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Abstract
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1 Introduction

Variables related to firm characteristics, such as size, value, and momentum, predict inter-

national stock returns (Fama and French (1998, 2012, 2017); Hou, Karolyi, and Kho (2011);

Rouwenhorst (1998)). The international finance literature also finds that global equity mar-

kets are partially, but not fully, integrated (see Karolyi and Stulz (2003) and Lewis (2011)

for a review). The lack of full integration suggests that the predictive power of different firm

characteristics varies across markets. At the same time, when the markets are not totally

segmented, information obtained from the firm characteristics in a foreign market may be

relevant for local stocks.

How do we form predictions in many different markets without pre-specifying the models?

How can foreign firm characteristics improve the return predictability of local models? Our

paper examines these issues using machine learning techniques and attempts to increase

the economic profits earned by international investors. Constructing a market-specific asset

pricing model typically requires the knowledge of institutional details (say, the price limit

rules in China), but machine learning is capable of detecting non-monotonic relationships and

complex interactions between returns and many characteristics even without such knowledge.

Machine learning also allows us to explore various foreign variables and their interactions

with local variables, which may not be ideal in a linear setting due to its inability to capture

complex relationships.

Most studies that use machine learning to study the relationship between stock returns

and firm-level variables focus on the U.S.1 We first verify that the machine learning methods

can be applied in a large number of international markets. Then we show that market-specific

models, which are trained separately for each market and may capture market-specific return-

characteristic relationships, outperform a global model trained using U.S. data. Based on a
1See, for example, Avramov, Cheng, and Metzker (2022); Feng, Polson, and Xu (2022); Feng and He

(2021); Gu, Kelly, and Xiu (2020, 2021); Freyberger, Neuhierl, and Weber (2020); Rapach and Zhou (2020);
Chen, Pelger, and Zhu (2019); Chinco, Clark-Joseph, and Ye (2019); Han, He, Rapach, and Zhou (2018).
Karolyi and Van Nieuwerburgh (2020) highlight the risk of overfitting the data by these complex algorithms
and that there is “only one out-of-sample sample” (from the U.S.).
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machine-learning measure of similarity that we introduce, we find that the outperformance

is larger when the international market is less similar to the U.S. We also find that market-

specific machine learning models can be further enhanced by adding variables constructed

from the distribution of U.S. firm characteristics.2 The markets in which the U.S. variables

are more relevant are also those classified as more integrated based on well-accepted measures.

Our analysis emphasizes non-linearity. As in Gu, Kelly, and Xiu (2020) (GKX), we

compare the performance of linear and non-linear models. We examine linear OLS models

and their variants: OLS with a Huber loss function that makes it less sensitive to outliers;

LASSO, which selects a subset of predictors; and RIDGE, which restricts the magnitude of

the regression coefficients. We study two classes of non-linear models—regression trees (RTs)

and neural network (NN) models (with 1 to 5 hidden layers). Trees are a non-parametric

method for classifications and regressions that predicts the value of a target variable by

learning simple decision rules inferred from the data features. NN models aggregate and

transform input signals into outputs, allowing for multiple layers of transformation and

therefore complex interactions among the predictors. In each test, we set aside training

and validation periods to train our models and select the hyperparameters, and then use

the models to construct forecasts of one-month-ahead stock returns (denominated in U.S.

dollars and in excess of the corresponding market return) in the testing period, which does

not overlap the other two periods.

While the literature identifies a long list of characteristics that seem to predict returns,

data availability is lower internationally and we trim down the list of explanatory variables to

36.3 These 36 variables include the most accessible stock characteristics such as past returns,

market capitalization, trading volume, past returns of the industry, and accounting infor-

mation. The first set of analysis, in which we train and validate our models using only past
2As Rapach, Strauss, and Zhou (2013) argue, the U.S. is a large trading partner for many markets, and its

stock market is the world’s largest and is relevant for other economies. They show that lagged U.S. market
returns can predict the index returns in other markets.

3Harvey, Liu, and Zhu (2016) count that 316 factors have been proposed by 313 papers. McLean and
Pontiff (2016) examine 97 characteristics in finance, accounting, and economics journals. Hou, Xue, and
Zhang (2020) compile a list of 452 variables.
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U.S. data, is a stringent test for the machine learning methods. We follow the methodologies

of GKX and use their set of potential hyperparameter values. We use the hyperparameter

and parameter values estimated from the U.S. to form the predictions in all 32 markets (31

international markets plus the U.S.).4 Using 94 characteristics, 8 macroeconomic predictors,

and 74 industry dummies (i.e., a total number of 920 (= 94× (8+1)+74) covariates), GKX

conclude that both RTs and NN models outperform linear models in terms of out-of-sample

R2 and long-short portfolio (top- minus bottom-decile of predicted returns) Sharpe Ratios.

With 36 covariates, the R2 and Sharpe Ratios of our RTs and NN models in the U.S. are

comparable to those in GKX, consistent with recent evidence that a modest number of fac-

tors can explain cross-sectional U.S. stock returns (Feng, Giglio, and Xiu (2020); Freyberger

et al. (2020); Kozak, Nagel, and Santosh (2020)).

We find that non-linear models, NN in particular, generate larger economic profits than

linear models in most international markets. Compared with the best linear method, we find

that the best NN model outperforms in equal- (value-) weighted Sharpe Ratios in 30 (27)

of the 31 markets. The out-of-sample R2 of RTs and NN models is, however, less impressive

and is often similar to that of linear models, possibly due to extreme values of international

stock returns and characteristics. Kelly, Malamud, and Zhou (2022) also point out that

out-of-sample R2 can be a poor measure of the economic value of prediction models. We

use two alternative measures that compare the predicted and actual return ranks and deciles

(and are hence less affected by outliers), and again show the dominance of machine learning

models and allay concerns of overfitting in the U.S.-based analysis.

In the second set of tests, we examine whether the models are robust when trained with

different data and environments. Here we train and validate each model separately for each

market. GKX show that the highest equal-weighted Sharpe Ratio (2.45) and value-weighed
4Hyperparameters define the model structure and learning process. Typically, a few sets of hyperparam-

eter values are specified manually, and the machine learning algorithm selects the best set. Parameters are
estimated from the data automatically given the hyperparameter values. Although prior U.S. results are
based on an out-of-sample period, the models’ predictive power and estimated parameters could be highly
sensitive to the choice of the hyperparameter values.
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Sharpe Ratio (1.35) are achieved by a NN model in the U.S. In most international markets,

we find that NN is also the most profitable model within the market and is able to generate

annualized Sharpe Ratios that are close to or above 2 (in equal-weighted portfolios) or

above 1 (value-weighted). In this analysis, RTs show signs of overfitting and produce poor

predictions. The best tree model underperforms the best linear model in terms of Sharpe

Ratio and our decile-based measures in 41–62% of the markets. The effectiveness of RTs

seems to depend heavily on the number of observations, as the underperformance of RTs is

more pronounced in markets where there are fewer stocks and a shorter time period.5 Given

this finding, we focus on NN models in the remaining analysis.

The Sharpe Ratios in the market-specific NN models are usually higher than those in our

U.S.-trained NN models. The difference is larger when the two models are less similar, as

defined by the centered kernel alignment (CKA) similarity index (Kornblith, Norouzi, Lee,

and Hinton (2019)). To our best knowledge, we are the first paper in the finance literature

that adopts the CKA index, which studies the last hidden layer and considers complex

interactions to identify structural similarities between two NN models. The CKA index

can therefore be roughly interpreted as a summary measure of how much an international

market resembles the U.S. market in terms of return-characteristic relationships. Our results

suggest that return predictability can be enhanced by building a different model that better

incorporates the market-specific components; therefore, local models appear to dominate a

global one (trained using U.S. data).

Among the 36 variables, we show that firm size, one-month return reversal, and daily

return volatility are the most important predictors in the U.S., while in other large interna-

tional markets some other predictors can dominate. For example, volatility of dollar trading

volume and of share turnover are important predictors in China, consistent with Liu, Stam-

baugh, and Yuan (2019) and Leippold, Wang, and Zhou (2021), who show that turnover can
5Cong, Feng, He, and He (2022) point out that standard tree models assume data are i.i.d., ignoring

the cross-sectional correlations and time-series information; and the algorithm focuses on local optimization
and can be prone to overfitting. They introduce a class of interpretable tree-based models for analyzing
unbalanced panel data.
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capture the impact of speculative trading by retail investors in China.

Our evidence confirms that NN is powerful from the perspective of a U.S. investor who

decides to invest in each of these markets separately. We run an additional test pooling all

32 markets together and adding 31 country dummies as model inputs, which allow return-

characteristics relations to vary across markets within one model. This test also corresponds

to the case that a U.S. investor invests globally (ignoring any frictions associated with short

selling). NN models continue to yield the best predictions among all models. We construct

an alpha relative to Fama and French (2015) five factors plus momentum factors for devel-

oped markets and emerging markets. The best NN model gives a monthly equal-weighted

(value-weighted) alpha of 3.84% (2.12%) (the results are similar if we use alternative models

developed by Hou et al. (2011) and Karolyi and Wu (2018), both of which target to explain

global stock returns). NN models also face lower downside risk—the maximum drawdown

and the maximum one-month loss are usually smaller than those of other models.

In the final analysis, we investigate whether information extracted from U.S. stocks can

further enhance the return predictability of NN models in international markets. Although

we do not specify an asset pricing model formally by estimating sensitivities to risk factors

(betas), our test is motivated by Cohen, Polk, and Vuolteenaho (2003) and Huang (2022),

who find that gaps in book-to-market and in past returns, respectively, can predict the

corresponding factor’s return premium. We show that U.S. characteristic gaps add con-

siderable incremental power to NN in both the global model of non-U.S. stocks and the

market-specific models. In the market-specific models, we find that the variable importance

of the U.S. characteristic gaps increases with the market integration metrics constructed by

Bekaert, Harvey, Lundblad, and Siegel (2011) and Akbari, Ng, and Solnik (2020). There-

fore, we provide suggestive evidence that the cross-section of U.S. stocks contains information

relevant for international stocks, above and beyond their own characteristics. Markets are

partially integrated, and the U.S. variables are more useful in markets that are closer to full

integration.
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Our paper belongs to the burgeoning literature that predicts asset returns with machine

learning.6 Freyberger et al. (2020) propose an adaptive group LASSO procedure to select

characteristics and find that many previously identified return predictors do not provide

additional information. Kozak et al. (2020) construct a robust stochastic discount factor

from a small number of principal components. Feng et al. (2020) develop a regularized two-

pass cross-sectional regression approach and show that only a small number of factors remain

significant over time. Rapach and Zhou (2020) extend the approach of Han et al. (2018),

designed for forecasting cross-sectional stock returns, and use the combination elastic net to

predict the market excess return. Bali, Goyal, Huang, Jiang, and Wen (2020) use U.S. stock

and bond characteristics to examine cross-market return predictability and conclude that the

stock and bond markets are somewhat disintegrated. Bianchi, Büchner, and Tamoni (2021)

and Bianchi, Büchner, Hoogteijling, and Tamoni (2021) show that NN and RTs improve

the predictions of U.S. Treasury bond returns over linear techniques. Although machine

learning is powerful, our paper suggests that we should exercise caution when applying it to

international markets, where the number of observations is lower than the U.S.7

In international studies, Griffin (2002) finds lower pricing errors when local versions

of Fama and French’s three-factor model are used, compared with a world factor model.

Hou et al. (2011) and Bekaert, Hodrick, and Zhang (2009) show that stock returns can be

explained by local and international factors built from firm characteristics such as size, book-
6While it is not the main focus of the paper, we show evidence in the Online Appendix that both the

non-linearity in the return-characteristic relationships and the complex interactions among predictors are
important for NN’s superior performance. First, when we add non-linearity via spline functions of individual
features, the performance of OLS and LASSO in predicting U.S. stock returns improves, but it is still behind
NN’s performance. Second, we introduce a new class of models, Multivariate Adaptive Regression Splines
(MARS), which is similar to trees and NNs (see the Online Appendix for details). When MARS with
two degrees of terms (MARS2) is used, it takes into account both non-linearity and interactions. MARS2
generates equal- and value-weighted Sharpe Ratios and R2 in the U.S. market that are similar to those
generated by NNs. MARS with one degree of terms (MARS1), which only allows non-linearity but not
interactions, underperforms MARS2 and NNs.

7Two recent papers by Cakici and Zaremba (2022) and Cakici, Fieberg, Metko, and Zaremba (2022) also
show that machine learning models are effective in predicting the index returns and stock returns globally,
but they do not compare local and U.S.-trained models and do not examine the issues of the number of
observations, foreign factors, and market integration.
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to-market ratios, cash flow-to-price, and momentum.8 Carrieri, Chaieb, and Errunza (2013),

Hau (2011), Bekaert et al. (2009), and De Jong and De Roon (2005) observe that developed

markets are integrated, but emerging markets are segmented. Bekaert et al. (2009) argue

that a country’s regulations, political risk, and stock market development are local segmen-

tation factors and U.S. corporate credit spread is a global segmentation factor. While we

show evidence that the return-generating process seems to vary across markets, international

markets are not totally segmented. Our NN models identify U.S.-based variables that help

explain the cross-section of international stock returns.

2 Data and Methodology

2.1 Data

We obtain data on stock returns, trading volume, market capitalization, and industry

information from DataStream. We winsorize raw returns at the top and bottom 2.5% in each

exchange in each month to correct for potential data errors. Following Hou et al. (2011) and

Ince and Porter (2006), all monthly returns that are above 300% and reversed within 1

month, as well as zero monthly returns, are removed (DataStream repeats the last valid

data point of the return index for delisted firms). We obtain firm accounting information

from Factset. We follow Green, Hand, and Zhang (2017) and attempt to construct the 94

characteristics used in their paper, but due to low data availability of certain variables in

some markets, we end up with 36 characteristics as our model input, listed in Appendix A.

For the U.S. and China, we use the data with CRSP and CSMAR, respectively, because of

better coverage. We download data for as many markets as possible and require each market
8Our paper does not examine whether the explanatory power arises from the firm-level characteristics or

from the covariance structure of returns that is related to these characteristics. For evidence on these two
views, see Daniel and Titman (1997); Davis, Fama, and French (2000); Daniel, Titman, and Wei (2001);
Hou et al. (2011); see also Kelly, Pruitt, and Su (2019) and Gu et al. (2020), who use machine learning to
analyze U.S. stocks. We leave the interesting question of why characteristics are priced internationally in
machine learning models for future research.
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to have at least 100 stocks with valid observations of return and the 36 characteristics for

at least 3 years. As a result, 32 markets, including the U.S., are in the final sample. Our

data range from 2.4 million stock-month observations in the U.S. to around 6,100 in Kuwait.

Appendix B provides the details. We normalize all stock characteristics to zero mean and

unit standard deviation by month and market before inputting them into the model.

2.2 Model Estimation, Hyperparameter Tuning, and Out-of-sample

Test

We focus on three categories of machine learning models: linear, regression trees (RTs),

and neural network (NN), as in GKX. Linear models include OLS and its variants: OLS

with a Huber loss function; LASSO, which selects a subset of predictors; and RIDGE, which

restricts the magnitude of the regression coefficients. RTs are a non-parametric method

for classifications and regressions. The goal is to create a model that predicts the value

of a target variable by learning simple decision rules inferred from the data features. NN

models aggregate and transform input signals into outputs, allowing for multiple layers of

transformation and therefore complex interactions among the predictors. Both RT and NN

models can capture non-linear and complex interaction effects. More technical details of the

machine learning models are in the Online Appendix.

All models are set to predict the next month stock returns in U.S. Dollars in excess of

the corresponding market return. This means that we focus on the return predictability

in the cross section.9 To train the model for each market, we separate the sample of the

market into 3 non-overlapping parts, while maintaining their chronological order. Training

data, which consist of the first 30% of the periods, are used to estimate the model subject

to a particular set of hyperparameter values. Validation data, accounting for 20%, are

deployed to construct forecasts and calculate objective functions based on the estimated
9The results are similar if we set to predict returns in excess of U.S. risk-free rate and if we use returns

in the local currency instead of U.S. Dollars.
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model from the training sample. During the validation process, we iteratively search for the

best set of hyperparameters that optimizes the objective functions (and in each iteration we

estimate the model again from the training data under the current hyperparameter values).

Finally, testing data are the remaining 50%; they are “out-of-sample” in order to provide

objective assessments of the models’ performance after determining hyperparameters and

normal parameters for the models.

Due to limited computational resources, as noted by GKX, models get retrained annually

instead of monthly. Also, when we predict the returns in the next calendar year, the training

data expands by one year whereas validation samples are maintained with the same size.

For example, as shown in Appendix B, when predicting the cross-sectional stock returns in

1990 in the U.S., we set the training and validation samples as [1963, 1979] and [1980, 1989],

respectively. When we predict the cross-sectional returns in 1991, the training and validation

samples are [1963, 1980] and [1981, 1990], respectively.

We choose the same or the subset of the potential hyperparameter values of GKX, as

shown in Appendix C. We first train and validate the model for the U.S. market following the

above-mentioned procedure. Then, we apply the U.S.-estimated models to the corresponding

years of other markets. This is our out-of-sample test using international data to investigate

if the model overfits the U.S. data.

Our second test allows the machine learning model to be trained and validated using

each market’s data with the same set of potential hyperparameter values. Thus, the market-

specific models, which can choose different hyperparameter values and vary across different

countries/regions, are likely to be different from the U.S.-estimated models. If the machine

learning model with its estimation and regularization techniques can truly capture the un-

derlying data-generating process, which presumably varies across markets, market-specific

models should outperform the U.S.-estimated model in non-U.S. markets.
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2.3 Post-estimation Evaluation

We use a basket of measures to evaluate the overall performance of machine learning

models and interpret the estimated models.

Sharpe Ratio. Our primary measure of model performance is the annualized Sharpe

Ratio of long-short portfolio returns based on predicted returns (long stocks in the top decile

of predicted returns and short stocks in the bottom decile). As a widely used measure

of return predictability, our reported Sharpe Ratios can quantify the profitability when

one exploits machine learning models for trading and be compared with other portfolios

or trading strategies, such as the market portfolio or momentum.10 Compared with other

measures introduced later, Sharpe Ratios are economically meaningful from the perspective

of investors.

Out-of-sample R2. To evaluate the predictability of each model, we report the out-of-

sample R2 (R2
oos) based on Equation (1), which examines the model’s forecast error (the sum

of the squared differences between actual returns and predicted returns) and measures how

the model’s predictions fit the actual data. Following GKX, the denominator is the sum of

squared excess returns without demeaning, as they argue that the alternative way of using

the historical average will inflate the monthly out-of-sample R2 by approximately 3%. We

first calculate the R2
oos for individual stocks, i.e.,

R2
oos = 1−

Σ(i,t)∈Test (ri,t − r̂i,t)
2

Σ(i,t)∈Test r2i,t
(1)

While it is an intuitive and widely used measure of prediction accuracy, as we show

later, R2
oos turns out to be sensitive to outliers (i.e., extreme prediction errors). This is

particularly an issue of emerging markets, as realized returns and characteristics sometimes

can have extreme values. In addition, Kelly et al. (2022) also point out that R2
oos might

10The Sharpe Ratios are computed in the same manner as GKX. Kan, Wang, and Zheng (2022) note that
high Sharpe Ratios are rarely delivered by professional fund managers. They show that out-of-sample Sharpe
Ratios should be lower after taking into account the estimation risk of mean and co-variance of returns.
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be a poor measure of the economic value of the forecast returns; for example, investors can

generate potentially large economic profits even when R2
oos is negative. To address those

issues, we propose two alternative measures below.

Rank Correlation. We calculate the rank correlation between ri,t and r̂i,t, which mea-

sures the degree of similarity between the cross-sectional rankings of realized and predicted

stock returns. In this paper, we choose Spearman’s rank correlation coefficient, defined as

the Pearson correlation coefficient between the rank variables. A higher rank correlation

implies a more accurate model forecast.

Decile Score Distance. We sort stocks into deciles based on the model’s predicted

returns, and long (short) the top (bottom) decile. For each model, we calculate the actual

return deciles of the long and the short portfolios in each market, and define a difference

between the two as Decile Score Distance. If a model has zero predictive power, the actual

return deciles would be 5.5 for both the long and the short portfolios on average, and Decile

Score Distance would be zero. If a model has perfect predictive power, the actual return

decile for the long (short) portfolio would be 10 (1), and the Decile Score Distance would be

9. Decile Score Distance measures the accuracy of model predictions in extreme deciles.

While machine learning models are regarded as “blackbox,” the following measures are

useful to interpret the return-characteristic relationship implied from the estimated models.

Relative Importance of Predictors. To identify significant predictors, we adopt the

approach by Dimopoulos, Bourret, and Lek (1995) that the relative contribution of each input

variable can be measured by computing the Sum of the Squares of the partial Derivatives

(SSD). For the contribution of the j-th input variable to the function f that predicts excess

stock returns, we calculate

SSDj =
∑
k

(
∂f

∂xj

∣∣∣∣
x=xk

)2

(2)

where xk means the k-th observation. Then, we normalize all variables’ SSD to sum of one,

i.e., SSDj∑
i SSDi

.11

11An alternative way to measure an input variable’s importance (VI) is to calculate the decline in R2
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CKA Similarity Index. This measure compares the estimated structure of different

machine learning models. In our context, we are interested in how a market’s specific return-

characteristic relationship is different from the U.S.-estimated one. While it is difficult

to do so directly, we can nonetheless quantify the structural similarities of two estimated

models. Specifically, we calculate a similarity index, centered kernel alignment (CKA) from

Kornblith et al. (2019), which compares representations between different trained neural

network models.

Specifically, let X ∈ Rn×p1 denote a matrix of activations of p1 neurons for n observations

(e.g., the intermediate output of a specific hidden layer), and Y ∈ Rn×p2 denote a matrix

of activations of p2 neurons for the same n observations. With respect to the choice of the

hidden layer, we focus on the last hidden layer in each NN, because it is closest to the final

model output. Then the linear version of CKA is obtained from

CKA(X, Y ) :=

∥∥Y TX
∥∥2
F

∥XTX∥F ∥Y TY ∥F
, (3)

where ∥ · ∥F denotes the Frobenius norm, an extension of the Euclidean norm on the space

of all matrices.12

3 Predicting Stock Returns Using Machine Learning

3.1 U.S. Stock Returns

We first focus on the U.S. stock market and train the various machine learning models

with the 36 stock characteristics (listed in Appendix A) to predict the cross section of

monthly returns. Our main purpose is to verify whether the performance of our models are

when one sets all values of the input variable to zero. This is the approach used in GKX and Kelly et al.
(2019). A negative VI value implies the increment of this input variable would lead to a decrease in output
and vice-versa. The drawback of this measure is that it is hard to compare negative relative importance,
especially across various markets.

12If p1 = p2 = 1, i.e., X and Y reduce to a n-dim vector, then CKA(X,Y ) =
∑n

i=1 XiYi√∑n
i=1 X2

i

√∑n
i=1 Y 2

i

is the

cosine similarity between X and Y .
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comparable with those in GKX, who input more than 900 features, before we apply our

models to international markets.

We discuss the details of this test and present the results in the Online Appendix. Overall,

with the 36 stock characteristics, our RTs and NN models appear to have similar return

predictability to models in GKX using more than 900 inputs. One may be surprised by

this finding, but it is consistent with some of the results in GKX and other studies. For

example, GKX show that via dimension reduction, the ENET model selects only 20 to 40

features because the inputs and characteristics are partially redundant and fundamentally

noisy signals (see Figure 3 of GKX). Furthermore, a few recent studies, such as Feng et al.

(2020); Freyberger et al. (2020); Kozak et al. (2020), argue that a modest number of factors

can explain cross-sectional U.S. stock returns. As we show later, using 36 characteristics

seems to predict cross-sectional stock returns in international markets as well.

In the Online Appendix, we also show evidence that both non-linearities and the complex

interactions among predictors contribute to the return predictability of machine learning

models. The performance of OLS and LASSO improves after adding spline functions of

individual features to capture non-linear terms; however, without interaction terms, these

models still underperform RTs and NNs. Then we adopt a class of model called Multivariate

Adaptive Regression Splines (MARS), which features a hyperparameter that specifies the

maximum degree of terms. MARS1 with degree = 1 allows non-linearities, while MARS2

with degree = 2 allows both non-linearities and variable interactions. Only MARS2 generates

performance that is close to that of NNs and RTs in terms of Sharpe Ratios and R2
oos.

3.2 International Stock Returns with the U.S.-Estimated Models

Now we run a stringent test: applying the U.S.-estimated model to each of the 31 interna-

tional markets individually. According to the machine learning literature, the regularization

techniques we apply are known to prevent model overfit effectively. Nonetheless, examining

model performance in some real-world, out-of-sample data is still meaningful. Assuming
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that the return-characteristic relationship is (at least partially) in common across countries,

international markets are ideal out-of-sample data relative to the U.S. market and allow us

to test overfitting. Furthermore, tuning the hyperparameter values is critical to achieving

desirable model performance. When the model is heavily tuned over one data sample (i.e.,

the U.S. market), the possibility of overfitting is an important concern. Thus, we only use

U.S. data to tune the model, making our tests below truly out of the sample.

We follow the definition of training, validation, and testing periods for the U.S. market

specified in Section 2.2. Specifically, to predict stock returns in an international market in

a particular year, we train and validate the machine learning models using past U.S. data

only. Then for the following year, the training data expands by a year and the validation

period maintains the same size.

Panel A of Table 1 reports equal- and value-weighted Sharpe Ratios of long-short portfolio

returns, along with the Sharpe Ratio of the market portfolio during the sample period. We

list the markets based on the descending order of the number of observations and highlight

the method that gives the highest Sharpe Ratio in each market.

Starting with the equal-weighted portfolios on the left, we make two observations. First,

in every market, machine learning-based models outperform traditional models (i.e., OLS-3

and OLS) or the passive market portfolio. Second, models taking into account nonlinear and

complex interaction effects (i.e., RTs and NN models) outperform linear machine learning

models (LASSO and RIDGE). The patterns are similar but slightly weaker for value-weighted

Sharpe Ratios. Furthermore, the predictive power of NN models is economically sizable:

using the best NN model in each market, the average equal-weighted (value-weighted) Sharpe

Ratio of the 31 markets is 1.94 (1.07); 19 markets have an equal-weighted Sharpe Ratio above

1.5 and 26 markets above one, and 15 markets have a value-weighted Sharpe Ratio greater

than one and 26 larger than 0.75.

We systematically compare the models’ performance in Panel C. Specifically, we pick

the best-performing model in each of the three categories (i.e., linear, trees, and NN) and
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calculate the difference in Sharpe Ratios and other measures. We find that on average the

best performing tree model can generate an equal-weighted Sharpe Ratio that is 0.41 higher

than the best linear model across the 31 markets, and among them 26 (or 84%) markets have

a positive difference. Comparing NN with linear models, the average difference is even higher,

at 0.65, with 30 (or 97%) markets being positive. The best NN model outperforms the best

tree by 0.25 in the Sharpe Ratio on average, and 25 (or 81%) out of 31 markets have a positive

difference. For value-weighted Sharpe Ratios, RTs do not appear to significantly outperform

linear models: only 15 markets (48%) have a positive difference, while NN models still

significantly outperform linear and tree models. In sum, based on Sharpe Ratios, NN models

generate stronger return predictability than trees and linear models in the international

markets, which is consistent with GKX’s conclusion in the U.S. market.

However, the out-of-sample R2 reported in Panel B.1 shows a different picture. While

NN models are still the best model in more than half (17) of the markets, OLS-3 stands out

in 11 markets. Regression trees do not give the best prediction in any market, and in many

markets they generate negative out-of-sample R2.13 Panel C also shows that, in terms of

R2
oos, neither NN nor tree model outperforms linear models.

The results based on R2
oos contradict those based on Sharpe Ratios. This pattern echoes

Kelly et al. (2022), who point out that R2
oos may be a poor measure as investors can generate

potentially large economic profits even when R2
oos is negative. In particular, R2

oos can be

sensitive to outliers (i.e., extreme prediction errors). This is particularly an issue of emerging

markets, as realized returns and characteristics sometimes can have extreme values.

To investigate this possibility, we use two alternative measures, Rank Correlation and

Decile Score Distance, defined in Section 2.3. These measures are based on relative ranks of

returns and are thus less affected by extreme realized returns. As reported in Panels B.2 and

B.3, the performance of non-linear machine learning models appears to be better than the

results reported in Panel B.1. Panel C compares RT with linear models and finds the average
13A negative value of R2

oos means that the model underperforms a naive model that always predicts zero
expected return.
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difference in rank correlation is 1.69%, with 26 (or 84%) markets being positive. The best

NN model outperforms the best linear by 1.75%, and 29 (or 94%) out of 31 markets have

a positive difference. The performance between the best RT and NN models is very close.

The results are generally similar when Decile Score Distance is used. The only difference

is that NN outperforms RT models in 22 (or 71%) of the 31 markets, suggesting that NNs

are better at predicting extreme returns. This is aligned with the finding that NN models

generate higher Sharpe Ratios than RT models.

Overall, the findings allay the concern of overfitting in the U.S.-based analysis when the

effect of outliers is minimized. In the following analysis, we drop R2
oos and focus on Rank

Correlation and Decile Score Distance.

3.3 International Stock Returns with Market-Specific Models

Here we let each market train and validate its own model. Compared with the U.S. data,

international data on stock return and characteristics appear to exhibit wider variation

and more extreme observations, contain more frequent data errors or missing values, and

have smaller sample sizes (both a smaller cross-section and a shorter time period). Those

data limitations can possibly make the estimation of model parameters less consistent and

efficient. Machine learning models feature a large number of parameters to be estimated. The

heterogeneity of data quality and sample size across countries allows us to understand the

robustness of various machine learning models. Our analysis sheds light on the application

of machine learning models to return predictability.

We use the same procedure to split the samples, as described in Section 2.2, and the same

set of hyperparameter values, listed in Appendix C. Table 2 summarizes the models’ perfor-

mance in Sharpe Ratios (Panel A) and Rank Correlation and Decile Score Distance (Panel

B). The markets are sorted in descending order of the number of available observations.

Panel C compares the model performance by categories.

Similar to what we find with U.S.-estimated models, NN models exhibit the strongest
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return predictability in most of the markets in terms of Sharpe Ratios. For the equal-weighted

(value-weighted) Sharpe Ratio, NN models outperform linear and tree models by 0.60 (0.41)

and 0.44 (0.61) on average or in 81% (78%) and 78% (88%) of the markets, respectively.14

Economically, the best NN model achieves an equal-weighted (value-weighted) Sharpe Ratio

above 1.5 (1) in 21 (20) of the 32 markets. Also, the patterns based on Rank Correlation

and Decile Score Distance are similar. For example, the best-performing NN model’s Rank

Correlation outperforms by 1.08% and 1.12% on average or in 75% and 72% of the markets,

compared to the best of linear and RT models, respectively.

By comparison, market-specific tree models do not seem to dominate linear models. In

Panel C, relative to linear models, the average equal-weighted Sharpe Ratio of RTs is higher

by 0.17, while the average value-weighted Sharpe Ratio of RTs is lower by 0.21. The average

Rank Correlation and Decile Score Distance of RTs are similar to that of linear models.15

RTs may perform relatively poorly because of the high degrees of freedom in their struc-

ture and overfitting in-sample, despite the various regularization techniques we apply. Panel

C of Table 2 shows that trees’ performance is especially poor in markets where the number of

observations is low: in the top half of markets with more observations, tree models’ average

equal- and value-weighted Sharpe Ratio is higher than that of linear models in 81% and 50%

of the markets, respectively; but in the bottom half, these numbers fall to 38% and 25%.

Using Rank Correlation and Decile Score Distance, in the top half of markets with more

observations, RTs outperform linear models in 88% and 69% of the markets, respectively;

the corresponding numbers are 25% and 38% in the bottom half. This suggests that RT

models need more data to converge to a stable parameter estimation.

Note that, despite its complex structure as well, NN models appear to be more robust
14The Sharpe Ratios of the market portfolios in this table are different from those in Table 1 because the

sample periods are shorter. In Table 2, the market portfolio generates the highest Sharpe Ratio in several
markets, particularly for value-weighted Sharpe Ratios and in markets with fewer observations.

15In the Online Appendix, we compare the model performance using the equal- and value-weighted Sharpe
Ratios of long-short portfolios formed using 9th minus 2nd decile portfolios (reported in Table A4). Similar
to our main tests, market-specific tree models do not outperform linear models. Also, NN models’ 9th-
minus-2nd Sharpe Ratios are closer to those generated by linear models, suggesting that NNs are better in
ranking stocks with more extreme returns.

17



to sample size. While Panel C documents a corresponding drop from the top half to the

bottom half, the drop is smaller (94% and 81% vs. 69% and 75%), for equal- and value-

weighted Sharpe Ratios. Linear models are also robust in estimation due to their simpler

model structure, which in turn, however, limits their ability to capture complex return-

characteristics relationships.

To better illustrate how the performance of RTs and NN models varies with sample size,

we plot the performance improvement of RTs or NNs over the linear model (y-axis) against

the log of the number of observations of the market (x-axis) in Figure 2. We also plot a

fitted line and the 95% confidence intervals. We consider four performance measures, i.e.,

equal- and value-weighted Sharpe Ratio, Rank Correlation, and Decile Score Distance. The

dashed line indicates the value of zero on the y-axis. First, one can see that for tree models,

in markets with fewer observations, the scatter dots often fall under zero. Second, while the

performance of NNs also increases in sample size, the fitted line is significantly above zero

for the whole range of the x-axis.

While there is no clear theoretical explanation that RTs are more vulnerable to overfit-

ting, our tests confirm that, at least for this type of financial data, the structure and the

regularization settings of NN can fit and learn in a more robust manner. This is consistent

with the evidence in the machine learning literature that random forests can be inconsistent

(Tang, Garreau, and von Luxburg (2018)) and that NN models with multiple layers do not

overfit the training data (Caruana, Lawrence, and Giles (2000); Kelly et al. (2022)). In sum,

we conclude that NN models exhibit strong and more robust return predictability than trees

or linear models. In the following tests, we focus on NN1–NN5 models.

4 Applications to International Asset Pricing

The results in the previous section suggest that NN models can capture and learn the

true return-characteristics relationship in various markets. In this section, we exploit NN
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models as the tool to examine two long-standing questions in the international asset pricing

literature—common versus market-specific return structure and cross-market integration.

Studies using traditional methods build on strong assumptions about the function form

between expected return and stock characteristics. Possible mis-specification of the function

form makes it difficult to interpret non-results. NN models can mitigate the issue, because of

their non-parametric nature of the model structure that can potentially capture all possible

non-linear and complex interaction effects of stock characteristics. Using machine learning

techniques, we provide new evidence for the questions.

4.1 Return-Characteristics Relationships: Common or Market-Specific?

Is the return-characteristics relationship generally common across different markets or

dominated by market-specific features? On the one hand, under the rational framework,

stock return should only depend on the stock’s risk. In that sense, the return-generating

function should be common across different countries. On the other hand, voluminous studies

show that institutional frictions and investor behavior can influence asset returns. Since

different countries may have distinct institutional settings or investor cultures, the return-

characteristics relationship should be, at least to some extent, market-specific.

To shed some light on this question, we first analyze the relative importance of the 36

characteristics for each market’s best performing NN model, based on the model estimations

in Table 2. Results for the top 25 markets based on the number of observations are shown in

Figure 3 (other markets are omitted for brevity). We observe some similar variables: e.g., log

market capitalization (mvel1) and reversal (mom_1) are strong predictors for many markets.

However, some market-specific features show up. For example, volatility of dollar trading

volume (stddolvol) and of share turnover (stdturn) are important predictors in Japan and

China, but not in other markets. These differences in variable importance suggest that the

return structure may not be the same across countries.

Second, we compare the performance of market-specific models and their U.S.-estimated
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counterparts. To answer this question, we cannot simply compare the Sharpe Ratios in

Tables 1 and 2. This is because the two models are not trained by the same amount of data

(i.e., U.S. data sample is much larger and longer than any other markets), and the sample

size for training and validating the model can influence the accuracy of model estimation

(although it is less of a concern for NNs). Therefore, to make the comparison sensible, we

require the U.S. model to be estimated only using the data over the same sample years that

the market-specific model uses.

For example, China’s data are available from 1999 to 2017, with 1999–2004 as the training

period and 2005–2007 as the validating period. To compare the China-specific model with

the U.S.-estimated counterpart, we train and validate with the U.S. data in 1999–2004 and

2005–2007, respectively.16 Then, for each machine learning method, we compare the return

predictions from the U.S-estimated model with those from the market-specific model, based

on Sharpe Ratios. We repeat this procedure for each of the 31 international markets in our

sample and summarize the differences across all markets.

Panel A of Table 3 presents the results. We find that market-specific models generally

outperform their U.S. estimated counterparts. For example, market-specific models improve

equal-weighted Sharpe Ratios by 0.69 to 0.77 and value-weighted Sharpe Ratios by 0.40 to

0.52 on average across the 31 markets. The improvement is pervasive: 74–87% of the markets

experience an increase in Sharpe Ratio.

Two natural questions that follow are to what extent a country’s specific model differs

from the U.S. estimated one, and whether the difference, which presumably captures some

useful market-specific return-characteristics relationship, is related to the improvement in

return predictability. To address the first question, while it is difficult to directly show or

interpret what market-specific relationship is really captured, we can nonetheless obtain some

clue by comparing the structural similarities between the U.S.-estimated and market-specific
16A stricter approach is to further require the number of stocks to be the same in each cross-section. Given

that the U.S. market has more stocks than most of the markets in our sample, our current approach gives
market-specific models a disadvantage.
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models. We adopt a similarity index, centered kernel alignment (CKA), from Kornblith et al.

(2019). CKA similarity index compares representations between different trained neural

network models.

For each market, we first compute the CKA similarities between representations from

U.S.-estimated models and market-specific models. Specifically, given a dataset, we extract

the intermediate output of the same hidden layer from U.S.-estimated models and market-

specific models, and then compute the CKA according to Equation (3). Then, we examine

the relationship between the CKA values and the Sharpe Ratio improvements from U.S.-

estimated models to market-specific models across markets.17

In Panel B of Table 3, we split the markets in our sample equally into two groups based

on its model’s CKA, i.e., high versus low, and calculate the average improvements in Sharpe

Ratio from U.S.-estimated to market-specific models. We notice that across the five models

(NN1 to NN5), low CKA similarities are associated with more improvement in both equal-

and value-weighted Sharpe Ratios. Also, such improvement is economically greater for NN5

than for NN1. For example, for NN5 model, low CKA markets exhibit an improvement

of 0.83 in value-weighted Sharpe Ratio, while the number is 0.21 for high CKA countries;

and the difference of improvement between high and low CKA markets is smaller for NN1

models. This is consistent with the conjecture that a more complex network structure can

potentially better incorporate market-specific components and enhance return predictability.

It is also clear from Figure 4, which shows the significant and negative relation between CKA

similarity and Sharpe Ratio improvement across markets.

A global model: pooling all stocks

Then, based on the previous results, we pool all stocks in our global sample to train

and validate a unified model to predict expected returns. This is to leverage the advantage
17If the variables that have high variable importance (in terms of SSDs) are different in two markets,

we may also consider the return-characteristic relationships in the two markets to be different. However,
this ignores the complex interactions among variables, and it is difficult to choose the number of important
variables we should examine. Comparing the CKA similarity is a more systematic approach.
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of machine learning models to take into account both common and market-specific, com-

plex return-characteristics relationship. Also, with more data and larger space for portfolio

selection, NN models can be better trained and have stronger predictive power.

Besides the 36 stock characteristics (listed in Appendix A), we add 31 dummies to indicate

the 31 non-U.S. markets as the input of the global model. These market dummies allow NNs

to learn possible country-specific structures, through, for example, the interaction between

the country dummy and certain stock characteristics. NN models are set to predict the

future stock returns in excess of the global average stock return. While the sample starts

from 1963, our testing period is from January 1990 to December 2017 due to the availability

of risk factors (more details below). For brevity, we focus on NN models and Sharpe Ratio

as the performance measure, and compare to that of linear models.

The results are reported in Table 4. According to the top panel, the global equal-weighted

(value-weighted) long-short portfolio based on NNs yields a Sharpe Ratio of 3.90 (1.69), a

large improvement from previous tables. This is also much higher than the Sharpe Ratio of

the market portfolio 0.96 (0.53) and the best performing linear model 2.59 (1.04). One should

take the high Sharpe Ratio with caution for investment purposes, as the estimates here do

not take into account transaction costs or other frictions, such as short-sale constraints, in

the international equity markets.

We next examine the risk of the machine learning based long-short 10–1 portfolios. Fol-

lowing GKX, we first look at the maximum drawdown (MaxDD), maximum one-month loss

(Max 1M Loss), and portfolio turnover rate. The maximum drawdown of a strategy is

defined as,

MaxDD = max0≤t1≤t2≤T (Yt1 − Yt2), (4)

where Yt is the cumulative log return from month zero through t. The maximum one-month

loss is the lowest monthly return of the trading strategy. For equal-weighted portfolios,

NN4-based strategies have the lowest maximum drawdown and one-month loss. For value-

weighted portfolios, NN4 models have the lowest maximum drawdown, but OLS-3 has the
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smallest one-month loss.

The portfolio average monthly turnover is calculated as,

Turnover =
1

T

T∑
t=1

(∑
i

∣∣∣∣∣wi,t+1 −
wi,t(1 + ri,t+1)∑

j(1 + rj,t+1)

∣∣∣∣∣
)
, (5)

where wi,t is the weight of stock i in the portfolio at month t. It appears that the monthly

turnover rate of NN-based strategies is approximately 150%, which is about 20 to 30%

higher than the number shown in GKX based on the U.S. market. Given the larger pool of

stocks and the important role of price trend predictors in machine learning models, it is not

surprising that the outperformance is achieved with a relatively higher portfolio turnover

rate.

The previous results are all based on raw returns. Last, we turn to risk-adjusted returns

to examine whether the machine learning models capture something beyond the commonly

known factors. We adopt three international asset pricing models to calculate risk-adjusted

returns: the Fama-French five-factor model augmented with a momentum factor, the 6-

factor model developed by Hou et al. (2011), and the partial-segmentation Carhart model

in Karolyi and Wu (2018).18 In the Fama-French model, we include a set of the 6 factors for

developed markets and a set for emerging markets. That is, in total 12 factors are used for

the risk adjustment of the global portfolio returns.

The bottom panels of Table 4 report the results. The monthly equal-weighted (value-

weighted) alphas based on the best performing NN model are significantly positive, at 3.84%–

4.89% (2.12%–2.31%) with t-statistics well above 5. Those existing factor models exhibit

low R2 for the NN-based portfolios. Information ratio (IR) ranges from 1.15 to 1.18 for
18Fama-French factor data are downloaded from Kenneth R. French’s website. The Fama-French five

factors include the excess return on the value-weighted market portfolio and portfolios formed on size, book-
to-market, operating profitability, and investment. See Fama and French (2016, 2017) for more details.
We thank Andrew Karolyi and Ying Wu for sharing the factor data from Hou et al. (2011) and Karolyi
and Wu (2018). The model proposed by Hou et al. (2011) contains 6 factors: the market portfolios and
factor-mimicking portfolios based on momentum and cash flow-to-price for developed markets and emerging
markets. Their data are available from 1981 to 2010. Karolyi and Wu (2018) add a new factor to the global
Carhart model to account for externalities driven by the incomplete accessibility to stocks and stock markets.
The data are available from 1990 to 2010.
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equal weighting and 0.48 to 0.52 for value weighting. For most measures, NN models, which

take into account nonlinear and complex interaction effects, significantly outperform linear

models.

4.2 Cross-Market Integration

In Section 3.2, we show that the U.S. equity market is relevant for many other markets.

We study cross market integration in this subsection, specifically, whether the information

derived from U.S. stocks can improve our predictions of international stock returns. We first

start with the pooled sample (excluding the U.S.) and then examine market-specific models.

Pooling all non-U.S. stocks

While there are multiple ways to extract information from U.S. stocks, we add new

variables that are similar to those commonly used in the literature. We construct three

types of state variables:

1. U.S. Factors: In each month, for each of the 36 characteristics, we sort U.S. stocks into

10 deciles in descending order and compute the value-weighted returns for each decile.

Then we define a factor as the return of the top decile portfolio minus the return of

the bottom decile portfolio. This is similar to the way that common risk factors are

constructed, such as Fama and French (1993, 2015, 2017).

2. U.S. Characteristic Gaps: In each month, we compute the characteristic gap as the

divergence between the 95th percentile and the 5th percentile of a corresponding stock

characteristic in the U.S. market. Cohen et al. (2003) and Huang (2022) show that

gaps in book-to-market and in past returns, respectively, can predict future value and

momentum returns.

3. Local Factors: As a comparison, we compute local factors in the same way as the U.S.

factors. Stocks that are in the same market as the stock in question are used.
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We also compute the interaction terms for each stock characteristic and its respective

factor or characteristic gap. Therefore, on top of the 36 raw stock characteristics plus 30

country dummies, the augmented model in this section adds 36 × 3 factors or characteristic

gaps + 36 × 3 interaction terms = 216 independent variables.19

Panel A of Table 5 reports the difference in equal-weighted and value-weighted Sharpe

Ratios between the augmented models and the original models using only 36 stock character-

istics plus country dummies. For most NN models, the augmented model generally improves

equal- and value-weighted Sharpe Ratios. The last column shows the difference between

the best performing of the original NNs and that of the augmented ones. The improvement

is economically significant and equals 0.57 for equal-weighted and 0.54 for value-weighted

Sharpe Ratios.

In Panel B, we reduce the number of additional variables by focusing on the top 10

characteristics. With the pooled sample of all non-U.S. stocks, we first train its NN models

(NN1–NN5). Then, we select the top 10 characteristics according to their variable impor-

tance in the best NN model (based on the value-weighted Sharpe Ratio).20 Therefore, in

each test we add 10 × 3 factors or characteristic gaps + 10 × 3 interaction terms = 60

independent variables (on top of the 36 stock characteristics). With a reduced number of

model inputs, the robustness of model estimation can be enhanced. The performance of aug-

mented NN models with top 10 characteristics shows even higher equal- and value-weighted

Sharpe Ratios. Comparing with the best original NN model, the best augmented NN model’s

equal-(value-) Sharpe Ratio is higher by 0.75 (0.68).

The difference between Panels A and B highlights that NN models do not necessarily

become more powerful when having more independent variables. Even with a large number

of observations, the full augmented NN models with 36 characteristics do not generate the
19We could also input local characteristic gaps, but it would be redundant to do so as stock level char-

acteristics are model inputs and machine learning models allow such nonlinear relationships if they are
useful.

20The best NN model is NN5, and the top 10 characteristics include stddolvol, mom_1, retvol, mvel1,
mom_12, turn, ill, stdturn, mom_6, and maxret.
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best results.

Figure 5 graphs the variable importance of each type of variables in the best augmented

NN model using top 10 characteristics. The sum of variable importance is normalized to

one. Stock characteristics are the most important (45%), followed by the U.S. characteristic

gaps (34%) and U.S. factors (15%). Local factors have the lowest variable importance (8%).

Taken together, incorporating the information or state variables of the U.S. market can

significantly improve the return predictability in other markets, supporting the conjecture

of international market integration.

Market-specific augmented models

Now we rerun the market-specific models with the additional variables from the U.S.

market. Because the market-specific models contain a much lower number of observations,

we focus on a subset of additional independent variables and a subset of markets in order

to have reliable estimates. Given our findings in the previous subsection, we only add U.S.

characteristic gaps and U.S. factors based on the top 10 characteristics in each market. That

is, for each market, we select the top 10 characteristics based on their variable importance

in the best market-specific NN model in Section 3.3. Therefore, we add 10 × 2 factors or

characteristic gaps + 10 × 2 interaction terms = 40 independent variables (on top of the

36 stock characteristics) in each market.21 Also, given that NN performs more robust in

markets with more observations (Table 2 and Figure 2), we only examine the top 25 markets

ranked on the total number of observations.

In Table 6, we report the summary across all the 25 markets. In Panel A, the augmented

models include both U.S. characteristic gaps and U.S. factors. In Panels B and C, the aug-

mented models include only U.S. characteristic gaps and U.S. factors, respectively. Focusing
21We use two markets as examples to illustrate this procedure. According to the best market-specific

NN model (based on value-weighted Sharpe ratio), in Japan the top 10 characteristics in terms of variable
importance are: stddolvol, chmom_6, stdturn, turn, mom_6, mom_1, mvel1, indmom_a_12, dovol, and
ill. The 10 U.S. factors and 10 U.S. characteristic gaps are chosen based on this list. The 20 interaction terms
refer to the 10 variables in the list interacting with the corresponding U.S. factor and the corresponding U.S.
characteristic gap. Then, in a different market, we use a different list. For example, the top 10 characteristics
in China are: stddolvol, mom_1, stdturn, chmom_6, mom_12, mvel1, dy, bm, retvol, and turn.
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on the best NN models, Panels A and B show similar results while Panel C is weaker. The

best augmented NN models in Panels A and B yield higher Sharpe Ratios by 0.10–0.29 on

average (64%–88% of markets with positive improvement), when compared with the best

NN models using only 36 stock characteristics (shown in Table 2).

While the above results suggest that international markets seem to be partially integrated,

are the U.S. variables more important in markets that are more integrated with the world?

We explore this possibility using the market-specific NN models of the 25 markets. The

degree of market integration in each market is proxied by three metrics: the segmentation

measure constructed by Bekaert et al. (2011) and the economic integration and financial

integration measures developed by Akbari et al. (2020).22

Figure 6 plots the relationship between the variable importance of U.S. characteristic

gaps and the country rank based on the degree of market integration. (Not all the 25

markets appear in the Figure because the integration measures do not cover some of the

markets.) We observe that the variable importance decreases with Bekaert et al. (2011)’s

segmentation metric (which is the opposite to integration) and increases with Akbari et al.

(2020)’s economic integration measure. U.S. variables are more important in countries that

are more integrated with the world (such as United Kingdom) than in countries that are less

integrated (such as Greece). The relationship between the variable importance and Akbari

et al. (2020)’s financial integration measure is weaker.

Overall, information from U.S. stocks seems to be useful in producing better rankings of

local stocks’ predicted returns, and hence higher Sharpe Ratios, especially in markets that

are closer to full integration. While NN models cannot explain why U.S. characteristic gaps

are more important than U.S. factors, one possible reason is that the U.S. characteristic
22Bekaert et al. (2011)’s segmentation metric is constructed based on the earnings yield and the assump-

tion of equal earnings yields across countries under the null of full integration. Derived using a return
decomposition approach, Akbari et al. (2020) define economic integration as a common cash-flow dynamic
and financial integration as a common risk-pricing dynamic. Akbari et al. (2020) highlight the difference
between economic and financial integration using China and Ireland as examples. China is the second-largest
economy but is considered as financially segmented from the world market. Ireland is one of the world’s
largest offshore financial centers but contributes little to global economic growth.
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gaps contain information about global cash-flow news. The bottom two graphs of Figure

6 provide suggestive evidence that the U.S. characteristic gaps are more relevant for global

cash-flow news than global discount rate news. In Panels A and B of Table 6, where we add

the U.S. characteristic gaps to the market-specific NNs, we see the improvements in value-

weighted Sharpe Ratios are larger than those in equal-weighted Sharpe Ratios, implying that

the return predictability increases more for larger stocks. To the extent that cash-flows of

larger stocks are more globally integrated (e.g., because of their multinational nature), this

also indicates that the U.S. characteristic gaps may contain global cash-flow information.

U.S. factors may carry such information too, but returns can be contaminated by noise and

other variables. On the other hand, local factors do not appear to help enhance return

predictability.

5 Conclusion

We construct a dataset of 32 international markets and use machine learning models

to predict the cross-section of stock returns. In the U.S. market, even with only 36 char-

acteristics, the predictive power and profitability of complex machine learning models are

comparable to those documented in previous studies using hundreds of variables. More im-

portant, training our models using U.S. data and applying them on international stocks—a

stringent test to address potential overfitting issues—concludes that machine learning models

outperform linear models, particularly in forming profitable portfolios and predicting return

rankings.

We achieve even stronger results if we train the neural network (NN) models separately

for each market, allowing the models to pick up market-specific return-characteristic rela-

tionships. These results are more prominent when the market-specific model is less similar

to the U.S.-trained model (measured based on the centered kernel alignment (CKA) index)

and for NN models with more hidden layers. However, there are signs that regression trees
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overfit the in-sample data and underperform linear models, especially in markets where there

are few observations.

While the return-generating process seems to vary across markets, international markets

are not totally segmented. Market-specific NN models, especially in countries that are more

integrated with the world, are even more powerful when we add U.S. characteristic gaps and

the interactions between stock characteristics and their respective U.S. characteristic gap as

independent variables.

We conclude that NN models, previously focusing on the U.S. market, can be applied to

equity markets around the world. With a reduced set of predictors, one can examine more

closely the return-characteristic relationships generated by the algorithms and link them

to the market-specific structure. For example, Leippold et al. (2021) show that the most

relevant variables when using NN models to predict Chinese stock returns are liquidity and

fundamental factors, which they attribute to the short-termism of retail investors in China.

Future research can provide more economic insights into other variables and other markets.

Another possible future research direction is to better explain the power of our NN models

using an asset pricing model. We follow GKX and use characteristics to forecast returns,

while the traditional asset pricing literature focuses on systematic risk factors and betas.

Feng et al. (2022) combine deep learning optimization with asset pricing factor models.

Their methodology, applied on U.S. equity data, starts from firm characteristics, generates

risk factors, and fits the cross-sectional returns. Our results suggest that market-specific

nonlinear and complex interactions among the predictors should not be overlooked, and the

additional information carried by U.S. characteristics is valuable in international markets. It

is interesting to see how the market-specific return-characteristic relationships and market

integration can be linked to equilibrium asset pricing.
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Appendix A List of Stock Characteristics

The table lists the acronym and definition of the 36 stock characteristics used as model inputs.

Acronym Definition

absacc Absolute accruals
acc Working capital accruals
agr Asset growth
bm Book to market
bm_ia Industry-adjusted book to market
cashdebt Cash flow to debt
cashpr Cash productivity
cfp Cash flow to price ratio
cfp_ia Industry-adjusted cash flow to price ratio
chmom_6 Change in mom_6
chpmia Industry-adjusted change in profit margin
depr Depreciation / PP&E
dolvol Dollar trading volume
dy Dividend to price
egr Growth in common shareholder equity
ep Earnings to price
herf Industry sales concentration
ill Illiquidity
indmom_a_12 Industry 12-month equal-weighted momentum
lev Leverage
lgr Growth in long-term debt
maxret Maximum daily return
mom_1 1-month reversal
mom_12 12-month momentum
mom_6 6-month momentum
mve_ia Industry-adjusted size
mvel1 Log market capitalization
pctacc Percent accruals
retvol Return volatility (standard deviation) of daily return
roe Return on equity
salecash Sales to cash
sgr Sales growth
sp Sales to price
stddolvol Volatility of liquidity (dollar trading volume)
stdturn Volatility of liquidity (share turnover)
turn Share turnover
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Appendix B List of International Markets

The table below lists the name of markets in our sample, along with the sample periods and the number of
observations.

Market Train Valid Test # Rows

USA [1963, 1979] (1979, 1989] (1989, 2017] 2456110
Japan [2008, 2010] (2010, 2011] (2011, 2017] 349030
China [1999, 2004] (2004, 2007] (2007, 2017] 277265
India [2007, 2010] (2010, 2012] (2012, 2017] 230459
Korea [1997, 2003] (2003, 2007] (2007, 2017] 224998
Hong_Kong [1997, 2003] (2003, 2007] (2007, 2017] 174678
Taiwan [2007, 2010] (2010, 2012] (2012, 2017] 93079
France [1995, 2001] (2001, 2005] (2005, 2017] 92427
United_Kingdom [2005, 2008] (2008, 2010] (2010, 2017] 68740
Thailand [1997, 2003] (2003, 2007] (2007, 2017] 68082
Australia [2008, 2010] (2010, 2011] (2011, 2017] 65555
Singapore [2007, 2010] (2010, 2012] (2012, 2017] 50412
Sweden [2001, 2005] (2005, 2008] (2008, 2017] 43510
South_Africa [1997, 2003] (2003, 2007] (2007, 2017] 41985
Poland [2006, 2009] (2009, 2011] (2011, 2017] 40630
Israel [2005, 2008] (2008, 2010] (2010, 2017] 37071
Vietnam [2010, 2012] (2012, 2013] (2013, 2017] 35671
Italy [2001, 2005] (2005, 2008] (2008, 2017] 35491
Turkey [2006, 2009] (2009, 2011] (2011, 2017] 33537
Switzerland [2002, 2006] (2006, 2009] (2009, 2017] 28259
Indonesia [2005, 2008] (2008, 2010] (2010, 2017] 27329
Greece [2006, 2009] (2009, 2011] (2011, 2017] 20216
Philippines [2006, 2009] (2009, 2011] (2011, 2017] 16963
Norway [2007, 2010] (2010, 2012] (2012, 2017] 16451
Sri_Lanka [2010, 2012] (2012, 2013] (2013, 2017] 16430
Denmark [2007, 2010] (2010, 2012] (2012, 2017] 12309
Finland [2007, 2010] (2010, 2012] (2012, 2017] 12305
Saudi_Arabia [2010, 2012] (2012, 2013] (2013, 2017] 11708
Jordan [2009, 2011] (2011, 2012] (2012, 2017] 11431
Egypt [2010, 2012] (2012, 2013] (2013, 2017] 9342
Spain [2011, 2012] (2012, 2013] (2013, 2017] 7493
Kuwait [2012, 2013] (2013, 2014] (2014, 2017] 6123
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Appendix C Hyperparameters of the Machine Learning
Models

LASSO RIDGE RF GBRT+H NN1 - NN5

Huber loss, ξ 99.9% quantile
Penalty λ1 ∈ (10−3, 103) λ2 ∈ (10−3, 103) λ1 ∈ (10−5, 10−3)

Max Depth [1, 6] [1, 2]
Max Features {3, 5} {3, 5}
Estimators 300 [1, 1000] 10
Weighting Scheme {0.01, 0.1}
Learning Rate 0.01
Activation Function ReLU
Batch Size 10000
Epoches 100
Patience 5
Batch Normalization ✓

Neurons [32, 16, 8, 4, 2]
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Panel B.1: R2
oos

OLS-3 OLS LASSO RIDGE RF GBRT+H NN1 NN2 NN3 NN4 NN5

Japan -0.19 -0.51 -0.14 -0.51 -0.42 -1.87 -0.54 -0.45 -0.46 -0.37 -0.32

China -0.02 0.01 0.04 0.01 -1.26 -8.75 -0.41 -0.35 -0.40 -0.27 -0.34

India 0.08 0.04 0.00 0.04 0.11 -0.63 0.33 0.32 0.34 0.37 0.35

Korea 0.25 0.30 0.23 0.30 -0.22 -0.38 0.44 0.43 0.39 0.41 0.39

Hong_Kong 0.15 -0.01 0.00 -0.01 0.07 -0.99 0.32 0.30 0.28 0.36 0.35

Taiwan -0.03 -1.02 -0.51 -1.02 -0.82 -6.48 -0.89 -0.70 -0.78 -0.65 -0.58

France 0.17 0.07 0.21 0.07 -0.10 -7.47 0.25 0.23 0.17 0.30 0.33

United_Kingdom 0.05 -0.31 -0.12 -0.30 -0.44 -2.11 -0.30 -0.31 -0.57 -0.24 -0.10

Thailand 0.13 -0.49 -0.29 -0.49 0.15 -2.44 0.13 0.16 0.13 0.24 0.19

Australia 0.12 0.37 0.27 0.37 0.87 0.63 1.16 1.14 1.07 1.19 1.10

Singapore 0.17 0.46 0.28 0.46 0.65 0.06 1.54 1.49 1.53 1.58 1.39

Sweden 0.12 0.10 0.15 0.11 -3.12 -6.95 0.16 0.10 -0.10 0.10 0.15

South_Africa 0.33 0.45 0.53 0.45 1.46 -2.14 1.64 1.54 1.55 1.57 1.42

Poland 0.11 -0.09 0.00 -0.09 -0.33 -3.03 0.43 0.49 0.44 0.55 0.49

Israel 0.24 -0.01 0.12 -0.01 -3.11 -5.32 -0.43 -0.59 -0.75 -0.35 -0.13

Vietnam 0.16 0.28 0.21 0.29 0.72 0.62 0.79 0.75 0.78 0.78 0.75

Italy 0.12 -0.90 -0.42 -0.90 -1.44 -5.67 -1.14 -0.91 -1.12 -0.75 -0.67

Turkey -0.04 -0.54 -0.31 -0.54 -0.74 -3.23 -0.58 -0.69 -0.67 -0.64 -0.46

Switzerland -0.18 -0.99 -0.50 -0.98 -12.33 -32.63 -3.08 -3.55 -4.20 -3.42 -2.86

Indonesia 0.21 -0.27 -0.24 -0.27 -0.32 -2.78 -0.01 -0.04 -0.02 0.02 0.07

Greece 0.03 0.85 0.55 0.85 0.65 -0.37 1.74 1.71 1.80 1.77 1.54

Philippines 0.08 -0.12 0.01 -0.11 0.10 -2.73 0.76 0.70 0.59 0.60 0.61

Norway 0.06 -0.20 0.00 -0.20 -4.37 -3.86 0.09 0.22 0.30 0.31 0.23

Sri_Lanka 0.03 0.57 0.35 0.57 0.13 0.62 0.90 0.81 0.72 0.80 0.91

Denmark -0.17 -0.22 0.20 -0.21 -0.33 -2.80 0.16 0.34 0.04 0.21 0.25

Finland 0.15 -0.54 -0.02 -0.53 -4.26 -14.51 -0.68 -1.08 -1.04 -0.61 -0.34

Saudi_Arabia -0.06 -0.81 -0.09 -0.81 -1.22 -2.48 -0.62 -0.18 -0.45 -0.16 -0.10

Jordan 0.10 0.01 0.08 0.01 -1.10 -6.90 0.43 0.32 0.22 0.44 0.55

Egypt -0.13 -1.00 -0.32 -1.00 -0.73 -2.83 -0.52 -0.27 -0.52 -0.39 -0.40

Spain -0.15 -1.32 -0.62 -1.31 -0.65 -1.83 -1.94 -1.99 -2.14 -1.46 -1.31

Kuwait -0.03 -0.06 0.30 -0.05 -0.57 0.01 0.10 0.08 -0.02 0.26 0.11
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Panel B.2: Rank Correlation

OLS-3 OLS LASSO RIDGE RF GBRT+H NN1 NN2 NN3 NN4 NN5

Japan 0.82 4.20 4.21 4.20 4.45 4.75 5.33 5.31 5.48 5.36 5.17

China 2.36 7.65 6.92 7.65 6.53 6.84 6.37 6.23 5.79 6.14 5.70

India 1.97 4.15 3.23 4.15 5.16 5.46 5.91 5.45 5.98 5.85 6.10

Korea 5.49 7.89 7.29 7.88 8.80 8.04 8.39 8.36 8.17 8.24 8.12

Hong_Kong 3.65 4.97 4.37 4.98 7.93 7.60 7.42 7.34 7.29 7.61 7.60

Taiwan 1.91 2.99 2.05 3.00 4.22 3.95 4.08 3.66 3.72 3.68 3.78

France 4.44 6.03 6.57 6.05 8.03 7.45 7.46 7.95 7.88 7.88 7.87

United_Kingdom 1.97 1.17 0.61 1.19 4.49 6.36 4.13 4.13 4.38 4.66 4.37

Thailand 3.59 4.02 3.41 4.02 5.66 5.12 6.60 6.47 6.49 6.79 6.65

Australia 2.66 4.43 4.60 4.45 7.67 9.23 7.41 7.39 7.16 7.38 7.40

Singapore 3.42 7.04 6.64 7.05 8.98 10.09 10.71 10.05 10.57 10.71 10.73

Sweden 4.73 5.24 5.13 5.26 6.82 7.51 6.29 6.32 6.31 6.61 6.40

South_Africa 5.01 6.98 7.57 6.99 7.15 7.54 8.62 8.11 8.44 8.56 8.52

Poland 2.51 2.10 2.29 2.11 5.02 6.67 6.08 5.88 5.97 6.11 6.25

Israel 5.35 4.34 3.39 4.34 4.34 6.43 5.44 6.00 5.93 6.15 6.05

Vietnam 3.25 7.30 5.75 7.31 7.48 8.15 8.74 8.34 8.73 8.70 8.80

Italy 4.14 1.69 2.62 1.71 5.84 5.28 4.99 5.23 5.14 5.42 5.67

Turkey 1.27 2.67 1.72 2.68 4.24 4.85 4.71 4.79 4.94 4.86 4.52

Switzerland 1.73 3.39 3.36 3.41 3.94 5.06 5.19 5.63 5.36 5.29 5.27

Indonesia 1.06 0.55 -0.40 0.55 3.62 3.69 3.92 3.49 3.66 3.94 3.99

Greece 2.11 8.34 10.68 8.36 8.10 10.06 10.67 10.64 11.25 10.85 10.94

Philippines -0.20 3.66 4.33 3.67 6.74 7.89 7.85 7.23 7.18 7.18 7.77

Norway 2.81 3.00 1.66 3.02 5.64 6.43 5.73 5.89 6.03 6.05 5.96

Sri_Lanka 1.02 9.84 9.70 9.86 8.55 11.16 10.62 10.18 10.50 10.63 11.30

Denmark 1.38 2.28 3.88 2.30 4.92 7.16 4.85 5.22 5.41 5.24 4.86

Finland 4.27 4.88 4.59 4.89 4.74 5.61 6.48 7.48 7.60 7.38 7.07

Saudi_Arabia 3.33 5.13 4.51 5.12 5.22 5.80 6.37 6.85 6.84 6.78 6.95

Jordan 2.27 6.77 4.53 6.77 5.72 5.83 7.97 7.07 7.20 8.08 8.06

Egypt 3.54 4.74 2.45 4.74 5.45 5.81 6.08 6.26 5.78 5.33 5.82

Spain -0.72 -2.00 -1.02 -2.01 1.08 2.94 0.03 0.64 0.15 0.97 0.92

Kuwait -0.53 2.80 5.98 2.79 3.08 4.47 3.64 3.49 3.65 3.66 4.09
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Panel B.3: Decile Score Distance

OLS-3 OLS LASSO RIDGE RF GBRT+H NN1 NN2 NN3 NN4 NN5

Japan 0.06 0.38 0.42 0.38 0.45 0.50 0.52 0.53 0.54 0.52 0.51

China 0.27 0.72 0.65 0.72 0.71 0.74 0.70 0.67 0.66 0.66 0.65

India 0.13 0.39 0.32 0.39 0.45 0.50 0.60 0.60 0.66 0.66 0.65

Korea 0.49 0.82 0.79 0.82 0.84 0.88 0.86 0.90 0.89 0.87 0.86

Hong_Kong 0.34 0.51 0.47 0.51 0.75 0.76 0.84 0.82 0.87 0.88 0.87

Taiwan 0.21 0.30 0.24 0.30 0.42 0.45 0.38 0.45 0.42 0.40 0.37

France 0.38 0.60 0.67 0.60 0.80 0.72 0.73 0.77 0.78 0.73 0.75

United_Kingdom 0.21 0.08 0.15 0.08 0.33 0.60 0.41 0.42 0.40 0.44 0.39

Thailand 0.37 0.35 0.29 0.34 0.59 0.54 0.76 0.73 0.75 0.80 0.76

Australia 0.30 0.42 0.54 0.43 0.85 1.12 0.88 0.96 0.93 0.89 0.84

Singapore 0.32 0.77 0.83 0.77 1.03 1.17 1.30 1.30 1.33 1.33 1.28

Sweden 0.44 0.59 0.61 0.59 0.54 0.74 0.67 0.65 0.67 0.66 0.59

South_Africa 0.54 0.64 0.74 0.64 0.67 0.83 0.94 0.89 0.89 0.86 0.93

Poland 0.31 0.28 0.32 0.28 0.44 0.67 0.54 0.65 0.62 0.70 0.60

Israel 0.55 0.49 0.40 0.48 0.36 0.60 0.56 0.66 0.62 0.56 0.59

Vietnam 0.38 0.56 0.58 0.55 0.84 0.77 0.86 0.91 0.87 0.86 0.91

Italy 0.39 0.19 0.29 0.20 0.52 0.53 0.48 0.57 0.55 0.57 0.50

Turkey 0.07 0.37 0.28 0.37 0.33 0.46 0.52 0.52 0.53 0.54 0.49

Switzerland 0.16 0.38 0.46 0.39 0.28 0.43 0.40 0.39 0.38 0.42 0.34

Indonesia 0.13 -0.10 -0.12 -0.10 0.22 0.25 0.35 0.37 0.46 0.37 0.38

Greece 0.16 0.89 1.12 0.89 1.10 1.15 1.37 1.38 1.36 1.30 1.34

Philippines -0.14 0.43 0.59 0.43 0.86 0.91 1.06 0.98 0.96 0.95 0.99

Norway 0.31 0.33 0.13 0.32 0.42 0.50 0.45 0.55 0.54 0.57 0.48

Sri_Lanka 0.09 0.95 1.05 0.97 0.98 1.21 1.21 1.16 1.21 1.22 1.27

Denmark 0.21 0.41 0.45 0.41 0.52 0.83 0.79 0.72 0.82 0.74 0.71

Finland 0.35 0.42 0.49 0.42 0.32 0.54 0.63 0.67 0.72 0.67 0.60

Saudi_Arabia 0.29 0.60 0.29 0.60 0.58 0.52 0.70 0.69 0.69 0.61 0.71

Jordan 0.33 0.70 0.37 0.71 0.60 0.52 0.91 0.74 0.75 0.87 0.86

Egypt 0.22 0.54 0.34 0.54 0.41 0.44 0.55 0.53 0.51 0.58 0.60

Spain -0.01 -0.07 -0.02 -0.06 0.04 0.31 0.18 0.14 0.25 0.24 0.15

Kuwait -0.06 0.45 0.60 0.45 0.40 0.49 0.56 0.48 0.52 0.46 0.54

Panel C: Comparison of model performance

Sharpe Ratio (EW) Sharpe Ratio (VW) R2
oos

Tree−Linear NN−Linear NN−Tree Tree−Linear NN−Linear NN−Tree Tree−Linear NN−Linear NN−Tree

difference 0.41 0.65 0.25 -0.05 0.37 0.42 -1.17 0.01 1.18

# of + 26 30 25 15 27 29 8 17 30

fraction of + 0.84 0.97 0.81 0.48 0.87 0.94 0.26 0.55 0.97

Rank Correlation Decile Score Distance

Tree−Linear NN−Linear NN−Tree Tree−Linear NN−Linear NN−Tree

difference 1.69 1.75 0.06 0.15 0.22 0.07

# of + 26 29 15 26 28 22

fraction of + 0.84 0.94 0.48 0.84 0.90 0.71
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Panel C: Comparison of model performance

Sharpe Ratio (EW) Sharpe Ratio (VW)

Tree−Linear NN−Linear NN−Tree Tree−Linear NN−Linear NN−Tree

All markets

difference 0.17 0.60 0.44 -0.21 0.41 0.61

# of + 19 26 25 12 25 28

fraction of + 0.59 0.81 0.78 0.38 0.78 0.88

Top half

difference 0.37 0.77 0.41 -0.14 0.55 0.68

# of + 13 15 12 8 13 13

fraction of + 0.81 0.94 0.75 0.50 0.81 0.81

Bottom half

difference 0.37 0.77 0.41 -0.14 0.55 0.68

# of + 6 11 13 4 12 15

fraction of + 0.38 0.69 0.81 0.25 0.75 0.94

Rank Correlation Decile Score Distance

Tree−Linear NN−Linear NN−Tree Tree−Linear NN−Linear NN−Tree

All markets

difference -0.04 1.08 1.12 0.02 0.20 0.19

# of + 18 24 23 17 25 23

fraction of + 0.56 0.75 0.72 0.53 0.78 0.72

Top half

difference 1.01 1.69 0.68 0.08 0.18 0.10

# of + 14 14 12 11 13 10

fraction of + 0.88 0.88 0.75 0.69 0.81 0.62

Bottom half

difference -1.10 0.47 1.57 -0.05 0.23 0.28

# of + 4 10 11 6 12 13

fraction of + 0.25 0.62 0.69 0.38 0.75 0.81
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Table 3. Comparison of Performance Between Market-Specific and U.S.-Estimated Models

Panel A reports the comparison of return predictions between market-specific and U.S.-estimated machine
learning models. For each market, difference is calculated as the equal-weighted (EW) or value-weighted
(VW) Sharpe Ratio based on the market-specific model minus that based on the U.S.-estimated model.
The corresponding U.S.-estimated model is trained and validated using the U.S. data in the same years
that the market-specific model uses. Machine learning models are estimated with the data of the 36 stock
characteristics (listed in Appendix A). The models include neural networks with one to five layers (NN1–
NN5). “# of +” refers to the number of markets with a positive value of difference, and the fraction of markets
with positive difference is also reported. Panel B reports the improvements of Sharpe ratio (difference) for
NN1-NN5 models by subsamples equally split by models’ CKA similarity.

Panel A: Sharpe Ratio improvement between market-specific and U.S.-estimated model

NN1 NN2 NN3 NN4 NN5

difference 0.74 0.77 0.75 0.69 0.74
Sharpe Ratio (EW) # of + 26 26 26 24 27

fraction of + 0.84 0.84 0.84 0.77 0.87

difference 0.52 0.46 0.40 0.42 0.52
Sharpe Ratio (VW) # of + 24 23 24 23 23

fraction of + 0.77 0.74 0.77 0.74 0.74

Panel B: CKA similarities and Sharpe Ratio improvement

NN1 NN2 NN3 NN4 NN5

Sharpe Ratio (EW)
Low CKA 0.92 1.10 0.92 0.78 1.20
High CKA 0.56 0.44 0.58 0.60 0.30

Sharpe Ratio (VW)
Low CKA 0.49 0.65 0.52 0.54 0.83
High CKA 0.55 0.27 0.28 0.30 0.21
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Table 5. Performance Comparison Between the Augmented and Original Non-U.S. Models

The table reports the comparison of return predictions between augmented and original machine learning
models based on a pooled sample of non-U.S. stocks. The testing sample is from 2006 to 2017. Augmented
models are estimated with the data of the 36 stock characteristics (listed in Appendix A), market dummies,
US factors, US characteristic gaps, and local factors, while original models are estimated with only stock
characteristics and market dummies. The models include neural networks with one to five layers (NN1–NN5).
For each model, we calculate the difference of the performance measures (i.e., equal-weighted (EW) or value-
weighted (VW) Sharpe Ratio) between the augmented and original model (augmented minus original).

Panel A: Augmented model using all stock characteristics, all US factors, all local factors, and all US characteristic
gaps vs. original model

NN1 NN2 NN3 NN4 NN5 Best NN

Sharpe Ratio (EW) -0.31 0.15 0.72 0.36 0.83 0.57
Sharpe Ratio (VW) 0.29 0.31 0.66 0.43 0.54 0.54

Panel B: Augmented models using all stock characteristics, top 10 US factors, top 10 local factors, and top 10 US
characteristic gaps vs. original model

NN1 NN2 NN3 NN4 NN5 Best NN

Sharpe Ratio (EW) 0.31 0.73 0.76 0.52 0.93 0.75
Sharpe Ratio (VW) 0.23 0.66 0.94 0.45 0.61 0.68
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Table 6. Performance Comparison Between the Augmented and Original Market-Specific Models

The table reports the comparison of return predictions between augmented market-specific and original
market-specific machine learning models across the top 25 markets in Appendix B. For each market, differ-
ence is calculated as the equal-weighted (EW) or value-weighted (VW) Sharpe Ratio based on the augmented
market-specific model minus that based on the original market-specific model. Augmented models are esti-
mated with the data of the 36 stock characteristics (listed in Appendix A), US factors, and US characteristic
gaps, while original models are estimated with only stock characteristics. The models include neural net-
works with one to five layers (NN1–NN5). “# of +” refers to the number of markets with a positive value of
difference, and the fraction of markets with positive difference is also reported.

Panel A: Augmented models using all stock characteristics, top 10 US factors, and top 10 US characteristic gaps

NN1 NN2 NN3 NN4 NN5 Best NN

difference 0.08 0.14 0.05 0.13 0.17 0.10
Sharpe Ratio (EW) # of + 16 15 16 14 14 16

fraction of + 0.64 0.6 0.64 0.56 0.56 0.64

difference 0.01 0.15 0.13 0.14 0.37 0.15
Sharpe Ratio (VW) # of + 11 17 17 18 22 18

fraction of + 0.44 0.68 0.68 0.72 0.88 0.72

Panel B: Augmented models using all stock characteristics, and top 10 US characteristic gaps

NN1 NN2 NN3 NN4 NN5 Best NN

difference 0.10 0.07 0.12 0.16 0.04 0.12
Sharpe Ratio (EW) # of + 13 12 16 16 13 18

fraction of + 0.52 0.48 0.64 0.64 0.52 0.72

difference 0.07 0.17 0.33 0.31 0.42 0.29
Sharpe Ratio (VW) # of + 15 16 17 21 19 22

fraction of + 0.60 0.64 0.68 0.84 0.76 0.88

Panel C: Augmented models using all stock characteristics, and top 10 US factors

NN1 NN2 NN3 NN4 NN5 Best NN

difference -0.04 -0.07 0.01 0.02 -0.02 -0.08
Sharpe Ratio (EW) # of + 12 8 10 9 10 7

fraction of + 0.48 0.32 0.4 0.36 0.4 0.28

difference -0.02 -0.01 0.01 -0.02 0.07 -0.04
Sharpe Ratio (VW) # of + 14 13 15 12 12 12

fraction of + 0.56 0.52 0.6 0.48 0.48 0.48
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Figure 1. Relative Importance of the U.S.-estimated Model

Variable importance for the 36 stock characteristics (listed in Appendix A) in each model in the U.S. market.
Rows correspond to individual models, and color gradients within each row indicate the most influential (dark
blue) to least influential (red) variables. Variable importances within each model are normalized to sum of
one.
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Figure 2. Model Performance and Sample Size

This figure plots the improvements of equal-weighted Sharpe Ratio (Panel (a)), value-weighted Sharpe Ratio
(Panel (b)), Rank Correlation (Panel (c)), and Decile Score Distance (Panel (d)) of the best RT and NN
models relative to the best linear model against the sample size, with a fitted line with 95% confidence
intervals. The horizontal dashed line represents no improvement.
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Figure 3. Relative Importance: International Markets

Variable importance for the 36 stock characteristics (listed in Appendix A) in the best performing NN model
(based on value-weighted Sharpe Ratio) in each market. Rows correspond to each market, and color gradients
within each column indicate the most influential (dark blue) to least influential (red) variables. Variable
importances within each market are normalized to sum to one. The figure lists the top 25 markets based on
the number of observations.
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Figure 4. Relations Between Sharpe Ratio Improvements and CKA Similarity

This figure plots the improvements of equal-weighted Sharpe Ratio (Panel (a)) and value-weighted Sharpe
Ratio (Panel (b)) from the U.S.-estimated to market-specific NN5 models against the models’ CKA similarity,
with a fitted line with 95% confidence intervals.
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Figure 5. Group Variable Importance in Augmented NN Models

Group variable importance in the best performing augmented NN model (based on value-weighted Sharpe
ratio) using all stock characteristics, top 10 US factors, top 10 local factors, and top 10 US characteristic gaps
in a pooled non-U.S. market. Variable importance is normalized to sum to one. Variables are categorized
into 4 groups: stock characteristics, US factors, local factors, and US characteristic gaps. We report the sum
of variable importance in each variable group.
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Figure 6. Importance of U.S. Variables and Market Segmentation/Integration Measures

This figure plots the sum of variable importance of U.S. characteristic gaps in the best performing augmented
NN model (based on value-weighted Sharpe Ratio) for the top 25 markets in the list of Appendix B against
each market’s rank of segmentation index in Panel (a), of economic integration index in Panel (b), and of
financial integration index in Panel (c).
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