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Performance of Characteristic-Sorted Portfolios

Annualized Sharpe Ratios for value-weighted portfolios (t-stats in parenthesis)

All 1963 – 1991 1991 – 2019 Difference

Value 0.32 0.42 0.22 -0.20
(2.37) (2.23) (1.15) -(0.75)

Investment 0.44 0.44 0.45 0.02
(3.31) (2.30) (2.35) (0.06)

Profitability 0.47 0.36 0.57 0.20
(3.48) (1.89) (2.96) (0.75)

Size 0.02 0.10 -0.07 -0.17
(0.17) (0.54) -(0.37) -(0.64)



The Big Questions

• The positive (frequentist) questions
• Do expected returns of characteristic-sorted portfolios vary over time?
• When we account for time-variation in expected returns, are we still confident 

that unconditional expected returns differ from zero?

• The normative (Bayesian) questions
• How much should we tilt our portfolios towards characteristics like value and 

profitability?
• To what extent should these tilts change over time as we learn from data?



What Do We Do?
• Propose a statistical model that accounts for the possibility that portfolio returns 

may be persistent

• Consistent with both rational and behavioral explanations for the abnormal 
returns associated with characteristics, e.g., the value premium

• Risk exposures may change over the business cycle
• Waves of “irrational exuberance” that relate to the introduction of new technology

• Shiller (2000) and Alti and Titman (2019)

• We apply the model for value, profitability, investment and size portfolios
• Adjust t-stats for OLS given persistence parameters
• Estimate model parameters with maximum likelihood
• Bayesian analysis with prior beliefs about parameters



Statistical Model
A time-series of market-neutral portfolio returns 𝑟𝑟𝑡𝑡 satisfies

with normally distributed unexpected return shocks 𝜖𝜖𝑡𝑡+1 and expected return shocks 𝛿𝛿𝑡𝑡+1
• Model implies realized returns are jointly normal with autocorrelations:

• 𝛾𝛾 is the one-period return autocorrelation

• 𝜆𝜆 determines the decay rate of autocorrelations over time

• We express 𝜆𝜆 in terms of 𝐻𝐻, the half-life of shocks to 𝜇𝜇𝑡𝑡

Note, we are estimating the mean and the persistence of an unobservable variable, 𝜇𝜇𝑡𝑡, but we only 
observe the time-series of 𝑟𝑟𝑡𝑡



Findings
1. The interpretation of historical mean returns depends on the persistent variation 

of conditional expected returns
• With plausible levels of persistent variation standard errors double (relative to iid) 

• There is less independent variation in returns when expected returns are persistent
• The data tell us very little about the magnitude of persistent variation

⇒Our inferences are thus ultimately determined by the assumptions

2. Investors’ posterior beliefs about expected returns are highly dependent on their 
priors about persistent variation
• Applies to conditional as well as unconditional expected returns
• E.g. Value’s conditional Sharpe Ratio in 2020 is 0.29 for investors who believe returns are i.i.d. 

and 0.05 for investors who believe conditional expected returns vary with a 5-year half life



Autocorrelation Estimates

Estimate autocorrelation using regressions of the form

𝑟𝑟𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏 ⋅
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Result 1: prior-year returns positively predict next-quarter, strongest for size, others marginal

Result 2 (in paper): cannot reject highly persistent variations (𝐻𝐻 = 10)

Value Investment Profitability Size Pooled Pooled (no size)

�𝑏𝑏 0.19 0.21 0.21 0.47 0.30 0.20

iid t-stat (1.61) (1.74) (1.80) (3.70) (4.43) (2.97)



Model-Based Standard Errors

• Any 𝜆𝜆, 𝛾𝛾, and sample size 𝑇𝑇 implies a standard error correction for OLS 
estimates of 𝜇𝜇:
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• Same intuition as Newey-West: ↑ autocorrelation ⇒ ↑ standard errors
• Newey-West doesn’t work in this context if ⁄𝐻𝐻 𝑇𝑇 is large
• Analytically derived from the model with assumed parameters



Model-Based Standard Errors

Result: 𝑡𝑡-stats half as large for reasonable 𝐻𝐻 and 𝛾𝛾



Maximum Likelihood Hypothesis Testing
Estimate 𝐻𝐻, 𝛾𝛾 jointly with 𝜇𝜇 using max likelihood, test 𝜇𝜇 = 0 restriction using 
likelihood ratio test

Result: evidence against 𝜇𝜇 = 0 weaker when allowing time-variation
• Data could reflect persistent but temporary 𝜇𝜇𝑡𝑡 (large 𝐻𝐻 and 𝛾𝛾) 



Summary of Frequentist Evidence
• If we fix reasonable model parameters, standard errors can be 50% to 100% 

larger than Newey-West

• If we estimate model parameters freely, 𝜇𝜇 = 0 & 𝐻𝐻 ≫ 0 fits data well enough 
for 𝜇𝜇 = 0 𝑝𝑝-value to be above 5% even when iid 𝑝𝑝-value is 0.1%

• When many different assumptions, all consistent with the data, lead to 
substantially different conclusions, natural to use a Bayesian approach that  
integrates across reasonable parameter values weighted by priors



Bayesian Estimation
1. Specify priors over model parameters, e.g., 𝜇𝜇 and 𝐻𝐻

2. Compute posterior beliefs about model parameters based on priors + data
• Using full sample
• Using past returns only at the end of each calendar year

3. Using posterior distribution of parameters, compute informative moments
• Conditional and unconditional expected returns & Sharpe Ratios
• Optimal portfolio allocations for CRRA investors



Bayesian Findings

Investor believes that returns are i.i.d. (𝑯𝑯 = 𝟎𝟎) Investor considers possibility that conditional 
expected returns are time-varying (𝑯𝑯 > 𝟎𝟎)

• Priors about unconditional expected returns 
matter little after observing 56 years of data

• Posteriors about unconditional expected 
returns are measured more precisely

• Posteriors in about expected returns depend 
equally on the entire history, e.g. in 2020:
• Tilts towards profitable value firms

• No size tilt

• Priors about unconditional expected returns 
still matter after observing 56 years of data

• Posteriors about unconditional expected 
returns are very uncertain

• Posteriors about conditional expected returns 
follow recent trends, e.g. in 2020:
• Tilts towards large and profitable firms

• No value tilt



Out-of-sample learning and timing for Value

Result 1: disagreement about 𝜇𝜇 resolves quickly when 𝐻𝐻 = 0

Result 2: disagreement about 𝐻𝐻 leads to large, permanent differences in the intensity of timing



Conclusions
1. Characteristic-sorted portfolios are likely to exhibit persistent time-variations in 

expected returns, ignoring this will produce false positives
• Potential explanation for “factor zoo”
• Can also produce false negatives, e.g., there may be a large unconditional size premium

2. Cannot precisely detect the degree of persistent variation in expected returns 
• Our estimates indicate that Bayesians will follow trends anyway

3. Priors matter much more if returns are potentially persistent 
• Disagreement and motive for trading

4. These issues are relevant for the evaluation of any portfolios
• Evidence of superior mutual fund performance
• Returns of stocks of firms headquartered in some cities outperform stocks from other cities
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