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Abstract

We apply machine learning techniques to predict international stock returns using firm
characteristics. Market-specific features are important, as neural network models (NNs)
achieve stronger results when they are trained in each market separately than in a global
model trained with U.S. data. NNs outperform linear models in predicting stock return
rankings and forming profitable portfolios. In contrast, regression trees underperform
linear models when the number of observations is low. We also show that adding
foreign variables constructed from U.S. firm characteristics further enhances the return
predictability of market-specific NNs, consistent with the notion that the markets are
partially integrated.
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1 Introduction

Variables related to firm characteristics, such as size, value, and momentum, predict inter-
national stock returns (Fama and French (1998, 2012, 2017); Hou, Karolyi, and Kho (2011);
Rouwenhorst (1998)). The international finance literature also finds that global equity mar-
kets are partially, but not fully, integrated (see Karolyi and Stulz (2003) and Lewis (2011)
for a review). The lack of full integration suggests that the predictive power of different firm
characteristics varies across markets. At the same time, when the markets are not totally
segmented, information obtained from the firm characteristics in a foreign market may be
relevant for local stocks.

How do we form predictions in many different markets without pre-specifying the models?
How can foreign firm characteristics improve the return predictability of local models? Our
paper examines these issues using machine learning techniques and attempts to increase
the economic profits earned by international investors. Constructing a market-specific asset
pricing model typically requires the knowledge of institutional details (say, the price limit
rules in China), but machine learning is capable of detecting non-monotonic relationships and
complex interactions between returns and many characteristics even without such knowledge.
Machine learning also allows us to explore various foreign variables and their interactions
with local variables, which may not be ideal in a linear setting due to its inability to capture
complex relationships.

Most studies that use machine learning to study the relationship between stock returns
and firm-level variables focus on the U.S.? We first verify that the machine learning methods
can be applied in a large number of international markets. Then we show that market-specific
models, which are trained separately for each market and may capture market-specific return-

characteristic relationships, outperform a global model trained using U.S. data. Based on a

1See, for example, Avramov, Cheng, and Metzker (2022); Feng, Polson, and Xu (2022); Feng and He
(2021); Gu, Kelly, and Xiu (2020, 2021); Freyberger, Neuhierl, and Weber (2020); Rapach and Zhou (2020);
Chen, Pelger, and Zhu (2019); Chinco, Clark-Joseph, and Ye (2019); Han, He, Rapach, and Zhou (2018).
Karolyi and Van Nieuwerburgh (2020) highlight the risk of overfitting the data by these complex algorithms
and that there is “only one out-of-sample sample” (from the U.S.).



machine-learning measure of similarity that we introduce, we find that the outperformance
is larger when the international market is less similar to the U.S. We also find that market-
specific machine learning models can be further enhanced by adding variables constructed
from the distribution of U.S. firm characteristics.? The markets in which the U.S. variables
are more relevant are also those classified as more integrated based on well-accepted measures.

Our analysis emphasizes non-linearity. As in Gu, Kelly, and Xiu (2020) (GKX), we
compare the performance of linear and non-linear models. We examine linear OLS models
and their variants: OLS with a Huber loss function that makes it less sensitive to outliers;
LASSO, which selects a subset of predictors; and RIDGE, which restricts the magnitude of
the regression coefficients. We study two classes of non-linear models—regression trees (RTs)
and neural network (NN) models (with 1 to 5 hidden layers). Trees are a non-parametric
method for classifications and regressions that predicts the value of a target variable by
learning simple decision rules inferred from the data features. NN models aggregate and
transform input signals into outputs, allowing for multiple layers of transformation and
therefore complex interactions among the predictors. In each test, we set aside training
and validation periods to train our models and select the hyperparameters, and then use
the models to construct forecasts of one-month-ahead stock returns (denominated in U.S.
dollars and in excess of the corresponding market return) in the testing period, which does
not overlap the other two periods.

While the literature identifies a long list of characteristics that seem to predict returns,
data availability is lower internationally and we trim down the list of explanatory variables to
36.% These 36 variables include the most accessible stock characteristics such as past returns,
market capitalization, trading volume, past returns of the industry, and accounting infor-

mation. The first set of analysis, in which we train and validate our models using only past

2 As Rapach, Strauss, and Zhou (2013) argue, the U.S. is a large trading partner for many markets, and its
stock market is the world’s largest and is relevant for other economies. They show that lagged U.S. market
returns can predict the index returns in other markets.

3Harvey, Liu, and Zhu (2016) count that 316 factors have been proposed by 313 papers. McLean and
Pontiff (2016) examine 97 characteristics in finance, accounting, and economics journals. Hou, Xue, and
Zhang (2020) compile a list of 452 variables.



U.S. data, is a stringent test for the machine learning methods. We follow the methodologies
of GKX and use their set of potential hyperparameter values. We use the hyperparameter
and parameter values estimated from the U.S. to form the predictions in all 32 markets (31
international markets plus the U.S.).* Using 94 characteristics, 8 macroeconomic predictors,
and 74 industry dummies (i.e., a total number of 920 (= 94 x (8 + 1) + 74) covariates), GKX
conclude that both RTs and NN models outperform linear models in terms of out-of-sample
R? and long-short portfolio (top- minus bottom-decile of predicted returns) Sharpe Ratios.
With 36 covariates, the R? and Sharpe Ratios of our RTs and NN models in the U.S. are
comparable to those in GKX, consistent with recent evidence that a modest number of fac-
tors can explain cross-sectional U.S. stock returns (Feng, Giglio, and Xiu (2020); Freyberger
et al. (2020); Kozak, Nagel, and Santosh (2020)).

We find that non-linear models, NN in particular, generate larger economic profits than
linear models in most international markets. Compared with the best linear method, we find
that the best NN model outperforms in equal- (value-) weighted Sharpe Ratios in 30 (27)
of the 31 markets. The out-of-sample R? of RTs and NN models is, however, less impressive
and is often similar to that of linear models, possibly due to extreme values of international
stock returns and characteristics. Kelly, Malamud, and Zhou (2022) also point out that
out-of-sample R? can be a poor measure of the economic value of prediction models. We
use two alternative measures that compare the predicted and actual return ranks and deciles
(and are hence less affected by outliers), and again show the dominance of machine learning
models and allay concerns of overfitting in the U.S.-based analysis.

In the second set of tests, we examine whether the models are robust when trained with
different data and environments. Here we train and validate each model separately for each

market. GKX show that the highest equal-weighted Sharpe Ratio (2.45) and value-weighed

4Hyperparameters define the model structure and learning process. Typically, a few sets of hyperparam-
eter values are specified manually, and the machine learning algorithm selects the best set. Parameters are
estimated from the data automatically given the hyperparameter values. Although prior U.S. results are
based on an out-of-sample period, the models’ predictive power and estimated parameters could be highly
sensitive to the choice of the hyperparameter values.



Sharpe Ratio (1.35) are achieved by a NN model in the U.S. In most international markets,
we find that NN is also the most profitable model within the market and is able to generate
annualized Sharpe Ratios that are close to or above 2 (in equal-weighted portfolios) or
above 1 (value-weighted). In this analysis, RTs show signs of overfitting and produce poor
predictions. The best tree model underperforms the best linear model in terms of Sharpe
Ratio and our decile-based measures in 41-62% of the markets. The effectiveness of RTs
seems to depend heavily on the number of observations, as the underperformance of RTs is
more pronounced in markets where there are fewer stocks and a shorter time period.> Given
this finding, we focus on NN models in the remaining analysis.

The Sharpe Ratios in the market-specific NN models are usually higher than those in our
U.S.-trained NN models. The difference is larger when the two models are less similar, as
defined by the centered kernel alignment (CKA) similarity index (Kornblith, Norouzi, Lee,
and Hinton (2019)). To our best knowledge, we are the first paper in the finance literature
that adopts the CKA index, which studies the last hidden layer and considers complex
interactions to identify structural similarities between two NN models. The CKA index
can therefore be roughly interpreted as a summary measure of how much an international
market resembles the U.S. market in terms of return-characteristic relationships. Our results
suggest that return predictability can be enhanced by building a different model that better
incorporates the market-specific components; therefore, local models appear to dominate a
global one (trained using U.S. data).

Among the 36 variables, we show that firm size, one-month return reversal, and daily
return volatility are the most important predictors in the U.S., while in other large interna-
tional markets some other predictors can dominate. For example, volatility of dollar trading
volume and of share turnover are important predictors in China, consistent with Liu, Stam-

baugh, and Yuan (2019) and Leippold, Wang, and Zhou (2021), who show that turnover can

°Cong, Feng, He, and He (2022) point out that standard tree models assume data are i.i.d., ignoring
the cross-sectional correlations and time-series information; and the algorithm focuses on local optimization
and can be prone to overfitting. They introduce a class of interpretable tree-based models for analyzing
unbalanced panel data.



capture the impact of speculative trading by retail investors in China.

Our evidence confirms that NN is powerful from the perspective of a U.S. investor who
decides to invest in each of these markets separately. We run an additional test pooling all
32 markets together and adding 31 country dummies as model inputs, which allow return-
characteristics relations to vary across markets within one model. This test also corresponds
to the case that a U.S. investor invests globally (ignoring any frictions associated with short
selling). NN models continue to yield the best predictions among all models. We construct
an alpha relative to Fama and French (2015) five factors plus momentum factors for devel-
oped markets and emerging markets. The best NN model gives a monthly equal-weighted
(value-weighted) alpha of 3.84% (2.12%) (the results are similar if we use alternative models
developed by Hou et al. (2011) and Karolyi and Wu (2018), both of which target to explain
global stock returns). NN models also face lower downside risk—the maximum drawdown
and the maximum one-month loss are usually smaller than those of other models.

In the final analysis, we investigate whether information extracted from U.S. stocks can
further enhance the return predictability of NN models in international markets. Although
we do not specify an asset pricing model formally by estimating sensitivities to risk factors
(betas), our test is motivated by Cohen, Polk, and Vuolteenaho (2003) and Huang (2022),
who find that gaps in book-to-market and in past returns, respectively, can predict the
corresponding factor’s return premium. We show that U.S. characteristic gaps add con-
siderable incremental power to NN in both the global model of non-U.S. stocks and the
market-specific models. In the market-specific models, we find that the variable importance
of the U.S. characteristic gaps increases with the market integration metrics constructed by
Bekaert, Harvey, Lundblad, and Siegel (2011) and Akbari, Ng, and Solnik (2020). There-
fore, we provide suggestive evidence that the cross-section of U.S. stocks contains information
relevant for international stocks, above and beyond their own characteristics. Markets are
partially integrated, and the U.S. variables are more useful in markets that are closer to full

integration.



Our paper belongs to the burgeoning literature that predicts asset returns with machine
learning.® Freyberger et al. (2020) propose an adaptive group LASSO procedure to select
characteristics and find that many previously identified return predictors do not provide
additional information. Kozak et al. (2020) construct a robust stochastic discount factor
from a small number of principal components. Feng et al. (2020) develop a regularized two-
pass cross-sectional regression approach and show that only a small number of factors remain
significant over time. Rapach and Zhou (2020) extend the approach of Han et al. (2018),
designed for forecasting cross-sectional stock returns, and use the combination elastic net to
predict the market excess return. Bali, Goyal, Huang, Jiang, and Wen (2020) use U.S. stock
and bond characteristics to examine cross-market return predictability and conclude that the
stock and bond markets are somewhat disintegrated. Bianchi, Biichner, and Tamoni (2021)
and Bianchi, Biichner, Hoogteijling, and Tamoni (2021) show that NN and RTs improve
the predictions of U.S. Treasury bond returns over linear techniques. Although machine
learning is powerful, our paper suggests that we should exercise caution when applying it to
international markets, where the number of observations is lower than the U.S.”

In international studies, Griffin (2002) finds lower pricing errors when local versions
of Fama and French’s three-factor model are used, compared with a world factor model.
Hou et al. (2011) and Bekaert, Hodrick, and Zhang (2009) show that stock returns can be

explained by local and international factors built from firm characteristics such as size, book-

SWhile it is not the main focus of the paper, we show evidence in the Online Appendix that both the
non-linearity in the return-characteristic relationships and the complex interactions among predictors are
important for NN’s superior performance. First, when we add non-linearity via spline functions of individual
features, the performance of OLS and LASSO in predicting U.S. stock returns improves, but it is still behind
NN’s performance. Second, we introduce a new class of models, Multivariate Adaptive Regression Splines
(MARS), which is similar to trees and NNs (see the Online Appendix for details). When MARS with
two degrees of terms (MARS2) is used, it takes into account both non-linearity and interactions. MARS2
generates equal- and value-weighted Sharpe Ratios and R? in the U.S. market that are similar to those
generated by NNs. MARS with one degree of terms (MARS1), which only allows non-linearity but not
interactions, underperforms MARS2 and NNs.

"Two recent papers by Cakici and Zaremba (2022) and Cakici, Fieberg, Metko, and Zaremba (2022) also
show that machine learning models are effective in predicting the index returns and stock returns globally,
but they do not compare local and U.S.-trained models and do not examine the issues of the number of
observations, foreign factors, and market integration.



to-market ratios, cash flow-to-price, and momentum.® Carrieri, Chaieb, and Errunza (2013),
Hau (2011), Bekaert et al. (2009), and De Jong and De Roon (2005) observe that developed
markets are integrated, but emerging markets are segmented. Bekaert et al. (2009) argue
that a country’s regulations, political risk, and stock market development are local segmen-
tation factors and U.S. corporate credit spread is a global segmentation factor. While we
show evidence that the return-generating process seems to vary across markets, international
markets are not totally segmented. Our NN models identify U.S.-based variables that help

explain the cross-section of international stock returns.

2 Data and Methodology

2.1 Data

We obtain data on stock returns, trading volume, market capitalization, and industry
information from DataStream. We winsorize raw returns at the top and bottom 2.5% in each
exchange in each month to correct for potential data errors. Following Hou et al. (2011) and
Ince and Porter (2006), all monthly returns that are above 300% and reversed within 1
month, as well as zero monthly returns, are removed (DataStream repeats the last valid
data point of the return index for delisted firms). We obtain firm accounting information
from Factset. We follow Green, Hand, and Zhang (2017) and attempt to construct the 94
characteristics used in their paper, but due to low data availability of certain variables in
some markets, we end up with 36 characteristics as our model input, listed in Appendix A.
For the U.S. and China, we use the data with CRSP and CSMAR, respectively, because of

better coverage. We download data for as many markets as possible and require each market

80ur paper does not examine whether the explanatory power arises from the firm-level characteristics or
from the covariance structure of returns that is related to these characteristics. For evidence on these two
views, see Daniel and Titman (1997); Davis, Fama, and French (2000); Daniel, Titman, and Wei (2001);
Hou et al. (2011); see also Kelly, Pruitt, and Su (2019) and Gu et al. (2020), who use machine learning to
analyze U.S. stocks. We leave the interesting question of why characteristics are priced internationally in
machine learning models for future research.



to have at least 100 stocks with valid observations of return and the 36 characteristics for
at least 3 years. As a result, 32 markets, including the U.S., are in the final sample. Our
data range from 2.4 million stock-month observations in the U.S. to around 6,100 in Kuwait.
Appendix B provides the details. We normalize all stock characteristics to zero mean and

unit standard deviation by month and market before inputting them into the model.

2.2 Model Estimation, Hyperparameter Tuning, and Out-of-sample

Test

We focus on three categories of machine learning models: linear, regression trees (RTS),
and neural network (NN), as in GKX. Linear models include OLS and its variants: OLS
with a Huber loss function; LASSO, which selects a subset of predictors; and RIDGE, which
restricts the magnitude of the regression coefficients. RTs are a non-parametric method
for classifications and regressions. The goal is to create a model that predicts the value
of a target variable by learning simple decision rules inferred from the data features. NN
models aggregate and transform input signals into outputs, allowing for multiple layers of
transformation and therefore complex interactions among the predictors. Both RT and NN
models can capture non-linear and complex interaction effects. More technical details of the
machine learning models are in the Online Appendix.

All models are set to predict the next month stock returns in U.S. Dollars in excess of
the corresponding market return. This means that we focus on the return predictability
in the cross section.” To train the model for each market, we separate the sample of the
market into 3 non-overlapping parts, while maintaining their chronological order. Training
data, which consist of the first 30% of the periods, are used to estimate the model subject
to a particular set of hyperparameter values. Validation data, accounting for 20%, are

deployed to construct forecasts and calculate objective functions based on the estimated

9The results are similar if we set to predict returns in excess of U.S. risk-free rate and if we use returns
in the local currency instead of U.S. Dollars.



model from the training sample. During the validation process, we iteratively search for the
best set of hyperparameters that optimizes the objective functions (and in each iteration we
estimate the model again from the training data under the current hyperparameter values).
Finally, testing data are the remaining 50%; they are “out-of-sample” in order to provide
objective assessments of the models’ performance after determining hyperparameters and
normal parameters for the models.

Due to limited computational resources, as noted by GKX, models get retrained annually
instead of monthly. Also, when we predict the returns in the next calendar year, the training
data expands by one year whereas validation samples are maintained with the same size.
For example, as shown in Appendix B, when predicting the cross-sectional stock returns in
1990 in the U.S., we set the training and validation samples as [1963, 1979] and [1980, 1989],
respectively. When we predict the cross-sectional returns in 1991, the training and validation
samples are [1963, 1980] and [1981, 1990], respectively.

We choose the same or the subset of the potential hyperparameter values of GKX, as
shown in Appendix C. We first train and validate the model for the U.S. market following the
above-mentioned procedure. Then, we apply the U.S.-estimated models to the corresponding
years of other markets. This is our out-of-sample test using international data to investigate
if the model overfits the U.S. data.

Our second test allows the machine learning model to be trained and validated using
each market’s data with the same set of potential hyperparameter values. Thus, the market-
specific models, which can choose different hyperparameter values and vary across different
countries/regions, are likely to be different from the U.S.-estimated models. If the machine
learning model with its estimation and regularization techniques can truly capture the un-
derlying data-generating process, which presumably varies across markets, market-specific

models should outperform the U.S.-estimated model in non-U.S. markets.



2.3 Post-estimation Evaluation

We use a basket of measures to evaluate the overall performance of machine learning
models and interpret the estimated models.

Sharpe Ratio. Our primary measure of model performance is the annualized Sharpe
Ratio of long-short portfolio returns based on predicted returns (long stocks in the top decile
of predicted returns and short stocks in the bottom decile). As a widely used measure
of return predictability, our reported Sharpe Ratios can quantify the profitability when
one exploits machine learning models for trading and be compared with other portfolios
or trading strategies, such as the market portfolio or momentum.'® Compared with other
measures introduced later, Sharpe Ratios are economically meaningful from the perspective
of investors.

Out-of-sample R2. To evaluate the predictability of each model, we report the out-of-
sample R? (R?2,,) based on Equation (1), which examines the model’s forecast error (the sum
of the squared differences between actual returns and predicted returns) and measures how
the model’s predictions fit the actual data. Following GKX, the denominator is the sum of
squared excess returns without demeaning, as they argue that the alternative way of using

the historical average will inflate the monthly out-of-sample R? by approximately 3%. We

first calculate the R?

255 for individual stocks, i.e.,
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While it is an intuitive and widely used measure of prediction accuracy, as we show

later, R? _ turns out to be sensitive to outliers (i.e., extreme prediction errors). This is

particularly an issue of emerging markets, as realized returns and characteristics sometimes

2

can have extreme values. In addition, Kelly et al. (2022) also point out that RZ .

might

0The Sharpe Ratios are computed in the same manner as GKX. Kan, Wang, and Zheng (2022) note that
high Sharpe Ratios are rarely delivered by professional fund managers. They show that out-of-sample Sharpe
Ratios should be lower after taking into account the estimation risk of mean and co-variance of returns.
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be a poor measure of the economic value of the forecast returns; for example, investors can

generate potentially large economic profits even when R?

<.s 1s negative. To address those

issues, we propose two alternative measures below.

Rank Correlation. We calculate the rank correlation between r;, and 7;;, which mea-
sures the degree of similarity between the cross-sectional rankings of realized and predicted
stock returns. In this paper, we choose Spearman’s rank correlation coefficient, defined as
the Pearson correlation coefficient between the rank variables. A higher rank correlation
implies a more accurate model forecast.

Decile Score Distance. We sort stocks into deciles based on the model’s predicted
returns, and long (short) the top (bottom) decile. For each model, we calculate the actual
return deciles of the long and the short portfolios in each market, and define a difference
between the two as Decile Score Distance. If a model has zero predictive power, the actual
return deciles would be 5.5 for both the long and the short portfolios on average, and Decile
Score Distance would be zero. If a model has perfect predictive power, the actual return
decile for the long (short) portfolio would be 10 (1), and the Decile Score Distance would be
9. Decile Score Distance measures the accuracy of model predictions in extreme deciles.

While machine learning models are regarded as “blackbox,” the following measures are
useful to interpret the return-characteristic relationship implied from the estimated models.

Relative Importance of Predictors. To identify significant predictors, we adopt the
approach by Dimopoulos, Bourret, and Lek (1995) that the relative contribution of each input
variable can be measured by computing the Sum of the Squares of the partial Derivatives

(SSD). For the contribution of the j-th input variable to the function f that predicts excess

) @

stock returns, we calculate

SSDJ»:Z(%

k
where z¥ means the k-th observation. Then, we normalize all variables’ SSD to sum of one,
: SSDj 11

i.e., s=a3p;-

1 An alternative way to measure an input variable’s importance (VI) is to calculate the decline in R?
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CKA Similarity Index. This measure compares the estimated structure of different
machine learning models. In our context, we are interested in how a market’s specific return-
characteristic relationship is different from the U.S.-estimated one. While it is difficult
to do so directly, we can nonetheless quantify the structural similarities of two estimated
models. Specifically, we calculate a similarity index, centered kernel alignment (CKA) from
Kornblith et al. (2019), which compares representations between different trained neural
network models.

Specifically, let X € R™*P1 denote a matrix of activations of p; neurons for n observations
(e.g., the intermediate output of a specific hidden layer), and Y € R"*P2 denote a matrix
of activations of p, neurons for the same n observations. With respect to the choice of the
hidden layer, we focus on the last hidden layer in each NN, because it is closest to the final
model output. Then the linear version of CKA is obtained from

x|y

CRAXY) = X Ty Ty, ®)

where || - ||p denotes the Frobenius norm, an extension of the Euclidean norm on the space

of all matrices.!?

3 Predicting Stock Returns Using Machine Learning

3.1 U.S. Stock Returns

We first focus on the U.S. stock market and train the various machine learning models
with the 36 stock characteristics (listed in Appendix A) to predict the cross section of

monthly returns. Our main purpose is to verify whether the performance of our models are

when one sets all values of the input variable to zero. This is the approach used in GKX and Kelly et al.
(2019). A negative VI value implies the increment of this input variable would lead to a decrease in output
and vice-versa. The drawback of this measure is that it is hard to compare negative relative importance,
especially across various markets.

= =1,i i — 2 XiYs :
27f py = po = 1, i.e., X and Y reduce to a n-dim vector, then CKA(X,Y) = o X%\/ZE;Y? is the

cosine similarity between X and Y.
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comparable with those in GKX, who input more than 900 features, before we apply our
models to international markets.

We discuss the details of this test and present the results in the Online Appendix. Overall,
with the 36 stock characteristics, our RTs and NN models appear to have similar return
predictability to models in GKX using more than 900 inputs. One may be surprised by
this finding, but it is consistent with some of the results in GKX and other studies. For
example, GKX show that via dimension reduction, the ENET model selects only 20 to 40
features because the inputs and characteristics are partially redundant and fundamentally
noisy signals (see Figure 3 of GKX). Furthermore, a few recent studies, such as Feng et al.
(2020); Freyberger et al. (2020); Kozak et al. (2020), argue that a modest number of factors
can explain cross-sectional U.S. stock returns. As we show later, using 36 characteristics
seems to predict cross-sectional stock returns in international markets as well.

In the Online Appendix, we also show evidence that both non-linearities and the complex
interactions among predictors contribute to the return predictability of machine learning
models. The performance of OLS and LASSO improves after adding spline functions of
individual features to capture non-linear terms; however, without interaction terms, these
models still underperform RTs and NNs. Then we adopt a class of model called Multivariate
Adaptive Regression Splines (MARS), which features a hyperparameter that specifies the
maximum degree of terms. MARSI with degree = 1 allows non-linearities, while MARS2

with degree = 2 allows both non-linearities and variable interactions. Only MARS2 generates

2

00S*

performance that is close to that of NNs and RTs in terms of Sharpe Ratios and R

3.2 International Stock Returns with the U.S.-Estimated Models

Now we run a stringent test: applying the U.S.-estimated model to each of the 31 interna-
tional markets individually. According to the machine learning literature, the regularization
techniques we apply are known to prevent model overfit effectively. Nonetheless, examining

model performance in some real-world, out-of-sample data is still meaningful. Assuming

13



that the return-characteristic relationship is (at least partially) in common across countries,
international markets are ideal out-of-sample data relative to the U.S. market and allow us
to test overfitting. Furthermore, tuning the hyperparameter values is critical to achieving
desirable model performance. When the model is heavily tuned over one data sample (i.e.,
the U.S. market), the possibility of overfitting is an important concern. Thus, we only use
U.S. data to tune the model, making our tests below truly out of the sample.

We follow the definition of training, validation, and testing periods for the U.S. market
specified in Section 2.2. Specifically, to predict stock returns in an international market in
a particular year, we train and validate the machine learning models using past U.S. data
only. Then for the following year, the training data expands by a year and the validation
period maintains the same size.

Panel A of Table 1 reports equal- and value-weighted Sharpe Ratios of long-short portfolio
returns, along with the Sharpe Ratio of the market portfolio during the sample period. We
list the markets based on the descending order of the number of observations and highlight
the method that gives the highest Sharpe Ratio in each market.

Starting with the equal-weighted portfolios on the left, we make two observations. First,
in every market, machine learning-based models outperform traditional models (i.e., OLS-3
and OLS) or the passive market portfolio. Second, models taking into account nonlinear and
complex interaction effects (i.e., RTs and NN models) outperform linear machine learning
models (LASSO and RIDGE). The patterns are similar but slightly weaker for value-weighted
Sharpe Ratios. Furthermore, the predictive power of NN models is economically sizable:
using the best NN model in each market, the average equal-weighted (value-weighted) Sharpe
Ratio of the 31 markets is 1.94 (1.07); 19 markets have an equal-weighted Sharpe Ratio above
1.5 and 26 markets above one, and 15 markets have a value-weighted Sharpe Ratio greater
than one and 26 larger than 0.75.

We systematically compare the models’ performance in Panel C. Specifically, we pick

the best-performing model in each of the three categories (i.e., linear, trees, and NN) and
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calculate the difference in Sharpe Ratios and other measures. We find that on average the
best performing tree model can generate an equal-weighted Sharpe Ratio that is 0.41 higher
than the best linear model across the 31 markets, and among them 26 (or 84%) markets have
a positive difference. Comparing NN with linear models, the average difference is even higher,
at 0.65, with 30 (or 97%) markets being positive. The best NN model outperforms the best
tree by 0.25 in the Sharpe Ratio on average, and 25 (or 81%) out of 31 markets have a positive
difference. For value-weighted Sharpe Ratios, RTs do not appear to significantly outperform
linear models: only 15 markets (48%) have a positive difference, while NN models still
significantly outperform linear and tree models. In sum, based on Sharpe Ratios, NN models
generate stronger return predictability than trees and linear models in the international
markets, which is consistent with GKX’s conclusion in the U.S. market.

However, the out-of-sample R? reported in Panel B.1 shows a different picture. While
NN models are still the best model in more than half (17) of the markets, OLS-3 stands out
in 11 markets. Regression trees do not give the best prediction in any market, and in many
markets they generate negative out-of-sample R?.'* Panel C also shows that, in terms of

R2

00S)

The results based on R2

008

neither NN nor tree model outperforms linear models.
contradict those based on Sharpe Ratios. This pattern echoes

Kelly et al. (2022), who point out that B2 may be a poor measure as investors can generate
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potentially large economic profits even when RZ . is negative. In particular, R
sensitive to outliers (i.e., extreme prediction errors). This is particularly an issue of emerging
markets, as realized returns and characteristics sometimes can have extreme values.

To investigate this possibility, we use two alternative measures, Rank Correlation and
Decile Score Distance, defined in Section 2.3. These measures are based on relative ranks of
returns and are thus less affected by extreme realized returns. As reported in Panels B.2 and

B.3, the performance of non-linear machine learning models appears to be better than the

results reported in Panel B.1. Panel C compares RT with linear models and finds the average

2

. means that the model underperforms a naive model that always predicts zero

13A negative value of R
expected return.
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difference in rank correlation is 1.69%, with 26 (or 84%) markets being positive. The best
NN model outperforms the best linear by 1.75%, and 29 (or 94%) out of 31 markets have
a positive difference. The performance between the best RT and NN models is very close.
The results are generally similar when Decile Score Distance is used. The only difference
is that NN outperforms RT models in 22 (or 71%) of the 31 markets, suggesting that NNs
are better at predicting extreme returns. This is aligned with the finding that NN models
generate higher Sharpe Ratios than RT models.

Overall, the findings allay the concern of overfitting in the U.S.-based analysis when the

2

-»s and focus on Rank

effect of outliers is minimized. In the following analysis, we drop R,

Correlation and Decile Score Distance.

3.3 International Stock Returns with Market-Specific Models

Here we let each market train and validate its own model. Compared with the U.S. data,
international data on stock return and characteristics appear to exhibit wider variation
and more extreme observations, contain more frequent data errors or missing values, and
have smaller sample sizes (both a smaller cross-section and a shorter time period). Those
data limitations can possibly make the estimation of model parameters less consistent and
efficient. Machine learning models feature a large number of parameters to be estimated. The
heterogeneity of data quality and sample size across countries allows us to understand the
robustness of various machine learning models. Our analysis sheds light on the application
of machine learning models to return predictability.

We use the same procedure to split the samples, as described in Section 2.2, and the same
set of hyperparameter values, listed in Appendix C. Table 2 summarizes the models’ perfor-
mance in Sharpe Ratios (Panel A) and Rank Correlation and Decile Score Distance (Panel
B). The markets are sorted in descending order of the number of available observations.
Panel C compares the model performance by categories.

Similar to what we find with U.S.-estimated models, NN models exhibit the strongest
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return predictability in most of the markets in terms of Sharpe Ratios. For the equal-weighted
(value-weighted) Sharpe Ratio, NN models outperform linear and tree models by 0.60 (0.41)
and 0.44 (0.61) on average or in 81% (78%) and 78% (88%) of the markets, respectively.'
Economically, the best NN model achieves an equal-weighted (value-weighted) Sharpe Ratio
above 1.5 (1) in 21 (20) of the 32 markets. Also, the patterns based on Rank Correlation
and Decile Score Distance are similar. For example, the best-performing NN model’s Rank
Correlation outperforms by 1.08% and 1.12% on average or in 75% and 72% of the markets,
compared to the best of linear and RT models, respectively.

By comparison, market-specific tree models do not seem to dominate linear models. In
Panel C, relative to linear models, the average equal-weighted Sharpe Ratio of RTs is higher
by 0.17, while the average value-weighted Sharpe Ratio of RTs is lower by 0.21. The average
Rank Correlation and Decile Score Distance of RTs are similar to that of linear models.*

RTs may perform relatively poorly because of the high degrees of freedom in their struc-
ture and overfitting in-sample, despite the various regularization techniques we apply. Panel
C of Table 2 shows that trees’ performance is especially poor in markets where the number of
observations is low: in the top half of markets with more observations, tree models’ average
equal- and value-weighted Sharpe Ratio is higher than that of linear models in 81% and 50%
of the markets, respectively; but in the bottom half, these numbers fall to 38% and 25%.
Using Rank Correlation and Decile Score Distance, in the top half of markets with more
observations, RTs outperform linear models in 88% and 69% of the markets, respectively;
the corresponding numbers are 25% and 38% in the bottom half. This suggests that RT
models need more data to converge to a stable parameter estimation.

Note that, despite its complex structure as well, NN models appear to be more robust

14The Sharpe Ratios of the market portfolios in this table are different from those in Table 1 because the
sample periods are shorter. In Table 2, the market portfolio generates the highest Sharpe Ratio in several
markets, particularly for value-weighted Sharpe Ratios and in markets with fewer observations.

15Tn the Online Appendix, we compare the model performance using the equal- and value-weighted Sharpe
Ratios of long-short portfolios formed using 9th minus 2nd decile portfolios (reported in Table A4). Similar
to our main tests, market-specific tree models do not outperform linear models. Also, NN models’ 9th-
minus-2nd Sharpe Ratios are closer to those generated by linear models, suggesting that NNs are better in
ranking stocks with more extreme returns.
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to sample size. While Panel C documents a corresponding drop from the top half to the
bottom half, the drop is smaller (94% and 81% vs. 69% and 75%), for equal- and value-
weighted Sharpe Ratios. Linear models are also robust in estimation due to their simpler
model structure, which in turn, however, limits their ability to capture complex return-
characteristics relationships.

To better illustrate how the performance of RTs and NN models varies with sample size,
we plot the performance improvement of RTs or NNs over the linear model (y-axis) against
the log of the number of observations of the market (x-axis) in Figure 2. We also plot a
fitted line and the 95% confidence intervals. We consider four performance measures, i.e.,
equal- and value-weighted Sharpe Ratio, Rank Correlation, and Decile Score Distance. The
dashed line indicates the value of zero on the y-axis. First, one can see that for tree models,
in markets with fewer observations, the scatter dots often fall under zero. Second, while the
performance of NNs also increases in sample size, the fitted line is significantly above zero
for the whole range of the x-axis.

While there is no clear theoretical explanation that RTs are more vulnerable to overfit-
ting, our tests confirm that, at least for this type of financial data, the structure and the
regularization settings of NN can fit and learn in a more robust manner. This is consistent
with the evidence in the machine learning literature that random forests can be inconsistent
(Tang, Garreau, and von Luxburg (2018)) and that NN models with multiple layers do not
overfit the training data (Caruana, Lawrence, and Giles (2000); Kelly et al. (2022)). In sum,
we conclude that NN models exhibit strong and more robust return predictability than trees

or linear models. In the following tests, we focus on NN1-NN5 models.

4 Applications to International Asset Pricing

The results in the previous section suggest that NN models can capture and learn the

true return-characteristics relationship in various markets. In this section, we exploit NN
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models as the tool to examine two long-standing questions in the international asset pricing
literature—common versus market-specific return structure and cross-market integration.
Studies using traditional methods build on strong assumptions about the function form
between expected return and stock characteristics. Possible mis-specification of the function
form makes it difficult to interpret non-results. NN models can mitigate the issue, because of
their non-parametric nature of the model structure that can potentially capture all possible
non-linear and complex interaction effects of stock characteristics. Using machine learning

techniques, we provide new evidence for the questions.

4.1 Return-Characteristics Relationships: Common or Market-Specific?

Is the return-characteristics relationship generally common across different markets or
dominated by market-specific features? On the one hand, under the rational framework,
stock return should only depend on the stock’s risk. In that sense, the return-generating
function should be common across different countries. On the other hand, voluminous studies
show that institutional frictions and investor behavior can influence asset returns. Since
different countries may have distinct institutional settings or investor cultures, the return-
characteristics relationship should be, at least to some extent, market-specific.

To shed some light on this question, we first analyze the relative importance of the 36
characteristics for each market’s best performing NN model, based on the model estimations
in Table 2. Results for the top 25 markets based on the number of observations are shown in
Figure 3 (other markets are omitted for brevity). We observe some similar variables: e.g., log
market capitalization (muwvell) and reversal (mom_ 1) are strong predictors for many markets.
However, some market-specific features show up. For example, volatility of dollar trading
volume (stddolvol) and of share turnover (stdturn) are important predictors in Japan and
China, but not in other markets. These differences in variable importance suggest that the
return structure may not be the same across countries.

Second, we compare the performance of market-specific models and their U.S.-estimated
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counterparts. To answer this question, we cannot simply compare the Sharpe Ratios in
Tables 1 and 2. This is because the two models are not trained by the same amount of data
(i.e., U.S. data sample is much larger and longer than any other markets), and the sample
size for training and validating the model can influence the accuracy of model estimation
(although it is less of a concern for NNs). Therefore, to make the comparison sensible, we
require the U.S. model to be estimated only using the data over the same sample years that
the market-specific model uses.

For example, China’s data are available from 1999 to 2017, with 1999-2004 as the training
period and 2005—-2007 as the validating period. To compare the China-specific model with
the U.S.-estimated counterpart, we train and validate with the U.S. data in 1999-2004 and
20052007, respectively.l® Then, for each machine learning method, we compare the return
predictions from the U.S-estimated model with those from the market-specific model, based
on Sharpe Ratios. We repeat this procedure for each of the 31 international markets in our
sample and summarize the differences across all markets.

Panel A of Table 3 presents the results. We find that market-specific models generally
outperform their U.S. estimated counterparts. For example, market-specific models improve
equal-weighted Sharpe Ratios by 0.69 to 0.77 and value-weighted Sharpe Ratios by 0.40 to
0.52 on average across the 31 markets. The improvement is pervasive: 74-87% of the markets
experience an increase in Sharpe Ratio.

Two natural questions that follow are to what extent a country’s specific model differs
from the U.S. estimated one, and whether the difference, which presumably captures some
useful market-specific return-characteristics relationship, is related to the improvement in
return predictability. To address the first question, while it is difficult to directly show or
interpret what market-specific relationship is really captured, we can nonetheless obtain some

clue by comparing the structural similarities between the U.S.-estimated and market-specific

16 A stricter approach is to further require the number of stocks to be the same in each cross-section. Given
that the U.S. market has more stocks than most of the markets in our sample, our current approach gives
market-specific models a disadvantage.
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models. We adopt a similarity index, centered kernel alignment (CKA), from Kornblith et al.
(2019). CKA similarity index compares representations between different trained neural
network models.

For each market, we first compute the CKA similarities between representations from
U.S.-estimated models and market-specific models. Specifically, given a dataset, we extract
the intermediate output of the same hidden layer from U.S.-estimated models and market-
specific models, and then compute the CKA according to Equation (3). Then, we examine
the relationship between the CKA values and the Sharpe Ratio improvements from U.S.-
estimated models to market-specific models across markets.!”

In Panel B of Table 3, we split the markets in our sample equally into two groups based
on its model’s CKA, i.e., high versus low, and calculate the average improvements in Sharpe
Ratio from U.S.-estimated to market-specific models. We notice that across the five models
(NN1 to NN5), low CKA similarities are associated with more improvement in both equal-
and value-weighted Sharpe Ratios. Also, such improvement is economically greater for NN5
than for NN1. For example, for NN5 model, low CKA markets exhibit an improvement
of 0.83 in value-weighted Sharpe Ratio, while the number is 0.21 for high CKA countries;
and the difference of improvement between high and low CKA markets is smaller for NN1
models. This is consistent with the conjecture that a more complex network structure can
potentially better incorporate market-specific components and enhance return predictability.
It is also clear from Figure 4, which shows the significant and negative relation between CKA

similarity and Sharpe Ratio improvement across markets.

A global model: pooling all stocks
Then, based on the previous results, we pool all stocks in our global sample to train

and validate a unified model to predict expected returns. This is to leverage the advantage

I7If the variables that have high variable importance (in terms of SSDs) are different in two markets,
we may also consider the return-characteristic relationships in the two markets to be different. However,
this ignores the complex interactions among variables, and it is difficult to choose the number of important
variables we should examine. Comparing the CKA similarity is a more systematic approach.
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of machine learning models to take into account both common and market-specific, com-
plex return-characteristics relationship. Also, with more data and larger space for portfolio
selection, NN models can be better trained and have stronger predictive power.

Besides the 36 stock characteristics (listed in Appendix A), we add 31 dummies to indicate
the 31 non-U.S. markets as the input of the global model. These market dummies allow NNs
to learn possible country-specific structures, through, for example, the interaction between
the country dummy and certain stock characteristics. NN models are set to predict the
future stock returns in excess of the global average stock return. While the sample starts
from 1963, our testing period is from January 1990 to December 2017 due to the availability
of risk factors (more details below). For brevity, we focus on NN models and Sharpe Ratio
as the performance measure, and compare to that of linear models.

The results are reported in Table 4. According to the top panel, the global equal-weighted
(value-weighted) long-short portfolio based on NNs yields a Sharpe Ratio of 3.90 (1.69), a
large improvement from previous tables. This is also much higher than the Sharpe Ratio of
the market portfolio 0.96 (0.53) and the best performing linear model 2.59 (1.04). One should
take the high Sharpe Ratio with caution for investment purposes, as the estimates here do
not take into account transaction costs or other frictions, such as short-sale constraints, in
the international equity markets.

We next examine the risk of the machine learning based long-short 10-1 portfolios. Fol-
lowing GKX, we first look at the maximum drawdown (MaxDD), maximum one-month loss
(Max 1M Loss), and portfolio turnover rate. The maximum drawdown of a strategy is
defined as,

MaxDD = maxo<¢, <t,<7(Ys, — Y2,), (4)

where Y; is the cumulative log return from month zero through ¢. The maximum one-month
loss is the lowest monthly return of the trading strategy. For equal-weighted portfolios,
NN4-based strategies have the lowest maximum drawdown and one-month loss. For value-

weighted portfolios, NN4 models have the lowest maximum drawdown, but OLS-3 has the
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smallest one-month loss.

The portfolio average monthly turnover is calculated as,

e Wit (1+75441)
A > (L4 rje41)

T
Turnover = % Z (Z
t=1 i

) : (5)

where w;, is the weight of stock ¢ in the portfolio at month ¢. It appears that the monthly
turnover rate of NN-based strategies is approximately 150%, which is about 20 to 30%
higher than the number shown in GKX based on the U.S. market. Given the larger pool of
stocks and the important role of price trend predictors in machine learning models, it is not
surprising that the outperformance is achieved with a relatively higher portfolio turnover
rate.

The previous results are all based on raw returns. Last, we turn to risk-adjusted returns
to examine whether the machine learning models capture something beyond the commonly
known factors. We adopt three international asset pricing models to calculate risk-adjusted
returns: the Fama-French five-factor model augmented with a momentum factor, the 6-
factor model developed by Hou et al. (2011), and the partial-segmentation Carhart model
in Karolyi and Wu (2018).'® In the Fama-French model, we include a set of the 6 factors for
developed markets and a set for emerging markets. That is, in total 12 factors are used for
the risk adjustment of the global portfolio returns.

The bottom panels of Table 4 report the results. The monthly equal-weighted (value-
weighted) alphas based on the best performing NN model are significantly positive, at 3.84%—
4.89% (2.12%-2.31%) with t-statistics well above 5. Those existing factor models exhibit

low R? for the NN-based portfolios. Information ratio (IR) ranges from 1.15 to 1.18 for

18Fama-French factor data are downloaded from Kenneth R. French’s website. The Fama-French five
factors include the excess return on the value-weighted market portfolio and portfolios formed on size, book-
to-market, operating profitability, and investment. See Fama and French (2016, 2017) for more details.
We thank Andrew Karolyi and Ying Wu for sharing the factor data from Hou et al. (2011) and Karolyi
and Wu (2018). The model proposed by Hou et al. (2011) contains 6 factors: the market portfolios and
factor-mimicking portfolios based on momentum and cash flow-to-price for developed markets and emerging
markets. Their data are available from 1981 to 2010. Karolyi and Wu (2018) add a new factor to the global
Carhart model to account for externalities driven by the incomplete accessibility to stocks and stock markets.
The data are available from 1990 to 2010.
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equal weighting and 0.48 to 0.52 for value weighting. For most measures, NN models, which
take into account nonlinear and complex interaction effects, significantly outperform linear

models.

4.2 Cross-Market Integration

In Section 3.2, we show that the U.S. equity market is relevant for many other markets.
We study cross market integration in this subsection, specifically, whether the information
derived from U.S. stocks can improve our predictions of international stock returns. We first

start with the pooled sample (excluding the U.S.) and then examine market-specific models.

Pooling all non-U.S. stocks
While there are multiple ways to extract information from U.S. stocks, we add new
variables that are similar to those commonly used in the literature. We construct three

types of state variables:

1. U.S. Factors: In each month, for each of the 36 characteristics, we sort U.S. stocks into
10 deciles in descending order and compute the value-weighted returns for each decile.
Then we define a factor as the return of the top decile portfolio minus the return of
the bottom decile portfolio. This is similar to the way that common risk factors are

constructed, such as Fama and French (1993, 2015, 2017).

2. U.S. Characteristic Gaps: In each month, we compute the characteristic gap as the
divergence between the 95th percentile and the 5th percentile of a corresponding stock
characteristic in the U.S. market. Cohen et al. (2003) and Huang (2022) show that
gaps in book-to-market and in past returns, respectively, can predict future value and

momentum returns.

3. Local Factors: As a comparison, we compute local factors in the same way as the U.S.

factors. Stocks that are in the same market as the stock in question are used.
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We also compute the interaction terms for each stock characteristic and its respective
factor or characteristic gap. Therefore, on top of the 36 raw stock characteristics plus 30
country dummies, the augmented model in this section adds 36 x 3 factors or characteristic
gaps + 36 x 3 interaction terms = 216 independent variables.'?

Panel A of Table 5 reports the difference in equal-weighted and value-weighted Sharpe
Ratios between the augmented models and the original models using only 36 stock character-
istics plus country dummies. For most NN models, the augmented model generally improves
equal- and value-weighted Sharpe Ratios. The last column shows the difference between
the best performing of the original NNs and that of the augmented ones. The improvement
is economically significant and equals 0.57 for equal-weighted and 0.54 for value-weighted
Sharpe Ratios.

In Panel B, we reduce the number of additional variables by focusing on the top 10
characteristics. With the pooled sample of all non-U.S. stocks, we first train its NN models
(NN1-NN5). Then, we select the top 10 characteristics according to their variable impor-
tance in the best NN model (based on the value-weighted Sharpe Ratio).?’ Therefore, in
each test we add 10 x 3 factors or characteristic gaps + 10 X 3 interaction terms = 60
independent variables (on top of the 36 stock characteristics). With a reduced number of
model inputs, the robustness of model estimation can be enhanced. The performance of aug-
mented NN models with top 10 characteristics shows even higher equal- and value-weighted
Sharpe Ratios. Comparing with the best original NN model, the best augmented NN model’s
equal-(value-) Sharpe Ratio is higher by 0.75 (0.68).

The difference between Panels A and B highlights that NN models do not necessarily
become more powerful when having more independent variables. Even with a large number

of observations, the full augmented NN models with 36 characteristics do not generate the

19We could also input local characteristic gaps, but it would be redundant to do so as stock level char-
acteristics are model inputs and machine learning models allow such nonlinear relationships if they are
useful.

20The best NN model is NN5, and the top 10 characteristics include stddolvol, mom 1, retvol, muell,
mom__ 12, turn, ll, stdturn, mom__6, and maxret.
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best results.

Figure 5 graphs the variable importance of each type of variables in the best augmented
NN model using top 10 characteristics. The sum of variable importance is normalized to
one. Stock characteristics are the most important (45%), followed by the U.S. characteristic
gaps (34%) and U.S. factors (15%). Local factors have the lowest variable importance (8%).

Taken together, incorporating the information or state variables of the U.S. market can
significantly improve the return predictability in other markets, supporting the conjecture

of international market integration.

Market-specific augmented models

Now we rerun the market-specific models with the additional variables from the U.S.
market. Because the market-specific models contain a much lower number of observations,
we focus on a subset of additional independent variables and a subset of markets in order
to have reliable estimates. Given our findings in the previous subsection, we only add U.S.
characteristic gaps and U.S. factors based on the top 10 characteristics in each market. That
is, for each market, we select the top 10 characteristics based on their variable importance
in the best market-specific NN model in Section 3.3. Therefore, we add 10 x 2 factors or
characteristic gaps + 10 x 2 interaction terms = 40 independent variables (on top of the

t.21  Also, given that NN performs more robust in

36 stock characteristics) in each marke
markets with more observations (Table 2 and Figure 2), we only examine the top 25 markets
ranked on the total number of observations.

In Table 6, we report the summary across all the 25 markets. In Panel A, the augmented

models include both U.S. characteristic gaps and U.S. factors. In Panels B and C, the aug-

mented models include only U.S. characteristic gaps and U.S. factors, respectively. Focusing

21We use two markets as examples to illustrate this procedure. According to the best market-specific
NN model (based on value-weighted Sharpe ratio), in Japan the top 10 characteristics in terms of variable
importance are: stddolvol, chmom __6, stdturn, turn, mom__6, mom__1, mvell, indmom __a_12, dovol, and
ill. The 10 U.S. factors and 10 U.S. characteristic gaps are chosen based on this list. The 20 interaction terms
refer to the 10 variables in the list interacting with the corresponding U.S. factor and the corresponding U.S.
characteristic gap. Then, in a different market, we use a different list. For example, the top 10 characteristics
in China are: stddolvol, mom__1, stdturn, chmom__6, mom__12, mvell, dy, bm, retvol, and turn.
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on the best NN models, Panels A and B show similar results while Panel C is weaker. The
best augmented NN models in Panels A and B yield higher Sharpe Ratios by 0.10-0.29 on
average (64%-88% of markets with positive improvement), when compared with the best
NN models using only 36 stock characteristics (shown in Table 2).

While the above results suggest that international markets seem to be partially integrated,
are the U.S. variables more important in markets that are more integrated with the world?
We explore this possibility using the market-specific NN models of the 25 markets. The
degree of market integration in each market is proxied by three metrics: the segmentation
measure constructed by Bekaert et al. (2011) and the economic integration and financial
integration measures developed by Akbari et al. (2020).%

Figure 6 plots the relationship between the variable importance of U.S. characteristic
gaps and the country rank based on the degree of market integration. (Not all the 25
markets appear in the Figure because the integration measures do not cover some of the
markets.) We observe that the variable importance decreases with Bekaert et al. (2011)’s
segmentation metric (which is the opposite to integration) and increases with Akbari et al.
(2020)’s economic integration measure. U.S. variables are more important in countries that
are more integrated with the world (such as United Kingdom) than in countries that are less
integrated (such as Greece). The relationship between the variable importance and Akbari
et al. (2020)’s financial integration measure is weaker.

Overall, information from U.S. stocks seems to be useful in producing better rankings of
local stocks’” predicted returns, and hence higher Sharpe Ratios, especially in markets that
are closer to full integration. While NN models cannot explain why U.S. characteristic gaps

are more important than U.S. factors, one possible reason is that the U.S. characteristic

22Bekaert et al. (2011)’s segmentation metric is constructed based on the earnings yield and the assump-
tion of equal earnings yields across countries under the null of full integration. Derived using a return
decomposition approach, Akbari et al. (2020) define economic integration as a common cash-flow dynamic
and financial integration as a common risk-pricing dynamic. Akbari et al. (2020) highlight the difference
between economic and financial integration using China and Ireland as examples. China is the second-largest
economy but is considered as financially segmented from the world market. Ireland is one of the world’s
largest offshore financial centers but contributes little to global economic growth.
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gaps contain information about global cash-flow news. The bottom two graphs of Figure
6 provide suggestive evidence that the U.S. characteristic gaps are more relevant for global
cash-flow news than global discount rate news. In Panels A and B of Table 6, where we add
the U.S. characteristic gaps to the market-specific NNs, we see the improvements in value-
weighted Sharpe Ratios are larger than those in equal-weighted Sharpe Ratios, implying that
the return predictability increases more for larger stocks. To the extent that cash-flows of
larger stocks are more globally integrated (e.g., because of their multinational nature), this
also indicates that the U.S. characteristic gaps may contain global cash-flow information.
U.S. factors may carry such information too, but returns can be contaminated by noise and
other variables. On the other hand, local factors do not appear to help enhance return

predictability.

5 Conclusion

We construct a dataset of 32 international markets and use machine learning models
to predict the cross-section of stock returns. In the U.S. market, even with only 36 char-
acteristics, the predictive power and profitability of complex machine learning models are
comparable to those documented in previous studies using hundreds of variables. More im-
portant, training our models using U.S. data and applying them on international stocks—a
stringent test to address potential overfitting issues—concludes that machine learning models
outperform linear models, particularly in forming profitable portfolios and predicting return
rankings.

We achieve even stronger results if we train the neural network (NN) models separately
for each market, allowing the models to pick up market-specific return-characteristic rela-
tionships. These results are more prominent when the market-specific model is less similar
to the U.S.-trained model (measured based on the centered kernel alignment (CKA) index)

and for NN models with more hidden layers. However, there are signs that regression trees
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overfit the in-sample data and underperform linear models, especially in markets where there
are few observations.

While the return-generating process seems to vary across markets, international markets
are not totally segmented. Market-specific NN models, especially in countries that are more
integrated with the world, are even more powerful when we add U.S. characteristic gaps and
the interactions between stock characteristics and their respective U.S. characteristic gap as
independent variables.

We conclude that NN models, previously focusing on the U.S. market, can be applied to
equity markets around the world. With a reduced set of predictors, one can examine more
closely the return-characteristic relationships generated by the algorithms and link them
to the market-specific structure. For example, Leippold et al. (2021) show that the most
relevant variables when using NN models to predict Chinese stock returns are liquidity and
fundamental factors, which they attribute to the short-termism of retail investors in China.
Future research can provide more economic insights into other variables and other markets.

Another possible future research direction is to better explain the power of our NN models
using an asset pricing model. We follow GKX and use characteristics to forecast returns,
while the traditional asset pricing literature focuses on systematic risk factors and betas.
Feng et al. (2022) combine deep learning optimization with asset pricing factor models.
Their methodology, applied on U.S. equity data, starts from firm characteristics, generates
risk factors, and fits the cross-sectional returns. Our results suggest that market-specific
nonlinear and complex interactions among the predictors should not be overlooked, and the
additional information carried by U.S. characteristics is valuable in international markets. It
is interesting to see how the market-specific return-characteristic relationships and market

integration can be linked to equilibrium asset pricing.
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Appendix A List of Stock Characteristics

The table lists the acronym and definition of the 36 stock characteristics used as model inputs.

Acronym Definition

absacc Absolute accruals

acc Working capital accruals

agr Asset growth

bm Book to market

bm ia Industry-adjusted book to market
cashdebt Cash flow to debt

cashpr Cash productivity

cfp Cash flow to price ratio

cfp_ia Industry-adjusted cash flow to price ratio
chmom 6 Change in mom_6

chpmia Industry-adjusted change in profit margin
depr Depreciation /| PP&E

dolvol Dollar trading volume

dy Dividend to price

egr Growth in common shareholder equity

ep Earnings to price

herf Industry sales concentration

ill Mliquidity

indmom a 12 Industry 12-month equal-weighted momentum
lev Leverage

lgr Growth in long-term debt

maxret Maximum daily return

mom 1 1-month reversal

mom_ 12 12-month momentum

mom_ 6 6-month momentum

mve_ia Industry-adjusted size

mvell Log market capitalization

pctacc Percent accruals

retvol Return volatility (standard deviation) of daily return
roe Return on equity

salecash Sales to cash

sgr Sales growth

Sp Sales to price

stddolvol Volatility of liquidity (dollar trading volume)
stdturn Volatility of liquidity (share turnover)
turn Share turnover
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Appendix B List of International Markets

The table below lists the name of markets in our sample, along with the sample periods and the number of

observations.

Market Train Valid Test # Rows
USA [1963, 1979] (1979, 1989] (1989, 2017] 2456110
Japan [2008, 2010] (2010, 2011] (2011, 2017] 349030
China [1999, 2004] (2004, 2007] (2007, 2017] 277265
India [2007, 2010] (2010, 2012] (2012, 2017] 230459
Korea [1997, 2003] (2003, 2007] (2007, 2017] 224998
Hong Kong [1997, 2003] (2003, 2007] (2007, 2017] 174678
Taiwan [2007, 2010] (2010, 2012] (2012, 2017| 93079
France [1995, 2001] (2001, 2005] (2005, 2017] 92427
United Kingdom  [2005, 2008] (2008, 2010] (2010, 2017] 68740
Thailand [1997, 2003] (2003, 2007] (2007, 2017] 68082
Australia [2008, 2010] (2010, 2011] (2011, 2017] 65555
Singapore [2007, 2010] (2010, 2012] (2012, 2017] 50412
Sweden [2001, 2005] (2005, 2008] (2008, 2017] 43510
South Africa [1997, 2003] (2003, 2007] (2007, 2017] 41985
Poland [2006, 2009] (2009, 2011] (2011, 2017] 40630
Israel [2005, 2008] (2008, 2010] (2010, 2017] 37071
Vietnam [2010, 2012] (2012, 2013] (2013, 2017] 35671
Italy [2001, 2005] (2005, 2008] (2008, 2017| 35491
Turkey [2006, 2009] (2009, 2011] (2011, 2017] 33537
Switzerland [2002, 2006] (2006, 2009] (2009, 2017] 28259
Indonesia [2005, 2008] (2008, 2010] (2010, 2017] 27329
Greece [2006, 2009] (2009, 2011] (2011, 2017] 20216
Philippines [2006, 2009] (2009, 2011] (2011, 2017] 16963
Norway [2007, 2010] (2010, 2012] (2012, 2017] 16451
Sri_Lanka [2010, 2012] (2012, 2013] (2013, 2017| 16430
Denmark [2007, 2010] (2010, 2012] (2012, 2017] 12309
Finland [2007, 2010] (2010, 2012] (2012, 2017] 12305
Saudi_Arabia [2010, 2012] (2012, 2013] (2013, 2017] 11708
Jordan [2009, 2011] (2011, 2012] (2012, 2017| 11431
Egypt [2010, 2012] (2012, 2013] (2013, 2017] 9342
Spain [2011, 2012] (2012, 2013] (2013, 2017] 7493
Kuwait [2012, 2013] (2013, 2014] (2014, 2017] 6123
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Appendix C Hyperparameters of the Machine Learning
Models

‘ LASSO RIDGE RF GBRT+H NN1 - NN5
Huber loss, & 99.9% quantile
Penalty A€ (107%,10%) X2 € (107%,10°) A1 € (1075,1073)
Max Depth [1, 6] [1, 2]
Max Features {3, 5} {3, 5}
Estimators 300 [1, 1000] 10
Weighting Scheme {0.01, 0.1}
Learning Rate 0.01
Activation Function ReLU
Batch Size 10000
Epoches 100
Patience 5
Batch Normalization v
Neurons [32, 16, 8, 4, 2]
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Panel B.1: R2,,

OLS-3 OLS LASSO RIDGE RF GBRT+H NN1 NN2 NN3 NN4 NN5
Japan -0.19 -0.51 -0.14 -0.51 -0.42 -1.87 -0.54 -0.45 -0.46 -0.37 -0.32
China -0.02 0.01 0.04 0.01 -1.26 -8.75 -0.41 -0.35 -0.40 -0.27 -0.34
India 0.08 0.04 0.00 0.04 0.11 -0.63 0.33 0.32 0.34 0.37 0.35
Korea 0.25 0.30 0.23 0.30 -0.22 -0.38 0.44 0.43 0.39 0.41 0.39
Hong_Kong 0.15 -0.01 0.00 -0.01 0.07 -0.99 0.32 0.30 0.28 0.36 0.35
Taiwan -0.03 -1.02 -0.51 -1.02 -0.82 -6.48 -0.89 -0.70 -0.78 -0.65 -0.58
France 0.17 0.07 0.21 0.07 -0.10 -7.47 0.25 0.23 0.17 0.30 0.33
United Kingdom 0.05 -0.31 -0.12 -0.30 -0.44 -2.11 -0.30 -0.31 -0.57 -0.24 -0.10
Thailand 0.13 -0.49 -0.29 -0.49 0.15 -2.44 0.13 0.16 0.13 0.24 0.19
Australia 0.12 0.37 0.27 0.37 0.87 0.63 1.16 1.14 1.07 1.19 1.10
Singapore 0.17 0.46 0.28 0.46 0.65 0.06 1.54 1.49 1.53 1.58 1.39
Sweden 0.12 0.10 0.15 0.11 -3.12 -6.95 0.16 0.10 -0.10 0.10 0.15
South _ Africa 0.33 0.45 0.53 0.45 1.46 -2.14 1.64 1.54 1.55 1.57 1.42
Poland 0.11 -0.09 0.00 -0.09 -0.33 -3.03 0.43 0.49 0.44 0.55 0.49
Israel 0.24 -0.01 0.12 -0.01 -3.11 -5.32 -0.43 -0.59 -0.75 -0.35 -0.13
Vietnam 0.16 0.28 0.21 0.29 0.72 0.62 0.79 0.75 0.78 0.78 0.75
Italy 0.12 -0.90 -0.42 -0.90 -1.44 -5.67 -1.14 -0.91 -1.12 -0.75 -0.67
Turkey -0.04 -0.54 -0.31 -0.54 -0.74 -3.23 -0.58 -0.69 -0.67 -0.64 -0.46
Switzerland -0.18 -0.99 -0.50 -0.98 -12.33 -32.63 -3.08 -3.55 -4.20 -3.42 -2.86
Indonesia 0.21 -0.27 -0.24 -0.27 -0.32 -2.78 -0.01 -0.04 -0.02 0.02 0.07
Greece 0.03 0.85 0.55 0.85 0.65 -0.37 1.74 1.71 1.80 1.77 1.54
Philippines 0.08 -0.12 0.01 -0.11 0.10 -2.73 0.76 0.70 0.59 0.60 0.61
Norway 0.06 -0.20 0.00 -0.20 -4.37 -3.86 0.09 0.22 0.30 0.31 0.23
Sri_Lanka 0.03 0.57 0.35 0.57 0.13 0.62 0.90 0.81 0.72 0.80 0.91
Denmark -0.17 -0.22 0.20 -0.21 -0.33 -2.80 0.16 0.34 0.04 0.21 0.25
Finland 0.15 -0.54 -0.02 -0.53 -4.26 -14.51 -0.68 -1.08 -1.04 -0.61 -0.34
Saudi_ Arabia -0.06 -0.81 -0.09 -0.81 -1.22 -2.48 -0.62 -0.18 -0.45 -0.16 -0.10
Jordan 0.10 0.01 0.08 0.01 -1.10 -6.90 0.43 0.32 0.22 0.44 0.55
Egypt -0.13 -1.00 -0.32 -1.00 -0.73 -2.83 -0.52 -0.27 -0.52 -0.39 -0.40
Spain -0.15 -1.32 -0.62 -1.31 -0.65 -1.83 -1.94 -1.99 -2.14 -1.46 -1.31
Kuwait -0.03 -0.06 0.30 -0.05 -0.57 0.01 0.10 0.08 -0.02 0.26 0.11
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Panel B.2: Rank Correlation

OLS-3 OLS LASSO RIDGE RF GBRT+H NN1 NN2 NN3 NN4 NN5
Japan 0.82 4.20 4.21 4.20 4.45 4.75 5.33 5.31 5.48 5.36 5.17
China 2.36 7.65 6.92 7.65 6.53 6.84 6.37 6.23 5.79 6.14 5.70
India 1.97 4.15 3.23 4.15 5.16 5.46 5.91 5.45 5.98 5.85 6.10
Korea 5.49 7.89 7.29 7.88 8.80 8.04 8.39 8.36 8.17 8.24 8.12
Hong Kong 3.65 4.97 4.37 4.98 7.93 7.60 7.42 7.34 7.29 7.61 7.60
Taiwan 1.91 2.99 2.05 3.00 4.22 3.95 4.08 3.66 3.72 3.68 3.78
France 4.44 6.03 6.57 6.05 8.03 7.45 7.46 7.95 7.88 7.88 7.87
United _Kingdom 1.97 1.17 0.61 1.19 4.49 6.36 4.13 4.13 4.38 4.66 4.37
Thailand 3.59 4.02 3.41 4.02 5.66 5.12 6.60 6.47 6.49 6.79 6.65
Australia 2.66 4.43 4.60 4.45 7.67 9.23 7.41 7.39 7.16 7.38 7.40
Singapore 3.42 7.04 6.64 7.05 8.98 10.09 10.71 10.05 10.57 10.71 10.73
Sweden 4.73 5.24 5.13 5.26 6.82 7.51 6.29 6.32 6.31 6.61 6.40
South_ Africa 5.01 6.98 7.57 6.99 7.15 7.54 8.62 8.11 8.44 8.56 8.52
Poland 2.51 2.10 2.29 2.11 5.02 6.67 6.08 5.88 5.97 6.11 6.25
Israel 5.35 4.34 3.39 4.34 4.34 6.43 5.44 6.00 5.93 6.15 6.05
Vietnam 3.25 7.30 5.75 7.31 7.48 8.15 8.74 8.34 8.73 8.70 8.80
Italy 4.14 1.69 2.62 1.71 5.84 5.28 4.99 5.23 5.14 5.42 5.67
Turkey 1.27 2.67 1.72 2.68 4.24 4.85 4.71 4.79 4.94 4.86 4.52
Switzerland 1.73 3.39 3.36 3.41 3.94 5.06 5.19 5.63 5.36 5.29 5.27
Indonesia 1.06 0.55 -0.40 0.55 3.62 3.69 3.92 3.49 3.66 3.94 3.99
Greece 2.11 8.34 10.68 8.36 8.10 10.06 10.67 10.64 11.25 10.85 10.94
Philippines -0.20 3.66 4.33 3.67 6.74 7.89 7.85 7.23 7.18 7.18 .77
Norway 2.81 3.00 1.66 3.02 5.64 6.43 5.73 5.89 6.03 6.05 5.96
Sri_ Lanka 1.02 9.84 9.70 9.86 8.55 11.16 10.62 10.18 10.50 10.63 11.30
Denmark 1.38 2.28 3.88 2.30 4.92 7.16 4.85 5.22 5.41 5.24 4.86
Finland 4.27 4.88 4.59 4.89 4.74 5.61 6.48 7.48 7.60 7.38 7.07
Saudi_ Arabia 3.33 5.13 4.51 5.12 5.22 5.80 6.37 6.85 6.84 6.78 6.95
Jordan 2.27 6.77 4.53 6.77 5.72 5.83 7.97 7.07 7.20 8.08 8.06
Egypt 3.54 4.74 2.45 4.74 5.45 5.81 6.08 6.26 5.78 5.33 5.82
Spain -0.72 -2.00 -1.02 -2.01 1.08 2.94 0.03 0.64 0.15 0.97 0.92
Kuwait -0.53 2.80 5.98 2.79 3.08 4.47 3.64 3.49 3.65 3.66 4.09
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Panel B.3: Decile Score Distance

OLS-3 OLS LASSO RIDGE RF GBRT+H NN1 NN2 NN3 NN4 NN5
Japan 0.06 0.38 0.42 0.38 0.45 0.50 0.52 0.53 0.54 0.52 0.51
China 0.27 0.72 0.65 0.72 0.71 0.74 0.70 0.67 0.66 0.66 0.65
India 0.13 0.39 0.32 0.39 0.45 0.50 0.60 0.60 0.66 0.66 0.65
Korea 0.49 0.82 0.79 0.82 0.84 0.88 0.86 0.90 0.89 0.87 0.86
Hong Kong 0.34 0.51 0.47 0.51 0.75 0.76 0.84 0.82 0.87 0.88 0.87
Taiwan 0.21 0.30 0.24 0.30 0.42 0.45 0.38 0.45 0.42 0.40 0.37
France 0.38 0.60 0.67 0.60 0.80 0.72 0.73 0.77 0.78 0.73 0.75
United _Kingdom 0.21 0.08 0.15 0.08 0.33 0.60 0.41 0.42 0.40 0.44 0.39
Thailand 0.37 0.35 0.29 0.34 0.59 0.54 0.76 0.73 0.75 0.80 0.76
Australia 0.30 0.42 0.54 0.43 0.85 1.12 0.88 0.96 0.93 0.89 0.84
Singapore 0.32 0.77 0.83 0.77 1.03 1.17 1.30 1.30 1.33 1.33 1.28
Sweden 0.44 0.59 0.61 0.59 0.54 0.74 0.67 0.65 0.67 0.66 0.59
South_ Africa 0.54 0.64 0.74 0.64 0.67 0.83 0.94 0.89 0.89 0.86 0.93
Poland 0.31 0.28 0.32 0.28 0.44 0.67 0.54 0.65 0.62 0.70 0.60
Israel 0.55 0.49 0.40 0.48 0.36 0.60 0.56 0.66 0.62 0.56 0.59
Vietnam 0.38 0.56 0.58 0.55 0.84 0.77 0.86 0.91 0.87 0.86 0.91
Italy 0.39 0.19 0.29 0.20 0.52 0.53 0.48 0.57 0.55 0.57 0.50
Turkey 0.07 0.37 0.28 0.37 0.33 0.46 0.52 0.52 0.53 0.54 0.49
Switzerland 0.16 0.38 0.46 0.39 0.28 0.43 0.40 0.39 0.38 0.42 0.34
Indonesia 0.13 -0.10 -0.12 -0.10 0.22 0.25 0.35 0.37 0.46 0.37 0.38
Greece 0.16 0.89 1.12 0.89 1.10 1.15 1.37 1.38 1.36 1.30 1.34
Philippines -0.14 0.43 0.59 0.43 0.86 0.91 1.06 0.98 0.96 0.95 0.99
Norway 0.31 0.33 0.13 0.32 0.42 0.50 0.45 0.55 0.54 0.57 0.48
Sri_ Lanka 0.09 0.95 1.05 0.97 0.98 1.21 1.21 1.16 1.21 1.22 1.27
Denmark 0.21 0.41 0.45 0.41 0.52 0.83 0.79 0.72 0.82 0.74 0.71
Finland 0.35 0.42 0.49 0.42 0.32 0.54 0.63 0.67 0.72 0.67 0.60
Saudi_ Arabia 0.29 0.60 0.29 0.60 0.58 0.52 0.70 0.69 0.69 0.61 0.71
Jordan 0.33 0.70 0.37 0.71 0.60 0.52 0.91 0.74 0.75 0.87 0.86
Egypt 0.22 0.54 0.34 0.54 0.41 0.44 0.55 0.53 0.51 0.58 0.60
Spain -0.01 -0.07 -0.02 -0.06 0.04 0.31 0.18 0.14 0.25 0.24 0.15
Kuwait -0.06 0.45 0.60 0.45 0.40 0.49 0.56 0.48 0.52 0.46 0.54

Panel C: Comparison of model performance
Sharpe Ratio (EW) Sharpe Ratio (VW) R?
Tree—Linear NN-—Linear NN—Tree | Tree—Linear NN-—Linear NN—Tree | Tree—Linear NN-—Linear NN—Tree

difference 0.41 0.65 0.25 -0.05 0.37 0.42 -1.17 0.01 1.18
# of + 26 30 25 15 27 29 8 17 30
fraction of + 0.84 0.97 0.81 0.48 0.87 0.94 0.26 0.55 0.97

difference
# of +

fraction of +

Rank Correlation

Decile Score Distance

Tree—Linear NN-—Linear NN—Tree

1.69 1.75 0.06
26 29 15
0.84 0.94 0.48

Tree—Linear
0.15
26
0.84

NN-—Linear NN—Tree

0.22
28
0.90

0.07
22
0.71
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Panel C: Comparison of model performance

Sharpe Ratio (EW)

Sharpe Ratio (VW)

Tree—Linear NN-—Linear NN-—Tree | Tree—Linear NN-—Linear NN-—Tree
difference 0.17 0.60 0.44 -0.21 0.41 0.61
All markets — # of + 19 26 25 12 25 28
fraction of + 0.59 0.81 0.78 0.38 0.78 0.88
difference 0.37 0.77 0.41 -0.14 0.55 0.68
Top half # of + 13 15 12 8 13 13
fraction of + 0.81 0.94 0.75 0.50 0.81 0.81
difference 0.37 0.77 0.41 -0.14 0.55 0.68
Bottom half  # of + 6 11 13 4 12 15
fraction of + 0.38 0.69 0.81 0.25 0.75 0.94

Rank Correlation

Decile Score Distance

Tree—Linear NN-—Linear NN-—Tree | Tree—Linear ~NN-—Linear NN-—Tree
difference -0.04 1.08 1.12 0.02 0.20 0.19
All markets ~ # of + 18 24 23 17 25 23
fraction of + 0.56 0.75 0.72 0.53 0.78 0.72
difference 1.01 1.69 0.68 0.08 0.18 0.10
Top half # of 4 14 14 12 11 13 10
fraction of + 0.88 0.88 0.75 0.69 0.81 0.62
difference -1.10 0.47 1.57 -0.05 0.23 0.28
Bottom half 4 of 4 4 10 11 6 12 13
fraction of + 0.25 0.62 0.69 0.38 0.75 0.81
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Table 3. Comparison of Performance Between Market-Specific and U.S.-Estimated Models

Panel A reports the comparison of return predictions between market-specific and U.S.-estimated machine
learning models. For each market, difference is calculated as the equal-weighted (EW) or value-weighted
(VW) Sharpe Ratio based on the market-specific model minus that based on the U.S.-estimated model.
The corresponding U.S.-estimated model is trained and validated using the U.S. data in the same years
that the market-specific model uses. Machine learning models are estimated with the data of the 36 stock
characteristics (listed in Appendix A). The models include neural networks with one to five layers (NN1-
NNS5). “# of +” refers to the number of markets with a positive value of difference, and the fraction of markets
with positive difference is also reported. Panel B reports the improvements of Sharpe ratio (difference) for
NN1-NN5 models by subsamples equally split by models’ CKA similarity.

Panel A: Sharpe Ratio improvement between market-specific and U.S.-estimated model

‘ NN1 NN2 NN3 NN4 NN5

difference 0.74 0.77 0.75 0.69 0.74

Sharpe Ratio (EW) | # of + 26 26 26 24 27
fraction of + 0.84 0.84 0.84 0.77 0.87

difference 0.52 0.46 0.40 0.42 0.52

Sharpe Ratio (VW) | # of + 24 23 24 23 23
fraction of + 0.77 0.74 0.77 0.74 0.74

Panel B: CKA similarities and Sharpe Ratio improvement

| NN1 NN2 NN3 NN4 NN5
Low CKA 92 1.1 92 . 1.2
Sharpe Ratio (EW) ?W © 0.9 0 0.9 0.78 0
High CKA 0.56 0.44 0.58 0.60 0.30
Low CKA 0.49 0.65 0.52 0.54 0.83
Sharpe Ratio (VW) _OW
High CKA 0.55 0.27 0.28 0.30 0.21
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Table 5. Performance Comparison Between the Augmented and Original Non-U.S. Models

The table reports the comparison of return predictions between augmented and original machine learning
models based on a pooled sample of non-U.S. stocks. The testing sample is from 2006 to 2017. Augmented
models are estimated with the data of the 36 stock characteristics (listed in Appendix A), market dummies,
US factors, US characteristic gaps, and local factors, while original models are estimated with only stock
characteristics and market dummies. The models include neural networks with one to five layers (NN1-NN5).
For each model, we calculate the difference of the performance measures (i.e., equal-weighted (EW) or value-
weighted (VW) Sharpe Ratio) between the augmented and original model (augmented minus original).

Panel A: Augmented model using all stock characteristics, all US factors, all local factors, and all US characteristic
gaps vs. original model

\ NN1 NN2 NN3 NN4 NN5 \Best NN

Sharpe Ratio (EW) -0.31 0.15 0.72 0.36 0.83 0.57
Sharpe Ratio (VW) 0.29 0.31 0.66 0.43 0.54 0.54

Panel B: Augmented models using all stock characteristics, top 10 US factors, top 10 local factors, and top 10 US
characteristic gaps vs. original model

\ NN1 NN2 NN3 NN4 NN5 \Best NN

Sharpe Ratio (EW) 0.31 0.73 0.76 0.52 0.93 0.75
Sharpe Ratio (VW) 0.23 0.66 0.94 0.45 0.61 0.68
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Table 6. Performance Comparison Between the Augmented and Original Market-Specific Models

The table reports the comparison of return predictions between augmented market-specific and original
market-specific machine learning models across the top 25 markets in Appendix B. For each market, differ-
ence is calculated as the equal-weighted (EW) or value-weighted (VW) Sharpe Ratio based on the augmented
market-specific model minus that based on the original market-specific model. Augmented models are esti-
mated with the data of the 36 stock characteristics (listed in Appendix A), US factors, and US characteristic
gaps, while original models are estimated with only stock characteristics. The models include neural net-
works with one to five layers (NN1-NN5). “4 of +” refers to the number of markets with a positive value of
difference, and the fraction of markets with positive difference is also reported.

Panel A: Augmented models using all stock characteristics, top 10 US factors, and top 10 US characteristic gaps

‘ NN1 NN2 NN3 NN4 NN5 Best NN

difference 0.08 0.14 0.05 0.13 0.17 0.10
Sharpe Ratio (EW) | # of + 16 15 16 14 14 16
fraction of + 0.64 0.6 0.64 0.56 0.56 0.64
difference 0.01 0.15 0.13 0.14 0.37 0.15
Sharpe Ratio (VW) | # of + 11 17 17 18 22 18
fraction of + 0.44 0.68 0.68 0.72 0.88 0.72

Panel B: Augmented models using all stock characteristics, and top 10 US characteristic gaps

‘ NN1 NN2 NN3 NN4 NN5 Best NN

difference 0.10 0.07 0.12 0.16 0.04 0.12
Sharpe Ratio (EW) | # of + 13 12 16 16 13 18
fraction of + 0.52 0.48 0.64 0.64 0.52 0.72
difference 0.07 0.17 0.33 0.31 0.42 0.29
Sharpe Ratio (VW) | # of + 15 16 17 21 19 22
fraction of + 0.60 0.64 0.68 0.84 0.76 0.88

Panel C: Augmented models using all stock characteristics, and top 10 US factors

‘ NN1 NN2 NN3 NN4 NN5 Best NN

difference -0.04 -0.07 0.01 0.02 -0.02 -0.08
Sharpe Ratio (EW) | # of + 12 8 10 9 10 7
fraction of + 0.48 0.32 0.4 0.36 0.4 0.28
difference -0.02 -0.01 0.01 -0.02 0.07 -0.04
Sharpe Ratio (VW) | # of + 14 13 15 12 12 12
fraction of + 0.56 0.52 0.6 0.48 0.48 0.48
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Figure 1. Relative Importance of the U.S.-estimated Model

Variable importance for the 36 stock characteristics (listed in Appendix A) in each model in the U.S. market.
Rows correspond to individual models, and color gradients within each row indicate the most influential (dark
blue) to least influential (red) variables. Variable importances within each model are normalized to sum of
one.

oLs

LASSO

NN4 NN3 NN2 IN1 GBRT+H RF RIDGE

NN5

m
sp
turn
ep

cfp

herf

dy
salecash
il

acc

o~
E <
3
S
3

retvol
dolvol
cfp_ia
I
petace
depr

3
2
E

mom_1
mom_6
chmom_6
maxret
bm_ia
mve_ia
stddolvol
stdturn
cashpr
absacc
cashdeb
chpmia

indmom_a_12

50



Figure 2. Model Performance and Sample Size

This figure plots the improvements of equal-weighted Sharpe Ratio (Panel (a)), value-weighted Sharpe Ratio
(Panel (b)), Rank Correlation (Panel (c)), and Decile Score Distance (Panel (d)) of the best RT and NN
models relative to the best linear model against the sample size, with a fitted line with 95% confidence
intervals. The horizontal dashed line represents no improvement.
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Figure 3. Relative Importance: International Markets

Variable importance for the 36 stock characteristics (listed in Appendix A) in the best performing NN model
(based on value-weighted Sharpe Ratio) in each market. Rows correspond to each market, and color gradients
within each column indicate the most influential (dark blue) to least influential (red) variables. Variable
importances within each market are normalized to sum to one. The figure lists the top 25 markets based on
the number of observations.
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Figure 4. Relations Between Sharpe Ratio Improvements and CKA Similarity

This figure plots the improvements of equal-weighted Sharpe Ratio (Panel (a)) and value-weighted Sharpe
Ratio (Panel (b)) from the U.S.-estimated to market-specific NN5 models against the models” CKA similarity,
with a fitted line with 95% confidence intervals.
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Figure 5. Group Variable Importance in Augmented NN Models

Group variable importance in the best performing augmented NN model (based on value-weighted Sharpe
ratio) using all stock characteristics, top 10 US factors, top 10 local factors, and top 10 US characteristic gaps
in a pooled non-U.S. market. Variable importance is normalized to sum to one. Variables are categorized
into 4 groups: stock characteristics, US factors, local factors, and US characteristic gaps. We report the sum
of variable importance in each variable group.
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Figure 6. Importance of U.S. Variables and Market Segmentation/Integration Measures

This figure plots the sum of variable importance of U.S. characteristic gaps in the best performing augmented
NN model (based on value-weighted Sharpe Ratio) for the top 25 markets in the list of Appendix B against
each market’s rank of segmentation index in Panel (a), of economic integration index in Panel (b), and of
financial integration index in Panel (c).

Australia
.India
0.50 A
'China Sri_Lanka_.
i United_Kingdom
0.45 — -
0.40 A
Turkey
s € Thailand
0.35 A France
.South_Africa' & Greece
Indonesia
0.30 A Norway
' h J
0 5 10 15 20
(a) Segmentation
0.55 A Taiwan
L4 Australia
.India
0.50 A
.China
0.45 A .Israel United_Kingdom
& .
Hong_Kong Si
S 'tzgrra.nd
i Philippines Wi
0.40 Koraa .Italy Japan.
ey
— L4 & Thailand .—De”maF'k
4 rance
03571 & ® poland L4 South_Africa
Indonesia L
0.30 1 .’Norway
0 5 10 15 20
(b) Economic Integration
0.55 A Taiwan
& Australia
.India e
0.50 1
.China ‘ .
0.45 4 United_Kingdom

Israel

Hong_Kong
Singapore Switzerland
9 -9

Philippines 2
0.40 A _'.—_EL_TOrea W .Italy
Turkey
'Thailand. -8 a:j”mag(
reece

R F

0.35 So‘nh_Afﬁc'a L 4 rance 4
.Indonesia

0.30 A ._Norway

0 5 10 15 20

(c¢) Financial Integration

95



	Introduction
	Data and Methodology
	Data
	Model Estimation, Hyperparameter Tuning, and Out-of-sample Test
	Post-estimation Evaluation

	Predicting Stock Returns Using Machine Learning
	U.S. Stock Returns
	International Stock Returns with the U.S.-Estimated Models
	International Stock Returns with Market-Specific Models

	Applications to International Asset Pricing
	Return-Characteristics Relationships: Common or Market-Specific?
	Cross-Market Integration

	Conclusion
	List of Stock Characteristics
	List of International Markets
	Hyperparameters of the Machine Learning Models

