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Abstract

With quantity-based innovation targets and subsidy programs launched since the

mid-2000s, China has seen a patent surge, accounting for 46% of the world’s total

patent applications in 2020; however, the overall patent quality has been steadily de-

clining over time. This paper develops a Schumpeterian growth model featuring in-

novating firms’ quantity-quality trade-off between radical and incremental innova-

tions, and decomposes subsidies’ aggregate impact into quantity and quality chan-

nels. We calibrate the model to Chinese firm-level R&D data in the early 2010s. Our

quantitative analysis shows that the quality channel effects are negative and dom-

inant, and quantity-based subsidies in that period reduce the TFP growth rate and

welfare by 0.3% and 9%, respectively. We evaluate welfare gains under a constrained

planner’s problem, and propose a quality-biased subsidy — subsidizing the human

capital accumulation — which effectively recovers the optimal allocation.
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1 Introduction

When economic growth first starts in a developing country, its source is typically invest-
ment in physical capital or capital-embodied technology diffusion from more developed
countries. When the country gradually approaches the world technology frontier, a tran-
sition to innovation-driven growth is needed to achieve sustainable improvement in the
residents’ living standards. The evolution of the Chinese economy is one of the best ex-
amples to illustrate such dynamics. After three decades of rapid growth in the 1980s, 90s,
and 2000s, arguably driven by factor accumulations, economic growth has significantly
slowed down in China since the early 2010s. Partly due to the fear of falling into the so-
called “middle-income trap”, the Chinese government has launched a series of initiatives
to ensure the country’s success in transiting to an innovation-oriented economy since the
mid-2000s (Ding and Li, 2015).

This paper empirically documents that, since the mid-2000s, the central and local Chinese
governments have set quantity-based innovation targets in their five-year plan or other
policy documentation. In particular, the total number of patents has been widely used as
a concrete indicator of innovation achievement by Chinese governments. Under a large
scale of innovation subsidies to help achieve these targets, China’s invention patent ap-
plications have increased from slightly above 10 thousand in 1990, or 1.08% of the world’s
total, to around 1.5 million in 2020, which is 150% more than applications in the US, ac-
counting for 45.69% of the global total.

Moreover, the number of patents per researcher in China progressed at a comparable rate
to other advanced economies in the 1990s and early 2000s but increased much faster since
the mid-2000s. By 2018, an average Chinese researcher produced patents almost twice
as much as their US counterparts, raising concerns about the underlying patent quality.
We further use information on a patent’s forward citations or family size to measure its
quality, and find that the overall quality of Chinese patents deteriorated steadily after
the 2000s. In addition, we construct an innovation input-output dataset for the Chinese
industrial firms, which enables us to understand the aggregate pattern from micro-level
innovation decisions in the Chinese economy. We highlight the critical role of skilled la-
bor in research and development (R&D) activities pursuing patents of high-quality.

Then, building on Schumpeterian growth models with heterogeneous innovations (Ak-
cigit and Kerr, 2018; Acemoglu et al., 2018), we develop a general equilibrium frame-
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work featuring innovating firms’ endogenous choices between radical and incremental
innovations. Radical innovations significantly impact productivity, while incremental in-
novations build on existing radical innovations and make marginal improvements, with
their impact gradually diminishing toward zero, capturing the worry that many patents
may have minimal productive value in China’s patent surge.

As R&D inputs, innovations use skilled and unskilled labor hired from competitive mar-
kets and entrepreneurial time. Each firm is endowed with 1 unit of non-tradable en-
trepreneurial time and decides how to allocate this scarce resource among two kinds of
innovations. Motivated by empirical findings, we further assume that radical innovations
are more skill-intensive in that a larger proportion of skilled labor is needed to realize one
such invention. On the extensive margin, the economy admits two types of firms: high-
type firms capable of pursuing radical and incremental innovations and low-type ones
that only create incremental ones.

The government cannot precisely identify the quality of innovations and often bases its
policies on the number of innovation outcomes, e.g., the number of patents. As firms face
a trade-off between radical and incremental inventions, quantity-based subsidies encour-
aging overall innovations also bring an undesired shift of R&D efforts toward cheaper but
low-quality incremental trials. Under a general equilibrium context, when all innovating
firms expand their R&D expenditures, the skill premium also increases, further tilting
firms’ R&D efforts away from the more skill-intensive radical innovations. In the end,
we decompose the impact of quantity-based subsidies on growth into three channels: a
positive quantity channel that the subsidies promote innovations and creative destruction;
a negative quality-composition channel that quantity-based subsidies lower the aggregate
weight on radical innovations; and a negative quality-crowding channel that more incre-
mental trials reduce their average production value.

We then calibrate the theoretical model to moments of Chinese innovative industrial firms
from 2011 to 2013. In particular, we use moments regarding high- and low-quality patents
in data to discipline parameters related to radical and incremental innovations in the
model, showing that the introduction of quantity-based innovation subsidies accounts
for 42% of the quantity surge and 73% of the quality drop observed between the pre-
and post-2008 periods. Although the quantity channel tends to enhance overall growth,
the quality channels are much more dominant, especially the quality-crowding channel.
Overall, quantity-based subsidies reduce the equilibrium growth rate by 0.33 percentage
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points, or 17% of the actual TFP growth decline from 2001-2007 to 2008-2014, and reduce
the aggregate welfare by 9.39%.

China is still relatively scarce in innovative, skilled labor despite its fast economic catch-
up. In 2018, 27% of the Chinese population between 25 and 34 years old have completed
tertiary education, which is much lower than other major patent-holding economies.
Within the model framework, we further propose and evaluate the impact of an alter-
native policy: skill subsidy or subsidizing the human capital accumulation, which ef-
fectively recovers the social planner’s allocation. In the model skill is acquired through
formal education before a worker enters the labor market. Skill subsidy reduces the cost
of education and increases the skill supply. Since radical innovations are skill-intensive,
increasing the supply of skilled labor substantially reduces the cost of R&D pursuing
such inventions. Thus, in contrast to quantity-based innovation subsidies, skill subsidy
is a quality-biased policy — it significantly promotes aggregate growth and welfare by
raising both innovation quantity and quality.

Our paper highlights the importance of considering firms’ endogenous responses in de-
signing effective innovation policies. In that regard, the paper is related to three strands
of literature. The first is the creative destruction literature (Aghion and Howitt (1992),
Grossman and Helpman (1991)) and its recent advancement with heterogeneous firms,
e.g., Klette and Kortum (2004), Akcigit and Kerr (2018), and Acemoglu et al. (2020). Our
model builds on Akcigit and Kerr (2018), who develop a model in which firms pursue
radical and incremental innovations, and whether an R&D trial is radical or incremental
is random. Unlike their work, we introduce a scarce R&D resource and allow the pursuit
of different kinds of innovations to become an endogenous choice of the firm, generating
a micro-level quantity-quality trade-off between high- and low-quality innovations. We
also incorporate the heterogeneity of R&D input structure between high- and low-quality
innovations and endogenize the human capital accumulation, a crucial dimension in un-
derstanding developing countries’ innovation issues. We follow various works in the
literature to discipline the model using patent data and study the aggregate implications
of large-scale quantity-based subsidies adopted in China since the mid-2000s.

Our work also relates to studies investigating China’s R&D policies and patent surges. Hu
and Jefferson (2009) argue that amendments to the patent law, growth of FDI, and chang-
ing ownership are the major forces of the patent boom. Several studies have examined
other hypotheses, including technological improvement, foreign direct investment, pro-
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patent legal changes, and the exit of low-patenting-propensity SOEs (Chen and Zhang,
2019; Fang et al., 2017; Ang et al., 2014; Jia and Ma, 2017). Li (2012) empirically studies the
impact of innovation subsidy programs on patenting behaviors. The study confirms that
local subsidy programs help stimulate patent applications. Using data from the China
Employer-Employee Survey, Chen et al. (2019) find that innovation subsidies, which are
more likely to be allocated to enterprises that are state-owned and with better political
connections, positively impact incremental innovations but not radical ones.

A few recent papers study specific R&D policies in China using a more structural ap-
proach. Chen et al. (2021) study China’s InnoCom program, which rewards a tax cut to
firms with R&D investment above a certain threshold. They find that firms relabelling
expenses as R&D accounts for a substantial fraction of reported R&D expenditures, and
with relabelling, notch-based policies are more effective than tax credits. Wei et al. (2021)
find that the InnoCom Program encourages rewarded firms to engage more in low-quality
inventions and purchase patents from non-rewarded firms, and patent trading is a dom-
inant channel for why the program hurts aggregate welfare. Neither paper emphasizes
the quantity-quality trade-off facing innovating Chinese firms or studies innovation poli-
cies’ impact on aggregate growth. Recently, König et al. (2020) develop a model featuring
imitation and innovation decisions of firms subject to distortions to study the impact of
R&D misallocation on long-term growth in China. They find that a large subsidy might
even reduce the growth rate as it distorts firms’ imitation-innovation decisions. The sub-
sidy might also hurt growth in our framework but through a different channel.

Lastly, the paper is related to research on the role of human capital in innovation and eco-
nomic growth. The idea that human capital affects the rate of technological change dates
back to Nelson and Phelps (1966). Vandenbussche et al. (2006) develop a model in which
productivity growth comes from either imitation or innovation. As innovation is more
intensive in skilled labor than imitation, skilled labor significantly impacts growth when
a country approaches the technology frontier. Akcigit et al. (2020) incorporate higher
education policy into an endogenous growth model. They find that the impact of R&D
subsidies can be strengthened if combined with higher education policies that alleviate
financial constraints for the young. Our paper follows this line of research in emphasiz-
ing the input dimension of R&D and the importance of human capital and education in
promoting innovation.

The rest of the paper is organized as follows. Section 2 provides institutional background
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and describes basic empirical facts, and Section 3 introduces the model. The quantitative
analysis is the focus of Section 4, and concluding remarks are presented in Section 5.

2 Institutional Background and Motivational Facts

This section first provides an overview of various quantity-based innovation targets set
by China’s central and local governments since the mid-2000s and associated innovation-
promoting subsidies. Then, we empirically document the evolution of patenting behav-
iors in China, specifically, the patent surge and quality decline. Lastly, we illustrate the
heterogeneity of input structure between firms that produce high-quality patents and
those that do not, highlighting the role of skill in creating high-quality (radical) inno-
vations.

2.1 Institutional Background

China’s central and local governments have used quantity-based subsidy programs for
a long time. China started to emphasize the importance of building an “innovation-
oriented” economy in the mid-2000s. In 2006, the Chinese central government released
the Outlines of Medium and Long-term National Plan for Science and Technology Development
(2006-2020), which pronounced the building of an innovative economy as a new national
strategy (Ding and Li, 2015; König et al., 2020). The general goal of science and technol-
ogy development is to enhance independent innovation capability and turn China into
an innovation-oriented country in 2020. One of the critical specific metrics in the doc-
umentation is that by 2020, the total number of granted invention patents by Chinese
nationals rank top 5 globally.1 In 2010, China National Intellectual Property Adminis-
tration issued the National Patent Development Strategy 2011-2020, which explicitly set the
following quantity targets:

1. The total number of invention patents will rank top 2 in the world, and total patents
reach 2 million in 2015;

2. Invention patents per million population will increase by 100% in 2015 and by 300%
in 2020;

1Other specific targets listed in the documentation include the following. By 2020, the share of total
R&D expenditure in GDP will achieve 2.5% or more; the contribution of technological progress to economic
growth will account for more than 60%; the dependence on foreign technology will reduce to less than 30%;
the total number of forward citations of international scientific papers by Chinese nationals will rank top 5
globally.
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3. At least 8% of above-scale industrial enterprises will apply for patents in 2015 and
10% in 2020.

With these documents released by the central government, many local governments have
also applied explicit targets on the number of patents. In Table 2.1, we list several patent
quantity targets set in the 2000s and 2010s in developed areas like Beijing and Shanghai,
as well as in relatively less developed northeastern Heilongjiang province and western
Guizhou province.

Table 2.1: Quantity Targets set by the Central and Selected Local Governments

Policy Year Target Period Quantity Target

Central Government
2010 2011-20 Patents to reach 2 mil. & rank Top 2 in world in 2015

Patents per 1 mil. pop. to increase by 100% by 2015 and 300% by
2020

Beijing City
2010 2011-15 Patent applications (resp. grants) per 10,000 pop. to reach 20 (resp.

8) by 2015
2015 2016-20 Patents per 10,000 pop. to reach 80 by 2020

Shanghai City
2010 2011-20 Patent grants per 1 mil. pop. to reach 600, and patents per 10,000

pop. to reach 30, in 2015; both criteria to double in 2020
Guangdong Province

2007 2007-20 Patent applications per 1 mil. pop. to reach 200 in 2010 and to
increase more than 15% annually

Heilongjiang Province
2011 2011-20 Patents per 10,000 pop. to surpass 2.1 by 2015

Guizhou Province
2017 2016-20 Patents per 10,000 pop. to reach 2.5 by 2020

Data Source: The national targets are from National Patent Development Strategy 2011-2020. Local targets
are from local Intellectual Property Development Strategy or Five Year Plans.

To help achieve these targets, the central and local governments issued supportive poli-
cies to promote firms’ innovation activities. To encourage patent filing, the State Intellec-
tual Property Office issued the Measures of Patent Fee Deferral in 2006. Many local gov-
ernments have since issued additional incentives for patenting (Ding and Li, 2015). For
example, the Beijing city government subsidizes up to 2,150 Chinese Yaun (CNY) for an
invention patent application. The Zhejiang provincial government grants each invention
patent a one-time 3,000 CNY subsidy. By 2008, 29 of 32 provincial governments have
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introduced patent subsidy programs in mainland China (Li, 2012).2

2.2 Patent Surge

With the explicit quantity targets and associated subsidy policies, China has seen a dra-
matic surge in the total number of invention patents. However, facing quantity-based
subsidies, firms may deviate from high-quality innovations to pursue easier goals — cre-
ating a larger number of low-quality patents. This section empirically documents that
China’s overall quality of patents has been steadily declining along with the quantity
surge.

Sharp Increase in Quantity. There are three types of patents in China: invention, utility
model, and industrial design. As applications of the last two do not require substantial
review, we focus on invention patent, referred to as “patent” throughout the paper.3 Fig-
ure 2.1 shows the evolution of the total number of patent applications in China and other
major patent-holding economies.4 The Chinese patent law was enacted in 1985. China’s
total number of patent applications in the 1980s and 90s was substantially smaller than
Korea, Europe, Japan, and the United States. It surpassed Korea in the early 2000s and
Japan and Europe later that decade. In 2011, China replaced the US as the world’s No.1
patent application country. From 1985 to 2020, China’s patent applications increased at an
annual rate of 15.9%. It accounts for 1.02% of the world’s patent applications in 1990, ris-
ing to 3.77% in 2000 and further to 19.58% in 2010. By 2020, this share increased to 45.69%
of the world’s total, which is larger than the combined share of patent applications from
the US, Japan, Europe, and Korea, 44.87%, that same year.5

2Another widely adopted policy is the intellectual property rights pledge financing. In 2010, the Min-
istry of Finance issued the Notice on Strengthening Intellectual Property Rights Pledge Financing to Support
the Development of Small and Medium-Sized Enterprises. Local governments have set up pledge financing
schemes for intellectual property rights to subsidize small and medium-sized enterprises to reduce their
borrowing costs for using intellectual property rights from pledge financing facilities. In Shenzhen city,
the subsidized loan scheme provides a government subsidy of 40% on the total interest cost. By the end
of 2012, 20 provinces have adopted pilot financial services on intellectual property rights pledge financing
(Ding and Li, 2015).

3In 2020, China’s total applications for invention, utility model, and industrial design patents were 1.50,
2.93, and 0.77 million, respectively. The latter two are not regarded as patents in some other countries, while
invention patents are universally recognized.

4To accommodate more countries in the comparison, we use the number of patent applications in both
Figures 2.1 and 2.2 instead of applied and eventually granted patents, as in the rest of the paper.

5Figure A.1 shows the number of granted patents from 1990-2020 in China and other economies. Note
that there is a time lag between the application and grant of a patent; however, the general pattern in Figure
A.1 is the same as in Figure 2.1.
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Figure 2.1: Evolution of Patent Quantity in China and Advanced Economies

Note: This figure shows the number of patent applications in China and other major patent-holding
economies. The data source is World Intellectual Property Office (WIPO) IP Statistics Data Center.

Even though China’s invention patents, as an innovation output, surpass that of other
advanced economies, its progress in innovation inputs — an important one being the
number of researchers — is less impressive. Table 2.2 shows the fraction of researchers
among residents. Compared to other economies with strong patenting, China’s innova-
tion inputs are still relatively skill-scarce.

Figure 2.2 further compares the number of patents per researcher in China, and the US
— China started at a much lower level at the beginning of the 1990s. Both countries
progressed at a comparable rate in the 1990s. The US-China gap shrank in the 2000s,
suggesting China’s technological catch-up in that decade. Over the recent decades, the
Chinese government set quantity targets and adopted various innovation subsidies. As
a result, patents per researcher in China have increased much faster than in the US. By
2018, an average Chinese researcher produced almost twice as many patents as their US
counterparts.6

Note that the pattern in Figure 2.2 is not driven by differences in the two countries’ patent
grant rates, i.e., the fraction of applied patents in a given year that are eventually granted.

6There is a fallback in China’s patents per researcher in 2019-2020. It is not clear if the drop is temporary
or not without further data. Figure A.2 in the Appendix confirms that the pattern for other major advanced
economies resembles that for the US.
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Table 2.2: Researchers per million Inhabitants, 2013

China US Europe Japan France Germany

(1) 1071.1 3984.4 2941.9 5194.8 4124.6 4355.4

(2) 0.2% 1.5% 1.8% 1.2% 1.7% 2.7%

Note: Row (1) shows full-time equivalent researchers per million In-
habitants in 2013, and row (2) the share of Ph.D. degree holders in
labor force. Data source: USESCO.ORG.

Panel (a) of Figure A.3 shows the patent grant rates in both China and the US, indicating
no substantial difference in either the level or the trend; panel (b) plots the number of
applied and eventually granted patents per researcher, which still shows a rise in China’s
time series since the late 2000s.

The patent surge, in the total number or number per researcher, raises concerns on whether
Chinese innovators are becoming more productive or are incentivized to focus primarily
on quantity while ignoring the underlying quality of patents.
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Figure 2.2: Number of Patent Applications per Researcher in China and the US

Note: Data source for Number of invention patent applications is World Intellectual Property Office, and
for Number of researchers is OECD and China Statistical Yearbooks of Science and Technology.
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Steady Decline in Quality. As the quantity of Chinese patents soars, their overall qual-
ity plunges. Since cross-country comparison is not needed for time series and micro-level
patent data in China, we focus on applied and eventually granted patents as specified
in Appendix A.1. In addition, we apply two criteria to measure the quality of a Chinese
patent: (i) the fraction of forward citations a Chinese patent receives from US patents, and
(ii) whether a Chinese patent’s family size is greater than one, that is, has other countries’
patents as its family members. We obtain the patent data in October 2020 and focus on
patents applied before 2013 to avoid the truncation issue.

Figure 2.3 plots the evolution of the overall quality of Chinese patents based on the two
measurements above. The share of patents with other countries’ family members shows a
steady decline in the 2000s and 2010s, and the share of forward citations from US patents
among all posits a clear declining trend after the mid-2000s.7
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Figure 2.3: Evolution of Patent Quality

Note: This figure shows the share of forward citations from US patents divided by the average annual US
forward citation rate, and the share of patents with other countries’ family members among all Chinese
patents. Values in 2008 are normalized to 1.

7Similar declining trend persists if the share of patents with US family members is used to measure over-
all quality. Wei et al. (2021) find a similar decline in Chinese patents’ quality based on firm-level regression
results.
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2.3 Firm-Level Data: Skill Intensity and Firm Types

Our theoretical model hypothesizes that creating high-quality patents is more skill-intensive
than making low-quality ones. Under such a hypothesis, a patent surge induced by
quantity-based subsidies would increase demand for skilled labor and their wage, hurt-
ing efforts to pursue high-quality innovations and impairing overall patent quality. Due
to the lack of information on inventors’ skills at the patent-level, this section constructs
an input-output dataset on R&D activities of Chinese industrial firms and investigates the
relation between skill intensity and patent quality at the firm-level. We show that firms
capable of creating high-quality patents tend to employ a larger share of skilled workers
in R&D.

Data Source. We gathered information from three databases: (i) Annual Survey of In-
dustrial Enterprises (ASIE), which covers all Chinese industrial firms with sales above
5 million RMB for the periods 1998-2013; (ii) a supplementary Firm Innovation Activity
Database, available from 2008-2014, which contains industrial firms’ R&D investments
and skill composition of R&D personnel; (iii) Innography Patent Database, which pro-
vides information on patent ID, patent class, forward and backward citations, legal sta-
tus, etc., from 1985 onwards. Combining ASIE, Innography, and Firm Innovation Activity
Database, we construct an input-output dataset for firm-level R&D activities from 2008-
2013.8 We focus on applied and eventually granted patents and restrict to firms with
records of at least one invention patent during the sample period. As the benchmark cri-
teria, we label a Chinese patent as high-quality if any US patents have ever cited it.9

Table A.2 in the Appendix provides summary statistics of our firm-level final analysis
sample.10 From 2008 to 2013, innovating firms in our analysis sample account for 21.16%
of total Chinese patents. The number of patents in the analysis sample increased at an
annual rate of 19.3%. Meanwhile, the patent surge in the analysis sample is accompanied
by a decrease in their overall quality. The share of high-quality patents in the analysis

8Note that patent citations are subject to time lags. More recent patents are less likely to be cited by
others than older ones. We downloaded patent data from the Innography Database between October and
December 2020, 7 years after the last year in our sample, 2013. To make a meaningful comparison, we
examine five-year US citation rates and find a similar declining trend.

9We use this binary measure because (i) it is one of the mainstream measurements of quality in the
literature; (ii) it is consistent with our theoretical framework, in which we model innovations in two ways
(radical v.s. incremental); (iii) this measurement suffers little from the potential citation inflation issue due
to the patent surge. We test for other definitions of patent quality measurements in Appendix C.2.

10Appendix A.1 illustrates the data sources, Appendix A.2 details variable construction. The data clean-
ing process and construction of the final sample can be found in Appendix A.3.
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sample decreased dramatically, from 8% in 2008 to 2% in 2013.

As mentioned, due to a lack of information on skill input for individual patents, we rely
on the firm-level skill composition of researchers to infer the skill intensity in producing
different kinds of innovations. In particular, we identify a firm as high-type if it creates at
least one high-quality patent over the sample period. Among an innovating firm’s R&D
personnel, we label those with a medium or senior professional title (zhonggaoji zhicheng)
as skilled labor. Skill intensity is defined as the ratio between skilled labor and total R&D
personnel (keji huodong renyuan). Table 2.3 shows the skill composition and firm type
distribution over time. From 2011 to 2013, the skill intensity was 31.30% for high-type
firms and 24.52% for low-type firms, while high-type firms accounted for 22.34% of total
firms.11

Table 2.3: Skill Intensity and Firm Types

2011 2012 2013 Average

Skill intensity of high-type firms 32.10% 31.56% 30.32% 31.30%
Skill intensity of low-type firms 26.43% 24.38% 23.36% 24.52%

Fraction of high-type firms 26.14% 22.54% 19.71% 22.34%

Note: This table shows the skill intensity (top panel) and fraction of high-type firms (bottom panel) over
time.

Firms producing high-quality patents tend to employ a higher fraction of skilled labor
among their R&D personnel, which we take as evidence that producing high-quality
patents is more skill-intensive. We further verify this statement using a regression, as
shown in Table A.3. Controlling for firm characteristics including firm age, (log) em-
ployment, (log) revenue, and (log) assets as well as industry, year, location, and owner-
ship type fixed effects, column (3) of the table shows that the firm’s skill intensity posi-
tively correlates with its patent quality, measured by the share of the firm’s high-quality
patents. This reinforces our hypothesis that high-quality innovations require proportion-
ately more skilled labor.

Facing quantity-based subsidies, firms may find it more profitable to maximize the num-
ber of innovations to obtain maximum subsidy. Such distorted incentives imply a po-
tential deviation from high-quality innovations that require more skilled labor input to

11Skill composition data is not available for 2008 and 2009.
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cheaper but low-quality ones. A micro-level quantity-quality trade-off facing innovat-
ing firms and quantity targets may help explain the observed patent surge along with
their quality plunge. In that spirit, we build a Schumpeterian growth model featuring
heterogeneous firms and innovations to evaluate the impact of quantity-based innova-
tion policies on economic growth and highlight the benefit of quality-biased innovation-
promoting policies, such as subsidizing the human capital accumulation.

3 The Model

This section develops a growth model with heterogeneous innovations to study the eco-
nomic consequences of quantity-based subsidies. The model is in continuous time, de-
noted by t. The economy admits a representative household who maximizes the dis-
counted sum of utility

U =
∫ ∞

0
exp(−ρt)

C(t)1−ν − 1
1− ν

dt, (1)

where ρ > 0 is the discount factor, ν the elasticity of intertemporal substitution, and C(t)
is the flow of final good consumed.

There is a final good used in consumption and entrant firms’ overhead investment, which
we specify below. The final good is produced competitively by packaging a continuum
of intermediate varieties

Y(t) =
1

1− ε
N(t)ε

∫ 1

0
qω(t)

εyω(t)
1−εdω, (2)

where yω(t) is the quantity of intermediate good ω ∈ [0, 1] at time t, and qω(t) denotes its
quality. The parameter ε ∈ (0, 1) governs the value added share of intermediate varieties.

N(t) is the number of packagers. The total supply of packagers from the household is
assumed to be exogenously fixed at 1, so their competitive wage is wN = εY(t). In the
end, the final good producers’ demand for intermediate variety ω is simply given by

pω = qε
ωy−ε

ω . (3)

Production. Each intermediate good ω ∈ [0, 1] is produced by a firm that currently
owns the leading technology in that product line, that is, providing the highest quality
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qω.12 Denote F the total measure of incumbent firms in the economy. Denote Ω f the
set of product lines owned by an individual firm f , and Q f ≡

{
qω, ω ∈ Ω f

}
its produc-

tivity portfolio. Denote n f the cardinality of the set Q f , which represents the number of
product lines that the firm owns. A firm that loses all product lines exits the economy
permanently, so we have n ≥ 1 for incumbent firms.

Production of intermediate goods requires unskilled labor as the sole input and takes the
following form

yω(t) = q̄(t)`ω(t), (4)

where q̄(t) ≡
∫ 1

0 qω(t)dω is the economy-wide average productivity at time t, which cap-
tures the cross-firm “spillover” effect of innovations.

To maintain simplicity and avoid limit pricing, we follow the standard approach in the
Schumpeterian growth literature and assume a two-stage price-bidding game (Acemoglu
et al., 2012).13 In equilibrium, the firm owning the leading technology can charge a mo-
nopolistic price until being replaced in the future by a successful innovator. Given this
setting, the profit maximization problem of the firm that owns the leading technology in
product line ω is

max
yω

qε
ωy1−ε

ω − w`

q̄
yω. (5)

It follows that pω = 1
1−ε

w`

q̄ . That is, firms will charge a constant markup 1
1−ε . The profit

from owning product line ω then is

πω = ε

[
(1− ε)

q̄
w`

] 1−ε
ε

qω ≡ πqω. (6)

Therefore, profit is a linear function of the product line’s quality if w`/q̄ is a constant,
which is true on the balanced growth path.14

R&D Heterogeneity. In addition to production, intermediate-goods firms also spend
on R&D to pursue innovations. Following the literature, R&D efforts are assumed to be

12We use “intermediate good”, “intermediate variety” and “product line” interchangeably in the paper.
13In stage 1, firms decide whether to pay an arbitrarily small but positive market-entry cost. In stage 2, all

firms that have paid the cost in stage 1 compete in a Bertrand competition. The firm that owns the leading
technology and produces the highest quality goods would announce a limit price, which makes all others
earn a non-positive profit in stage 2. Therefore, they optimally decide not to enter and compete in stage 1.

14The labor demand is also linear in qω: `ω =
[
(1− ε) q̄

w`

] 1
ε qω

q̄ .
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undirected. Upon a successful innovation, a firm improves the quality of a random prod-
uct line by a step size from its current frontier. Innovations are heterogeneous; specifically,
two kinds of innovation exist: radical vs. incremental. Incremental innovations build on
one existing radical innovation. As in Akcigit and Kerr (2018), we assume the quality im-
provement associated with radical innovation is fixed and large, while that of incremental
innovation is small and gradually diminishes toward zero.

R&D uses skilled labor, unskilled labor, and entrepreneurial time as inputs.15 Each firm is
endowed with 1 unit of non-tradable entrepreneurial time. When a firm owning n prod-
uct lines hires h units of skilled labor, ` units of unskilled labor, and allocates e fraction
of entrepreneurial time to pursue radical innovations, it adds one more product line to its
portfolio at the following Poisson flow rate

Xd = zd n1−φ
(

eσhγd`1−γd
)φ

, (7)

where zd ≥ 0 is the firm’s productivity in pursuing radical innovations. Parameter
φ ∈ (0, 1) is the elasticity of successful innovation concerning R&D.16 The parameter
γd ∈ (0, 1) is the skill intensity of radical innovation. The parameter σ > 0 denotes the
elasticity of innovation arrival rate on entrepreneurial time. When σ → 0, we return to a
typical R&D function used in the literature. As the total endowed entrepreneurial time is
fixed at 1, a positive value of σ allows us to examine individual firm’s trade-off between
different kinds of innovations, a point we illustrate in detail below.

If firm f successfully adds a product line ω to its portfolio following a radical innovation,
it raises the quality of product ω by

qω(t+) = qω(t) + λq̄(t), (8)

where λ > 0 is an exogenous parameter governing the step-size of radical innovations.

Firms can also pursue a second incremental innovation. When a firm owning n product
lines hires h units of skilled labor, ` units of unskilled labor, and allocates the remaining
1− e units of entrepreneurial time in incremental innovations, it adds one more product

15We introduce “entrepreneurial time” to capture R&D inputs that are scarce and non-tradable, such as a
manager’s time to supervise R&D projects, or new ideas from a research team, etc.

16It also captures a within-firm “spillover” effect from existing innovations to the creation of a new one.
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line to its portfolio at the following Poisson flow rate

Xm = zm n1−φ
(
(1− e)σhγm`1−γm

)φ
, (9)

where zm and γm are different from that of the radical innovations. Following the em-
pirical result in Section 2.3, we assume γm < γd; that is, incremental innovations are less
skill-intensive than radical ones.

The quality improvement following a successful incremental innovation depends on the
distance from the most recent radical innovation, i.e., times of incremental improvement
already created in the product line. Denote τω this distance for product line ω, that is,
if product line ω is experiencing the τω-th incremental innovation from its most recent
radical one, the step-size of quality improvement would be

qω(t+) = qω(t) + ηατω−1q̄(t), (10)

where η ∈ (0, λ) governs the initial step-size, and α ∈ (0, 1) governs how fast the ef-
fect diminishes. The idea behind this setting is that the effect of incremental innovations
weakens until a radical one arrives and resets the clock.

Now we are ready to derive the associated R&D cost function. Following Klette and
Kortum (2004), it is useful to transform variables into their “per line” correspondences.
Denote xd ≡ Xd/n as the radical innovation intensity per line, xm ≡ Xm/n the incremental
innovation intensity per line,17 and wh and w` wage rates for skilled and unskilled work-
ers, respectively.

For an individual firm whose innovation intensities are (xd, xm), the associated function
of R&D cost per line, R(xd, xm), is given by18

R(xd, xm) =
[
Θd(xd)

1
σ+1 + Θm(xm)

1
σ+1
]σ+1

, (11)

17Our specification yields innovation intensity of xi = zie
σφ
i
(
hγi`1−γi

/
n
)φ, for i = d, m. The term zie

σφ
i

represents the “effective productivity” when ei amount of entrepreneurial time is allocated.
18The cost function is derived from a standard cost minimization problem. Minimize the total R&D

spending on skilled and unskilled labor, subject to a given output of innovation intensities xd and xm from
the previously specified production functions.
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where

Θi(xi) ≡ ∆i

(
wh
)γi
(

w`
)1−γi

(
xi

zi

) 1
φ

,

and
∆i ≡ γ

−γi
i (1− γi)

γi−1, for i = d, m.

The cost function has two components, Θd and Θm, each associated with labor inputs in
corresponding R&D activities. These two components add up nonlinearly because of the
fixed and non-tradable entrepreneurial time each firm has as an endowment. We assume
σ < (1− φ)/φ to maintain decreasing return to scale and avoid corner solutions in xd

or xm. This argument shall become clearer when we arrive at the incumbent firm’s value
function. Also, note that when σ→ 0, the economy approaches the case in which choices
of xd and xm are separable.

Quantity-Based Subsidy. Though radical and incremental innovations are heteroge-
neous in their magnitude of quality improvement, a successful innovation, radical or
incremental, always brings the firm a new product line. At any point in time t, we assume
a successful innovation embodies a certain number of patents — radical innovations cor-
respond to high-quality patents and incremental innovations to low-quality ones.19 Total
number of active patents that a firm has is therefore proportional to the number of prod-
uct lines that the firm controls.

We define quantity-based subsidy to innovating firms as any subsidy that rewards the
number of active patents a firm holds, i.e., n, disregarding the underlying quality. In par-
ticular, we use the form n× bnπq̄, where bn denotes the subsidy-to-profit ratio. Conceptu-
ally, the bn term summarizes all explicit subsidies — cash or cash-like subsidies that show
up in the firm’s balance sheet, and implicit subsidies — cheaper land cost, accessibility to
loans, etc., that an innovating firm receives as long as the subsidies are quantity-based.

Firm Heterogeneity. The economy admits two types of firms regarding R&D produc-
tivity. The high-type (H) firms are capable of pursuing both radical and incremental in-
novations, that is, zHd > 0 and zHm > 0. The low-type (L) are capable of pursuing only
incremental ones, that is, zLm > 0 but zLd = 0.20

19The number of patents an innovation embodies might change over time.
20This distinction between firms allows us (i) to infer R&D input structure from observable firm-level

data, and (ii) to investigate both the intensive margin (changes in the intensity of different kinds of innova-
tions within high-type firms) and the extensive margin (changes in the share of high- and low-type firms in
the economy) associated with innovation policies.
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At any point, there are a total mass 1 of potential entrants. Upon a successful innovation,
the potential entrant enters the economy with one product line in its portfolio. Potential
entrants are of low-type by default; however, after paying an overhead investment of
K(p), they receive a probability p ∈ [0, 1] turning into high-type entrants. For tractability,
we assume that entrants stick to their chosen type throughout the life cycle. Section 3.1
provides a more detailed discussion about the entrant firms’ problem and the incumbent
firms’ type and product line distribution.

Education. The representative household also supplies a mass L of workers, each facing
a constant death rate of d > 0. At each point, a flow dL of young workers joins the
economy, so the total population of workers stays constant. Upon entry, each individual
randomly draws a type θ from a Pareto distribution of talent21

P
{

θ ≤ θ̃
}
= 1− θ̃−2, for θ̃ ∈ [1, ∞).

An individual can work as an unskilled worker without any investment in education;
however, they must spend time in school to become skilled.22

An individual’s cost of education is negatively associated with their talent type. In par-
ticular, it requires 1/θ units of education service for an individual of type θ to become
skilled labor. Education service is produced by existing skilled workers employed in the
education sector at a competitive wage rate and with technology

e = ξ hteacher, (12)

where hteacher denotes the mass of skilled workers employed in education. We introduce
the productivity in the education sector, ξ ∈ (0, ∞), to capture the overall efficiency of an
economy’s education infrastructures.

Young people choose to invest in education and become skilled if and only if the expected
lifetime return from doing so — earning a skilled wage minus paying the education cost
— surpasses the lifetime value of being an unskilled worker earning a lower wage. Ap-
pendix B.1 shows that a young individual chooses to invest in education if and only if

21As become clearer in Section 4, the Pareto distribution’s shape parameter is a free parameter. We simply
fix it at 2, the infimum for a finite variance.

22The way we introduce education and endogenous human capital accumulation follows Acemoglu et
al. (2018).
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her type is above a certain threshold θ∗, which depends on the economy’s skill premium
wh/w` and the productivity in the education sector ξ. Lastly, we assume that producing
education services require a fixed amount of unskilled labor, `edu > 0, to properly match
the size of the education sector in the quantitative exercise.

3.1 Equilibrium

We focus on equilibrium featuring a balanced growth path; that is, the average productiv-
ity of the economy, q̄(t), grows at a constant rate g, while other aggregate variables grow
proportionally.

Incumbent Firm’s Value Function. The state variables of an incumbent firm include its
type, product portfolio Q, and the economy’s average productivity q̄. Denote r the in-
terest rate and δ the endogenous creative destruction rate in the economy. Both rates are
determined on the aggregate-level and taken as given for an individual firm.

The value function for a high-type firm is written as

rVH(Q, q̄)− V̇H(Q, q̄) = max
xd,xm

∑
qω∈Q

{
πqω︸︷︷︸
profit

+ δ
[
VH (Q\{qω}, q̄)−VH(Q, q̄)

]︸ ︷︷ ︸
loss from creative destruction

}
+ n× xd

[
Eω′VH (Q ∪ {qω′ + λq̄}, q̄)−VH(Q, q̄)

]
︸ ︷︷ ︸

return from radical innovations

+ n× xm

[
Eω′VH

(
Q ∪ {qω′ + ηατω′−1q̄}, q̄

)
−VH(Q, q̄)

]
︸ ︷︷ ︸

return from incremental innovations

− n× R(xd, xm)︸ ︷︷ ︸
R&D cost

+ n× bnπq̄︸ ︷︷ ︸
quantity-based subsidy

.

(13)

The first line is static profit from each product line, plus the value change due to creative
destruction. Q\{qω} denotes the remaining portfolio of the firm after losing line ω due
to a successful innovation by another firm. The second line is the net value change from a
successful radical innovation, which adds a random product line ω′ into the firm’s prod-
uct portfolio. The expectation is over ω′ as which line the innovation lands on is random.
As described before, a successful radical innovation raises the product quality by λq̄. The
third line is the net value change following a successful incremental innovation. The last
line includes the R&D cost and all quantity-based subsidies to the firm. Total subsidies a
firm obtains equals its number of valid patents, n, times the subsidy for each patent, bnπq̄,
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where bn denotes the subsidy-to-profit ratio, and q̄ is added to make sure the existence of
a balanced growth path.

Similarly, we can write the value function of a low-type firm as

rVL(Q, q̄)− V̇L(Q, q̄) = max
xm

∑
qω∈Q

{
πqω + δ

[
VL (Q\{qω}, q̄)−VL(Q, q̄)

]}
+ n× xm

[
Eω′VL

(
Q ∪ {qω′ + ηατω′−1q̄}, q̄

)
−VL(Q, q̄)

]
− n×Θm(xm) + n× bnπq̄.

(14)

The value of a low-type firm resembles that of a high-type firm, except that low-type firms
are unable to pursue radical innovations since we assumed that zLd = 0.

One important equilibrium property of the optimization problems is that firms of the
same type choose the same innovation intensity per line, regardless of their differences
in product lines n or product portfolio Q. The property that product lines of a firm are
“separable” in this class of models traces back to Klette and Kortum (2004). We end up
tracking three innovation intensities in equilibrium: xHd, xHm for high-type firms, and
xLm for low-type firms. The same logic applies to R&D spending per line, the value of the
firm per line, etc. Appendix B.4 provides a derivation of the linearity of Vi(Q, q̄) in terms
of n.

Entrant’s Value Function. As previously explained, there is a total mass 1 of potential
entrants, who are pursuing only incremental innovations at a fixed Poisson rate xE > 0.
Entrants are of low-type by default; however, they can become high-type with probability
p ∈ [0, 1] by making a one-time overhead investment

K(p) = [− ln(1− p)− p] χq̄, (15)

where χ > 0 is a cost coefficient. The overhead investment uses the final good.23

The value function for a potential entrant can be written as

rVE = xE

[
max

p

{
pVH + (1− p)VL − K(p)

}
−VE

]
, (16)

23The setup captures that, firms or institutions need to make investments, such as building infrastructures
or laboratories, to pursue high-quality and cutting-edge innovations.
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where
Vi ≡ Eω′Vi

(
{qω′ + ηατω′−1q̄, }, q̄

)
, i = H, L

are the expected values of an i-type firm with one product line.

Since all entrant firms are ex-ante identical, they end up choosing the same overhead
investment K(p∗). In equilibrium, the fraction of high-type entrants, p∗, is given by

p∗ =
(VH −VL)

(VH −VL) + χq̄
.

Stationary Distribution. We focus on a balanced growth path where aggregate vari-
ables grow at a constant rate g ≡ ˙̄q(t)/q̄(t), and relevant distributions are stationary.
Note that the model’s distribution of quality across product lines does not matter as long
as its mean q̄(t) exists and grows at a constant rate. We need to monitor two distribu-
tions, one over τ, i.e., the step-size of incremental innovations, and the other over n, i.e.,
the number of product lines.

Denote δd and δm the creative destruction rate due to radical and incremental innovations,
respectively. Further denote δ the aggregate creative destruction rate, that is, δ ≡ δd + δm.
As shown in Appendix B.2, the expected step-size of an incremental innovation is given
by

η̄ = η
/(

α +
1− α

δd/δ

)
. (17)

The expected quality improvement from incremental innovations decreases with a faster
decay rate, i.e., a smaller α. Additionally, as the fraction of incremental innovations on the
aggregate-level δm/δ increases, the expected step-size also becomes smaller. This prop-
erty captures the positive (negative) externality of radical (incremental) innovations.

Denote µj,n the mass of j-type firms who owns n product lines, where j = H,L. The
expression of µj,n under a stationary distribution is derived in Appendix B.2. We can
write the creative destruction due to radical and incremental innovations as24

δd =
∞

∑
n=1

µH,n × nxHd; δm = ∑
j

∞

∑
n=1

µj,n × nxjm + xE. (18)

24Recall that only high-type firms can pursue radical innovations, and all potential entrants are assumed
to be pursuing incremental innovations.
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And the economy-wide creative destruction rate, δ, is

δ = ∑
j

∞

∑
n=1

µj,n × nxj + xE, (19)

where xH = xHd + xHm and xL = xLm are total innovation intensities per line for each
type of firms.

Moreover, the total number of product lines always sums to 1. Formally, we give the
following proposition, whose proof can be found in Appendix B.3

Proposition 1. Definition of the creative destruction rate δ guarantees that ∑
j

∞
∑

n=1
µj,n × n = 1.

The model also generates interesting implications regarding product lines and product
quality. The average number of product lines owned by the j-type firm is given by

n̄j ≡
(

∑
n

µj,n × n
)/

∑
n

µj,n. Based the Appendix B.2 results, firms with higher innova-

tion intensity shall own more product lines in expectation.

Furthermore, firms of different types are heterogeneous in average product quality, so as
average profit or revenue, which are linear dependents of the product quality. A general
property is that firms pursuing a higher ratio of radical innovations, xjd/xj, enjoy a higher
average product quality. Like our Proposition 1, both properties can be extended to N ≥ 2
many types of firms; we revisit them in our quantitative analysis in Section 4.

Market Clearing. Market clearing conditions for the aggregate economy are straight-
forward. For unskilled labor, it is

∑
j

∞

∑
n=1

µj,n × n ˆ̀ j +
∫ 1

0
`ωdω + `edu = `supply, (20)

where ˆ̀ j denotes the unskilled labor employed per line in R&D activities of the j-th type
incumbent firms, where again j = H,L in our baseline economy. `ω denotes the unskilled
labor employed in producing intermediate variety ω, and `edu denotes that employed in
the education sector, which is exogenous.
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Correspondingly, the market clearing condition for skilled labor is

hR&D + hteacher = hsupply, (21)

where

hR&D = ∑
j

∞

∑
n=1

µj,n × nĥj.

Again ĥj denotes the skilled labor employed per line in R&D activities of incumbent firms
of the j-type, and hR&D is the total mass of skilled workers employed in the R&D sector.
Here innovation intensity per line xj is identical within each type, thus, so are ĥj and ˆ̀ j.
Detailed derivations on the supply side can be found in B.1.

Lastly, the market clearing condition for the final good is

C + K(p∗)× xE = Y. (22)

3.2 Properties of the Economy

3.2.1 The Quantity-Quality Trade-off

Firms in the economy face a quantity-quality trade-off between creating more innovations
(i.e., a larger x) and creating better innovations (i.e., a higher ratio of xd/x). Innovation
subsidies may impact such trade-offs, as seen from an individual firm’s optimal decisions.
Appendix B.4 indicates that the value function can be expressed as V(Q, q̄) = ∑

i
Aqi +

nB(bn)q̄. The first term denotes profit from owning product lines, while the second term
contains net values from R&D, which depends on innovation subsidies bn. Regarding
firms’ choices over innovation, we have the following proposition.

Proposition 2. The ratio between radical and incremental innovation intensities of a high-type
firm satisfies the following condition

[
xd
xm

] 1
φ(σ+1)−1

∝
Aλ + B(bn)

Aη̄ + B(bn)︸ ︷︷ ︸
innovation return

×
[

wh

w`

]−(γd−γm)

︸ ︷︷ ︸
input structure

×
[

zd
zm

] 1
φ(σ+1)

︸ ︷︷ ︸
R&D productivity

. (23)

We assumed σ < (1− φ)/φ, so the power coefficient on the left-hand side is positive.
The first term on the right-hand side (RHS) captures the ratio of returns from radical to
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incremental innovations. The direct return of radical innovation is from its productiv-
ity improvement effect, as captured by Aλ. Similarly, that of incremental innovation is
captured by Aη̄. The fact λ > η̄ indicates that the direct return of radical innovations is
greater.

The indirect return, B(bn), is primarily affected by (quantity-based) innovation subsidies
and is identical for both innovations. A sizable generic subsidy shrinks the difference
in total returns from radical and incremental innovations, which raises firms’ incentive
to pursue proportionately more incremental innovations. Furthermore, γd > γm, that
is, radical innovations are more skill-intensive than incremental ones. If all firms are in-
centivized to do more research, which raises the equilibrium skill premium, wh/w`, they
optimally allocate more R&D efforts to incremental innovations.

Lastly, the elasticity of innovation creation on entrepreneurial time, σ, primarily affects
the degree of quantity-quality trade-off facing innovating firms. When σ is larger — not
exceeding its upper bound — the trade-off gets more substantial, and we expect more
significant responses from innovative firms to quantity-based subsidies. Moreover, the
impact magnifies drastically as σ approaches the upper bound. To see that, we take a log
on both sides of the equation (23) and get

log
(

xd
xm

)
=

φ(σ + 1)
1− φ(σ + 1)︸ ︷︷ ︸
impact coefficient

× log (RHS) . (24)

As σ approaches (1− φ)/φ, the impact coefficient, which represents the magnitude of re-
sponses from innovating firms, rises to ∞ at an accelerating rate. This property is helpful
for us to identify σ in the forthcoming quantitative analysis.

Quality Change. The aggregate share of radical innovations, δd/δ, equals to that share
within high-type firms, xHd/xH, times the fraction of innovations created by high-type
firms, δH/δ.25 It follows that changes in innovation quality can be expressed as

∆
δd
δ

= ∆
xHd
xH
× δH

δ︸ ︷︷ ︸
intensive margin

+
xHd
xH
× ∆

δH

δ︸ ︷︷ ︸
extensive margin

. (25)

25Consistent with our definitions of δd and δm, we define δH ≡
∞
∑

n=1
µH,n × nxH.
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The intensive margin comes from the quantity-quality trade-off facing high-type firms,
while the extensive margin is attributed to entrant firms’ endogenous type choice, p∗.

3.2.2 Aggregate Growth and Welfare

Along a balanced growth path, the aggregate welfare is

U =
∫ ∞

0
exp(−ρt)

C(t)1−ν − 1
1− ν

dt =
1

1− ν

[
C0

1−ν

ρ− (1− ν)g
− 1

ρ

]
. (26)

A critical determinant of the welfare is the aggregate growth rate, g, which satisfies

g = δdλ + δmη̄ = δ

[
δd
δ

λ +

(
1− δd

δ

)
η̄

]
, (27)

where η̄ denotes the expected step-size of incremental innovations. As δd and δm are ag-
gregate quantity of radical and incremental innovations, the growth rate can be viewed as
a weighted sum of their step-sizes. The growth rate differential, e.g. between economies
with and without a particular policy, can be decomposed into the following terms

∆g = ∆δ×
[

δd
δ

λ +

(
1− δd

δ

)
η̄

]
︸ ︷︷ ︸

(i) quantity-creative destruction

+ δ×
[

∆
δd
δ
× (λ− η̄)

]
︸ ︷︷ ︸

(ii) quality-composition

+ δ×
[(

1− δd
δ

)
× ∆η̄

]
︸ ︷︷ ︸

(iii) quality-crowding

. (28)

The first term refers to the quantity channel, while the second and third are the qual-
ity channels. The first “quantity-creative destruction” term captures that the aggregate
growth rate changes if a policy induces a change in the aggregate creative destruction
rate, δ, or equivalently the total number of newly created patents. A policy that changes
aggregate innovation quality, δd/δ, further affects aggregate growth. (a) It changes the
composition of radical and incremental innovations, which generate different productiv-
ity impacts, captured by the second “quality-composition” channel. (b) Changing the
average number of incremental innovations following a radical one in any product line
changes the average productivity impact of incremental innovations, which we label the
third “quality-crowding” channel.

A quantity-based subsidy might promote overall growth and welfare through the quan-
tity channel; however, the positive effect could be compromised or even overwhelmed if
the subsidy negatively impacts innovation quality. Which effect dominates is a quantita-
tive issue addressed in the following section.
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4 Quantitative Analysis

This section first calibrates the model using Chinese aggregate- and firm-level data, and
evaluate the impact of quantity-based subsidies on patent quantity surge, quality drop, and
the overall TFP growth. We then analyze a planner’s problem, which yields a constrained
first-best, and propose an alternative, quality-biased, innovation policy — subsidizing the
human capital accumulation, which we show effectively recovers the planner’s allocation.

4.1 Calibration Strategy

We calibrate the model’s benchmark economy to 2011-2013 firm-level data. Before de-
tailing the calibration strategy, we first elaborate on how we identify the parameter of σ,
which governs the micro-level quantity-quality trade-off facing innovating firms, from
firms’ responses to policy variations.

4.1.1 High-Tech Enterprises and Identification of σ

To identify σ, we need a policy that generates heterogeneity among high-type firms. The
logic behind resides in Proposition 2 and equation (24). The policy variation we utilize
is the recognition of High-Tech Enterprises (HTE) under the Chinese InnoCom Program.
More specifically, we utilize the fact that firms recognized as HTEs can enjoy extra returns
from their patents. Appendix C.1 provides a brief introduction to the InnoCom Program
and the recognition of HTEs. Correspondingly, we extend the baseline model to allow for
four types of firms: high-type & HTE; high-type & non-HTE; low-type & HTE; low-type
& non-HTE. HTEs and non-HTEs differ in that the former receives an extra subsidy, ∆bn,
on top of the uniform quantity subsidy bn.

Table C.1 shows that from 2011 to 2013, around 55% of entrant firms in our sample are
HTEs. The difference in the probability of HTE recognition between high- and low-type
entrants is negligible: 53.4% for the former and 55.6% for the latter. Therefore, we assign
all entrants the same exogenous probability of being entitled HTE, pHTE = 55%.26 For
model tractability, we further assume that HTE or non-HTE status is permanent through-
out a firm’s life cycle.27

26The minimum requirement for applying to be HTE is 1 invention patent, so the incentive for firms to
accumulate invention patents before qualification is non-substantial.

27In reality, the HTE title needs to be renewed every 3 years; however, the assumption of permanent
status is justified on the following grounds. First, the probability of successive renewal is high. Second, this
HTE assignment setup generates an incumbents’ type distribution very close to the data, as demonstrated
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We utilize a Difference-in-Difference approach to study the impact of HTE status on firms’
innovation behaviors.28 Table C.2 summarizes the results. With all other circumstances
equal, an HTE firm tends to produce 14.0% more patents (column [1]), which we dub the
“quantity effect”. Meanwhile, its patents’ quality drops by 24.3% (column [3]), which we
dub the “quality effect” in relative terms. In the calibration exercise detailed in the fol-
lowing section, we use the magnitude of these two effects to discipline the values of two
parameters: extra HTE subsidy, ∆bn, and the elasticity of innovation on entrepreneurial
time, σ.

4.1.2 Parameters and Moments

In addition to the extension to HTE and non-HTE firms detailed in the previous section,
we further include two extra policy parameters to the calibrated model: corporate tax
rate u — hence firm static profit changing from πq to (1− u)πq — and the R&D tax credit
multiplier br, i.e., the total R&D cost changing from R(xd, xm) to (1− bru)R(xd, xm).

The extended model has 23 parameters. We start with those that can be externally cali-
brated, directly inferred, or taken from the literature. We set the time discount rate ρ to
match an annual interest rate of 6.2%.29 For the inverse intertemporal substitution elas-
ticity, we set ν = 4 in the baseline and check the robustness with alternative values. The
elasticity of substitution in final goods production ε is set to match a profit rate of 20%
among ASIE firms. The total population L is normalized to 1.

In the R&D sector, we follow Acemoglu et al. (2018), relying on microeconometric inno-
vation literature, and set the innovation elasticity parameter φ = 0.5. We assume that the
initial step-size of incremental innovations η = αλ, and set the diminishing effect param-
eter α = 0.9 following Akcigit and Kerr (2018). In the education sector, we set the death
rate d so that an individual works for 35 years.

As for the subsidy-to-profit ratio, bn, the theoretical model explains that it captures all ex-
plicit and implicit quantity-based subsidies a firm receives; however, in practice, we have
to rely on observable subsidies to discipline it. We utilize the ratio of government subsidy

later in Table 4.4.
28The detailed explanation of the empirical model and strategies is provided in Appendix C.1.
29Values used in related literature vary from 4% (Storesletten et al., 2019) to 8% (Garriga et al., 2021) and

ours lies between.
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to profit30 of public firms in four innovating sectors, information technology, raw materials,
industry, and communication services, which amounted to 19.82% in 2012.31 We therefore
set bn = 19.82%. We set u and br to match a 25% corporate tax rate and a 150% tax credit
multiplier in China. The values of all externally calibrated parameters and their sources
are summarized in Table 4.1.

Table 4.1: Externally Calibrated Parameters

Para Value Equation Meaning Source

Aggregate Economy

ρ 0.062 (1) time discount rate annual interest rate
ν 4 (1) intertemporal elasticity of substitution literature
ε 0.2 (2) E.o.S. in final good production profitability
L 1 total population normalization

R&D Sector

φ 0.5 (7) innovation elasticity w.r.t. R&D literature
α 0.929 (10) diminishing effect literature
η αλ (10) initial step-size of incremental inno. assumption

Education Sector

d 0.0286 death rate of the population years of working

Government Policies

bn 19.82% (13) quantity-based subsidy industry average
u 25% corporate tax rate documentations
br 150% R&D tax credit multiplier documentations

The remaining 12 parameters are internally calibrated to moments, which, unless stated
otherwise, are calculated from our firm-level R&D input-output dataset in 2011-2013. As
mentioned, we use the quantity and quality effects from HTE status to discipline the extra
HTE subsidy, ∆bn, and the elasticity on entrepreneurial time, σ.

30More specifically, we use “net profit” from a firm’s financial statement. Alternative choices are “oper-
ating profit” or “total profit”, which are not so different in scale. For example, among public firms in 2012,
the denominator-weighted average ratio of net to operating profit was around 82%, while that of the net to
total profit was around 80%.

31The ratio for these four industries in the order listed in the main text is 29.13%, 41.07%, 12.64%, and
10.89%, respectively. The other sectors and subsidy-profit ratios (in brackets) are public affairs (15.82%),
medicare (8.19%), real estate (4.86%), daily consumption goods (6.56%), energy (1.89%), and non-daily
consumption goods (N/A).
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The first set of remaining parameters regards innovation productivity. The model con-
tains three productivity parameters: radical and incremental innovation productivity
for high-type firms, zHd and zHm; and incremental innovation productivity for low-type
firms, zLm. To discipline zHm and zLm, we use the average R&D intensity, defined as
the ratio of total R&D spending to value-added,32 of high- and low-type firms, which
amount to 18.34% and 14.87% in the data. The ratio zHd/zHm affects the share of radical
innovations high-type firms choose to pursue. Therefore, we use the share of high-quality
patents to discipline the value of zHd. We use the ASIE-Patent sample instead of 2008-2013
final analysis sample to incorporate the quality drop between pre- and post-2008 periods.
Please refer to Appendix A.3 for detailed descriptions of data samples. The average share
of high-quality patents was 13.50% in 2005-2008, dropping by 6.87 percentage points to
6.63% in 2011-2013.33

The second set of parameters regards skill intensities in innovation: γd and γm. Recall
that low-type firms are capable of pursuing only low-quality patents, which embody in-
cremental innovations. We use the observed skill intensity of low-type firms to discipline
the skill intensity parameter in incremental innovations, γm. The skill intensity of high-
type firms combines that in creating high- and low-quality patents. With the value of γm

determined, we can discipline γd by targeting the observed skill intensity of high-type
firms.

Based on equation (27), we set the step-size of radical innovations, λ, to match the annual
TFP growth rate of 1.97% from 2008-2014, estimated by Bai and Zhang (2017). We use the
skill premium to discipline the productivity in the education sector ξ, which determines
the total supply of skilled labor and the equilibrium wage rates.34 The fixed amount of
unskilled labor employed in the education sector, `edu, is chosen to match the ratio of total
higher education cost to GDP, 1.45%.35

32In the model, firms with the same innovation productivity choose the same level of R&D spending, but
their value-added might differ due to idiosyncratic draws of product quality. “Average” means a within-
type semi-aggregation which gives a “representative” value added for each type of firm.

33We also calculate this moment using the Innography sample, where the number is 6.25% in 2011-2013,
similar to the ASIE-Patent sample.

34To obtain this value, we run a Mincer regression using data from the Urban Household Survey 2009,
the coefficient in front of the dummy for “graduate degree” is 2.43. Specifically, we regress wage on the
education group dummy controlling for household age, age squared, gender, race, and marital status.

35From Chinese Family Panel Studies, the share of household expenditure in income was 0.34% in 2012.
The government expenditure on higher education to GDP ratio in the same year is 1.11%. The value we use
is a summation of these two numbers.
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Consistent with the model’s settings, entry rate xE is disciplined by the share of patents
created by new entrants in the economy, 21.00%.36 The cost coefficient for entrants to
become high-type firms, χ, is set to match the percentage of high-type firms among all
incumbents, 22.34% from 2011-2013.

In the end, we jointly calibrate all these 12 parameters to minimize the total sum of dis-
tance between model-generated and data moments

∑
i

∣∣∣∣∣model(i)− data(i)
data(i)

∣∣∣∣∣× 100%.

Table 4.2 summarizes the internally calibrated parameters and their corresponding target
moments.

Table 4.2: Internally Calibrated Parameters

Para Equation Meaning Target

R&D Sector

zHd (7) H-type firms’ radical innov. prod. share of radical innov.
zHm (9) H-type firms’ incremental innov. prod. H-type firms’ R&D intensity
zLm (9) L-type firms’ incremental innov. prod. L-type firms’ R&D intensity
γd (7) skill intensity in radical innov. H-type firms’ skill intensity
γm (9) skill intensity in incremental innov. L-type firms’ skill intensity

Other Sectors

λ (8) step-size of radical innovations TFP growth rate
ξ (12) education productivity wage premium

`edu (20) unskilled labor in education education cost to GDP ratio
xE (16) entry rate entrants’ patent share
χ (15) cost of becoming H-type fraction of H-type incumbents

Policy Variation

σ (7) elasticity on entrepreneurial time quality effect of HTE
∆bn quantity-based subsidy bonus for HTE quantity effect of HTE

36Calibrated this way, the model implies an entry rate among innovating firms of around 15%, which is
slightly higher than that among Chinese firms in the data. The exogenous entry rate plays a limited role in
our quantitative results.
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4.2 Model Fit

Targeted Moments. Table 4.3 presents the calibration results and model fit. The bench-
mark model well replicates the targeted moments. Among all 12 moments, only one has
a relative distance exceeding 1 percentage point (p.p.). The total sum of data-model dis-
tance is 3.65 p.p. or an average distance of 0.30 p.p. per moment.

Table 4.3: Benchmark Calibration

Para Value Data Moment Model Moment Distance

zHd 1.0406 6.63% 6.62%
zHm 1.0147 18.34% 18.19%
zLm 0.9864 14.87% 14.68% 1.26 p.p.
γd 0.7808 31.30% 31.53%
γm 0.4412 24.52% 24.51%

λ 0.1306 1.97% 1.97%
ξ 0.0337 2.43 2.43

`edu 0.0094 1.45% 1.45%
xE 0.0633 21.00% 20.99%
χ 0.2067 22.34% 22.32%

σ 0.9729 -24.30% -24.31%
∆bn 6.64% 14.00% 14.01%

Note: Distance is calculated as the relative percentage deviation,
and is provided only when exceeding 1 p.p.

Estimates of γd and γm imply that R&D activities pursuing radical innovations rely more
heavily on skilled labor than incremental ones. The relatively significant difference be-
tween the two intensities, 0.7808 vs. 0.4412, is necessary to account for the observed 7%
gap in the skill intensity between high- and low-type firms, as more than 85% of patents
created by high-type firms are still of low-quality.

Our estimate of λ implies that a radical innovation improves the quality of a product by
13.06%. This number is close to that obtained in the literature. For example, Akcigit and
Kerr (2018) estimated a step size of 11.20%, while Acemoglu et al. (2018) reported a step
size of 13.20%. Furthermore, our model generates η̄ = 0.0606, that is, an incremental in-
novation on average improves the quality of a product by 6.06%.

The estimated value of σ indicates a large elasticity of innovation creation on entrepreneurial
time. Discussions following Proposition 2 show that the quantity-quality trade-off strength-
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ens as σ approaches its upper bound, (1− φ)/φ. Since we pick φ = 0.5 from the literature,
a value of σ = 0.9729 therefore suggests a strong trade-off on the micro-level, and an im-
pact coefficient of 72.80 as specified in equation (24).

Non-targeted Moments. The first non-targeted moment we check is the aggregate cre-
ative destruction rate, which is challenging to measure from the data (Garcia-Macia et al.,
2019). As we correspond innovation to patents, we define a patent-level creative destruc-
tion rate in a year as the ratio of newly created patents to that of the patent stock. New
patents in year t are those applied in year t and eventually granted. Patent stock refers to
all active patents in year t.37 For the 2011-2013 sample period, we estimate a patent-level
creative destruction rate of 31.66%, which is close to the model counterpart δ = 30.16%.38

We then check the model’s performance under the assumption of a random and perma-
nent recognition of HTEs upon entry. Under the parameterization of pHTE = 55%, the
model successfully generates a type distribution across incumbent firms close to the data,
as demonstrated in Table 4.4. Specifically, our model predicts that 61.80% (58.40%) of
high-type (low-type) incumbents are HTEs, while the data counterpart is 63.03% (59.48%).
Furthermore, the HTE shares among incumbents are larger than the initial exogenous
probability of recognition; HTEs are more active in innovating and expanding and are
less likely to exit due to creative destruction. We consider the modeling of HTEs a success
for capturing this important feature.

Table 4.4: Type Distribution of Incumbent Firms

High-Type HTE Model Data

1 1 13.80% 14.08%
1 0 8.53% 8.26%
0 1 45.36% 46.19%
0 0 32.31% 31.47%

Note: This table reports the percentage of incumbent firms by their innovation productivity types and HTE
status. The data column is calculated from sample period 2011-2013.

The model also predicts that firms with higher innovation intensity have a larger ex-

37Consistent with the patent distribution in Figure 4.1, here we use the Innography-ASIE matched sample
of patents. Appendix C.3 provides a detailed description of variable construction.

38The number is higher than what is typically reported in the literature, especially those from the litera-
ture on firm dynamics; however, since we look at patent-level creative destruction and China experienced
a patent surge in that period, we consider the high rate reasonable.
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pected size. Under the calibrated parameter values, the size ratio between average high-
and low-type firms, measured by employment, revenue, or profit, is 1.5285. Table 4.5
shows the relative size ratio from 2011-2013 firm-level data. Our calibration also captures
the size difference well.

Table 4.5: Size Ratio between High- and Low-Type Firms in Data and Model

Employment Revenue Profit

Data 1.2523 1.5044 1.6790
Model 1.5285 1.5285 1.5285

Note: This table reports the relative ratio for variables of interest, between average high- and low-type firms
in 2011-2013 period, and we trim the bottom and the top 1 percent of the sample.

Lastly, we check the model’s performance on the number of patents distributed among
innovating firms. In the model, the number of patents corresponds to the number of prod-
uct lines, n. Similar to the measurement of patent-level creative destruction, we calculate
the patent stock of an individual firm in 2011-2013 by summing all active patents. Figure
4.1 shows the distribution of active patent stock among high- and low-type firms. We
underestimate the number of patents for high-type firms, but overall, the model matches
the data pattern well.

Figure 4.1: Distribution of Patent Number among High- and Low-Type Firms
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Note: This figure shows the distribution of patent number among high- (panel (a)) and low-type (panel
(b)) firms. Patent stock is calculated as the sum of all active patents within 2011-2013 period, and the
distribution of patent stock is then estimated for the two sub-groups.
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4.3 Effects of Quantity-Based Subsidies

We are now ready to evaluate the impact of quantity-based subsidies, the uniform sub-
sidy bn for all firms, and the extra subsidy ∆bn for HTEs. To that end, we compare the
baseline outcome with a counterfactual economy in which all quantity-based subsidies
are shut down, i.e., bn = ∆bn = 0.

Table 4.6 presents the results. Compared to the counterfactual economy, quantity-based
subsidies implemented in China generate an increase in innovation quantity from 0.2084
to 0.2383, equivalently by a relative 14.56%. Conversely, such subsidies reduce overall
innovation quality, i.e., the share of radical innovations among total innovations, from
11.62% to 6.62%, or a decrease of 5 percentage points. In the data, compared to the pre-
2008 period, we see a relative increase of 34.57% in patent quantity and a drop of 6.87
percentage points in patent quality in the post-2008 period.39 Our calibration suggests
that quantity-based subsidies account for 41.51% of the patent surge and 72.78% of the
quality drop observed in the post-2008 period.

Table 4.6: Innovation Quantity & Quality in the Baseline (B.M.) and Counter-
factual Economy (C.F.) w./o. Quantity-Based Subsidies

Variable Meaning B.M. C.F. ∆Model ∆Data
∆Model
∆Data

δ− xE innovation quantity 0.2383 0.2084 14.56% 34.57% 41.51%
δd/δ innovation quality 6.62% 11.62% -5.00% -6.87% 72.78%

Note: ∆Model represents change from the counterfactual to the benchmark economy. ∆Data
refers to change in the corresponding moments between the pre- and post-2008 period.
Change in innovation quantity is in relative terms; while change in innovation quality,
already measured in percentage terms, corresponds to the direct difference.

As detailed by equation (25), the drop in overall quality, induced by quantity-based sub-
sidies, could come from the intensive margin as high-type firms face a quantity-quality
trade-off or the extensive margin where firms endogenously choose types. Among the
5 percentage points decrease in patent quality shown in Table 4.6, we find that the in-
tensive margin alone explains 142.70%, while that from the extensive margin is -20.62%.
The reason is that quantity-based subsidies widen the value difference between high-
and low-type firms, encouraging entrant firms to spend more on overhead investment

39The increase in quantity is estimated as a surge above the trend; details about the estimation can be
found in Appendix D.1. The drop in quality is calculated from the ASIE-Patent sample between 2005-2008
and 2011-2013.
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and become high-type firms. The economy now consists of more firms capable of pursu-
ing radical innovations but creating mostly incremental ones. This situation corresponds
to the scenario that Chinese firms and research institutes spend heavily on R&D infras-
tructures and laboratories but create very few high-quality patents, giving rise to another
layer of resource waste.

By changing firms’ innovation incentives, quantity-based subsidies further affect aggre-
gate growth and welfare. In our exercise, the aggregate growth rate reduces from 2.30%
in the counterfactual economy without subsidies to 1.97% in the baseline. Bai and Zhang
(2017) report that Chinese TFP growth rate decreases by 1.91 percentage points, from
3.88% in 2001-2007 to 1.97% in 2008-2014. A drop of 0.33 percentage points in our model’s
TFP growth rate accounts for about 17% of the change between the data’s pre- and post-
2008 periods.

We follow equation (28) and decompose such effects into three channels, as shown in
Table 4.7. Subsidies raise innovation quantity, leading to a 0.25% increase in aggregate
growth rate; however, this positive quantity effect is overwhelmed by the negative qual-
ity effects. A pool of proportionately less radical innovations, which have a larger impact
on productivity, reduces growth. This channel brings a 0.07% drop in aggregate growth.
In addition, the average productivity enhancement from incremental innovations falls as
quantity-based subsides induce more incremental R&D trials. This last channel brings
a 0.51% drop in aggregate growth rate. Overall, the quality-crowding effect dominates,
generating an overall negative effect on growth. As a result, eliminating quantity-based
subsidies in the counterfactual economy creates a welfare gain of 9.39%.40

Table 4.7: Growth Decomposition

∆Growth (i) quantity (ii) quality-composition (iii) quality-crowding

-0.33 0.25 -0.07 -0.51
(
×10−2)

-75.24% 20.88% 150.53%

Note: Growth differential is the growth rate difference between a counterfactual economy with-
out quantity-based subsides and the baseline economy. We follow equation (28) and decompose
the growth differential into three channels.

40As shown in equation (26), total welfare is jointly determined by initial consumption C0 and the growth
rate. In our exercise, the impact of C0, with its small change, is secondary; the change in welfare comes
predominantly from changes in the growth rate.
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To summarize, the key channel for the negative growth and welfare effects of quantity-
based subsidies is that although they promote overall innovations, such policies also
worsen the quantity-quality trade-off facing innovating firms. The dominance of the
quality effects, though, depends on our calibration of parameters, especially on σ, which
governs the degree of quantity-quality trade-off. As a robustness check for our conclu-
sion, we give a lower bound value of σ, above which the negative quality effects always
dominate: σ = 0.9332, or equivalently, an impact coefficient of 28.94.41 More details can
be found in Appendix D.2.

4.4 Social Planner’s Allocation

This section analyzes the scenario of a constrained planner’s allocation. In particular, we
allow the planner to decide the skill supply but let individual firms produce and price as
in the market economy, as we are not interested in alleviating the monopoly distortion.
Since our economy contains an education sector with endogenous creation of skilled la-
bor, the planner only needs to choose the threshold talent above which the young shall
obtain education, θ∗, to maximize social welfare. Once θ∗ is chosen, skilled and unskilled
labor supplies are determined.42

We detail how to solve the social planner’s problem in Appendix D.3. The aggregate wel-
fare is a hump-shaped function of the education threshold, θ∗. An increase in skill supply
initially raises welfare as it promotes innovation and growth but reduces welfare after
passing a specific range, as the negative effect from a shrinking unskilled workforce and
lower initial consumption level eventually dominates. Table 4.8 compares the benchmark
economy and the social planner’s allocation.

The results suggest a rather large room for welfare improvement. The socially optimal
level of skilled labor supply is more than twice that of its counterpart in the market equi-
librium, which dramatically reduces the skill premium by about 37%. As more skilled
labor promotes innovation, the aggregate growth rate increases from 1.97% to 4.23%, and
the aggregate welfare improves by 17.73%.

The aggregate welfare gain is affected by the parameter governing the elasticity of in-
tertemporal substitution, ν. In the benchmark calibration, we set ν = 4, which delivers a

41The benchmark calibration of σ amounts to 0.9729, with a much higher impact coefficient of 72.80. As
shown in equation (24), the impact coefficient varies drastically when σ approaches the upper bound.

42See Appendix B.1 for details of how skill supply is determined with a given value of θ∗.
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Table 4.8: Comparison between Market Equilibrium and
Social Planner’s Allocation

Variable Meaning Benchmark Planner

θ∗ education threshold 5.12 3.14
hsupply skill supply 3.71% 9.84%
wh/w` skill premium 2.43 1.52

g TFP growth rate 1.97% 4.23%
C0 initial cons. level 100% 96.91%
U social welfare 100% 117.73%

Note: The benchmark market equilibrium level of C0 and U are
normalized to 100%, respectively. hsupply represents both the frac-
tion and the level, since we normalize the total population of
workers L = 1.

relatively small welfare elasticity concerning the growth rate. In Appendix D.3, we show
welfare gains under different values of ν.

4.5 Skill Subsidies

We analyzed the welfare gains from allocations chosen by a constrained planner. A natu-
ral follow-up question is whether policymakers can find easy-to-implement subsidies to
recover the planner’s allocation and improve social welfare. One policy is to design more
“selective” innovation subsidies, for example, subsidies to input and output of radical in-
novations only. Chen et al. (2021) document that many Chinese firms fake reporting R&D
expenditure to qualify for government subsidies. In reality, it is even harder to require
firms to truthfully report the kind of innovations they are pursuing.

Here we propose a second, but equally effective policy: skill subsidies, or subsidizing the
human capital accumulation. Skill subsidies are biased toward high-quality innovations
since they are more skill-intensive. In particular, we incorporate an education subsidy
into the model with a policy parameter be ∈ [0, 100%].43 Recall that the total education
cost is

(
whhteacher + w``edu

)
. With education subsidy, a be portion of total education cost is

covered by the government. A young individual’s threshold talent for attaining education

43The model contains two equivalent forms of skill subsidies: education subsidy which covers part of
education cost, and skilled labor subsidy, which covers part of the firms’ wage cost of hiring skilled labor.

37



becomes

θ∗ ≡ max

1− be

ξ

[
1− e−(ρ+d)

] (
e−(ρ+d) − w`

wh

)−1

, 1

 . (29)

Consequently, the larger the education subsidy be is, the lower the threshold θ∗ will be,
and more young workers will obtain an education, raising the skilled labor supply.

Efficiency of Skill Subsides. In Section 4.4, we show that compared to market equi-
librium, the constrained efficient allocation features a larger skill supply and lower skill
premium. The issue is, with such a low skill premium, not that many individuals would
willingly choose to invest in education and become skilled. At a skill premium of 1.52,
the implied level from the planner’s allocation, individually rational choices on education
yields a significantly higher talent threshold of θ∗ = 10.08, and correspondingly, a much
lower skill supply accounting for only 0.96% of the population.

Not surprisingly, education subsidies can induce people to obtain education and become
skilled labor even with a low skill premium.44 Under our calibrated parameter values,
an education subsidy that recovers the planner’s allocation is be = 68.83%. That is, if the
government compensates for 68.83% of the education cost, at a low skill premium of 1.52,
any individual with talent above the socially optimal threshold, θ∗SP = 3.14, can optimally
choose to obtain an education.

An education subsidy rate be = 68.83% implies that the ratio of government education
expenditure to GDP is 1.95%, which is significant considering that in the benchmark econ-
omy, the total size of the education sector was only 1.45% of the GDP. Therefore, we regard
be = 68.83% not as a policy recommendation to be implemented immediately but instead
as a measurement of room for improvement.45

Skill Subsidy as a Quality-Biased Policy. Here, we focus on illustrating why education
subsidy achieves a better outcome than quantity-based subsidy. To that end, we start from
the benchmark economy with quantity-based subsidy bn = 19.82% and education sub-
sidy be = 0 and compare it with two counterfactual situations with 5 percentage points
strengthening each subsidy. Table 4.9 summarizes the results.

44From equation (29), it is straightforward to see that if we put θ∗SP on the left-hand side and the skill
premium on the right, there always exists a be such that the equality holds.

45Note that in the model, improving the productivity of the education sector, ξ, which is arguably more
challenging to implement in the short run, has the same effect as education subsidies.
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Table 4.9: Comparison between Quantity-Based Innovation Subsidies and the Edu-
cation Subsidy

Variable Meaning Benchmark bn+5% be+5%

R(x)/Vadd average R&D intensity 15.75% 16.71% 15.85%
xHd/xH % of radical inno. by H-type firms 25.21% 21.62% 28.95%
wh/w` skill premium 2.4318 2.4745 2.3577

p∗ fraction of H-type entrants 18.94% 19.40% 19.30%

g TFP growth rate 1.97% 1.87% 2.17%
C0 initial consumption level 100% 99.40% 99.87%
U social welfare 100% 97.41% 102.58%

Note: The benchmark market equilibrium level of C0 and U are normalized to 100%, respectively.
xH is calculated by aggregating xHTE

H and xnon-HTE
H , same for xHd and xL.

As mentioned in Section 4.3, an increase in quantity-based innovation subsidies, though
promoting aggregate R&D (row [1] in Table 4.9), worsens firms’ choices in their quantity-
quality trade-off (row [2]); a rise in the skill premium (row [3]) amplifies this negative ef-
fect. Consequently, both the aggregate growth rate (row [5]) and the welfare (row [7]) are
reduced.46 Different from quantity-based innovation subsidies, an education subsidy is
quality-biased as radical innovations are more skill-intensive than non-radical ones. An
increase in education subsidy raises the skill supply. It reduces skill premium, encour-
aging firms to pursue proportionately more radical innovations, which increases both
growth and welfare.47

5 Conclusion

This paper studies the growth and welfare implications of quantity-based innovation
subsidies widely adopted in China. To that end, we first construct an innovation input-
output dataset for the Chinese industrial firms, which serves as a valuable tool-set to

46An increase in quantity-based subsidy (as well as education subsidy) raises the fraction of high-type
entrants (row [4]) and reduces the initial consumption level (row [6]). We provide corresponding results
with strengthening R&D tax credit br in Appendix D.4.

47In the model, skilled labor is employed only in R&D. There is a concern that, in reality, an increase in
the skilled labor supply may not be absorbed totally by the R&D sector, but also to production activities,
which weakens the growth-stimulating effect of skill subsidies. Thus, we estimate the demand elasticity
for skilled labor of innovating vs. non-innovating firms and find that elasticity of the former is three times
higher, confirming that a reduction in skill premium benefits R&D activities more. Appendix D.5 provides
details about the estimation.
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study micro-level innovation decisions in the Chinese economy. We empirically docu-
ment a rapid quantity surge and a steady quality decline of Chinese patents since the
mid-2000s and highlight the importance of skilled labor in R&D activities pursuing high-
quality patents.

Motivated by these facts, we build a Schumpeterian growth model featuring heteroge-
neous innovations: radical vs. incremental. By introducing a scarce R&D resource, the
model generates a quantity-quality trade-off between radical and incremental inventions
facing innovative firms. Moreover, the model allows us to decompose the effects of inno-
vation subsidies into quantity and quality channels. We calibrate the model to our firm-
level innovation dataset. The model-based quantitative analysis shows that quantity-
based subsidies reduce the aggregate welfare by about 9%, as the subsidies induce nega-
tive quality channel effects which are dominant. Within the framework, we propose and
evaluate a quality-biased and welfare improving policy — subsidizing the human capital
accumulation. This latter policy raises the supply of skilled labor, benefits the more skill-
intensive radical innovations, and improves both the quantity and quality of innovations.

We necessarily abstract from other essential features to focus on the quantity-quality
trade-off, which we view as important in studying Chinese innovations given its patent
surge. For example, we do not model the imitation to innovation transition in China. Pe-
ters and Zilibotti (2021) develops a model that incorporates a world technology frontier
into a Schumpeterian growth framework with heterogeneous firms to study innovation
and industrial policies in developing countries. Extending our model to allow for dis-
tance to the world’s frontier and examining its interaction with innovation quality would
be an interesting avenue for future research.

While our model speaks to the importance of subsidizing the human capital accumula-
tion, the way it is modeled is simplified to keep the framework tractable. A more detailed
investigation into the impact of skill accumulation is a natural extension. For example,
patent subsidies work immediately, while building up a skill pool takes generations of
time. Investigating this dimension of heterogeneity would provide a more accurate eval-
uation of policies. From the perspective of policy implementation, various forms of hu-
man capital subsidies exist in the real world. In addition to subsidizing education costs,
which we emphasized in the model, attracting overseas-trained talents to work in univer-
sities and the industrial sector might be another important channel for China’s technology
catch-up. We leave these studies for future research.
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Appendix of “Haste Makes Waste? Quantity-Based Subsi-

dies under Heterogeneous Innovations”

A Data Source and Construction

A.1 Data Source

Annual Survey of Industrial Enterprises (ASIE). Annual Survey of Industrial Enter-
prises (ASIE), conducted by the National Bureau of Statistics of China (NBS), contain
balance sheet information for all Chinese industrial firms with sales above 5 million RMB
before 2011 and 20 million RMB since 2011 (also referred to as the “above scale” industrial
firms) for the periods 1998-2013.

Innography. Innography Patent Database covers information on over one hundred mil-
lion patents from various countries. In this paper, we restrict attention to patents that
have been applied and eventually granted in China. For instance, if a patent is filed in
China in year t and eventually granted, it consists of our sample of newly created Chinese
patents in year t.

Firm Innovation Activity Database. Firm Innovation Activity Database contains infor-
mation on innovation costs and R&D expenditures, and tax cuts from the Recognition
of High-Tech Enterprises, for all industrial firms that have innovation activities for 2008-
2013 period. There are in total 394,381 observations within the seven-year time period,
covering over approximately 120,000 unique firms.

A.2 Variable Construction

High-Quality Patents. In the benchmark, we define a patent as a high-quality patent
(HQ patent) if it has ever been cited by a US patent, which can be observed from the
Innography Database. As long as one of its forward citations is from the United States,
then this patent is classified as a high-quality patent. As the robustness checks, we define
a patent as “high-quality” if its patent family size is greater than one (i.e., an invention
applies for patents both in China and at least in one foreign country.).

Skill Composition. We define the employment engaging in scientific activities (keji huodong
renyuan) as R&D personnel, and among all R&D personnel we further categorize those
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with medium or high professional titles (zhonggaoji zhicheng) as skilled labor. Skill inten-
sity is then defined as the ratio of skilled labor and total R&D personnel. However, for
the regression analysis using 2008-2013 sample, as information of workers with medium
or high professional titles is not available in 2008 and 2009, instead, we use workers with
bachelor and above degree to proxy for the skilled. And we define the skilled intensity
in these two years as the ratio of the number of workers engaging in scientific activities
with a bachelor’s degree or above and R&D personnel.

Entrants, Incumbents, and Innovating Firms. In the full sample period 1998-2013, the
first time that one firm starts to apply (and eventually own) at least one patent is identified
as its entry year into innovating, and the firm itself is defined as a new entrant in that
given survey year. Regardless of whether to own patents or not in subsequent years, a
firm is identified as an innovating firm starting from its entry year and as an incumbent
starting from the second year since it entered the innovation market. For example, if a
firm had at least one patent in 2001 but none in other years, it will be characterized as
non-innovating in 1998-2000, entrant in 2001, innovating in 2001-2013, and incumbent in
2002-2013.

High-Tech Enterprises. Firm Innovation Activity Database reports tax exemption amount
from the Recognition of High-Tech Enterprises. We define a firm to be a HTE firm if it has
a positive value of tax exemption amount, otherwise it is classified as non-HT firm.

A.3 Sample Construction

To construct the micro-firm-level samples, we need to employ data from various sources
and merge different data sources using firms’ Chinese names. The sample construction
process consists of the following three major steps.

Step 1: Construct 1998-2013 ASIE Sample. We follow Brandt et al. (2012) to create an
unbalanced panel of firms between 1998 and 2013. We restrict the ASIE sample to the
manufacturing industries, that all 4-digit CIC codes between 1300 and 4400. We drop all
firms with missing firm identification numbers, province, industry, age, or employment,
and drop those with negative values of age or revenue. The final ASIE sample consists of
4,037,866 firm-level observations.
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Step 2: Attach Patent Information to ASIE Sample using Patent Applicant Information
— “ASIE-Patent sample”. Firm-level ASIE data and patent-level Innography Database
are merged by using information on institutional applicants of patents. When calculating
changes between pre-2008 and post-2008 periods, we utilize this ASIE-Patent sample.

Step 3: Attach Firm-Level Innovation Activities Data to ASIE-Patent Sample — “final
analysis sample”. Last, we merge firm-level innovation activities data with ASIE-Patent
sample using firms’ names. Following He et al. (2016) and He et al. (2018), we prepare
a list of “clean” firm names. In particular, we trim all symbols and punctuation marks,
convert all full-width letters and numbers into half-width ones, convert Chinese numbers
into Arabic numbers, remove various designators, and remove location levels within the
names. Then we can use firms’ cleaned names in Chinese to merge Firm Innovation Ac-
tivity Database with the ASIE-Patent sample to construct our final analysis sample.

The following Table A.1 shows the sample size during the sample construction process.

Table A.1: Sample Construction

Raw Matched
Year ASIE Innography Innovation ASIE-Patent Final Sample

2005 249976 108600 — 2149 —
2006 260188 122471 — 2813 —
2007 287189 133902 — 3735 —
2008 371887 154444 30267 6286 3760
2009 341087 176648 37369 7775 4859
2010 415514 204728 42139 10692 7049
2011 280405 250180 53762 9652 9652
2012 301335 306421 67053 12522 12522
2013 321157 372926 76167 14873 14873

Data Type firm-level patent-level firm-level firm-level firm-level

Note: This table reports the number of observations of various data sources during sample construction
process.
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A.4 Additional Figures and Tables
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Figure A.1: Number of Granted Patents in China and Advanced Economies

Note: This figure shows the number of granted patents in China and other major patent-holding economies.
The data source is World Intellectual Property Office (WIPO) IP Statistics Data Center.
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Figure A.2: Number of Patent Applications per Researcher in China, the US and G5

Note: Data source for No. of patents is WIPO, and for No. of full-time equivalent researchers is from
OECD.Stat. This figure shows the evolution of patent applications per researcher over time. G5 include the
US, the UK, France, Germany and Canada. It does not contain Japan or Italy as data on No. of researchers
for these two countries in the OECD.Stat database is under different definitions.
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Figure A.3: Patent Grant Rate and Number of Patents-Eventually-Granted Per Researcher
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Note: This figure shows the patent grant rate, which is the fraction of applied patents in a given year that

are eventually granted before Oct. 2020 (panel (a)), and patents-eventually-granted per researcher, which

is the number of patent applications that are eventually granted per researcher (panel (b)). No. of patents

that are eventually granted is calculated from patent-level data from Innography and PatentsView databases.

To avoid the truncation issue, the figure only shows patents that were applied in or before 2014.
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Table A.2: Summary Statistics of the Final Analysis Sample

2008 2009 2010 2011 2012 2013

Firm Age 14.86 15.15 15.23 14.89 14.90 14.73

(14.78) (14.03) (13.40) (12.77) (12.39) (11.79)

Foreign-Owned Enterprises (%) 25.74 26.61 28.06 24.69 24.29 22.46

(43.73) (44.20) (44.93) (43.12) (42.89) (41.74)

Private-Owned Enterprises (%) 68.62 67.48 67.40 70.47 71.40 74.91

(46.41) (46.85) (46.88) (45.62) (45.19) (43.36)

full sample

Firm-Level HQ Patent Share (%) 0.08 0.07 0.07 0.05 0.03 0.02

(0.23) (0.21) (0.20) (0.17) (0.13) (0.12)

high-type sample

Firm-Level HQ Patent Share (%) 0.26 0.25 0.24 0.19 0.15 0.14

(0.34) (0.33) (0.32) (0.29) (0.26) (0.25)

Number of Observations 3760 4859 7049 9652 12522 14873

Note: This table reports the summary statistics of the final analysis sample, merged from ASIE, Innography
Patent Database, and Firm Innovation Activity Database. Means and standard deviations in parentheses.

Table A.3: Skill Intensity and Patent Quality

high-type sample high-type sample high-type sample

(1) (2) (3)

HQ patent share HQ patent share HQ patent share

high-skill researcher share 0.164∗∗ 0.159∗∗ 0.159∗∗

(2.25) (2.23) (2.24)

R2 0.283 0.305 0.324

Firm characteristics controlled Yes Yes Yes

Industry F.E. Yes Yes Yes

Year F.E. No Yes Yes

Location, Ownership F.E. No No Yes

Observations 3828 3828 3828

Note: This table shows results regressing the firm-level high-quality patent share on high-skill researcher
share, controlling for firm characteristics with robust standard errors clustered at the firm-level. t statistics
in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B Model Derivations and Proofs

B.1 Education

Young people choose to invest in education and become skilled if and only if

e−(ρ+d)

ρ + d
wh − 1− e−(ρ+d)

ρ + d
wh

θξ
≥ w`

ρ + d
.

A young worker chooses to invest in education if and only if her type is above a certain
threshold

θ ≥ θ∗ ≡ max

1
ξ

[
1− e−(ρ+d)

] (
e−(ρ+d) − w`

wh

)−1

, 1

 .

We can further derive the mass of the four types of workers in the economy: students,
skilled workers employed in education, skilled workers employed in the R&D sector,
and unskilled workers.

hstudent = θ∗−2
(

1− e−d
)

L;

hteacher =
2θ∗−3

3ξ

(
1− e−d

)
L;

hR&D = θ∗−2e−dL− hteacher;

`supply =
(

1− θ∗−2
)

L.

B.2 Step-Size and Product Line Distribution

Start with the step-size distribution of an incremental innovation. Denote Dτ the fraction
of product lines of distance τ, with τ = 1 representing a product line where the latest
innovation is radical. Under an invariant distribution,

STATE: INFLOW OUTFLOW
τ = 1: (1− D1)δd = D1δm

τ ≥ 2: Dτ−1δm = Dτ(δd + δm)

where δd and δm are aggregate creative destruction from radical and incremental innova-
tions, respectively. Denote δ the aggregate creative destruction rate, that is, δ ≡ δd + δm.
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Under the invariant distribution, inflow equals to outflow for each τ ≥ 1. It follows that,

Dτ =
δd
δ

(
δm

δ

)τ−1

, τ = 1, 2, ...

From this distribution, we can calculate the expected step-size of an incremental innova-
tion as

η̄ =
∞

∑
τ=1

Dτηατ−1 = η
/(

α +
1− α

δd/δ

)
.

For the product line distribution, denote PH = p∗, PL = 1− p∗, xH = xHd + xHm and
xL = xLm. Then for firms of the j-type, stationarity implies that

STATE: INFLOW OUTFLOW
n = 0: µj,1 × δ = Pj × xE

n = 1: Pj × xE + µj,2 × 2δ = µj,1 ×
(
xj + δ

)
n ≥ 2: µj,n−1 × (n− 1)xj + µj,n+1 × (n + 1)δ = µj,n × n

(
xj + δ

)

For n = 0, the inflow occurs when firms with only 1 product line being destroyed, and
the outflow is the successful innovations by entrants. For n = 1, the inflow contains firms
originally with 2 product lines losing 1 line and the entrants who successfully add 1 line;
while the outflow consists of 1-line firms that innovate and obtain additional lines or lose
existing lines due to creative destruction. A similar interpretation applies for n ≥ 2. From
these expressions, we have

µj,n =
PjxE

δ

(
xj

δ

)n−1 1
n

,

and
∞

∑
n=1

µj,n × n =
PjxE

δ− xj
.

B.3 Proof of Proposition 1

For a more general theoretical property, let’s assume that there are N ≥ 2 many types of
firms in the economy.48 And define Linej ≡ ∑

n
µj,n× n, that is, the total number of product

48N = 2 in our baseline model. Later on in the quantified model, we extend to N = 4. This is why we
decide to prove a more general version here.
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lines held by j-type firms.

As shown in B.2, stationarity requires that ∀j ∈ {1, 2, ..., N},

Linej =
pjxE

δ− xj
.

We plug in the definition of δ, it becomes

Linej =
pjxE

∑
i

Lineixi + xE − xj
, (eqn-[j])

together with the requirement of

∑
j

Linej = 1. (eqn-[x])

This is a system of N unknowns {Linej}N
j=1, and N + 1 equations.

It seems that we need an extra free variable to such that it is a system of N + 1 unknowns
and N + 1 equations. However, we are going to prove that, for any given combinations
of xE > 0, {pj}N

j=1 ∈ (0, 1) and {xj}N
j=1 > 0, there always exists a {Linej}N

j=1 such that the
above N + 1 equations hold.

The proof is to show that, when eqn-[1] to eqn-[N-1] hold and eqn-[x] is satisfied, the last
equation, eqn-[N], shall hold automatically.

eqn-[j] indicates that

(pj − Linej)xE = Linej

(
∑

i
Lineixi − xj

)
. (eqn-[j’])

Sum them up from j = 1 to N-1, and use the fact that pN = 1 −
N−1
∑

j=1
pj, LineN = 1 −

N−1
∑

j=1
Linej, we have

(LineN − pN)xE = (1− LineN)

(
∑

i
Lineixi

)
−

N−1

∑
j=1

Linejxj.
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For the R.H.S., let’s rearrange terms based on xj, and get

(LineN − pN)xE = (1− LineN)LineNxN − LineN

N−1

∑
j=1

Linejxj,

which is exactly the same as eqn-[N]

(pN − LineN)xE = LineN

(
N

∑
j=1

Linejxj − xN

)
.

B.4 Value Functions and Proof of Proposition 2

Without loss of generality, we focus on the value function of high-type firms. Guess that
the value function takes the following form

V(Q, q̄) = ∑
i

Aqi + nBq̄.

Substituting this conjectured form into the Bellman equation, we have

r

(
∑

i
Aqi + nBq̄

)
− gnBq̄ = max

xd,xm
∑

i

[
πqi − δ(Aqi + Bq̄)

]
+ nxd

[
A(1 + λ) + B

]
q̄

+ nxm
[
A(1 + η̄) + B

]
q̄− nR(xd, xm) + nbnπq̄.

It follows that A and B satisfy the following conditions

A =
π

r + δ
,

and
(ρ + δ)B = xd

[
A(1 + λ) + B

]
+ xm

[
A(1 + η̄) + B

]
− R(xd, xm) + bnπ.

One can see that B is increasing in bn.

With the value function’s form, equation (23) in Proposition 2 follows immediately from
the first-order conditions of xd and xm.
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C Calibration

C.1 InnoCom Program and HTE

InnoCom Program. China has initiated many subsidy programs aim to promote firm
innovations around 2008. A critical such tool is the recognition of HTEs under the Inno-
Com Program.49 From 2008-2014, HTEs account for 8.2% of total industrial employment
and for 16.2% of total industrial value added in China. From 2013-2019, HTEs account for
56.9% of total R&D personnel in China.50 In addition to a corporate tax cut from 25% to
15%, qualified HTEs can enjoy various types of research and development subsidies such
as research grants and patent subsidies. At the same time, qualified HTEs are required to
file reports on innovation behaviors, for example, share of R&D personnel and number of
newly granted patents, with the local government every year to maintain the HTE status.

In practice, we label a firm as HTE if it enjoys a positive HTE tax exemption. As a conse-
quence, there are four types of firms in the data: high-type & HTE; high-type & non-HTE;
low-type & HTE; low-type & non-HTE. Table C.1 shows the distribution across types for
entrant firms from 2011-2013. During the sample period, 53.40% high-type entrant firms
are HTEs, while 55.60% low-type ones are HTEs.

Table C.1: Type Distribution of Entrant Firms

High-Type HTE Number Percentage

1 1 550 53.40%
1 0 480 —

0 1 7473 55.60%
0 0 5967 —

Note: This table shows the number of entrant firms by their innovation productivity types and HTE status
in the sample period 2011-2013.

Relationship between HTE and Firm Innovation. We utilize a Difference-in-Difference
(DID) approach to study the impact of HTE recognition on firm innovations. We define a

49Among the qualifications to become a HTE, the most important criteria are: (1) firms own patents
on their core technology and use such core technology on their main production lines where patents can
be invented, transferred, purchased or via M&A, (2) R&D related personnel is no less than 10% of the
employers, and (3) depending on the level of total sales, R&D expenses must reach a certain amount.

50This numbers are from China Torch Statistical Yearbooks.
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post dummy equals to 1 for a HTE if the year of the observation lies on or after the year
that the firm obtains the HTE title for the first time, and 0 otherwise. For a Non-HTE
firm, we define post always equal to zero. A firm could have a US-cited patent after it
has become HTE, we thus define a HTE firm as high-type only if it has at least one US
citation before the first HTE recognition year in the DID specification. To do a meaningful
before-after comparison, we keep only HTEs with at least one prior year and at least one
post year (including the recognition year).

We then regress (log) patent quantity and (log) high-quality patent share on the HT
dummy, the interaction term between HT dummy and post, which is the key variable
of our interest, controlling for firm age, (log) employment, (log) revenue, (log) assets as
well as year, location (province), industry, and ownership types fixed effects. Robust stan-
dard errors are clustered at the firm-level. It is notable that the post dummy is absorbed
by our year fixed effects. Table C.2 shows the results. We find that after being successfully
certified as HTEs, the number of Chinese invention patents that firms produce expands
by 14% (column [1]) while the high-quality patent share shrinks by 24.3% (column [3]),
both in relative terms.

Table C.2: HTE and Firm Innovation: DID analysis

full sample high-type firms sample

(1) (2) (3)
patent quantity patent quantity HQ patent share

HT dummy 0.164∗∗∗ 0.146∗∗∗ -0.114∗∗

(8.43) (2.76) (-2.44)

HT dummy × post 0.140∗∗∗ 0.117∗ -0.243∗∗∗

(5.84) (1.91) (-3.60)

R2 0.202 0.351 0.350
firm characteristics controlled
Observations 30184 5731 3038

Note: This table shows results regressing the dummy variables for High-Tech firms and its interaction with
the dummy variable denoting the before- and after- HTE recognition on firms’ innovation activities such as
(log) total number of patents for the full sample (column [1]) and (log) high-quality patent share for the se-
lected high-type-firm sample (column [2]-[3]), controlling for year, location, industry, and ownership types
fixed effects with standard errors clustered at the firm-level. Other firm characteristics are also controlled.
t statistics in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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As pointed out by Dang and Motohashi (2015) and Li (2012), innovation subsidy pro-
grams usually levy a positive impact on patent quantity. Hence, it is not surprising that
InnoCom Program has a positive influence on the quantity margin. It is mandatory for
HTEs to report their innovation activities every year, which are also measured by the
quantity of patents. This gives HTEs extra incentives to keep producing new patents ev-
ery year (Sun et al., 2021). Besides, in order to maintain the HTE status, one pre-requisite
is to employ at least 10% workers engaging in R&D activities. Last but not least, the sta-
tus of HTE has to be renewed every three years, for which the number of patents is an
important metric.51 All of these factors motivate HTEs to increase the quantity of innova-
tions. However, since quality is not targeted directly, and difficult to measure promptly,
firms’ incentive for pursuing high-quality innovations is weak, as reflected by the nega-
tive quality effect in Table C.2.

C.2 Alternative Definitions of High-Quality Patents

The quality criteria of being cited by US patents might be affected by other factors, such
as China entering WTO or changes in policies regulating foreign citations. In this section,
we perform a robustness check by defining high-quality patents based on the family size
of a patent. In particular,we use European Patent Office’s (EPO) DOCDB family ID to
identify patent family, which we extract from EPO’s PATSAT database. A Chinese patent
is regarded as high-quality if its family size is greater than one. Essentially, A family size
greater than one means the same invention applies for patent not only in China but also at
least in another foreign country. Patent family size is widely used by innovation scholars
as an indicator for patent quality.

Table C.3 presents the regression result, which shows that the positive quantity effect and
negative quality effect of HTE recognition still hold under this alternative definition of
high-quality patents.

C.3 Active Patent Stock

We construct the stock of active patents using the information of patents’ forward cita-
tions for the Innography-ASIE matched sample. More specifically, we define the lifespan
of a patent from its application year to the last year it has received a forward citation. The
idea here is that new patents might obsolete some old ones, causing a creative destruction

51These requirements are listed in the Administrative Measures for Determination of High and New Tech
Enterprises (Gaoxin Jishu Qiye Rending Guangli Banfa) 2008 version and 2016 version.
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Table C.3: HTE and Firm Innovation (robustness check): DID analysis

full sample high-type sample

(1) (2) (3)
patent quantity patent quantity HQ patent share

HT dummy 0.164∗∗∗ 0.130∗ -0.173∗∗

(8.43) (1.94) (-2.36)

HT dummy × post 0.140∗∗∗ 0.0572 -0.144∗

(5.84) (0.85) (-1.68)

R2 0.202 0.391 0.368
firm characteristics controlled
Observations 30184 3970 1996

Note: This table shows results regressing the dummy variables for High-Tech firms and its interaction with
the dummy variable denoting the before- and after- HTE recognition on firms’ innovation activities such as
total number of patents for the full sample (column [1]) and high-quality patent share for the selected high-
type-firm sample (column [2]-[3]), controlling for year, location, industry, and ownership types fixed effects
with standard errors clustered at the firm-level. Other firm characteristics are also controlled. t statistics in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

in the society’s knowledge pool. As a simple but intuitive way, we regard an old patent
“inactive” or “dead”, when it no longer contributes to the society’s knowledge creation.

To find the latest forward citation, we first list all forward citations for a given patent,
rank them using their application years, and choose the latest one. In the end, for a
granted patent which was applied in year t0, if the application year associated with its
latest forward citation is t, then this patent is regarded as “active” for the whole t0 to t
period. If a patent doesn’t receive any forward citation, we assume that it is active only
in its application year (alive for one period only) and becomes inactive in the subsequent
periods. We then construct the patent-level creative destruction rate as the ratio of newly
granted patents and stock of active patents in a given year, which yields the average rate
of 31.66% in 2011-2013 period.

Figure 4.1. After constructing the stock of active patent, we further match the patent
information back to the firm-level ASIE sample, and divide the sample into high-type
firms and low-type firms. High-type firms are those with at least one high-quality patent,
i.e., a patent that has been cited by US patents. Then, we use histogram to illustrate
the density distribution of live patent stock for the two sub-samples in 2011-2013 sample
period. For the illustration purpose, we restrict to the sample with patents less than 50.
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D Quantitative Analysis

D.1 Estimation on the Magnitude of Patent Surge

It is clear from Figure 2.2 (and Figure A.3), the number of patents per researcher increases
at a faster rate in the post-2008 period than the pre-2008 period. To estimate the mag-
nitude of patent surge above its natural trend in the post-2008 period, we first fit the
pre-2008 data of patents per researcher with a linear trend. Using the pre-2008 trend in
patents per researcher and the number of researchers in years after 2008, we then obtain
a predicted series of patent quantity, if patents shall grow at the same rate after 2008 as
in the pre-2008 period. Then by comparing the actual number of patents in a post-2008
year with the predicted value, we obtain the estimation on the magnitude of patent surge
above trend. There is no information on number of researchers among industrial firms be-
fore 2008. We assume that the share of researchers in industrial firms in total researchers
is constant. Under this assumption, we first divide number of ASIE patents by national
researchers, and then use this trend to predict subsidy-induced patents number in the
post-2008 period. Table D.1 summarizes the estimation results, we use the number from
2011-2013 period, under a 2002-2008 trend among ASIE patents for Table 4.6.

Table D.1: Magnitude of Patent Surge

Trend 2010-2013 2011-2013

1998-2008 39.20% 45.62%
2002-2008 28.94% 34.57%

D.2 A Lower Bound Value of σ

In this section, we provide a lower bound value of σ, above which the negative quality
effects always dominate the positive quantity effect, of quantity-based subsidies. In par-
ticular, we find σ = 0.9332, with other parameters kept at their benchmark values. That
is, as long as σ ∈ (0.9332, 1), or equivalently, a range of (28.94, ∞) for the impact coeffi-
cient specified in equation (24), quantity-based subsidies shall induce a negative growth
effect in net.52

52The net effect on welfare differs from that on growth, but the difference is quantitatively negligible.
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The following table replicates Table 4.6. Consistent with our discussions following Propo-
sition 2, with a smaller σ, though the quantity effect stays nearly the same (row [1]),
the subsidies now have much weaker quality effects (row [2]), and the net effect on TFP
growth rate turns out to be 0 by design (row [3]).

Table D.2: Moments With and Without Quantity-Based Subsidies

Variable Meaning σ C.F. ∆Model ∆Data
∆Model
∆Data

δ− xE innovation quantity 0.2396 0.2102 13.99% 34.57% 40.47%
δd/δ innovation quality 10.71% 13.97% -3.26% -6.87% 47.45%

g TFP growth rate 2.48% 2.48% 0.00% — —

Note: ∆Model represents change from the counterfactual to the original economy. ∆Data refers
to change in the corresponding moments between the pre- and post-2008 period. Change
in innovation quantity is in relative terms; while change in innovation quality, already mea-
sured in percentage terms, corresponds to the direct difference.

D.3 Social Optimum under Different Values of ν

We’ve solved the planner’s problem by using a brutal grid search on different values
of θ∗. At each value, the supply of skilled and unskilled workers are determined as in
Appendix B.1. We then let the demand side of the markets run until they all clear. As
explained in the main paper, the key difference between the planner’s problem and the
market equilibrium is that, wage premium in the planner’s problem does not necessarily
yield the θ∗ picked by the planner.

As for ν, we follow the literature and try with values in a range of [2, 5]. The following
figure shows that social welfare is well hump-shaped w.r.t. θ∗, at all values of ν. More-
over, the smaller ν is, the earlier welfare reaches its peak.
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Figure D.1: Social Welfare as a Function of θ∗

Note: As in corresponding tables, we normalize the welfare of the competitive equilibrium to 100%, and
use the ∗ dot near the right-end to represent it.

We also provide a table replicating results in Table 4.8. One can see that, the smaller ν is,
or equivalently, the higher the I.E.S. is, the larger the welfare gap will be (last row). Which
is intuitive, since a higher I.E.S. yields a larger welfare weight on the growth component g.

Table D.3: Comparison between Market Equilibrium and Social
Planner’s Allocation

Variable Benchmark Planner
ν = 2 ν = 3 ν = 4 ν = 5

θ∗ 5.12 2.74 3.01 3.14 3.28
hsupply 3.71% 12.96% 10.74% 9.84% 9.05%
wh/w` 2.43 1.28 1.44 1.52 1.59

g 1.97% 4.58% 4.34% 4.23% 4.13%
C0 100% 94.57% 96.29% 96.91% 97.41%
U 100% 142.94% 126.17% 117.73% 112.72%

Note: The benchmark market equilibrium level of C0 and U are normalized
to 100%, respectively.
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D.4 Effects of Generic R&D Tax Credit

The effects of the generic R&D tax credit is quite similar to what’s with the quantity-based
subsidy. They both result in more R&D, higher innovation intensity, but deteriorating
innovation quality. The only difference is on the extensive margin: now entrants are in-
vesting less to become high-type, resulting a drop in p∗. In some sense, this policy is also
“quantity-based” because it doesn’t distinguish between R&D spending on innovations
of different quality.

Table D.4: Strengthening the R&D Tax Credit

Variable Meaning Benchmark br+5%

R(x)/Vadd average R&D intensity 15.75% 16.15%
xHd/xH share of radical innovations 25.21% 24.13%
wh/w` wage premium 2.4318 2.4505

p∗ fraction of H-type entrants 18.94% 18.88%

g TFP growth rate 1.97% 1.94%
C0 initial consumption level 100% 99.76%
U social welfare 100% 99.17%

Note: As in the main paper, xH is calculated by aggregating xHTE
H and

xnon-HTE
H , same for xHd and xL. Innovation intensity is defined as the per

line Poisson arrival rate of new innovations.

D.5 Demand Elasticity for Skilled Labor

We separate 2004 ASIE firms into two groups: those with positive R&D expenditure (in-
novating group) and those without (non-innovating group). Define skilled labor ratio of a
firm as the fraction of total workers with college and above degrees. Wage premium is
for each province and obtained from a Mincer type regression.53

For both groups, we run a regression of log skilled labor ratio against log provincial wage
premium, controlling for size, SOE status, and industry dummies. The coefficient in
front of log wage premium for the innovating group is −0.448, while that for the non-
innovating group is only −0.156.

53We also tried to simply calculate the ratio of average wage of skilled labor to that of unskilled labor, the
results are qualitatively the same.
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We also compare the average skilled labor ratio between innovating and non-innovating
firms in Table D.5. One can see that innovating firms typically hire more skilled labor.

Table D.5: Average Skilled Labor Ratio

College University Graduate No. of Firms

Firms with R&D exp. 18.22% 6.43% 0.39% 69,103
Firms without R&D exp. 9.45% 2.61% 0.16% 209,477

Firms with patents 20.58% 7.09% 0.48% 21,334
Firms without patents 10.83% 3.28% 0.19% 257,235

Firms with US-cited patents 26.62% 16.48% 2.81% 122
Firms without US-cited patents 32.32% 11.86% 1.17% 1,527
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