become a winner out of the "Coming Battle of Digital Currencies."
- Developing countries' challenge; digital dollarization.

Introduction

Dynamic Model

Implications & Predictions

Conclusion

Literature

- Currency competition: Lagos and Wright (2005), Farhi and Maggiori (2018), Fernandez-Villaverde and Sanches (2019), He, Krishnamurthy, and Milbradt (2016, 2019), Benigno, Schilling, and Uhlig (2022), among others ...
- International Finance and Dominance of the Dollar: Gopinath et al. (2020), Eren and Malamud (2021), Du, Pflueger, and Schreger (2020), Maggiori et al. (2020), Jiang, Krishnamurthy, and Jiang (2020, 2021), among others ...
- Digital Currencies and CBDC: Schilling and Uhlig (2018), Brunnermeier, James, and Landau (2019), Fernandez-Villaverde, Schilling, and Uhlig (2020), Piazzesi and Schneider (2020), Fernandez-Villaverde et al. (2021), among others ...

Setup

- Time runs discretely, t = dt, 2dt, 3dt, ... with time increments dt
 - Continuous time limit as in He and Krishnamurthy (2013).
- Representative OLG household endowed with one unit of perishable consumption good (=numeraire).
- Cohort *t* lives from *t* to *t* + *dt* without time discounting:
 - Utility from consumption only at t + dt.
 - Money serves as a store of value.

Setup

- Time runs discretely, t = dt, 2dt, 3dt, ... with time increments dt
 - Continuous time limit as in He and Krishnamurthy (2013).
- Representative OLG household endowed with one unit of perishable consumption good (=numeraire).
- Cohort *t* lives from *t* to *t* + *dt* without time discounting:
 - Utility from consumption only at t + dt.
 - Money serves as a store of value.
- Three currencies in fixed unit supply with endogenous value in consumption goods P_t^x for x = A, B, C:
 - Currency A ("strong" or "dominant"): e.g., USD, Euros,...
 - Currency B ("weak" or "non-dominant"): e.g., RMB, Rupees,...
 - ► Representative cryptocurrency *C*: includes stablecoins.

Dynamic Model — Fiscal and Currency Strength

- Reduced form modelling of link between countries' economic fundamentals and currency strength.
- Country x = A, B raises inflation taxes to cover expenses $\tau_t^x dt = (\kappa^x + \pi^x P_t^A) dt$ (in terms of consumption goods)
- Expenses partially denominated in "international unit of account"
 - International trade invoiced in USD (Gopinath et al., 2020)
 - Debt denominated in USD (Maggiori, Neiman, and Schreger, 2020).

Dynamic Model — Fiscal and Currency Strength

- Reduced form modelling of link between countries' economic fundamentals and currency strength.
- Country x = A, B raises inflation taxes to cover expenses $\tau_t^x dt = (\kappa^x + \pi^x P_t^A) dt$ (in terms of consumption goods)
- Expenses partially denominated in "international unit of account"
 - International trade invoiced in USD (Gopinath et al., 2020)
 - Debt denominated in USD (Maggiori, Neiman, and Schreger, 2020).
- \implies Higher π^x or $\kappa^x \implies$ Depreciation of currency *x* w.r.t. consumption good (i.e., inflation) and other currencies

Money as a Medium of Exchange — Convenience Yield

- m_t^x : Cohort *t*'s holdings of currency *x* in consumption good.
 - Money as store of value: $m_t^A + m_t^B + m_t^C = 1$.
- Money as a medium of exchange:
 - Convenience yield $Z_t^x v(m_t^x) dt$ from holding currency x = A, B and convenience yield $Y_t v(m_t^x) dt$ from holding cryptocurrency.
 - v'(m) > 0 > v''(m) (Krishnamurthy and Vissing-Jorgensen, 2005).
- Household's utility flow:

$$U_{t} = \underbrace{C_{t+dt}}_{\text{Consumption at } t+dt} + \underbrace{\left(Z_{t}^{A}v(m_{t}^{A}) + Z_{t}^{B}v(m_{t}^{B}) + Y_{t}v(m_{t}^{C})\right)dt}_{\text{Convenience vield}}$$

• Equilibrium consumption: $c_{t+dt} = 1 - \tau_t^A dt - \tau_t^B dt$.

Cryptocurrencies and Market Clearing

- m_t^C : Cryptocurrency adoption and demand
- Cryptocurrency adoption evolves according to:

$$\frac{dY_t}{Y_t} = m_t^C \cdot \mu dt \quad \text{for} \quad \mu > 0.$$
 (1)

•
$$m_t^C \uparrow \Longrightarrow Y_{t+dt} \uparrow \Longrightarrow P_{t+dt}^C \uparrow \Longrightarrow m_t^C \uparrow ...$$

Cryptocurrencies and Market Clearing

- m_t^C : Cryptocurrency adoption and demand
- Cryptocurrency adoption evolves according to:

$$\frac{dY_t}{Y_t} = m_t^{C} \cdot \mu dt \quad \text{for} \quad \mu > 0.$$
 (1)

•
$$m_t^C \uparrow \Longrightarrow Y_{t+dt} \uparrow \Longrightarrow P_{t+dt}^C \uparrow \Longrightarrow m_t^C \uparrow ...$$

С

• Market clearing for currency x: $m_t^x = P_t^x$

$$P_t^A + P_t^B + P_t^C = 1.$$

- Stablecoins pegged to USD and crypto with reserve requirements.
 - Fraction θ backed by fiat, $\theta = 0$ in baseline.

• Household is price-taker and maximizes at each time *t*:

$$\max_{m_t^X \ge 0} \mathbb{E}_t \Big[\underbrace{C_{t+dt}}_{\text{Consumption}} + \underbrace{\left(Z_t^A v(m_t^A) + Z_t^B v(m_t^B) + Y_t v(m_t^C)\right) dt}_{\text{Convenience yield}}\Big]$$
(3)

• Equilibrium condition (for i = A, B):

$$\underbrace{Y_t v'(m_t^C)}_{\text{Convenience}} + \underbrace{r_t^C}_{\text{Returns}} = \underbrace{Z_t^i v'(m_t^i)}_{\text{Convenience}} + \underbrace{r_t^i - \frac{\tau_t^i}{P_t^i}}_{\text{Net returns}}.$$
(4)

• Expected currency returns $r_t^i := \frac{\mathbb{E}[dP_t^i]}{P_t^i dt}$ ("appreciation")

• Household is price-taker and maximizes at each time *t*:

$$\max_{m_t^X \ge 0} \mathbb{E}_t \Big[\underbrace{C_{t+dt}}_{\text{Consumption}} + \underbrace{\left(Z_t^A v(m_t^A) + Z_t^B v(m_t^B) + Y_t v(m_t^C)\right) dt}_{\text{Convenience yield}}\Big]$$
(3)

• Equilibrium condition (for *i* = *A*, *B*):

$$\underbrace{Y_t v'(m_t^C)}_{\text{Convenience}} + \underbrace{r_t^C}_{\text{Returns}} = \underbrace{Z_t^i v'(m_t^i)}_{\text{Convenience}} + \underbrace{r_t^i - \frac{\tau_t^i}{P_t^i}}_{\text{Net returns}}.$$
(4)

- Expected currency returns $r_t^i := \frac{\mathbb{E}[dP_t^i]}{P_t^i dt}$ ("appreciation")
 - Monetary neutrality: Currency appreciation dP^x_t > 0 could be transformed into interest payments to currency holders

• Household is price-taker and maximizes at each time *t*:

$$\max_{m_t^X \ge 0} \mathbb{E}_t \Big[\underbrace{C_{t+dt}}_{\text{Consumption}} + \underbrace{\left(Z_t^A v(m_t^A) + Z_t^B v(m_t^B) + Y_t v(m_t^C) \right) dt}_{\text{Convenience yield}} \Big]$$
(5)

• Equilibrium condition (for i = A, B):

$$\underbrace{Y_{t}v'(m_{t}^{C})}_{\text{Convenience}} + \underbrace{r_{t}^{C}}_{\text{Returns}} = \underbrace{Z_{t}^{i}v'\left(m_{t}^{i}\right)}_{\text{Convenience}} + \underbrace{r_{t}^{i} - \frac{\tau_{t}^{i}}{P_{t}^{i}}}_{\text{Net returns}}.$$
(6)

• Expected currency returns $r_t^i := \frac{\mathbb{E}[dP_t^i]}{P_t^i dt}$ ("appreciation")

• Household is price-taker and maximizes at each time *t*:

$$\max_{m_t^X \ge 0} \mathbb{E}_t \Big[\underbrace{C_{t+dt}}_{\text{Consumption}} + \underbrace{\left(Z_t^A v(m_t^A) + Z_t^B v(m_t^B) + Y_t v(m_t^C) \right) dt}_{\text{Convenience yield}} \Big]$$
(5)

• Equilibrium condition (for *i* = *A*, *B*):

$$\underbrace{Y_t v'(m_t^C)}_{\text{Convenience}} + \underbrace{r_t^C}_{\text{Returns}} = \underbrace{Z_t^i v'(m_t^i)}_{\text{Convenience}} + \underbrace{r_t^i - \frac{\tau_t^i}{P_t^i}}_{\text{Net returns}}.$$
(6)

- Expected currency returns $r_t^i := \frac{\mathbb{E}[dP_t^i]}{P_t^i dt}$ ("appreciation")
 - Monetary neutrality: Currency appreciation dP^x_t > 0 could be transformed into interest payments to currency holders

Cornell Universit

Parameter Choices and Solution

- Express all equilibrium quantities as functions of *Y* and $z \in \{0, A, B, AB\}$ indicating which countries have launched CBDC.
- $Z_L = 0.5, Z_H = 2, \mu = 1, \alpha = 0.15, Y_t \le \overline{Y} = 75$ (exogenous).
- As in Li (2021), we use CRRA form:

$$v(m_t^x) = \frac{(m_t^x)^{1-\eta} - 1}{1-\eta}$$
 with $\eta = 2$.

- Normalize: $\kappa^{x} = \theta = 0$.
- Baseline π^A and π^B non-divergent (e.g., $\pi^A = 1 < \pi^B = 4$):
 - Currency A: Dominant and reserve currency (USD).
 - Currency B: Strong but non-dominant currency (e.g., Euro or RMB).

Feedback Effect, Crypto Buffer, Currency Valuation Dynamics

- Cryptocurrency as buffer zone between A and B.
- Rise of cryptocurrency hurts A, but may benefit B: direct competition for B (-) vs. weakened competition from A (+).
- Weakness of fiat facilitates growth of crypto sector.

Cornell University

Effects of CBDC issuance

- $\Delta(x) \simeq$ change when country *x* launches CBDC (at time T^x)
- CBDCs by non-dominant currencies have largest effects
- Cryptocurrency kill zone: nips crypto growth in the bud.

CBDC Issuance: A Pecking Order

- $e^B > e^A$: *B* has higher incentives (becoming first-mover).
- Strong country A: Killer adoption (first peak) and unavoidable currency digitization (second "peak").

CBDC Issuance: A Pecking Order

- $e^B > e^A$: *B* has higher incentives (becoming first-mover).
- Strong country A: Killer adoption (first peak) and unavoidable currency digitization (second "peak").
- Pecking order: Non-dominant currencies (e.g., RMB) ⇒ Dominant currency (USD) ⇒ Very weak currencies.

CBDC Issuance and Digitization: A Pecking Order

 A country's incentives to develop CBDC follow an inverted U shape in the strength of its currency (relative to other currencies).

CBDC Issuance and Digitization: A Pecking Order

- A country's incentives to develop CBDC follow an inverted U shape in the strength of its currency (relative to other currencies).
- Pecking order: Non-dominant currencies (e.g., RMB) ⇒ Dominant currency (USD) ⇒ Very weak currencies

Strategic Effects of CBDCs: Substitutes or Complements?

- CBDC implementation by strong country wipes out weaker country's incentives to gain first mover advantage.
- CBDC issuance by weaker country challenge dominance of currency *A* and may strengthen stronger country's incentives.

Currency strength and Incentives to launch CBDC

- $\pi^A \uparrow$: Currency A becomes "weaker."
- Currency A's dominance lowers incentives to issue CBDC.
 - Dollar dominance leads to inertia regarding payment innovation.
 - Lack of competition undermines incentives for digitization and innovation.

Cornell Universit

Currency Competition and Financial Innovation

- *Prob_t* : Probability that CBDC is launched by time *t*.
- The competition from cryptocurrencies stimulates (possibly valuable) financial innovation.
- Countries react to growing competition by implementing CBDC competition.

Fiat-backed cryptocurrency and stablecoins

- Many stablecoins are pegged to U.S. dollar and partially backed by U.S. dollar reserves
 - Reserves may include cash or cash equivalents (T-bills)
 - Examples: USDC or BUSD
- Consider that fraction θ of cryptocurrency market cap P^C_t is backed by reserves consisting of currency A (i.e., U.S. dollars).

Cornell University

Fiat-backed cryptocurrency and stablecoins

- Stablecoins backed by currency A benefit A but harm B
- Requiring backing of stablecoins (θ ↑) as alternative to developing CBDC: U.S. could "delegate" digital dollar development

Cornell Universit

Developing Countries, Small Open Economies, and Digital Dollarization

Change in P^B when A (e.g., the US) launches CBDC:

- Higher In(Y): Very weak currencies (e.g., $\pi^B = 20$) suffer more.
- Eventually suffer from digital dollarization (Brunnermeier, James, and Landau, 2019).

Cornell Universit

Developing Countries and CBDC Pecking Order

- The larger π^B (2 vs. 4 vs. 20), the "weaker" currency *B*.
- Weaker currencies benefit relatively more from crypto growth.
- Developing countries opt to "adopt" cryptocurrencies/stablecoins.

Cornell University

Conclusions

- Dynamic model of currency competition across countries using cryptocurrencies, fiat currencies, and CBDC.
- CBDC issuance as strategic responses to competition from cryptocurrencies and other digital currencies.
- Novel pecking order of CBDC issuance:
 - 1. Strong but non-dominant currencies (e.g., RMB).
 - 2. Strongest currencies (e.g., USD).
 - 3. Weakest economies (e.g., El Savaldor).
- Further implications:
 - Vicious circle of inflation and depreciation.
 - Fiat strength and payment innovation.
 - Weak currencies benefit from the rise of cryptocurrencies but eventually suffer from digital dollarization.
 - Eventual digitization of money and dollar dominance.