

THE PERFORMANCE OF CHARACTERISTIC-SORTED PORTFOLIOS:

EVALUATING THE PAST AND PREDICTING THE FUTURE

Aydoğan Altı, Travis L. Johnson, and Sheridan Titman

Spring 2022

Performance of Characteristic-Sorted Portfolios

Annualized Sharpe Ratios for value-weighted portfolios (*t*-stats in parenthesis)

	All	1963 – 1991	1991 – 2019	Difference
Value	0.32	0.42	0.22	-0.20
	(2.37)	(2.23)	(1.15)	-(0.75)
Investment	0.44	0.44	0.45	0.02
	(3.31)	(2.30)	(2.35)	(0.06)
Profitability	0.47	0.36	0.57	0.20
	(3.48)	(1.89)	(2.96)	(0.75)
Size	0.02	0.10	-0.07	-0.17
	(0.17)	(0.54)	-(0.37)	-(0.64)

The Big Questions

• The positive (frequentist) questions

- Do expected returns of characteristic-sorted portfolios vary over time?
- When we account for time-variation in expected returns, are we still confident that *unconditional* expected returns differ from zero?

• The normative (Bayesian) questions

- How much should we tilt our portfolios towards characteristics like value and profitability?
- To what extent should these tilts change over time as we learn from data?

What Do We Do?

- Propose a statistical model that accounts for the possibility that portfolio returns may be persistent
- Consistent with both rational and behavioral explanations for the abnormal returns associated with characteristics, e.g., the value premium
 - Risk exposures may change over the business cycle
 - Waves of "irrational exuberance" that relate to the introduction of new technology
 - Shiller (2000) and Alti and Titman (2019)
- We apply the model for value, profitability, investment and size portfolios
 - Adjust *t*-stats for **OLS** given persistence parameters
 - Estimate model parameters with maximum likelihood
 - **Bayesian** analysis with prior beliefs about parameters

Statistical Model

A time-series of market-neutral portfolio returns r_t satisfies

```
r_{t+1} = \mu_t + \epsilon_{t+1}
\mu_{t+1} = \mu + \lambda(\mu_t - \mu + \delta_{t+1})
```

with normally distributed unexpected return shocks ϵ_{t+1} and expected return shocks δ_{t+1}

• Model implies realized returns are jointly normal with autocorrelations:

$$\mathsf{Corr}(r_t, r_{t-l}) = \lambda^{l-1}\gamma$$

- γ is the one-period return autocorrelation
- λ determines the decay rate of autocorrelations over time
 - We express λ in terms of *H*, the half-life of shocks to μ_t

Note, we are estimating the mean and the persistence of an unobservable variable, μ_t , but we only observe the time-series of r_t

Findings

- 1. The interpretation of historical mean returns depends on the persistent variation of conditional expected returns
 - With plausible levels of persistent variation standard errors double (relative to iid)
 - There is less independent variation in returns when expected returns are persistent
 - The data tell us very little about the magnitude of persistent variation
- \Rightarrow Our inferences are thus ultimately determined by the assumptions
- 2. Investors' posterior beliefs about expected returns are highly dependent on their priors about persistent variation
 - Applies to conditional as well as unconditional expected returns
 - E.g. Value's conditional Sharpe Ratio in 2020 is **0.29** for investors who believe returns are i.i.d. and **0.05** for investors who believe conditional expected returns vary with a 5-year half life

Autocorrelation Estimates

Estimate autocorrelation using regressions of the form

$$r_t = a + b \cdot \left(\frac{1}{4} \sum_{l=1}^4 r_{t-l}\right) + \epsilon_t$$

	Value	Investment	Profitability	Size	Pooled	Pooled (no size)
b	0.19	0.21	0.21	0.47	0.30	0.20
iid <i>t-</i> stat	(1.61)	(1.74)	(1.80)	(3.70)	(4.43)	(2.97)

Result 1: prior-year returns positively predict next-quarter, strongest for size, others marginal **Result 2 (in paper):** cannot reject highly persistent variations (H = 10)

Model-Based Standard Errors

• Any λ , γ , and sample size *T* implies a standard error correction for OLS estimates of μ :

$$SE(\hat{\mu}^{OLS}) = \frac{\sigma_r}{\sqrt{T}} \sqrt{1 + 2\gamma \frac{\lambda^T + T(1-\lambda) - 1}{T(1-\lambda)^2}} \approx \frac{\sigma_r}{\sqrt{T}} \sqrt{1 + \frac{2\gamma}{1-\lambda}}$$

- Same intuition as Newey-West: ↑ autocorrelation ⇒ ↑ standard errors
- Newey-West doesn't work in this context if H/T is large
- Analytically derived from the model with assumed parameters

Model-Based Standard Errors

	Value	Investment	Profitability	Size
$\hat{\mu}$	4.37	4.72	4.91	0.35
Unadjusted t -stat	(2.39)	(3.34)	(3.54)	(0.17)
Newey-West t -stat (10 lags)	(2.35)	(2.90)	(3.33)	(0.12)
Newey-West t -stat (20 lags)	(2.35)	(3.04)	(3.71)	(0.11)
Newey-West t -stat (40 lags)	(2.41)	(3.23)	(3.48)	(0.12)
Model <i>t</i> -stat ($H = 2.5, \gamma = 2.5\%$)	(1.83)	(2.56)	(2.71)	(0.13)
Model <i>t</i> -stat $(H = 2.5, \gamma = 5\%)$	(1.54)	(2.15)	(2.28)	(0.11)
Model <i>t</i> -stat ($H = 2.5, \gamma = 10\%$)	(1.23)	(1.71)	(1.81)	(0.09)
Model <i>t</i> -stat $(H = 5, \gamma = 2.5\%)$	(1.58)	(2.21)	(2.34)	(0.11)
Model <i>t</i> -stat $(H = 5, \gamma = 5\%)$	(1.26)	(1.77)	(1.87)	(0.09)
Model <i>t</i> -stat ($H = 10, \gamma = 2.5\%$)	(1.34)	(1.87)	(1.98)	(0.10)
Model <i>t</i> -stat $(H = 10, \gamma = 5\%)$	(1.03)	(1.44)	(1.53)	(0.07)

Result: *t*-stats half as large for reasonable *H* and γ

Maximum Likelihood Hypothesis Testing

Estimate (*H*, γ) jointly with μ using max likelihood, test $\mu = 0$ restriction using **likelihood ratio test**

	Const μ	Evolving μ				
	$\mu = 0$	\hat{H} (ye	\hat{H} (years)		$\hat{\gamma}(\%)$	
	$\mu = 0$ p-value	Unrest.	$\mu = 0$	Unrest.	$\mu = 0$	$\mu = 0$ <i>p</i> -value
Value	1.8%	14.9	20.0	-0.6%	2.7%	10.2%
Investment	0.1%	9.4	14.7	-0.9%	5.3%	5.7%
Profitability	0.0%	20.0	20.0	-0.4%	4.5%	5.7%
Size	86.3%	1.3	2.2	15.4%	14.8%	37.8%

Result: evidence against $\mu = 0$ weaker when allowing time-variation

• Data could reflect persistent but temporary μ_t (large *H* and γ)

Summary of Frequentist Evidence

• If we fix reasonable model parameters, standard errors can be 50% to 100% larger than Newey-West

• If we estimate model parameters freely, $\mu = 0 \& H \gg 0$ fits data well enough for $\mu = 0 p$ -value to be above 5% even when iid p-value is 0.1%

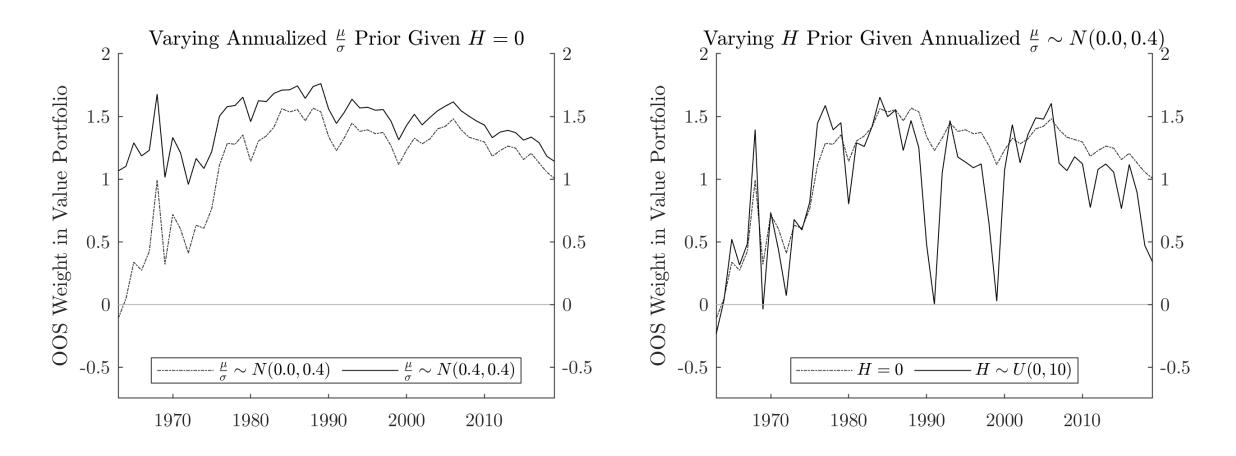
 When many different assumptions, all consistent with the data, lead to substantially different conclusions, natural to use a **Bayesian** approach that integrates across reasonable parameter values weighted by priors

Bayesian Estimation

- 1. Specify priors over model parameters, e.g., μ and *H*
- 2. Compute posterior beliefs about model parameters based on priors + data
 - Using full sample
 - Using past returns only at the end of each calendar year
- 3. Using posterior distribution of parameters, compute informative moments
 - Conditional and unconditional expected returns & Sharpe Ratios
 - Optimal portfolio allocations for CRRA investors

Investor believes that returns are i.i.d. ($H = 0$)	Investor considers possibility that conditional expected returns are time-varying $(H > 0)$
Priors about unconditional expected returns matter little after observing 56 years of data	Priors about unconditional expected returns still matter after observing 56 years of data
 Posteriors about unconditional expected returns are measured more precisely 	 Posteriors about unconditional expected returns are very uncertain
• Posteriors in about expected returns depend equally on the entire history, e.g. in 2020:	 Posteriors about conditional expected returns follow recent trends, e.g. in 2020:
 Tilts towards profitable value firms 	 Tilts towards large and profitable firms
No size tilt	No value tilt

Out-of-sample learning and timing for Value



Result 1: disagreement about μ resolves quickly when H = 0

Result 2: disagreement about *H* leads to large, permanent differences in the intensity of timing

Conclusions

- 1. Characteristic-sorted portfolios are likely to exhibit persistent time-variations in expected returns, ignoring this will produce **false positives**
 - Potential explanation for "factor zoo"
 - Can also produce false negatives, e.g., there may be a large unconditional size premium
- 2. Cannot precisely detect the degree of persistent variation in expected returns
 - Our estimates indicate that Bayesians will follow trends anyway

3. Priors matter much more if returns are potentially persistent

- Disagreement and motive for trading
- 4. These issues are relevant for the evaluation of any portfolios
 - Evidence of superior mutual fund performance
 - Returns of stocks of firms headquartered in some cities outperform stocks from other cities