The Economic Cost of Lockdown in China: Evidence from City-to-City Truck Flows

Jingjing CHEN Wei Chen Ernest Liu Jie Luo Zheng (Michael) Song

> ABFER August 18, 2022

Motivation

- Economic cost of non-pharmacological interventions
- Challenges:
 - Policy response depending on the severity of the pandemic
 - Effect of policy vs. individual response
 - Economic spillovers

Zero COVID Policy in China between the End of Wuhan Lockdown and Emergence of Omicron

- Very effective (almost zero infection rate)
- Uniform implementation (minimizing policy endogeneity)
- Small and local outbreaks (limiting self-preventive measures by fear)
- Monthly city-to-city truck flow data (high-frequency and network)

Truck FLow

- Representativeness
 - 73% of China's total freight is by trucks
 - Truck flows are highly correlated with GDP and Night Lights.

Figure 1: Truck Outflow, GDP and Night Lights

Measuring City-Level Lockdowns

- To accurately measure the timing and duration of lockdowns, we compile a data set of city-level lockdowns in China.
- The first step is to manually collect local government announcements for the three most well-known lockdowns after 2020 Q1: Shijiazhuang, Yangzhou and Xi'an.
 - Local governments seldom used the word of fengcheng(封城), "locking down the city" in Chinese.
 - Three keywords frequently appear in the official announcements: (1) closed-off management in all areas (全域 封闭管理); (2) traffic controls in all roads (所有道路交通管制); (3) public transport out of service (全部停运).

Measuring City-Level Lockdowns

- We then scrape the first 50 results by searching the triplet of year, month and city with new COVID cases and one of the three keywords on Baidu.
 - Drop the irrelevant web pages
 - Select official announcements on lockdown
- We distinguish city-level (**full-scale**), district-level (**partial**) and community-level (**minimum**) lockdown.

Lockdowns and Truck Flows

 We find 16 full-scale lockdowns in 16 cities, with average duration 24 days; and 22 partial lockdowns in 18 cities, with average duration 19 days.

Table 1: Lockdowns after Q1 2020

Reduced-Form Approach

- City-pair lockdown dummies, $D_{ni,t}^k$: $k \in \{h, l, m\}$ stands for full-scale (k = h), partial (k = l) and minimum lockdown (k = m), respectively.
 - For $n \neq i$, $D_{ni,t}^h$ is a city-pair dummy that equals one if at least one of the cities has full-scale lockdown in the period.
- Construct a sample with no overlaps of lead-lag lockdown effects.

Reduced-Form Approach: Event Study

Figure 3: Event Study

Reduced-Form Approach: TWFE

• We adopt a two-way fixed effect regression to estimate the effect of lockdown on $d \ln q_{ni,t}$, for $n \neq i$.

$$d \ln q_{ni,t} = \sum_{k} \alpha^{k} D_{ni,t}^{k} + \delta_{ni} + \nu_{t} + \eta_{ni} t + \epsilon_{ni,t},$$

- Add $\ln(1 + \mathsf{Case}_{ni,t})$, where Case is the number of new COVID cases in the city pair.
- Replace the dummy variable $D_{ni,t}^k$ with $\hat{D}_{ni,t}^k$, the proportion of days with type-k lockdown in the month.
- Robust estimates by de Chaisemartin and D' Haultfœuille (2020)

Reduced-Form Approach

Table 2: Effect of Lockdown on Truck Flow, Panel Regression

	(1)	(2)	(3)	(4)	(5)	
		D_{ni}^k	Ê	\hat{D}_{ni}^{k}		
Full-Scale Lockdown	-0.4096	-0.4175	-0.3507	-0.8940	-0.7697	
	(0.0415)	(0.0418)	(0.0376)	(0.0656)	(0.0667)	
Partial Lockdown	-0.0911	-0.0958	-0.0396	-0.2183	-0.1052	
	(0.0258)	(0.0257)	(0.0268)	(0.0624)	(0.0660)	
COVID Dummy		-0.0276				
		(0.0064)				
ln(1 + Case)			-0.0229		-0.0205	
,			(0.0027)		(0.0025)	
Time FE	YES	YES	YES	YES	YES	
City pair FE	YES	YES	YES	YES	YES	
City pair trend	YES	YES	YES	YES	YES	
N	206322	206322	206322	206322	206322	
R-squared	0.3349	0.3358	0.3380	0.3368	0.3392	

Armington Model

• Producer: $Q_n = a_n I_n$

• Consumer:
$$u_n = \left[\sum_{i=1}^N Q_{ni}^{\frac{\theta}{\theta+1}}\right]^{\frac{\theta+1}{\theta}}$$

- Market Clear Conditions:
 - Goods market: $\sum_i au_{in} Q_{in} = Q_n$
 - Labor market: $w_n I_n = \sum_i X_{ni}$
 - Trade balance: $\sum_i X_{ni} = \sum_i X_{in} + \bar{d}_n$

Model

Expenditure Share:

$$S_{ni} \equiv \frac{\left(w_i \tau_{ni} / a_i\right)^{-\theta}}{\sum_{k=1}^{N} \left(w_k \tau_{nk} / a_k\right)^{-\theta}}$$

• Shock to composite cost:

$$d \ln z_{ni} \equiv d \ln \tau_{ni} - d \ln a_i$$

- Stack Q_{ni} , S_{ni} and z_{ni} into $N \times N$ matrices Q, S and Z.
- Let $\mathcal{Q}_{N^2 \times 1}$ and $\mathcal{Z}_{N^2 \times 1}$ be the vector form of Q and Z.

Model: Proposition 1

Starting from an equilibrium with expenditure share \boldsymbol{S}

(1) Let ${\bf G}$ be an ${\bf N}^2 \times {\bf N}^2$ matrix that depends on θ and ${\bf S}$.

$$d \ln \mathcal{Q} = \mathbf{G} d \ln \mathcal{Z}$$

(2) The real income change in city n:

$$d\ln \boldsymbol{u}_n = \sum_{i=1}^N S_{ni} d\ln Q_{ni}.$$

Structural Approach

• Parameterize composite cost shocks as

$$d\ln z_{ni,t} = \sum_{k \in \{h,l\}} \left(\beta^k \mathbf{1}(n \neq i) + \gamma^k \mathbf{1}(n = i) \right) D_{ni,t}^k + \varepsilon_{ni,t},$$

• We estimate (β^k, γ^k) by

$$\hat{\Psi} = \arg \min_{\Psi} \sum_{ni,t} W_{ni} \left(d \ln \hat{Q}_{ni,t}(\Psi) - d \ln Q_{ni,t} \right)^2,$$

where $\Psi \equiv \{\beta^h, \gamma^h, \beta^l, \gamma^l\}$ and W_{ni} is city-pair weight.

Structural Approach

• The first-order approach delivers a closed-form solution

$$\hat{\Psi} = (\mathbf{X}' \mathbf{W} \mathbf{X})^{-1} \mathbf{X}' \mathbf{W} \mathbf{Y},$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{G} \mathbf{I} (n \neq i) \mathcal{D}_1 & \mathbf{G} \mathbf{I} (n = i) \mathcal{D}_1 \\ \vdots & \vdots \\ \vdots & \vdots \\ \mathbf{G} \mathbf{I} (n \neq i) \mathcal{D}_T & \mathbf{G} \mathbf{I} (n = i) \mathcal{D}_T \end{bmatrix}, \mathbf{Y} = \begin{bmatrix} d \ln \mathcal{Q}_1 \\ \vdots \\ \vdots \\ d \ln \mathcal{Q}_T \end{bmatrix},$$

• **G**: assume $\theta = 4$ and calibrate the expenditure shares to the official provincial input output table in 2012.

Structural Approach

Table 3: Effect of Lockdown on Truck Flow, Structural Estimates

	(1)	(2)	(3)	(4)	(5)	
	D_{ni}^k			\hat{D}_{ni}^{k}		
Full-Scale Lockdown ($n \neq i$)	0.2343 (0.0287)	0.2381 (0.0288)	0.2105 (0.0273)	0.5631 (0.0322)	0.5138 (0.0328)	
Full-Scale Lockdown ($n = i$)	0.3742 (0.0734)	0.3770 (0.0734)	0.3476 (0.0705)	0.9507 (0.0776)	0.8912 (0.0782)	
Partial Lockdown $(n \neq i)$	0.0461 (0.0105)	0.0493 (0.0105)	0.0278 (0.0104)	0.1435 (0.0243)	0.1035 (0.0250)	
Partial Lockdown ($n = i$)	0.0740 (0.0223)	0.0763 (0.0222)	0.0519 (0.0213)	0.2486 (0.0524)	0.1965 (0.0527)	
COVID Dummy $(n \neq i)$		0.0091 (0.0021)				
COVID Dummy ($n = i$)		0.0115 (0.0044)				
$\ln(1+Case)$			0.0102 (0.0010)		0.0087	
Time FE	YES	YES	YES	YES	YES	
City pair FE	YES	YES	YES	YES	YES	
City pair trend N	YES 419527	YES 419527	YES 419527	YES 419527	YES 419527	

Model-Based Accounting

 City n's real income change caused by a type-k lockdown of city i:

$$d \ln \mathbf{u}_n^{i,k} \equiv \frac{\partial \ln \mathbf{u}_n}{\partial \ln \mathbf{z}_{ii}} \gamma^k + \sum_{i \neq i} \left[\frac{\partial \ln \mathbf{u}_n}{\partial \ln \mathbf{z}_{ji}} + \frac{\partial \ln \mathbf{u}_n}{\partial \ln \mathbf{z}_{ij}} \right] \beta^k$$

 The aggregate real income change caused by a type-k lockdown in city i:

$$d\ln \boldsymbol{u}_{\mathsf{ag}}^{i,k} \equiv \sum_{n=1}^{N} \mu_n d\ln \boldsymbol{u}_n^{i,k}, \tag{1}$$

where μ_n is city n's pre-shock real income share.

Results

- A full-scale lockdown of Shijiazhuang for a month would reduce the local and national real income by 59% and 0.4% in the lockdown period.
- Full-scale lockdown in Shanghai, Beijing and Shenzhen will reduce the national real income by 2.7%, 2.5% and 1.8%, respectively.
- The contribution of the spillover effect varies from 0 to 16 percent.

Decomposition

Decompose the aggregate effect into local and spillover effects

$$d\ln \mathbf{u}_{ag}^{i,k} = \mu_i d\ln \mathbf{u}_i^{i,k} + d\ln \mathbf{u}_{so}^{i,k}$$

where

$$d\ln \boldsymbol{u}_{\mathsf{so}}^{i,k} = \sum_{n \neq i} \mu_n d\ln \boldsymbol{u}_n^{i,k}.$$

Decomposition

 Aggregate effects correlated to the city's size and its position in the network (eigenvector centrality)

Table 4: Economic Size and Network Centrality

	$(1) - d \ln \boldsymbol{u}_{ag}^{i,h} (\%)$	$(2) -d \ln \boldsymbol{u}_{so}^{i,h} (\%)$
GDP	0.2093 (0.0057)	0.0145 (0.0028)
Centrality	0.0126 (0.0065)	0.0106 (0.0030)
N R-squared	315 0.9996	315 0.9888

External Validity

- Wuhan lockdown: Truck flows and GDP fell by 57% and 41% in 2020Q1
- Shanghai:
 - Prediction: A one-month full-scale lockdown on Shanghai would reduce the local truck flows (GDP) by 60%.
 - Actual decline in April: 80% for truck flows and 61% for industrial value added.

Conclusion

- A simple estimate on the economic cost of lockdown
- Potentially larger effect by locking down more cities with longer duration (expectation change, supply chain disruption ...)