Innovation, Productivity and Challenges in the Digital Era

Blockchain without Crypto? Linking On-Chain Data Growth to Firm Fundamentals and Stock Returns

Ran Chang

Shanghai Jiaotong University

Lin William Cong

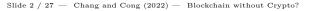
SC Johnson College of Business and FinTech Initiative Cornell University

- Digitization, P2P networks, & on-demand economy.
- Blockchain as decentralized consensus (e.g., Cong & He, 2019) and DeFi (Harvey, Ramachandran, & Santoro, 2021).

- Digitization, P2P networks, & on-demand economy.
- Blockchain as decentralized consensus (e.g., Cong & He, 2019) and DeFi (Harvey, Ramachandran, & Santoro, 2021).
- "Categories & Functions of Crypto-tokens" (Cong & Xiao, 2020).
 - 1. Platform tokens: Filecoin, Dfinity, ChainLink, etc.
 - "Tokenomics: Dynamic Adoption and Valuation" (Cong, Li, & Wang, 2021)
 - "Token-based Platform Finance" (Cong, Li, & Wang 2020)
 - 2. General payment tokens:
 - Bitcoin, Ethereum, CBDCs, DCEP, etc.
 - Stablecoins: OMO vs. collateralization vs. dynamic supply.
 - Interactions with monetary policy.

- Digitization, P2P networks, & on-demand economy.
- Blockchain as decentralized consensus (e.g., Cong & He, 2019) and DeFi (Harvey, Ramachandran, & Santoro, 2021).
- "Categories & Functions of Crypto-tokens" (Cong & Xiao, 2020).
 - 1. Platform tokens: Filecoin, Dfinity, ChainLink, etc.
 - "Tokenomics: Dynamic Adoption and Valuation" (Cong, Li, & Wang, 2021)
 - "Token-based Platform Finance" (Cong, Li, & Wang 2020)
 - 2. General payment tokens:
 - ▶ Bitcoin, Ethereum, CBDCs, DCEP, etc.
 - Stablecoins: OMO vs. collateralization vs. dynamic supply.
 - Interactions with monetary policy.
 - 3. Ownership/product tokens:
 - Corporate coupons; Non-Fungible Tokens.
 - Centralized exchange rate for product/ownership.

- Digitization, P2P networks, & on-demand economy.
- Blockchain as decentralized consensus (e.g., Cong & He, 2019) and DeFi (Harvey, Ramachandran, & Santoro, 2021).
- "Categories & Functions of Crypto-tokens" (Cong & Xiao, 2020).
 - 1. Platform tokens: Filecoin, Dfinity, ChainLink, etc.
 - "Tokenomics: Dynamic Adoption and Valuation" (Cong, Li, & Wang, 2021)
 - "Token-based Platform Finance" (Cong, Li, & Wang 2020)
 - 2. General payment tokens:
 - Bitcoin, Ethereum, CBDCs, DCEP, etc.
 - Stablecoins: OMO vs. collateralization vs. dynamic supply.
 - Interactions with monetary policy.
 - 3. Ownership/product tokens:
 - Corporate coupons; Non-Fungible Tokens.
 - Centralized exchange rate for product/ownership.
 - 4. Security tokens:
 - ▶ Cash-flow based. Possible separation of governance and cash flows.
 - ▶ Howey-test, entrepreneurial effort pre- vs. post-launching the platform.
- Cong, Karolyi, Tang, & Zhao (2021): C-5 Factor Model (MKT,VAL,MOM,NET,SIZE) & Segmentation across categories.


Tokenomics: Tokens as a Hybrid Asset

- Roles of tokens:
 - ▶ Bootstrapping and adoption acceleration.
 - ▶ User-base stabilization.
 - ▶ Corporate finance toolkit: financing/incentivizing decentralized contribution.
 - ▶ Compensating/incentivizing entrepreneurs and innovation.
 - Mitigating agency issues, moral hazard, etc.
- Sources of value:
 - 1. Means of payment to realize unique trade surplus on the platform.
 - 2. Scarcity: token burning/buyback policy by insiders and designers.
 - 3. Backing by reputation or collateral.
- Sources of volatility:
 - 1. Fundamental technology/productivity/policy shocks.
 - 2. Speculation and behavioral factors.
 - 3. Endogenous adoption.
 - $\label{eq:countercyclical/stabilizing token supply/allocation policy.$

Tokenomics: Tokens as a Hybrid Asset

- Roles of tokens:
 - ▶ Bootstrapping and adoption acceleration.
 - ▶ User-base stabilization.
 - ▶ Corporate finance toolkit: financing/incentivizing decentralized contribution.
 - Compensating/incentivizing entrepreneurs and innovation.
 - Mitigating agency issues, moral hazard, etc.
- Sources of value:
 - 1. Means of payment to realize unique trade surplus on the platform.
 - 2. Scarcity: token burning/buyback policy by insiders and designers.
 - 3. Backing by reputation or collateral.
- Sources of volatility:
 - 1. Fundamental technology/productivity/policy shocks.
 - 2. Speculation and behavioral factors.
 - 3. Endogenous adoption.
 - 4. Countercyclical/stabilizing token supply/allocation policy.
- Transition from Platform Tokens to Security Tokens:
 - ▶ "Staking, Token Pricing, and Crypto Carry" Cong, He, & Tang (2022).

Institutional Background

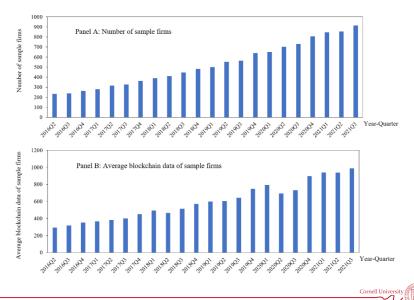
- "You can't have blockchain without crypto."—CZ_binance (Changpeng Zhao), Twitter, 2022/2/1.
- Executives' favorable sentiments (e.g., Pawczuk et al., 2018); anecdotes (Bruce, 2021; Gkritsi, 2021).
- Blockchain without Crypto:
 - ▶ Cao et al., (2018,2020); Iyengar et al. (2021).
 - ▶ Chen et al. (2021): state blockchain law; customers versus suppliers.
 - ▶ Chiu (2021): investment sensitivity to stock prices.
 - ▶ Cheng et al. (2019); Cahill et al. (2020): announcements and reactions.
 - ▶ Chen, Cheng, & Luo (2021): China ABS.
- Alternative data and nowcasting:
 - ▶ Da et al. (2011): Google search volume.
 - ▶ Rajgopal et al. (2003): Web traffic.
 - ▶ Huang (2018): Customer product rating.
 - ▶ Green et al. (2019): Employer rating.
 - ▶ Katona et al. (2018) and Zhu (2019): Parking lot occupancy.
 - ► Agarwal, Qian, & Zhou (2021): Transaction level credit card spending.

Overview of Main Findings

- \bullet "You can't have block chain without crypto."—CZ_binance, Twitter, 2022/2/1.
- Executives' favorable sentiments (e.g., Pawczuk et al., 2018); anecdotes (Bruce, 2021; Gkritsi, 2021).
- Blockchain without Crypto:
 - ▶ Cao et al., (2018,2020); Iyengar et al. (2021).
 - ▶ Chen et al. (2021): state blockchain law; customers versus suppliers.
 - ▶ Chiu (2021): investment sensitivity to stock prices.
 - ▶ Cheng et al. (2019); Cahill et al. (2020): announcements and reactions.
 - ▶ Chen, Cheng, & Luo (2021): China ABS.
- Alternative data and nowcasting:
 - ▶ Da et al. (2011): Google search volume.
 - ▶ Rajgopal et al. (2003): Web traffic.
 - ▶ Huang (2018): Customer product rating.
 - ▶ Green et al. (2019): Employer rating.
 - ▶ Katona et al. (2018) and Zhu (2019): Parking lot occupancy.
 - ► Agarwal, Qian, & Zhou (2021): Transaction level credit card spending.

Outline

- Introduction and Background
- Data and Variables
- Empirical Findings and Discussion
- Conclusion



Data

- Blockchain service platform; 2015 (22 quarters from 2016Q2 to 2021Q3); 11,497 firm-quarter observations; 600 TB.
- Public firms on Shanghai and Shenzhen stock exchanges; merged with CSMAR using USCC; 1,149 firms, average 523 firms per quarter.
- Permissioned and "public/open" blockchains.
- Updates and total size.
- Banks, supply chains, funds, etc.

Trends in On-Chain Data

Types of On-Chain Data

Panel D: Category	of blockchain da	ata			
	Mean	SD	P5	P50	P95
Operation	0.253	0.298	0.023	0.267	0.786
Financials	0.236	0.308	0.024	0.233	0.697
Human resources	0.100	0.111	0.010	0.096	0.285
Marketing	0.102	0.109	0.010	0.099	0.323
IT	0.091	0.110	0.011	0.097	0.279
Supply chain	0.120	0.118	0.010	0.124	0.324
Others	0.099	0.131	0.010	0.094	0.285

Slide 8 / 27 - Chang and Cong (2022) - Blockchain without Crypto?

Key Variables

• On-chain data growth (YOY and quarterly):

$$BDG_{i,q} = \operatorname{Ln}\left(\frac{\# \text{ of } BD_{i,q}}{\# \text{ of } BD_{i,q-4}}\right).$$

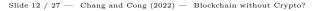
- ROA, quarterly operating income scaled by lagged assets.
- AG, quarterly growth in total assets.
- SG, quarterly growth in sales.
- PA and PG as innovation outcomes.
- Earnings surprises: SUE, CAR.
- Nowcasters:
 - $\blacktriangleright\,$ SEAG, APPG, CUSG, EMPG, CARG, SPEG.

Empirical Specification

Quarterly panel data regressions of firm fundamentals on BDG and other variables:

$$FF_{i,q+n} = \alpha_{d} + \beta_{1} * BDG_{i,q+1} + \beta_{2} * FF_{i,q} + \gamma_{i,q+n} + controls_{i,q} + e_{i,q+n},$$
(1)

where $FF_{i,q+n}$ is Firm i's fundamentals in quarter q + n (n=1 or 2), α_d is industry fixed effect, $BDG_{i,q+1}$ is Firm i's quarterly blockchain data growth in quarter q + 1, $\gamma_{i,q+n}$ is year-quarter fixed effect. We include the past firm fundamentals in the model to account for persistence in firm fundamentals.


Outline

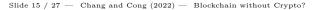
- Introduction and Background
- Data and Variables
- Empirical Findings and Discussion
- Conclusion

BDG and Firm Fundamentals

	ROA_{q+1}	ROA_{q+2}	AG_{q+1}	AG_{q+2}	SG_{q+1}	SG_{q+2}	PA_{q+1}	PA_{q+2}	PG_{q+1}	PG_{q+2}
BDG_{q+1}	0.766***	0.443***	0.361***	0.219***	0.057***	0.049***	0.263***	0.209***	0.179***	0.129***
	(5.26)	(3.52)	(4.28)	(2.91)	(4.27)	(2.86)	(3.84)	(2.99)	(4.69)	(3.00)
BM_q	-0.678**	-0.509*	-0.067***	-0.140***	-0.020	-0.055**	-0.056	-0.089**	-0.012	-0.048
	(-2.24)	(-1.68)	(-3.05)	(-3.24)	(-0.91)	(-2.29)	(-1.42)	(-2.05)	(-0.53)	(-1.57)
ROA_q	4.751	3.644^{*}	0.508^{***}	1.351***	0.433^{***}	0.399^{**}	0.869***	1.426^{***}	0.584^{***}	0.819^{***}
	(1.24)	(1.96)	(4.23)	(3.77)	(3.24)	(2.37)	(6.53)	(6.51)	(4.44)	(3.13)
LEV_q	-1.092***	-1.190***	-0.028	-0.063	-0.026	-0.115**	-0.020	-0.050	-0.025	-0.051
	(-3.92)	(-5.45)	(-0.85)	(-1.60)	(-1.06)	(-2.18)	(-0.47)	(-0.93)	(-0.65)	(-1.37)
PG_q	-0.432**	-0.281	0.008	0.046	-0.019	0.028	0.012	0.080	-0.023	0.024
	(-2.13)	(-0.8)	(0.31)	(0.95)	(-0.32)	(0.34)	(0.41)	(1.10)	(-0.46)	(0.40)
IG_q	-0.052	0.466	0.104	0.310	0.050	0.090	0.060	0.226	0.039	0.063
	(-0.06)	(0.69)	(0.94)	(1.24)	(0.46)	(0.52)	(0.52)	(0.87)	(0.28)	(0.27)
SUE_q	-0.006	0.107^{***}	0.017^{***}	0.053***	0.010^{*}	0.015^{*}	0.012^{**}	0.032^{***}	0.006	0.012
	(-0.29)	(3.07)	(3.93)	(5.49)	(1.89)	(1.78)	(2.35)	(4.91)	(1.10)	(1.14)
SIZE	0.105	0.015	-0.006	-0.033	-0.012*	-0.047***	-0.010	-0.046***	-0.016*	-0.068***
	(1.26)	(0.25)	(-0.57)	(-1.53)	(-1.72)	(-3.26)	(-0.82)	(-2.6)	(-1.89)	(-3.86)
STR	0.374^{*}	0.049	-0.020	-0.089**	-0.037**	-0.129***	-0.034	-0.142***	-0.052***	-0.2***
	(1.67)	(0.32)	(-0.79)	(-2.35)	(-2.02)	(-3.39)	(-1.17)	(-2.63)	(-2.95)	(-5.52)
MOM	0.164^{***}	0.154^{***}	0.021^{***}	0.033***	0.025***	0.041^{***}	0.010^{**}	0.022^{**}	0.015^{**}	0.023^{*}
	(3.47)	(3.68)	(2.72)	(2.93)	(3.43)	(3.80)	(2.33)	(2.09)	(2.4)	(1.68)

BDG and Firm Fundamentals (continued)

Adj. R2	0.58	0.54	0.49	0.41	0.35	0.34	0.25	0.21	0.17	0.13
N	11266	11147	10807	10692	11037	10920	8047	7962	8047	7962
FE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Quarter										
Year-		-	-			-		-		
FE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Industry									(3.00)	(2.90)
PG_q									0.197***	0.112**
							(4.84)	(3.42)		
PA_q							0.322^{***}	0.164^{***}		
					(10.85)	(5.44)				
SG_q					0.609***	0.401***				
a a a a a a a a a a a a a a a a a a a			(4.83)	(3.92)						
AG_q	(0.40)	(5.51)	0.294***	0.158***	(2.00)	(5.50)	(2.02)	(1.01)	(1.52)	(2.05)
10	(3.43)	0.009*** (3.91)	0.001*** (4.05)	0.002*** (3.71)	0.001*** (2.66)	0.002*** (3.56)	0.001*** (2.62)	0.001* (1.81)	0.001 (1.52)	0.001** (2.05)
ю	(0.67) 0.012^{***}	(0.78)	(-0.71)	(-0.45)	(-2.42)	(-1.71)	(-1.08)	(-0.60)	(-4.49)	(-1.88)
ANA	0.002	0.003	0.000	0.000	-0.001**	-0.001*	0.000	0.000	-0.001***	-0.001*
	(-7.34)	(-4.61)	(1.41)	(3.53)	(-1.59)	(0.97)	(1.81)	(3.82)	(-2.14)	(1.76)
IVOL	-3.883***	-2.156^{***}	0.082	0.416^{***}	-0.101	0.142	0.079^{*}	0.531^{***}	-0.139^{**}	0.212^{*}
	(0.14)	(0.17)	(0.42)	(0.47)	(0.21)	(0.18)	(0.32)	(0.31)	(0.13)	(0.15)
ILLIQ	2.575	2.536	0.545	0.754	0.233	0.338	0.239	0.464	0.201	0.241
	(0.81)	(0.90)	(0.80)	(0.70)	(0.69)	(0.81)	(1.06)	(1.17)	(0.99)	(1.09)
то	0.049	0.051	0.006	0.011	0.008	0.015	0.008	0.014	0.013	0.014


Nowcasting Firm Fundamentals

	ROA_{q+1}	ROA_{q+2}	AG_{q+1}	AG_{q+2}	SG_{q+1}	SG_{q+2}	PA_{q+1}	PA_{q+2}	PG_{q+1}	PG_{q+2}
BDG_{q+1}	0.524***	0.408***	0.179***	0.153***	0.05***	0.037***	0.234***	0.18***	0.106***	0.081**
	(3.24)	(2.99)	(3.34)	(2.77)	(2.85)	(2.73)	(2.76)	(2.95)	(3.29)	(2.37)
$SEAG_{q+1}$	0.23^{***}	0.217^{**}	0.126^{***}	0.088**	0.027^{**}	0.022^{*}	0.006	0.004	0.012	0.012
	(2.68)	(2.34)	(3.23)	(2.04)	(2.10)	(1.95)	(0.05)	(0.03)	(0.24)	(0.22)
$APPG_{q+1}$	0.139	0.106	0.059	0.056	0.013	0.010	0.062	0.046	0.033	0.027
	(0.99)	(0.69)	(1.36)	(0.88)	(1.30)	(0.72)	(0.94)	(0.74)	(0.61)	(0.53)
$EMPG_{q+1}$	0.202^{*}	0.12	0.075^{**}	0.062^{*}	0.016^{*}	0.015	0.105^{*}	0.085	0.062	0.046
	(1.75)	(1.47)	(2.35)	(1.82)	(1.83)	(1.29)	(1.70)	(1.59)	(1.55)	(1.16)
$CUSG_{q+1}$	0.130	0.099	0.047	0.037	0.018	0.013	0.038	0.035	0.014	0.015
	(1.11)	(0.77)	(1.68)	(1.08)	(1.23)	(1.02)	(0.73)	(0.62)	(0.64)	(0.46)
$CARG_{q+1}$	0.295^{***}	0.239^{**}	0.132^{***}	0.107^{**}	0.029^{***}	0.018^{**}	0.071	0.063	0.048	0.032
	(2.59)	(2.40)	(2.86)	(2.41)	(2.80)	(2.38)	(1.40)	(1.21)	(1.58)	(0.90)
$SPEG_{q+1}$	0.064	0.047	0.027	0.023	0.006	0.005	0.154^{**}	0.107^{**}	0.063^{**}	0.067^{*}
	(0.61)	(0.57)	(0.57)	(0.52)	(0.64)	(0.38)	(2.58)	(2.09)	(2.11)	(1.80)
Controls	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Industry FE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Year-Quarter FE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
N	3643	3518	3308	3194	3855	3722	2602	2513	2602	2513
Adj. R2	0.68	0.55	0.61	0.49	0.43	0.34	0.35	0.25	0.26	0.25

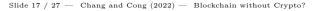
BDG and Earnings Surprises

Livnat and Mendenhall (2006): Stan	dardized unexpected earnings
(SUE); Earnings announcement cum	ulative abnormal returns (CAR).

	SUE_{q+1}	SUE_{q+2}	CAR_{q+1}	CAR_{q+2}
BDG_{q+1}	0.251***	0.187***	1.839***	1.437**
	(4.19)	(3.16)	(2.72)	(2.04)
BM_q	-0.163	-0.029	0.019	0.149
	(-0.40)	(-0.10)	(0.08)	(0.45)
ROA_q	5.824*	6.139***	-6.949***	0.86
]				
го	0.049	0.042	-0.011	0.001
	(0.82)	(0.71)	(-0.10)	(0.01)
ILLIQ	3.603	4.542	-3.609	0.743
	(0.15)	(0.30)	(-0.22)	(0.03)
IVOL	-2.656 * * *	-0.014	-0.454	1.922*
	(-5.44)	(-0.02)	(-0.68)	(1.89)
ANA	-0.009***	-0.007**	0.001	0.001
	(-3.03)	(-2.46)	(0.05)	(0.10)
0	0.004**	0.006*	0.010**	0.002
	(1.99)	(1.87)	(2.02)	(0.46)
Industry FE	Y	Y	Y	Y
Year-Quarter FE	Y	Y	Y	Y
N	10922	10806	11152	11033
Adj. R2	0.41	0.35	0.07	0.07

Nowcasting Earnings Surprises

	SUE_{q+1}	SUE_{q+2}	CAR_{q+1}	CAR_{q+2}
BDG_{q+1}	0.114**	0.088**	1.518**	1.308**
	(2.56)	(2.08)	(2.23)	(1.99)
$SEAG_{q+1}$	0.079**	0.060	0.642^{**}	0.603
	(2.04)	(1.62)	(2.04)	(1.21)
$APPG_{q+1}$	0.038	0.037	0.410	0.275
	(0.92)	(0.64)	(0.67)	(0.53)
$EMPG_{q+1}$	0.054^{*}	0.045	0.528	0.513
	(1.74)	(1.41)	(1.45)	(1.02)
$CUSG_{q+1}$	0.035	0.031	0.397	0.328
	(0.91)	(0.88)	(0.88)	(0.73)
$CARG_{q+1}$	0.104**	0.065*	0.846*	0.702
	(2.25)	(1.85)	(1.90)	(1.54)
$SPEG_{q+1}$	0.016	0.011	0.170	0.132
* *	(0.48)	(0.35)	(0.41)	(0.25)
Controls	Ŷ	Ŷ	Ŷ	Ŷ
Industry FE	Y	Y	Y	Y
Year-Quarter FE	Y	Y	Y	Y
N	3564	3441	3806	3674
Adj. R2	0.49	0.41	0.14	0.12



BDG and Stock Returns

Rank	Excess	\mathbf{SR}	HXZ	FF5	LSY3	LSY4	EA	Non-EA
P1	0.054	0.061	-0.556**	-0.546**	-0.506***	-0.520**	0.036	0.018
	(0.11)		(-2.33)	(-2.31)	(-2.94)	(-2.54)	(0.08)	(0.05)
P2	0.256	0.269	-0.402**	-0.383*	-0.291**	-0.473**	0.177	0.079
	(0.56)		(-2.57)	(-1.66)	(-2.31)	(-2.35)	(0.45)	(0.23)
P3	0.417	0.448	-0.238	-0.168	-0.285*	-0.272	0.279	0.139
	(1.62)		(-0.57)	(-1.40)	(-1.71)	(-0.74)	(1.24)	(0.70)
P4	0.840**	0.895	-0.116	-0.043	0.088	-0.194	0.552	0.288
	(2.13)		(-0.36)	(-0.16)	(0.43)	(-0.90)	(1.61)	(0.94)
P5	0.934***	1.093	0.132^{*}	0.213	0.158	0.138	0.616***	0.318*
	(3.89)		(1.80)	(1.54)	(1.59)	(0.89)	(2.95)	(1.71)
L/S	0.88***	1.023	0.688***	0.759^{***}	0.664***	0.659***	0.580***	0.300*
	(3.44)		(3.26)	(4.20)	(3.89)	(3.34)	(2.61)	(1.72)

Panel B: Returns and al	phas on equal-weighted	BDG-sorted quintile	portfolios

Rank	Excess	SR	HXZ	FF5	LSY3	LSY4	EA	Non-EA
P1	0.083	0.095	-0.593***	-0.787***	-0.760***	-0.646***	0.062	0.021
	(0.26)		(-5.05)	(-3.16)	(-4.47)	(-3.10)	(0.22)	(0.09)
P2	0.346^{***}	0.388	-0.167***	-0.668***	-0.270**	-0.593*	0.253^{**}	0.093
	(2.88)		(-4.07)	(-2.85)	(-2.17)	(-1.72)	(2.40)	(1.07)
P3	0.496^{**}	0.520	0.056^{*}	-0.614*	-0.075	-0.463	0.354^{*}	0.143
	(2.40)		(1.77)	(-1.66)	(-1.45)	(-1.13)	(1.95)	(0.93)
P4	0.559^{***}	0.622	0.192	-0.236	0.005	-0.090	0.405^{***}	0.155
	(3.85)		(1.14)	(-0.03)	(0.13)	(-0.82)	(3.17)	(1.45)
P5	1.545***	1.551	0.261*	0.349	0.175	0.186	1.154***	0.391**
	(6.07)		(1.84)	(1.63)	(1.49)	(0.85)	(5.14)	(2.14)
L/S	1.462***	1.504	0.854***	1.137***	0.935***	0.831***	1.092***	0.370**
	(6.08)		(4.31)	(5.57)	(4.22)	(4.26)	(5.15)	(2.15)

Public Blockchains and Stock Returns

Panel A	Returns and	alphas on	value-weight	ed BDG-so	rted quintil	e portfolios		
Rank	Excess	\mathbf{SR}	HXZ	FF5	LSY3	LSY4	$\mathbf{E}\mathbf{A}$	Non-EA
P1	0.075	0.090	-0.369	-0.365	-0.331**	-0.331	0.049	0.025
	(0.15)		(-1.53)	(-1.44)	(-1.99)	(-1.64)	(0.11)	(0.06)
P2	0.174	0.194	-0.254	-0.248	-0.184	-0.329	0.124	0.055
	(0.39)		(-1.65)	(-1.02)	(-1.57)	(-1.51)	(0.29)	(0.16)
P3	0.292	0.345	-0.146	-0.116	-0.188	-0.185	0.195	0.093
	(1.09)		(-0.36)	(-0.90)	(-1.09)	(-0.50)	(0.75)	(0.49)
P4	0.536	0.610	-0.075	-0.030	0.056	-0.135	0.359	0.194
	(1.45)		(-0.23)	(-0.11)	(0.27)	(-0.54)	(0.98)	(0.58)
P5	0.624**	0.722	0.080	0.135	0.106	0.093	0.401*	0.213
	(2.39)		(1.24)	(0.96)	(0.99)	(0.59)	(1.89)	(1.05)
L/S	0.549^{***}	0.613	0.449**	0.499***	0.437***	0.425^{***}	0.352^{**}	0.188
	(2.80)		(2.51)	(3.46)	(3.29)	(2.76)	(1.98)	(1.40)
Panel B	Returns and a	alphas on	equal-weight	ed BDG-so	rted quintil	e portfolios		
Rank	Excess	\mathbf{SR}	HXZ	FF5	LSY3	LSY4	$\mathbf{E}\mathbf{A}$	Non-EA
P1	0.114	0.125	-0.367***	-0.420*	-0.481***	-0.398**	0.082	0.029
	(0.35)		(-3.34)	(-1.96)	(-3.10)	(-2.12)	(0.30)	(0.13)
P2	0.234^{*}	0.260	-0.115***	-0.444*	-0.185	-0.371	0.165	0.062
	(1.93)		(-2.59)	(-1.79)	(-1.31)	(-1.13)	(1.61)	(0.74)
P3	0.338	0.390	0.036	-0.408	-0.050	-0.297	0.215	0.090
	(1.62)		(1.22)	(-1.15)	(-0.87)	(-0.70)	(1.25)	(0.56)
P4	0.390***	0.394	0.124	-0.147	0.003	-0.055	0.266**	0.106

(-0.02)

0.233

(1.12)

0.653***

(4.48)

(0.09)

0.111

(0.93)

0.593***

(3.52)

(-0.54)

0.120

(0.53)

 0.518^{***}

(3.25)

(2.18)

0.764***

(3.30)

0.682***

(3.89)

(0.91)

0.252

(1.48)

 0.223^{*}

(1.67)

1.048

0.892

(0.78)

0.163

(1.23)

 0.529^{***}

(3.24)

(2.64)

0.933***

(4.12)

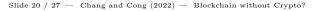
0.818***

(4.64)

P5

L/S

Heterogeneity Analysis


State ownership, Size, Analyst Coverage, and Institutional Ownership.

	ROA_{q+1}	ROA_{q+2}	AG_{q+1}	AG_{q+2}	SG_{q+1}	SG_{q+2}	PA_{q+1}	PA_{q+2}	PG_{q+1}	PG_{q+2}
BDG_{q+1}	0.152^{***}	0.101**	0.085**	0.052^{*}	0.015**	0.013*	0.055^{**}	0.058^{*}	0.050***	0.028*
	(3.15)	(2.10)	(2.43)	(1.77)	(2.51)	(1.85)	(2.26)	(1.74)	(2.73)	(1.88)
BDG_{q+1} * DSmall	0.185***	0.126^{**}	0.067***	0.087***	0.021***	0.013^{*}	0.096***	0.046^{**}	0.042***	0.041*
	(3.14)	(2.47)	(4.02)	(2.66)	(3.31)	(1.75)	(3.58)	(2.33)	(3.27)	(1.91)
$BDG_{q+1} * DLowIO$	0.209***	0.149^{*}	0.070***	0.051^{**}	0.013^{**}	0.012^{*}	0.078^{***}	0.048^{**}	0.028**	0.035^{*}
	(3.56)	(1.84)	(3.11)	(2.21)	(2.43)	(1.88)	(3.30)	(2.39)	(2.32)	(1.96)
$BDG_{q+1} * DLowCov$	0.188***	0.153^{**}	0.108^{***}	0.047**	0.017^{***}	0.013	0.082***	0.046**	0.048***	0.029**
	(3.99)	(2.01)	(3.48)	(2.41)	(3.07)	(1.60)	(3.09)	(2.05)	(2.65)	(2.01)
BDG _{q+1} * DPrivate	0.179^{***}	0.124^{**}	0.090***	0.051^{**}	0.018***	0.017^{**}	0.074^{***}	0.074^{*}	0.048***	0.034^{*}
	(4.13)	(1.98)	(3.83)	(2.43)	(3.25)	(2.04)	(3.49)	(1.78)	(3.09)	(1.86)
$BDG_{q+1} * DLowHHI$	0.250^{***}	0.169^{**}	0.079^{***}	0.060^{**}	0.015^{***}	0.014^{**}	0.090***	0.057^{***}	0.033^{***}	0.042^{**}
	(4.15)	(2.10)	(3.58)	(2.51)	(2.81)	(2.12)	(3.86)	(2.87)	(2.80)	(2.33)
Dummies	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Controls	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Industry FE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Year-Quarter FE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
N	11266	11147	10807	10692	11037	10920	8047	7962	8047	7962
Adj. R2	0.69	0.65	0.60	0.49	0.43	0.42	0.30	0.25	0.20	0.16

Heterogeneity Analysis

Panel B: nowcasting and forecasting earnings surprises with interaction terms						
	SUE_{q+1}	SUE_{q+2}	CAR_{q+1}	CAR_{q+2}		
BDG_{q+1}	0.049***	0.043*	0.398*	0.288		
	(2.76)	(1.96)	(1.66)	(1.21)		
BDG_{q+1} * DSmall	0.053^{***}	0.045^{**}	0.665^{*}	0.504		
	(2.62)	(2.11)	(1.8)	(1.63)		
BDG_{q+1} * DLowIO	0.035^{**}	0.052	0.506^{*}	0.236		
	(1.99)	(1.51)	(1.9)	(1.16)		
BDG_{q+1} * DLowCov	0.072^{**}	0.048*	0.474^{**}	0.396		
	(2.21)	(1.72)	(2.54)	(1.58)		
BDG_{q+1} * DPrivate	0.056^{**}	0.043^{*}	0.594^{**}	0.473		
	(2.09)	(1.78)	(2.35)	(1.4)		
$BDG_{q+1} * DLowHHI$	0.084^{**}	0.056^{**}	0.53***	0.461^{*}		
	(2.55)	(1.98)	(2.89)	(1.84)		
Dummies	Y	Y	Y	Y		
Controls	Y	Y	Y	Y		
Industry FE	Y	Y	Y	Y		
Year-Quarter FE	Y	Y	Y	Y		
N	10922	10806	11152	11033		
Adj. R2	0.50	0.42	0.09	0.08		

Heterogeneity Analysis

Value-weighted	Excess	HXZ	FF5	LSY3	LSY4
BDG	0.080***	0.086***	0.093**	0.086*	0.091**
	(2.84)	(2.86)	(2.37)	(1.78)	(1.99)
BDG * DSmall	0.113^{***}	0.087**	0.095^{**}	0.071^{**}	0.070^{*}
	(2.96)	(2.47)	(2.15)	(2.47)	(1.76)
BDG * DLowIO	0.125^{***}	0.156^{**}	0.134^{**}	0.138^{**}	0.126
	(3.01)	(2.56)	(2.35)	(2.50)	(1.61)
BDG * DLowCov	0.130^{**}	0.081***	0.101**	0.085^{***}	0.080**
	(2.49)	(2.73)	(2.49)	(2.61)	(2.56)
BDG * DPrivate	0.145^{***}	0.127**	0.127***	0.130^{**}	0.085
	(2.59)	(2.54)	(3.24)	(2.17)	(1.60)
BDG * DLowHHI	0.170^{***}	0.144^{***}	0.153^{***}	0.151^{**}	0.099^{*}
	(3.01)	(2.98)	(3.79)	(2.56)	(1.89)
Dummies	Y	Y	Y	Y	Y
Controls	Y	Y	Y	Y	Y
Industry FE	Y	Y	Y	Y	Y
Year-Quarter FE	Y	Y	Y	Y	Y
N	33454	33454	33454	33454	33454
Adj. R2	0.10	0.08	0.08	0.08	0.08

Panel C: nowcasting and forecasting returns and alphas with interaction terms

Suggestive Evidence for Causality

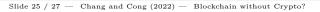
- Trust, transparency, and cost-saving.
- IV (Chen et al., 2021): the number of firms in the firm's industry that are leaders in developing and providing blockchain services (Blockchain Service Industry), i.e., those firms on the "List of Companies with Blockchain Digital Services" maintained by China's Cyber Security and Digitization Committee.
- Difference-in-difference; four quarters before and four after.

Controlling for Endogeneity

Panel A: 1st stag	ge regression									
	BDG_{q+1}	BDG_{q+2}								
BSI	0.421*** (3.35)	0.355*** (2.82)								
Controls	Y	Y								
Panel B: 2nd sta	ge regression	n of fundame	ntals							
	ROA_{q+1}	ROA_{q+2}	AG_{q+1}	AG_{q+2}	SG_{q+1}	SG_{q+2}	PA_{q+1}	PA_{q+2}	PG_{q+1}	PG_{q+2}
BDG_{q+1}	3.538***	1.964***	1.566***	0.992**	0.276***	0.243**	1.056***	0.952***	0.870***	0.533**
1st stage residual	(4.34) 1.542*** (4.03)	(3.06) 1.120*** (2.71)	(3.85) 0.930*** (3.34)	(2.35) 0.515** (2.17)	(3.71) 0.160*** (3.02)	(2.46) 0.139** (2.25)	(3.33) 0.698*** (2.97)	(2.67) 0.556** (2.10)	(4.19) 0.484*** (3.64)	(2.45) 0.376** (2.22)
Controls	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Industry FE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Year-Quarter FE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

Controlling for Endogeneity (continued)

Panel C: 2nd stage reg	ression of earnings			
	SUE_{q+1}	SUE_{q+2}	CAR_{q+1}	CAR_{q+2}
BDG_{q+1}	1.212***	0.808***	9.176**	6.415*
	(3.60)	(2.63)	(2.34)	(1.75)
1st stage residual	0.606***	0.545**	4.846*	4.196
	(3.00)	(2.46)	(1.92)	(1.59)
Controls	Y	Y	Y	Y
Industry FE	Y	Y	Y	Y
Year-Quarter FE	Y	Y	Y	Y
Panel D: 2nd stage reg	ression of returns			
	$Excess_{q+1}$	$Excess_{q+2}$	$LSY4_{q+1}$	$LSY4_{q+2}$
BDG_{q+1}	2.023***	1.324***	1.553***	1.335**
	(3.86)	(2.88)	(2.80)	(2.23)
1st stage residual	1.060***	0.876***	0.914**	0.688*
	(3.18)	(2.62)	(2.49)	(1.93)
Controls	Y	Y	Y	Y
Industry FE	Y	Y	Y	Y
Year-Quarter FE	Y	Y	Y	Y



Difference-in-difference Analysis

	ROA	AG	\mathbf{SG}	PA	\mathbf{PG}
Treat*Post	0.152^{***}	0.112***	0.058**	1.224***	1.286**
	(3.91)	(3.13)	(2.32)	(3.47)	(2.57)
Treat	0.099	0.069	0.040	0.819	0.817
	(1.49)	(1.02)	(0.86)	(0.99)	(0.74)
Post	0.060	0.047	0.025	0.546	0.462
	(0.89)	(0.59)	(0.36)	(0.45)	(0.64)
Controls	Y	Y	Y	Y	Y
Industry FE	Y	Y	Y	Y	Y
Year-Quarter FE	Y	Y	Y	Y	Y

Panel B: difference-in-difference tests of earnings Panel C: difference-in-difference tests of returns

	SUE	\mathbf{CAR}		Excess	LSY4
Treat*Post	0.152***	0.147***	Treat*Post	0.112***	0.088***
	(6.22)	(5.36)		(4.36)	(3.55)
Treat	0.111^{**}	0.083	Treat	0.067*	0.060*
	(2.25)	(1.49)		(1.75)	(1.69)
Post	0.065	0.072	Post	0.042	0.041
	(1.18)	(1.10)		(1.12)	(1.03)
Controls	Y	Y	Controls	Y	Y
Industry FE	Y	Y	Industry FE	Y	Y
Year-Quarter FE	Y	Y	Year-Quarter FE	Y	Y

Other Findings

- Observability and pricing efficiency.
- Robustness in subsamples: manufacturing vs. non-manufacturing; pre- vs. post- COVID-19; Top 5 provinces vs. others.
- International evidence from Indonesia, Malaysia, South Korea, and Thailand.
- BDG in supply chains.

Conclusion

- BDG forecasting and now casting firm fundamentals.
- Trust, transparency, and cost-saving.
- Impact of on-chain data growth on public market valuation.
- Blockchain without crypto.

