Foreign Reserves and Capital Controls: Role of Financial Development

Chang Ma

Hidehiko Matsumoto

Fudan University (FISF) National Graduate Institute for Policy Studies

ABFER Conference

May 23, 2023

Motivation

Key research questions:

- What is the optimal combination of capital controls and reserve policy?
- What explains the cross-country variation in these two policies?

Motivation

Key research questions:

- What is the optimal combination of capital controls and reserve policy?
- What explains the cross-country variation in these two policies?

Why?

- Volatile capital flows create concerns for financial stability.
- Overloping countries used capital controls and accumulated reserves.
- Policy coordination is important.

Motivation

Key research questions:

- What is the optimal combination of capital controls and reserve policy?
- What explains the cross-country variation in these two policies?

Why?

- Volatile capital flows create concerns for financial stability.
- Overloping countries used capital controls and accumulated reserves.
- Policy coordination is important.

Our objectives

- Provide a theory to justify the joint use of capital controls and reserves.
- Rationalize data pattern.

Our story

A liquidity role of international reserves. Evidence

- A liquidity shock hits which requires an early payment for private debts.
- Reserve holdings avoid costly liquidation of projects.

However, it is never optimal to fully self-insure against the liquidity shock $\ensuremath{\mathsf{b}}/\ensuremath{\mathsf{c}}$

- holding reserves is costly;
- benefits of holding reserves depend on the liquidation.

What is the role of policies?

- Pecuniary externality from liquidation.
- Price of projects is endogenous.

Optimal policies address the inefficiency by

- imposing capital controls;
- subsidizing reserve accumulation.

What we do in this paper

Motivating empirical facts about cross-country variation

- Foreign reserve-to-GDP ratio is non-monotonic in financial development: Countries with intermediate development have a high reserve-to-GDP ratio.
- Capital control index monotonically decreases in financial development index.

Small-open-economy model:

- Liquidity shock requires θ fraction of debt to be repaid before new borrowing.
- Domestic agents repay by reserves and costly asset liquidation.

Key points

- Our story can justify the joint use of capital controls and reserves.
- Our story highlights the role of financial development.

Key mechanism of our paper

- Domestic agents determine reserve holdings based on two factors:
 - Cost of holding reserves.
 - **2** Relative advantage of reserve holdings over debt in liquidity management: liquidity risk measured by $-\theta b_t s_t$.
 - One-unit reduction in debt $-b_t$ lowers liquidity risk by $heta \leq 1$ units.
 - One-unit increase in reserves s_t lowers liquidity risk by one unit.
- High financial development (low θ) \rightarrow Liquidity risk is low.
- Low financial development (high θ) \rightarrow Relative advantage of reserves is low.
- \bullet Intermediate financial development \rightarrow Reserve holdings become large.
- Fire-sale externality requires joint use of reserve policy and capital controls.

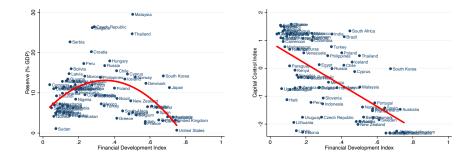
Relation to the literature

- the literature on reserve accumulation.
 - Jeanne and Ranciere 2011, Cespedes and Chang 2020, Matsumoto 2022, Hur and Kondo 2016, Cavallino 2019, Jeanne and Sandri 2020, etc.
- the literature on capital controls.
 - Bianchi 2011, Benigno et al. 2013, 2016, Bianchi and Mendoza 2018, Jeanne and Korinek 2020, Ma 2020, etc.
- Contributions of our work:
 - ► Fire-sale externality to justify joint use of capital controls and reserve policy.
 - Explain observed cross-country patterns in policy and financial development.

Motivating facts

Long-run relationship

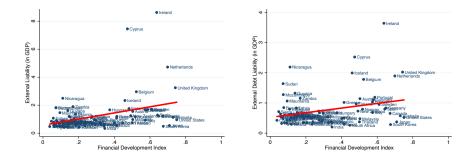
- Data for 88 countries (economies) in 1980 2019.
 - ► Financial development: IMF Financial Development Index
 - ► Foreign reserves and external liability: Lane and Milesi-Ferretti (2007)
 - ► Capital control index: Chinn and Ito (2006)


Business cycles relationship

- Data for 47 emerging market economies in 1987 2019.
 - ► Capital and reserve flows: Alfaro, Kalemli-Ozcan and Volosovych (2014)
 - EMBI spread: World Bank's Global Economic Monitor

Empirical patterns

The Financial Development Index has


- a non-monotonic relationship with reserves-to-GDP ratio;
- a negative correlation with capital control index.

Empirical patterns (Cont.)

The Financial Development Index has

• a positive correlation with external liability.

Empirical pattern: long-run relationship

	Reserv	e/GDP	Capital Control Index		External Liability/GDP		External De	bt Liability/GDP
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Financial Development	0.48*** (0.12)	0.43*** (0.12)	-3.83*** (0.52)	-3.78*** (0.44)	2.19*** (0.61)	2.19*** (0.52)	0.77*** (0.28)	0.77*** (0.24)
Financial Development ²	-0.69*** (0.15)	-0.62*** (0.16)						
Pop (log)		-0.00 (0.01)		0.09 (0.09)		-0.34*** (0.10)		-0.21*** (0.05)
GDP per capita (log)		-0.01 (0.01)		-0.57*** (0.13)		-0.33** (0.15)		-0.14** (0.07)
Private credit		0.03 (0.02)		0.39 (0.40)		0.25 (0.48)		-0.11 (0.22)
Trade		0.05*** (0.02)		-0.01 (0.32)		1.11*** (0.38)		0.32* (0.18)
Constant	0.05*** (0.02)	0.05*** (0.02)	0.93*** (0.19)	0.90*** (0.16)	0.57** (0.23)	0.57*** (0.19)	0.52*** (0.10)	0.52*** (0.09)
Observations Adjusted R ²	85 0.186	85 0.282	83 0.396	83 0.570	85 0.124	85 0.368	85 0.074	85 0.333

Empirical pattern: business cycle frequency

Dep. Variables		Capital flo	ows (% GDP)		Reserve flow (% GDF		
	(1)	(2)	(3)	(4)	(5)	(6)	
Reserve flows (% GDP)	0.57***	0.56**					
	(0.19)	(0.21)					
EMBI spread			-0.30***	-0.20***	-0.05**	-0.06**	
·			(0.09)	(0.07)	(0.02)	(0.03)	
Population		13.76*		46.29**		2.10	
		(7.01)		(19.22)		(4.94)	
GDP per capita		7.33**		15.05***		-0.06	
		(3.00)		(4.97)		(0.93)	
Trade		-0.41		8.75*		5.97**	
		(2.99)		(4.97)		(2.42)	
Private credit		4.23		-7.83		-7.76***	
		(3.23)		(7.92)		(2.68)	
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	
Observations	1269	961	663	574	664	575	
Adjusted R ²	0.143	0.183	0.202	0.250	0.112	0.150	

Model overview

- Small open economy with representative households:
 - Produce and consume tradable goods.
 - Borrow from abroad and hold reserves.
 - Invest to accumulate productive assets (semi-endogenous growth).
- Liquidity shock with an exogenous probability:
 - ► Need to repay a part of debt before new borrowing and production.
 - ► Repay by reserve holdings and liquidating productive assets.

	Model	Conclusion

Households

• Preference:

$$\mathbb{E}_0\left[\sum_{t=0}^\infty \beta^t u(c_t)\right]$$

• Budget constraint:

$$c_t + \frac{b_t}{R_t} + \frac{s_t}{R^s} + z_t = \underbrace{y_t}_{y_t = a_t L} + b_{t-1} + s_{t-1} + \underbrace{q_t a_t^{\ell}}_{\text{Liquidation value}}$$

- ► *b*_t: foreign bond (negative is debt).
- ► *s_t*: reserve holdings.
- ► *z_t*: investment to accumulate productive assets.
- a_t : productive assets and output, $y_t = a_t L$ with L = 1.
- $q_t a_t^{\ell}$: proceeds from asset liquidation (later).

Asset accumulation and interest rate

• Law of motion for productive assets (growth):

$$a_{t} = a_{t-1} + \eta (z_{t-1})^{\gamma} \left[(1-\kappa)a_{t-1} + \kappa a_{t-1}^{*} \right]^{1-\gamma} - a_{t}^{\ell}$$

- Households internalize a_t promotes future growth \rightarrow No growth externality.
- Spillover from foreign productivity $a_t^* \rightarrow$ Semi-endogenous growth.

Mode

• a_t^{ℓ} : liquidated assets upon a liquidity shock (next slide).

Asset accumulation and interest rate

• Law of motion for productive assets (growth):

$$a_{t} = a_{t-1} + \eta(z_{t-1})^{\gamma} \left[(1-\kappa)a_{t-1} + \kappa a_{t-1}^{*} \right]^{1-\gamma} - a_{t}^{\ell}$$

- Households internalize a_t promotes future growth ightarrow No growth externality.
- Spillover from foreign productivity $a_t^* \rightarrow$ Semi-endogenous growth.

Mode

- a_t^{ℓ} : liquidated assets upon a liquidity shock (next slide).
- Debt-elastic interest rate to control volatility:

$$R_t = R^b \exp(\varepsilon_t^R) + \psi^b \left[\exp\left(-\frac{b_t}{a_t} - \bar{b}\right) - 1 \right]$$

▶ Households internalizes how b_t and a_t affect $R_t \rightarrow$ No externality.

Liquidity shock

- At the beginning of each period, liquidity shock may hit the economy.
 - Need to repay θ fraction of debt b_{t-1} before new borrowing and production.
 - θ : size of roll-over risk. Interpret as the measure of financial development.

Liquidity shock

- At the beginning of each period, liquidity shock may hit the economy.
 - Need to repay θ fraction of debt b_{t-1} before new borrowing and production.
 - θ : size of roll-over risk. Interpret as the measure of financial development.
- Households repay debt $-\theta b_{t-1}$ by
 - Reserve holdings s_{t-1} .
 - Liquidating a_t^{ℓ} units of productive asset to obtain liquidity $q_t a_t^{\ell}$.

Liquidity shock

- At the beginning of each period, liquidity shock may hit the economy.
 - Need to repay θ fraction of debt b_{t-1} before new borrowing and production.
 - θ : size of roll-over risk. Interpret as the measure of financial development.
- Households repay debt $- heta b_{t-1}$ by
 - Reserve holdings s_{t-1} .
 - Liquidating a_t^{ℓ} units of productive asset to obtain liquidity $q_t a_t^{\ell}$.
- Liquidation a_t^{ℓ} needs to cover the liquidity shortage $-\theta b_{t-1} s_{t-1}$:

$$q_t a_t^\ell \ge -\theta b_{t-1} - s_{t-1}$$

• Non-negative constraint on a_t^{ℓ} :

$$q_t a_t^\ell \ge 0$$

Fire-sale price

• Foreign buyers produce tradable goods using a_t^{ℓ} and a_t^* :

$$\pi_t^* = \max_{a_t^{\ell}} (a_t^*)^{\zeta} (a_t^{\ell})^{1-\zeta} - Fa_t^* - q_t a_t^{\ell}$$

• a_t^* grows at a fixed rate $1 + \bar{g}$.

Fire-sale price

• Foreign buyers produce tradable goods using a_t^{ℓ} and a_t^* :

$$\pi_t^* = \max_{a_t^{\ell}} (a_t^*)^{\zeta} (a_t^{\ell})^{1-\zeta} - Fa_t^* - q_t a_t^{\ell}$$

- a_t^* grows at a fixed rate $1 + \bar{g}$.
- FOC determines the asset price q_t:

$$q_t = (1 - \zeta) \left(\frac{a_t^*}{a_t^\ell}\right)^\zeta$$

- Liquidation price q_t declines as aggregate liquidation a_t^{ℓ} increases. But individual households take q_t as given \rightarrow Fire-sale externality.
- Fa_t^* : Entry cost to enter the domestic asset market.

Introduced to eliminate asset sales in normal times.

Ma and Matsumoto

Decentralized equilibrium

• Households' maximization problem, taking q_t as given:

$$\begin{split} &V(b_{t-1}, s_{t-1}, z_{t-1}, a_{t-1}; \Theta_t, a_{t-1}^*) \\ &= \max_{c_t, b_t, s_t, z_t, a_t^\ell, a_t} u(c_t) + \beta \mathbb{E}_t V(b_t, s_t, z_t, a_t; \Theta_{t+1}, a_t^*) \\ &- \lambda_t \left[c_t + \frac{b_t}{R_t} + \frac{s_t}{R^s} + z_t - a_t - b_{t-1} - s_{t-1} - q_t a_t^\ell \right] \\ &- \xi_t \left[a_t - a_{t-1} - \eta z_{t-1}^{\gamma} \left[(1 - \kappa) a_{t-1} + \kappa a_{t-1}^* \right]^{1 - \gamma} + a_t^\ell \right] \\ &+ \psi_t \left[q_t a_t^\ell + \theta_t b_{t-1} + s_{t-1} \right] \\ &+ \psi_t \frac{s_t}{R^s} \end{split}$$

• $\theta_t = \{0, \theta\}$ is a liquidity shock.

• Non-negativity constraint on liquidation a_t^{ℓ} and reserves s_t .

	Motivation facts	Model		Conclusion
Optimality	condition	for liquidation	ר a_t^ℓ	FOCs

$$a_t^\ell: \psi_t + \varphi_t = rac{\xi_t}{q_t} - u'(c_t)$$

- When $a_t^\ell > 0$, liquidity constraint binds. $\psi_t > 0$ and $\varphi_t = 0$.
- When $a_t^\ell = 0$, non-negativity constraint binds. $\psi_t = 0$ and $\varphi_t > 0$.

ntroduction	Motivation facts	Model	Quantitative analysis	Conclusion
Optimali	ty condition fo	or liquidatio	on a_t^ℓ	FOCs

$$a_t^\ell: \psi_t + \varphi_t = rac{\xi_t}{q_t} - u'(c_t)$$

• When $a_t^\ell > 0$, liquidity constraint binds. $\psi_t > 0$ and $\varphi_t = 0$.

- When $a_t^\ell = 0$, non-negativity constraint binds. $\psi_t = 0$ and $\varphi_t > 0$.
- ψ_t : *private* value of one unit of liquidity when the liquidity constraint binds:
 - It reduces liquidation a_t^{ℓ} by $1/q_t$ units, whose value is ξ_t/q_t .
 - It also reduces available resources by one unit, whose value is $-u'(c_t)$.

Optimality conditions for debt and reserves

$$b_t : u'(c_t) = \beta \tilde{R}_t \mathbb{E}_t \left[u'(c_{t+1}) + \psi_{t+1} \theta_{t+1} \right]$$

$$s_t : u'(c_t) = \beta R^s \mathbb{E}_t \left[u'(c_{t+1}) + \psi_{t+1} \right] + \nu_t$$

- ψ_{t+1} appears in the right-hand sides of the Euler equations.
- By giving up one unit of c_t , HHs can reduce liquidity risk $-\theta b_t s_t$.
 - \tilde{R}_t -unit reduction in debt \rightarrow Reduce liquidity risk by $\tilde{R}_t \theta$ units.
 - ▶ R^s -unit increase in reserve → Reduce liquidity risk by R^s units.

Trade-off of holding reserves

• Combining the two Euler equations,

$$\beta(\tilde{R}_t - R^s)\mathbb{E}_t[u'(c_{t+1})] = \beta\mathbb{E}_t[(R^s - \tilde{R}_t\theta_{t+1})\psi_{t+1}] + \nu_t$$

- LHS: the opportunity cost of holding reserves due to interest gap $\tilde{R}_t > R^s$.
- RHS: relative advantage of reserves over debt in liquidity management:
 - If $R^s > \tilde{R}_t \theta$, accumulating reserves is more efficient than reducing debt in lowering liquidity risk $-\theta b_t - s_t$.
- Households choose b_t and s_t to equalize cost and benefit of holding reserves.
 - If cost is too high, households choose $s_t = 0$ and $v_t > 0$.

Propositions 1 and 2

 $\beta(\tilde{R}_t - R^s)\mathbb{E}_t[u'(c_{t+1})] = \beta\mathbb{E}_t[(R^s - \tilde{R}_t\theta_{t+1})\psi_{t+1}] + \nu_t$

Proposition

If $\theta = 0$, households do not hold reserves, $s_t = 0$.

• $\theta = 0$ implies $\psi_{t+1} = 0$ for any states. No liquidity risk in the first place.

Proposition

If $\theta \geq R^s / \tilde{R}_t$, households do not hold reserves, $s_t = 0$.

• Relative advantage of reserves in liquidity management vanishes.

Introduction	Motivation facts	Model	Quantitative analysis	Conclusion
Proposition	3			
β($\tilde{R}_t - R^s) \mathbb{E}_t[u'(c_{t+1})$	$] = \beta \mathbb{E}_t [(R^s -$	$\tilde{R}_t \theta_{t+1}) \psi_{t+1}] + \nu_t$	

Proposition

Households do not hold enough reserves to cover the entire early repayment $-\theta b_t$ and eliminate liquidation. $-\theta b_t > s_t$ always holds.

- $-\theta b_t \leq s_t$ implies $a_{t+1}^\ell = 0 \rightarrow \psi_{t+1} = 0$.
- Because of the opportunity cost of holding reserves, households do not fully insure against liquidity shock.

- If θ is close to 0,
 - Early repayment $-\theta b_t$ is close to 0. $-\theta b_t > s_t$ implies s_t is close to 0.
 - Low liquidity risk implies low need for reserve holdings.
- If θ is high,
 - $-\theta b_t$ can be large, but relative advantage of reserves $(R^s \tilde{R}_t \theta)$ is low.
 - Debt is so risky that households just reduce debt rather than holding reserves.
- Intermediate value of heta
 ightarrow Both liquidity risk and relative advantage exist.

Relationship between reserves and financial development θ

 $\beta(\tilde{R}_t - R^s)\mathbb{E}_t[u'(c_{t+1})] = \beta\mathbb{E}_t[(R^s - \tilde{R}_t\theta_{t+1})\psi_{t+1}] + \nu_t$

. detail

- Social planner's solution
 - Social planner internalizes that q_t is decreasing in a_t^{ℓ} .
 - First-order condition regarding a_t^{ℓ} :

$$\psi_t^{SP} + \varphi_t^{SP} = \frac{\xi_t}{q_t - \zeta q_t} - u'(c_t)$$

Mode

Quantitative analysis

- + $(\partial q_t/\partial a_t^\ell)a_t^\ell = -\zeta q_t < 0$ is the fire-sale externality.
- <u>Social</u> value of one unit of liquidity ψ_t^{SP} is greater than ψ_t .
- Reducing liquidation a_t^{ℓ} increases its price q_t and reduces a_t^{ℓ} even more.

Social planner's Euler equations

• Planner's Euler equations:

$$u'(c_t) = \beta \tilde{R}_t \mathbb{E}_t \left[u'(c_{t+1}) + \psi_{t+1}^{SP} \theta_{t+1} \right]$$
$$u'(c_t) = \beta R^s \mathbb{E}_t \left[u'(c_{t+1}) + \psi_{t+1}^{SP} \right] + \nu_t$$

- $\psi^{SP}_{t+1} > \psi_{t+1}$ implies households overborrow and hold too little reserves.
- Planner's allocation can be achieved by tax on debt and either of:
 - subsidy on reserves, or
 - public reserve holdings with no private reserves.
- Propositions 1, 2, 3 hold under the planner's solution.
- $\partial \tau_t^b / \partial \theta > 0$ can be analytically shown in a simplified two-period model.

Calibration: externally determined parameter values

Model

• One period is one year. Utility function is $u(c_t) = \ln(c_t)$.

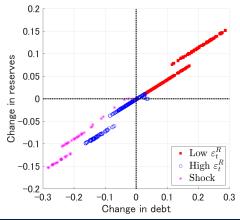
	Parameter		Source
β	Discount factor	0.91	Bianchi (2011)
R^b	Gross interest rate on debt	1.06	Standard
R^{s}	Gross interest rate on reserves	1	Standard
γ	Investment curvature	0.8	Comin and Gertler (2006)
Ī	Foreign growth rate	0.0261	Data
ϵ^R	Interest rate shock	0.0196	Mendoza (2010)

- Three-state Markov process for shocks:
 - $\blacktriangleright \ (\varepsilon^R_t, \theta_t) = \{ (\varepsilon^R, 0), (-\varepsilon^R, 0), (\varepsilon^R, \theta) \}$
 - \blacktriangleright In normal times, same shock with 54%, and liquidity shock with 10%.
 - ► In liquidity crisis, $(\varepsilon^R, 0)$ with 90%, and (ε^R, θ) with 10%.

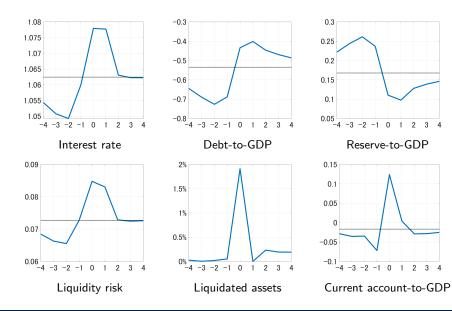
Calibrated parameter values

Parameter \		Value	Target		Model
η	Investment efficiency	0.1085	Mean CA-to-GDP	-0.017	-0.017
κ	Productivity spillover	0.25	Fire-sale price/normal price	0.37	0.36
ζ	Share of foreign assets	0.46	Elasticity of fire-sale price	1.74	1.87
ψ_b	Debt-elasticity of spread	0.01	S.D. of CA-to-GDP	0.063	0.064
\bar{b}	Baseline debt-to-GDP	0.8	Mean debt-to-GDP	0.53	0.53
θ	Size of liquidity shock	0.45	Mean reserve-to-GDP	0.17	0.17

- Fire-sale price and elasticity are based on Aguiar and Gopinath (2005).
- Other moments are average of 47 emerging economies in 1987-2019.
- Baseline parameter is $\theta = 0.45$. Later study how the value of θ affects policy.

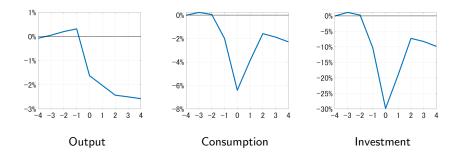

Simulation moments

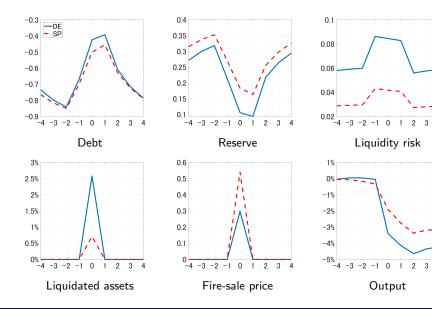
• Moments are computed from 100,000-period stochastic simulations.


	Decentralized economy		Social	planner
	Mean	S.D.	Mean	S.D.
Consumption	0.807	0.035	0.811	0.036
Investment	0.181	0.164	0.171	0.172
Debt	-0.535	0.370	-0.530	0.342
Reserve	0.168	0.579	0.209	0.406
Current account	-0.017	0.065	-0.008	0.056
Mean tax on debt			4.7	78%
Mean subsidy on reserve			10.49%	
Crisis probability	3.57%		0.27%	

Joint dynamics of debt and reserves

- Positive correlations between debt and reserve flows.
- Both debt and reserves increase when the interest rate is low, and vice versa.
 - \blacktriangleright Low interest rate \rightarrow High debt and low opportunity cost \rightarrow High reserves.

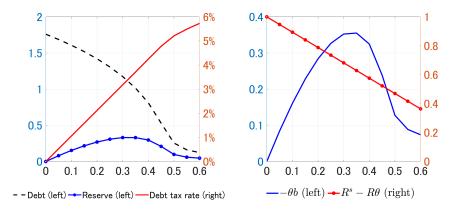

Crisis dynamics in decentralized economy


Ma and Matsumoto

Crisis dynamics in decentralized economy

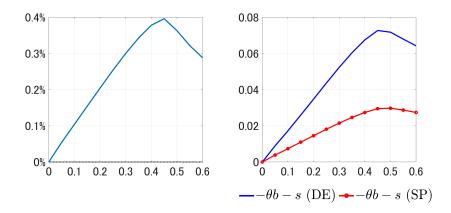
- Percentage deviations from pre-crisis 10-period log-linear trend.
- Persistent impacts are consistent with the empirical regularities of crises.

Crisis dynamics under DE and SP


Ma and Matsumoto

4

4


Optimal policies and financial development θ

- Capital controls monotonically increase in θ .
- Reserve-to-GDP is non-monotonic and peaks at 33% when $\theta = 0.30$.
- Both liquidity risk and relative advantage are high for intermediate θ .

Welfare gains across different θ

- Expected welfare gain is the largest at 0.4% when $\theta=0.45.$
- Excessive risk-taking in decentralized economy peaks when $\theta = 0.45$.

Conclusion and future work

What we do in this paper.

- We provide a liquidity theory for reserves and capital controls.
- The model can match several data patterns.
- We emphasize the importance of financial development for policy design.

To-do list

• Provide a Micro-foundation for financial development (θ) .

Foreign reserves

- Foreign reserves: External assets that are readily available to and controlled by monetary authorities for
 - meeting balance of payments financing needs,
 - ▶ intervention in exchange markets to affect the currency exchange rate,
 - other related purposes (confidence in the currency and the economy, etc.).
- 60% of global reserves are in USD. US T-bills are typical reserve assets.
- IMF (2013) conducts a survey on the motivation for holding reserves.
 - ► 75% of countries: precautionary liquidity buffer.
 - ▶ 40% of countries: exchange rate level or volatility management.

Back

Optimality conditions by households **Geodese**

$$\begin{split} u'(c_t) &= \beta \underbrace{\frac{R_t}{1 + \psi_b \exp\left(-\frac{b_t}{a_t} - \bar{b}\right) \frac{b_t/a_t}{R_t}}}_{\bar{K}_t} \mathbb{E}_t \left[u'(c_{t+1}) + \psi_{t+1}\theta_{t+1}\right] \\ u'(c_t) &= \beta R^s \mathbb{E}_t \left[u'(c_{t+1}) + \psi_{t+1}\right] + \nu_t \\ u'(c_t) &= \beta \mathbb{E}_t \left[\xi_{t+1}\eta\gamma\left(\frac{z_t}{(1-\kappa)a_t + \kappa a_t^*}\right)^{\gamma-1}\right] \\ \xi_t &= u'(c_t) \left[1 + \left(\frac{b_t/a_t}{R_t}\right)^2 \psi_b \exp\left(-\frac{b_t}{a_t} - \bar{b}\right)\right] \\ &+ \beta \mathbb{E}_t \left[\xi_{t+1} \left\{\phi + \eta(1-\gamma)(1-\kappa)\left(\frac{z_t}{(1-\kappa)a_t + \kappa a_t^*}\right)^{\gamma}\right\}\right] \\ \psi_t + \varphi_t &= \frac{\xi_t}{q_t} - u'(c_t) \end{split}$$

Social planner's problem (back)

$$\begin{split} &V(b_{t-1}, s_{t-1}, z_{t-1}, a_{t-1}; \Theta_t, a_{t-1}^*) \\ &= \max_{c_t, b_t, s_t, z_t, a_t^\ell, a_t} u(c_t) + \beta \mathbb{E}_t V(b_t, s_t, z_t, a_t; \Theta_{t+1}, a_t^*) \\ &- \lambda_t \left[c_t + \frac{b_t}{R_t} + \frac{s_t}{R^s} + z_t - a_t - b_{t-1} - s_{t-1} - q(a_t^\ell; a_t^*) a_t^\ell \right] \\ &- \xi_t \left[a_t - a_{t-1} - \eta(z_{t-1})^\gamma (a_{t-1} + \kappa (a_{t-1}^* - a_{t-1}))^{1-\gamma} + a_t^\ell \right] \\ &+ \psi_t^{SP} \left[q(a_t^\ell; a_t^*) a_t^\ell + \theta_t b_{t-1} + s_{t-1} \right] \\ &+ \varphi_t^{SP} q(a_t^\ell; a_t^*) a_t^\ell \\ &+ \nu_t \frac{s_t}{R^s} \end{split}$$

• Tax on debt:

$$u'(c_t) = \beta(1+\tau_t^b)\tilde{R}_t\mathbb{E}_t\left[u'(c_{t+1}) + \psi_{t+1}\theta_{t+1}\right]$$

with

$$1 + \tau_t^b = \frac{\mathbb{E}_t \left[u'(c_{t+1}) + \psi_{t+1}^{SP} \theta_{t+1} \right]}{\mathbb{E}_t \left[u'(c_{t+1}) + \psi_{t+1} \theta_{t+1} \right]}$$

• $\partial \tau_t^b / \partial \theta > 0$ can be shown in a simplified two-period model.

- As θ becomes higher, the size of liquidation a_t^{ℓ} becomes larger and q_t lowers.
- Lower q_t increases the value of liquidity ψ_t and ψ_t^{SP} .
- Internalizing effect of a_t^{ℓ} on q_t , ψ_t^{SP} increases proportionally more than ψ_t .