Turbulent Business Cycles¹

Ding Dong¹, Zheng Liu², Pengfei Wang³

¹Hong Kong University of Science and Technology

²Federal Reserve Bank of San Francisco

³Peking University HSBC School of Business

ABFER, May 23, 2022

¹The views expressed herein are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or the Federal Reserve System.

_		

Background

- Turbulence rises in recession
 - Increased churn of firm productivity ranking (Bloom, et al. 2018)
- Open questions:
 - 1. What are the macro and reallocation effects of turbulence?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 2. What's the transmission mechanism?
- 3. What policy interventions are effective?

What's turbulence?

Consider firm-level TFP process

$$z_{j,t+1} = egin{cases} z_{j,t} & ext{with prob} &
ho_t, \ ilde{z} & ext{with prob} & 1-
ho_t, \end{cases}$$

where $\tilde{z} \in \{z_1, \dots, z_J\}$ is i.i.d. drawn from $\tilde{G}(z)$

• Time-varying turbulence: $1 - \rho_t$

- $\rho_t = 1$: permanent TFP shock
- $\rho_t = 0$: i.i.d. shock
- $\rho_t \downarrow \Rightarrow$ high-(low-) productivity firm less likely to remain productive (unproductive) \Rightarrow increased churn in productivity ranking \Rightarrow turbulence \uparrow

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $ho_t = {\sf Spearman}$ rank corr of firm TFP b/n t and t+1

ts Model

aei 000000000 Furbulence vs. uncertainty

Policy

Conclusion

Turbulence is countercyclical

• Turbulence measured by $1 - \rho_t$, where ρ_t is Spearman corr of firm-level TFP b/n year t and t + 1, constructed based on Compustat and NBER-CES: $tfp_{ijt} = y_{ijt} - \alpha_{it}k_{ijt} - (1 - \alpha_{it})n_{ijt}$

200

э

Reallocation effects of turbulence

• Estimate the regression:

 $x_{jt} = \beta_0 + \beta_1 High_TFP_{jt} + \beta_2 Turb_t * High_TFP_{jt} + \mu_j + \eta_t + \epsilon_{jt},$

- 1. x_{jt} : YoY growth of employment, capital, value-added, or market value of firm j in year t
- 2. $High_TFP_{jt} = 1$ if firm TFP above median
- 3. Turb_t: turbulence measured by $1 \rho_t$
- 4. μ_i and η_t : firm fixed effects and year fixed effects
- Parameter of interest: β₂ captures marginal effects of turbulence on high-productivity firms
 - If $\beta_2 < 0$: stronger adverse effects on high-productivity firms

Turbulence has significant reallocation effects

Dep. Var.	Δn_{jt}	Δk_{jt}	Δy_{jt}	Δv_{jt}
High_TFP _{it}	(1)	(2)	(3)	(4)
	0.051^{**}	0.124***	0.275***	0.228***
Turb _t * High_TFP _{it}	(0.014)	(0.033)	(0.023)	(0.025)
	-1. <mark>088</mark> ***	-1. <mark>648</mark> ***	-1.737***	-1.466***
constant	(0.128)	(0.219)	(0.180)	(0.180)
	0.072***	0.093***	0.033***	0.041^{***}
Firm Fixed Effect	(0.008)	(0.013)	(0.007)	(0.007)
	Yes	Yes	Yes	Yes
Year Fixed Effect	Yes	Yes	Yes	Yes
Observations	20,931	20,861	20,624	20,426

- One std increase in turbulence reduces high-productivity firm employment growth by about 15% and capital growth by 9.7%
- Results are robust to using alternative high-TFP indicators

Financial frictions amply reallocation effects of turbulence

• Estimate the industry-level panel regression:

 $x_{it} = \beta_0 + \beta_1 High_FF_{it} + \beta_2 Turb_t * High_FF_{it} + \mu_i + \eta_t + \epsilon_{it},$

- 1. x_{it} : IQR of employment (or capital) in industry *i* and year *t*;
- 2. $High_FF_{it} = 1$ iff industry's external financing dependence (KZ index) above median
- 3. μ_i and η_t : industry and year fixed effects
- β₂: marginal effects of turbulence on industries with high financing dependence (high KZ)
 - Reallocation \Rightarrow turbulence reduces IQR of N and K
 - If $\beta_2 < 0$: stronger reallocation effects for high-KZ industries

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Financial frictions significantly amplify reallocation

Dep. Var.	IQR of Employment		IQR of	Capital
	(1)	(2)	(3)	(4)
High_FF _{it}	0.932***	1.039***	0.959***	1.144^{***}
	(0.288)	(0.278)	(0.320)	(0.319)
Turb _t * High_FF _{it}	-8.201***	-9.486***	-9.428***	-11.222***
	(2.602)	(2.540)	(2.957)	(2.905)
constant	2.162***	2.193***	2.545***	2.573***
	(0.037)	(0.037)	(0.045)	(0.044)
Industry Fixed Effect	Yes	Yes	Yes	Yes
Year Fixed Effect	Yes	Yes	Yes	Yes
Observations	4,575	4,472	4,575	4,472

• Column (2): lagged dummy *High_FF_{it-1}* replacing *High_FF_{it}*

A D N A 目 N A E N A E N A B N A C N

Macro effects of turbulence

Local projections (Jorda, 2005)

 $x_{t+h} - x_{t-1} = \beta_0^h + \beta_1^h turb_t + \beta_2^h turb_{t-1} + \beta_3^h \Delta x_{t-1} + \epsilon_{t+h},$

- x_t denotes macro variable of interest (log level of GDP, C, I, H, firm value, and TFP); $turb_t$ denotes turbulence in log units $(log(1-\rho_t))$
- β_1^h measures IRFs to turbulence shock at horizon h (years)
- Sample: annual time series from 1958 to 2015

Turbulence generates recession

Figure: One standard deviation turbulence shock reduces real GDP by about 0.5%: turbulence quantitatively important

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

Summary of evidence

- Turbulence rises in recessions
- Increase in turbulence associated with
 - 1. reallocation from high- to low-productivity firms
 - 2. reallocation amplified by financial frictions
 - 3. synchronized and persistent declines in aggregate activity
- Turbulence is quantitatively important: one std increase in turbulence reduces real GDP by 0.5%

RBC model with turbulence shocks

- Heterogeneous firms facing idiosyncratic productivity
- Financial frictions: Firms finance working capital against expected equity value (Jermann-Quadrini 2012; Lian-Ma, 2021)
- Misallocation channel of turbulence
 - Turbulence $\uparrow \Rightarrow$ expected value of high-productivity firms \downarrow
 - Tightened borrowing constraints for high-productivity firms \Rightarrow reallocation toward low-productivity firms \Rightarrow TFP \downarrow \Rightarrow recession

Firms

Production function

$$y_{jt} = A_t z_{jt} k_{jt}^{\alpha} n_{jt}^{1-\alpha}$$
 (1)

• Idiosyncratic productivity z_{jt} follows process

$$z_{j,t+1} = egin{cases} z_{jt} & ext{with prob} &
ho_t, \ ilde{z} & ext{with prob} & 1-
ho_t, \end{cases}$$

where ρ_t is turbulence shock

• Bellman equation:

$$V_t(z_{jt}, \tau_{jt}) = \max_{k_{jt}, n_{jt}} \tau_{jt} A_t z_{jt} k_{jt}^{\alpha} n_{jt}^{1-\alpha} - R_t k_{jt} - W_t n_{jt} + \mathbb{E}M_{t+1} V_{t+1}(z_{jt+1}, \tau_{jt+1})$$

s.t.

$$R_t k_{jt} + W_t n_{jt} \le \theta \mathbb{E} M_{t+1} V_{t+1}(z_{jt+1}, \tau_{jt+1}) \equiv \theta B_{jt}$$
(3)

where $\tau_j \sim F(\tau)$: i.i.d. distortion (Hsieh-Klenow 2009; Buera-Shin 2013)

acts Model Turbulence vs. uncertainty Policy Conclusion 00000000 00000000 00 00 00 0

Production decisions

- At each productivity z_{jt} , firms are active iff $\tau_{jt} \geq \tau_{jt}^*$
- Break-even threshold

$$\tau_{jt}^* = \frac{R_t^{\alpha} W_t^{1-\alpha}}{\alpha^{\alpha} (1-\alpha)^{1-\alpha} A_t z_{jt}}$$
(4)

Labor demand

$$n_t(z_{jt}, \tau_{jt}) = \begin{cases} \frac{(1-\alpha)\theta B_{jt}}{W_t}, & \text{if } \tau_{jt} \ge \tau_{jt}^* \\ 0, & \text{otherwise} \end{cases}$$
(5)

• Capital demand

$$k_t(z_{jt}, \tau_{jt}) = \begin{cases} \frac{\alpha \theta B_{jt}}{R_t}, & \text{if } \tau_{jt} \ge \tau_{jt}^* \\ 0, & \text{otherwise} \end{cases}$$
(6)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Household optimization and market clearing

• Household's problem:

$$\max_{C_t, N_t, K_{t+1}} \mathbf{E} \sum_{t=0}^{\infty} \beta^t \left\{ \ln C_t - \psi \frac{N_t^{1+\gamma}}{1+\gamma} \right\}$$
(7)

• s.t. budget constraint

$$C_t + K_{t+1} = (R_t + 1 - \delta)K_t + W_t N_t + D_t + T_t$$
 (8)

• Factor market clearing

$$N_t = \sum_j \pi_j n_{jt} \equiv \sum_j \pi_j \frac{(1-\alpha)\theta B_{jt}}{W_t} \left[1 - F(\tau_{jt}^*) \right]$$
(9)

$$K_t = \sum_j \pi_j k_{jt} \equiv \sum_j \pi_j \frac{\alpha \theta B_{jt}}{R_t} \left[1 - F(\tau_{jt}^*) \right]$$
(10)

Goods market clearing

$$Y_t = C_t + K_{t+1} - (1 - \delta)K_t \tag{11}$$

Production decisions

• Active firms: $\{\tau, z\}$ above threshold curve $\tau_{jt}^* \propto \frac{R_t^{\alpha} W_t^{1-\alpha}}{A_t z_{jt}}$

• Turbulence \uparrow : high z firms less likely to remain productive \Rightarrow $B_{h,t} \downarrow \Rightarrow W_t, R_t \downarrow \Rightarrow$ threshold curve \downarrow and flatter

Misallocation effect of turbulence in steady state

Proposition 1

Given the steady-state factor prices R and W, an increase in average turbulence reduces the share of labor hours allocated to high-productivity firms.

$$rac{\partial\eta_{ji}}{\partialar{
ho}}>0,$$

where $\eta_{ji} \equiv \frac{N_j}{N_i}$ denotes relative labor hours allocated to firms with $z_j > z_i$.

- Given *R* and *W*, turbulence reduces equity value of high-*z* firms, reallocating *N* to low-*z* firms
- GE effects depend on R and W

Calibration

- Turbulence shock $1 \rho_t$
 - Calibrated based on Spearman correlation of firm-level TFP in annual data 1960-2015, converted to quarterly
 - TFP in data is revenue based, corres. to $TFP_{jt} = z_{jt}\tau_{jt}$ in model
 - τ_{jt} is i.i.d. \Rightarrow Spearman correlation of true productivity z_{jt} same as that of TFP_{jt}
- Idiosyncratic production distortion τ_{jt}
 - Average dispersion $\sigma_{\tau} = 0.6$ to match IQR of employment (17) in 1960-2015 data
 - Mean value of normalized such that $\mathbb{E} au_{jt} = 1$
- Calibrate process for z_{jt} based on $tfp_{jt} = \log(z_{jt}) + \log(\tau_{jt})$
 - Measured TFP has std $\sigma_{tfp} = 0.607$
 - $\log(z_{jt})$ and $\log(\tau_{jt})$ independent $\Rightarrow \sigma_z = \sqrt{\sigma_{tfp}^2 \sigma_{\tau}^2} = 0.05$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Turbulence vs. uncertainty

Conclusion

Calibrated parameters

	Parameter Description	Value	Target
β	Discount factor	0.99	Annual real rate of 4% per year
ά	Capital share	0.34	Ave. cost share of capital
δ	Capital depreciation rate	0.025	Annual depreciation rate of 10%
γ	Inverse Frisch elasticity	5	Frisch elasticity of 0.2
θ	Loan to value ratio	0.35	Working K to equity (Compustat)
$\bar{ ho}$	Ave persistence	0.974	Compustat and NBER-CES
ρ_{ρ}	AR(1) of turbulence	0.882	Compustat and NBER-CES
σ_{o}	std of turbulence shock	0.124	Compustat and NBER-CES
μ_{τ}	Average distortion	-0.18	Compustat and NBER-CES
σ_{τ}	std of distortion	0.60	Compustat and NBER-CES
σ_z	std of firm-level TFP	0.05	Compustat and NBER-CES

Macro and reallocation effects of turbulence

Figure: Impulse responses to one std turbulence shock

Financial frictions important for amplifying turbulence

Figure: Counterfactual: "Quasi-fixed" borrowing limit (red lines)

$$R_t k_{jt} + W_t n_{jt} \le \theta E_t M_{t+1} \left[\rho_t \, \overline{V}_j^{ss} + (1 - \rho_t) \sum_{i=1}^J \pi_i \, \overline{V}_i^{ss} \right]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

IRF to turbulence shock: Model vs. data

One std turbulence shock reduces aggregate output by about 0.5%, both in data (black line) and in calibrated annual model (blue line)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Turbulence vs micro-level uncertainty

 Micro-level uncertainty shock: mean-preserving spread of idiosyncratic subsidies τ_{jt}

$$\ln(\sigma_{\tau,t}) = (1 - \rho_{\sigma}) \ln(\sigma_{\tau}) + \rho_{\sigma} \ln(\sigma_{\tau,t-1}) + \sigma_{\sigma} \varepsilon_t^{\sigma},$$

• Turbulence vs. uncertainty

Shock	Turbulence		Uncertainty	
Firm TFP	(High)	(Low)	(High)	(Low)
Con. Variance	\uparrow	\uparrow	\uparrow	\uparrow
Uncon. Variance			\uparrow	\uparrow
Con. Mean	\downarrow	\uparrow		
Uncon. Mean				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

IRFs to uncertainty shock

- More low-z firms become active \Rightarrow TFP $\downarrow \Rightarrow$ Y, C, I \downarrow
- Each active low-z firm receives less subsidy, \Rightarrow sales IQR \uparrow
- Uncertainty boosts labor hours: no macro comovement

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Two types of policy interventions

• Policy I: Borrowing subsidy

s.t.
$$(1 - \omega_{1t})(R_t k_{jt} + W_t n_{jt}) \le \theta B_{jt}$$
 (12)

• Policy II: Credit easing

s.t.
$$R_t k_{jt} + W_t n_{jt} \le \theta (1 + \omega_{2t}) B_{jt}$$
 (13)

- Both policies incur resource costs (gov't inefficiency); both financed by lump-sum taxes
- Policy interventions triggered by turbulence shock, with same persistence as shock

Stabilizing effects of policy interventions

- Both policies effective for stabilizing output fluctuations
- Borrowing subsidy exacerbates misallocation; credit easing improves it

Conclusion

- Firm-level evidence shows that countercyclical turbulence has important macro and reallocation effects
 - Financial frictions amplify reallocation effects of turbulence
- RBC model with firm heterogeneity and financial frictions highlights reallocation channel of turbulence shocks
- Credit policies can stabilize turbulence-drive recessions, but implications for reallocation and aggregate productivity depend on policy
 - Borrowing subsidies amplify misallocation whereas credit easing mitigates it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00