Collateral Advantage: Exchange Rates, Capital Flows, and Global Cycles

Michael B. Devereux UBC

Charles Engel U Wisconsin

Steve Pak Yeung WuUCSD

22 May 2023
ABFER Annual Meeting

Motivation

- A large recent literature has focused on the liquidity yield or "convenience yield" of short-term U.S. government bonds (Krishnamurthy, Vissing Jorgensen 2012)
- The expected return on U.S. government bonds is **lower** than corresponding rates for government bonds from other advanced countries

 Strong empirical evidence support a relationship of "convenience yield" of government bonds and exchange rate movements

Engel and Wu (REStud Forthcoming), Jiang, Lustig, Krishnamurthy (JF 2021)

- Many models of the convenience yield are not strongly microfounded (e.g., bonds in the utility function, ad-hoc wedges)
- But microfoundations can matter!

Goal

- A model with endogenous convenience yield that suits to study exchange rate and external position of the US
- 1. Exchange rate and convenience yield in **normal times**
- 2. Long term external position of the US (exorbitant privilege)
- 3. During **global crisis** (GFC, COVID19), dollar appreciate and large wealth transfer and (exorbitant duty)

What we do in this paper

- A NK DSGE model with banks to generate endogenous convenience yield
- Banks as in Gertler Karadi 2011, Gertler Kiyotaki 2010 who face collateral constraint on their asset holding
- Symmetric 2-country model (US and foreign) with one asymmetry

US bond is assumed to be a better collateral

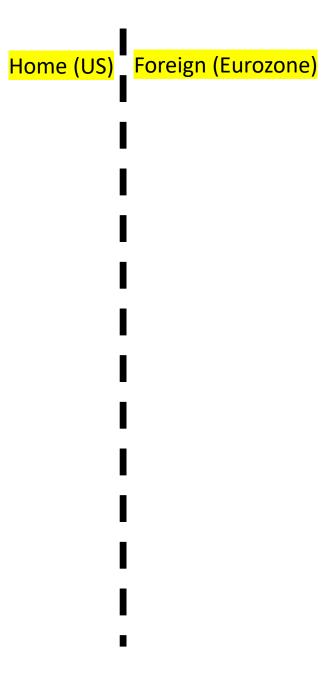
Demand for an asset not just for interest rate, but as a collateral

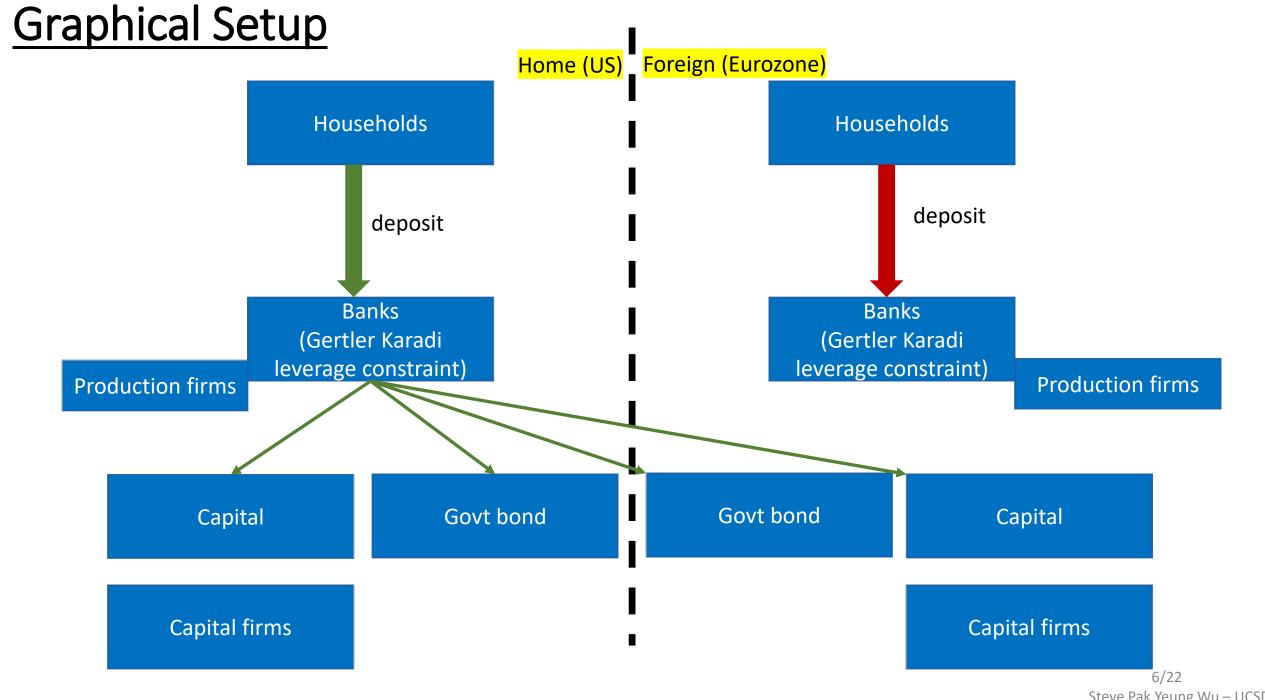
What we find

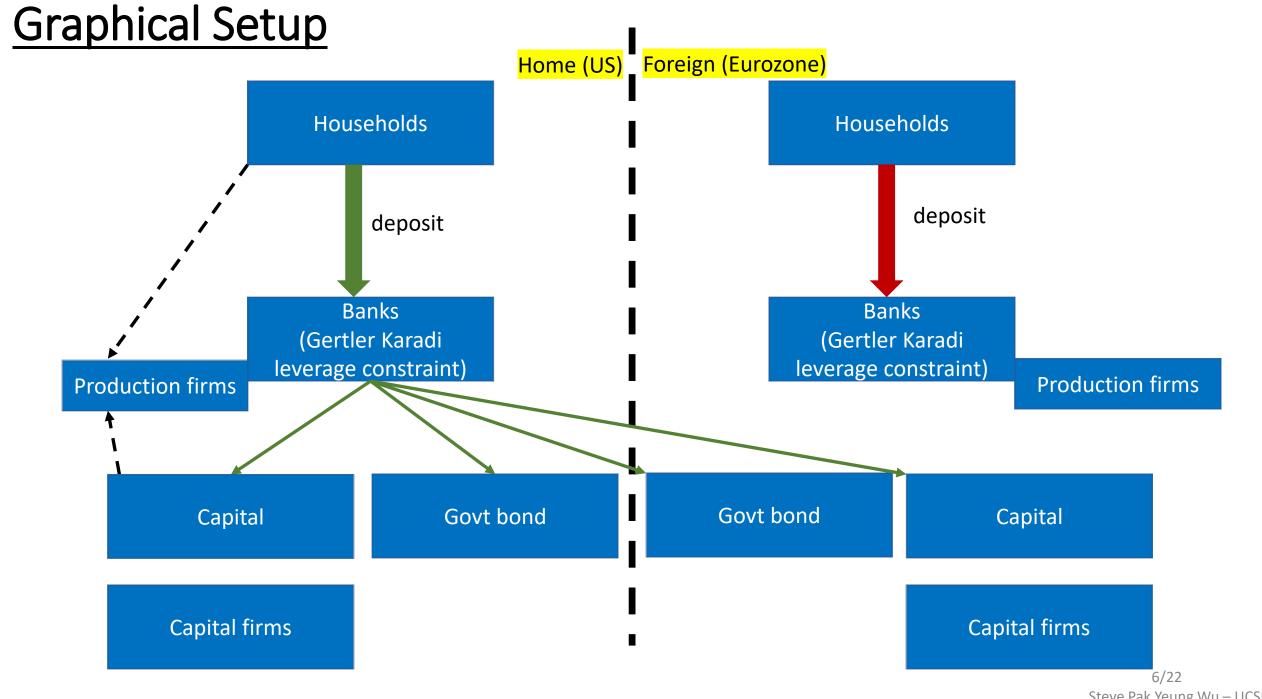
- Solely because the US bond is a better collateral
- In steady state,
- 1. US is a net debtor (negative NFA)
- 2. US generates "excess return" on its foreign investment (exorbitant privilege)
- 3. US's net foreign income is positive
- > Positive earning from investment despite net borrowing from abroad
- Upon a uniform global financial shock
- 1. Banks has tight balance sheet constraints >> run to least constraint assets (US bonds)
- 2. Demand for US bond appreciate the currency
- 3. Wealth transfer from the US to RoW (exorbitant duty and Maggiori 2017 paradox)
- 4. Retrenchment for both countries
- Exchange rates
- 1. Endogenous convenience yield and UIP deviation
- 2. Reasonably match many untargeted moments

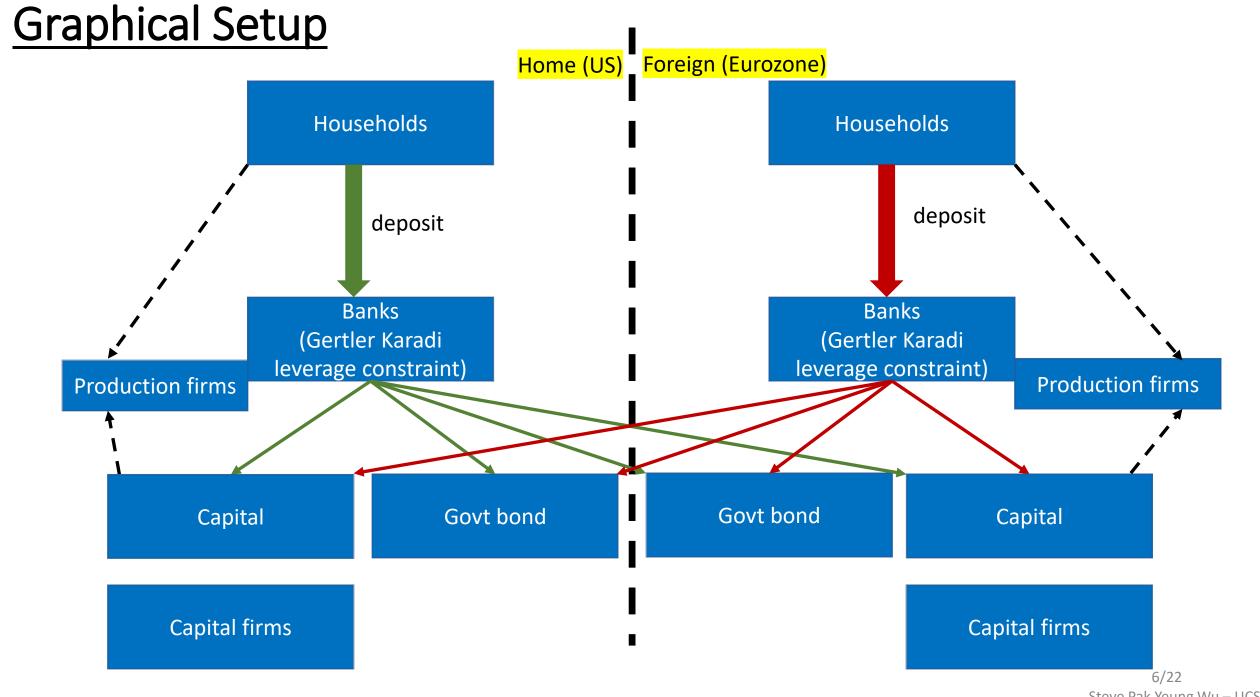
Road map

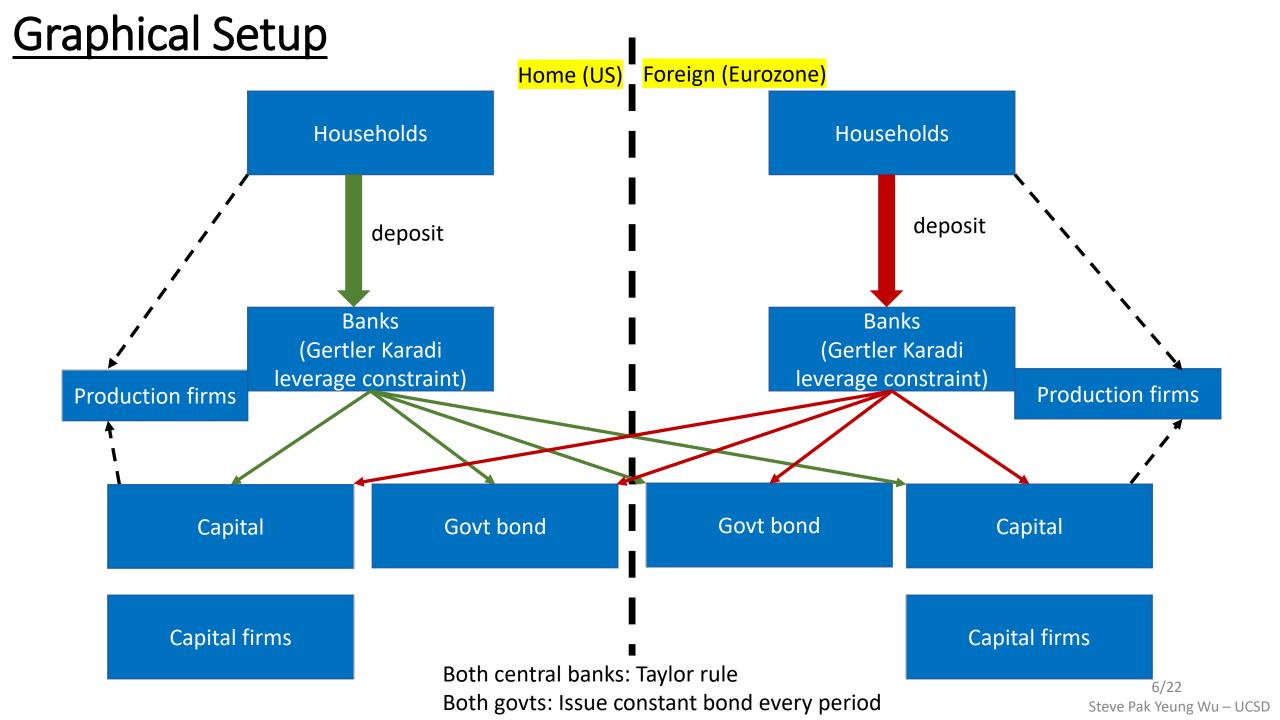
- 1. Quantitative model
- 2. IRFs to mimic GFC
- 3. Exchange rate moments


A two-country New Keynesian model with Treasury convenience


- Goods market
- Home (US) and foreign (Eurozone) goods
- Nominal price stickiness with pricing to market (i.e., local currency pricing LCP)


- Banking sector
- Gertler Karadi / Gertler Kiyotaki type of Home and Foreign banks
- Moral hazard problem -> Incentive constraint on asset holding


- Assets market
- Home bond, foreign bond, home capital, foreign capital
- Key is that home bond is a better collateral


Graphical Setup

Banks

- Follows the Gertler and Karadi framework
- A fraction θ of each household becomes a banker each period, and continues with probability θ , and reverts to being a consumer with probability $1-\theta$
- Balance sheet of bank (omitted *i* subscript):

$$N_t + B_t = [Q_t K_{h,t+1} + D_{h,t}] + S_t [Q_t^* K_{f,t+1} + D_{f,t}]$$

Net worth + deposit = [investment in Home asset] + [investment in Foreign asset]

where Q_t is the home capital price, S_t is the home price of a foreign currency K_h is the home bank holding of home capital K_f is the home bank holding of home bond D_h is the home bank holding of home bond D_f is the home bank holding of foreign bond

Banks' problem

Banks' value function is

$$V_{t} = E_{t}\Omega_{t+1}[(1-\theta)N_{t+1} + \theta V_{t+1}]$$

- Maximize value function by choosing the four assets (K_h, K_f, D_h, D_f)
- Subject to Gertler-Kiyotaki, Gertler-Karadi type of incentive constraint
- Banker can abscond κ amount of the assets so

value of the bank $\geq \kappa$ (value of the assets)

value if stay in business

value if running away

Banks' problem

Banks' value function is

$$V_{t} = E_{t}\Omega_{t+1}[(1-\theta)N_{t+1} + \theta V_{t+1}]$$

- Maximize value function by choosing the four assets (K_h, K_f, D_h, D_f)
- Subject to Gertler-Kiyotaki, Gertler-Karadi type of incentive constraint
- Banker can abscond κ amount of the assets so

$$V_t \ge \vartheta \left[\left(\kappa_{K,h} Q_t K_{h,t+1} + \kappa_h D_{h,t} \right) + \left(\kappa_{K,f} S_t Q_t^* K_{f,t+1} + \kappa_f S_t D_{f,t} \right) \right]$$

- The lower the parameter κ , the less it is divertible, or the more it is pledgeable
- Key assumption:

Home bond is the best collateral $\kappa_h < \kappa_f \le \kappa_{K,h} \le \kappa_{K,f}$ The same for the foreign banks $\kappa_h^* < \kappa_f^* \le \kappa_{K,f}^* \le \kappa_{K,h}^*$

First-order conditions

Bank SDF:

$$\Lambda_{t+1} = \Omega_{t+1}((1-\theta) + \theta \nu_{t+1})$$

These are zeros in frictionless models

$$FOC[D_h]: E_t \Lambda_{t+1} (R_{h,t+1} - R_{t+1}) = \eta_t \vartheta(\kappa_{h,t})$$

$$FOC[D_h]: E_t \Lambda_{t+1} \left(R_{h,t+1} - R_{t+1} \right) = \eta_t \vartheta(\kappa_{h,t})$$

$$FOC[D_f]: E_t \Lambda_{t+1} \left(\frac{S_{t+1}}{S_t} R_{f,t+1} - R_{t+1} \right) = \eta_t \vartheta(\kappa_{f,t})$$

First-order conditions

Bank SDF:

$$\Lambda_{t+1} = \Omega_{t+1}((1-\theta) + \theta \nu_{t+1})$$

These are zeros in frictionless models

$$FOC[D_h]: E_t \Lambda_{t+1} \left(R_{h,t+1} - R_{t+1} \right) = \eta_t \vartheta(\kappa_{h,t})$$

$$FOC[D_f]: E_t \Lambda_{t+1} \left(\frac{S_{t+1}}{S_t} R_{f,t+1} - R_{t+1} \right) = \eta_t \vartheta(\kappa_{f,t})$$

• Combining $FOC[D_h]$ and $FOC[D_f]$ gives

UIP wedge

$$E_t \Lambda_{t+1} \left(\frac{S_{t+1}}{S_t} R_{f,t+1} - R_{h,t+1} \right) = \eta_t \vartheta(\kappa_{f,t} - \kappa_{h,t})$$

• As the constraint tightens, η_t rises

First-order conditions

Bank SDF:

$$\Lambda_{t+1} = \Omega_{t+1}((1-\theta) + \theta \nu_{t+1})$$

These are zeros in frictionless models

$$FOC[D_h]: E_t \Lambda_{t+1} \left(R_{h,t+1} - R_{t+1} \right) = \eta_t \vartheta(\kappa_{h,t})$$

$$FOC[D_f]: E_t \Lambda_{t+1} \left(\frac{S_{t+1}}{S_t} R_{f,t+1} - R_{t+1} \right) = \eta_t \vartheta(\kappa_{f,t})$$

• Combining $FOC[D_h]$ and $FOC[D_f]$ gives

UIP wedge

$$E_t \Lambda_{t+1} \left(\frac{S_{t+1}}{S_t} R_{f,t+1} - R_{h,t+1} \right) = \eta_t \vartheta(\kappa_{f,t} - \kappa_{h,t})$$

- As the constraint tightens, η_t rises
- Forward iterating gives

$$S_{t} = -E_{t} \left\{ \sum_{t=1}^{\infty} \left(R_{h,t} - R_{f,t} \right) + \sum_{t=1}^{\infty} (\tilde{\eta}_{t}) \right\} + \lim_{k \to \infty} E_{t} s_{t+k} - k\bar{s}$$

Calibration table

Symbol	Meaning	Value	target
$\overline{D_h} = \overline{D_f}$	Total govt debt	2.7	Debt to GDP of 83%
θ	Bank survival prob.	0.95	Leverage of 3
κ_h	Home constraint cost of holding home bond	0.025	Convenience yield = 1%
κ_h^*	Foreign constraint cost of holding home bond	0.05	Net foreign income / GDP = 0.0013
κ_f	Home constraint cost of holding foreign bond	0.40	Foreign holding of US Treasury of 45%
$oldsymbol{\kappa_f^*}$	Foreign constraint cost of holding foreign bond	0.32	-ve NFA 18.5%
$\kappa_{Kh}^* = \kappa_{Kf}$	Constraint cost of holding external capital	0.49	Equity premium of 6%
$\kappa_{Kh} = \kappa_{Kf}^*$	Constraint cost of holding own capital	0.41	Home bias of equity of 70%

Steady state

Symbol	Steady state
Syllibol	Sieauy Stati

NFA/GDP	-18.50%	
$r_f - r_h$	4.4 - 3.4% = 1%	
Net income from abroad / GDP	0.13%	

Exorbitant privilege:

+ve Net income from abroad because of convenience yield despite the -ve NFA

Steady state

Symbol	Steady state	
NFA/GDP	-18.50%	
$r_f - r_h$	4.4 - 3.4% = 1%	
Net income from abroad / GDP	0.13%	

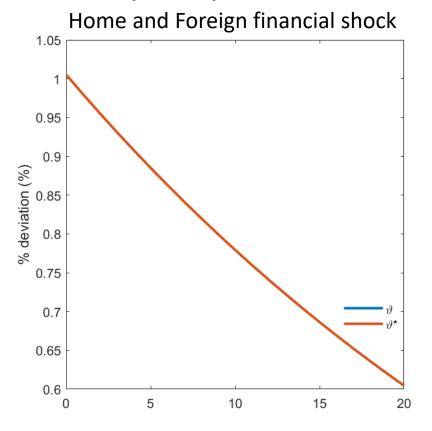
Exorbitant privilege:

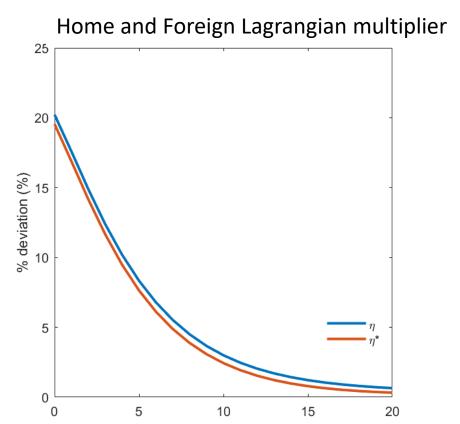
+ve Net income from abroad because of convenience yield despite the -ve NFA

Symbol	Steady state
C, C*	0.6118 , 0.6113
L, L*	0.3317 , 0.3328
Y, Y*	0.8065 , 0.8089
Home, Foreign bank's leverage (asset/equity)	3.01, 2.99

Living off the privilege, US has a high consumption, despite less L and Y US bank is more leveraged

Road map

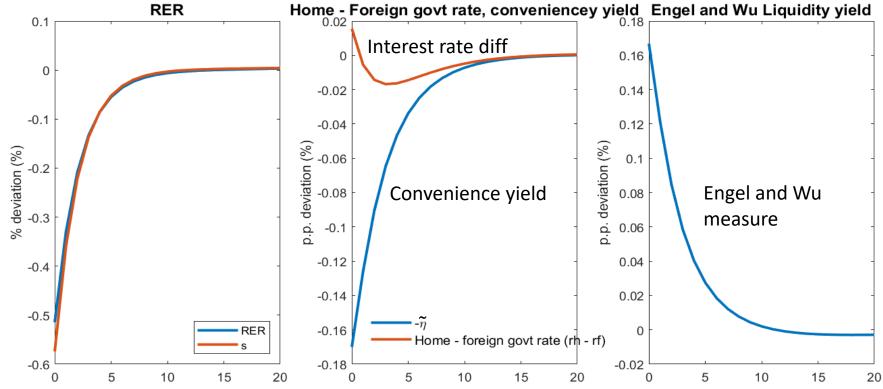

- 1. Quantitative Model
- 2. IRFs to mimic GFC
- 3. Exchange rate moments


Key takeaways

- Dollar appreciates in crisis due to convenience demand
- Dollar appreciates despite a wealth transfer to the rest of the world (reconcile reserves currency paradox Maggiori 2017)
- Capital flow retrenchment

Experiment

- A 1% shock to ϑ and ϑ^* (1% tightening to all assets on incentive constraint)
- The shock is AR1, with persistence of 0.98

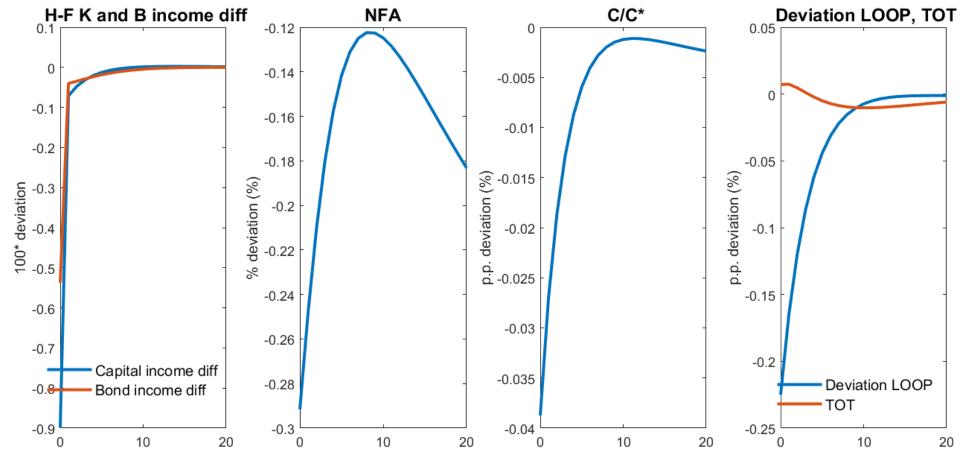

Symmetric shock but asymmetric effects

IRF of *ϑ* shock – exchange rate

Forward iterating gives

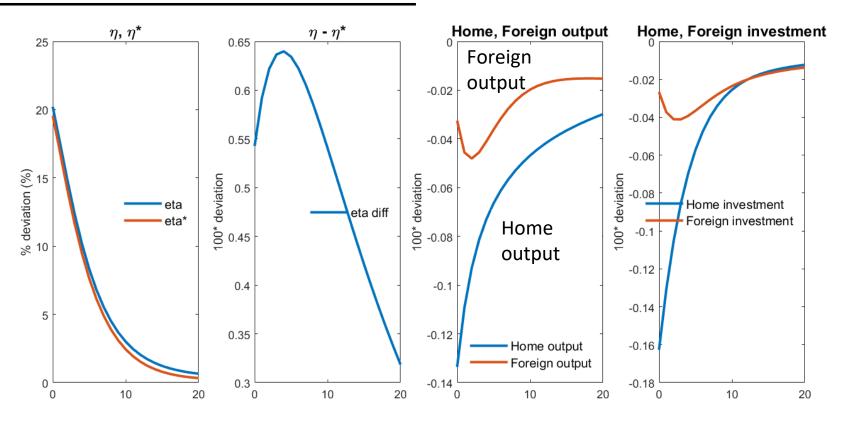
$$RER_t = -E_t \left\{ \sum_{t=1}^{\infty} \left(r_{h,t} - r_{f,t} \right) + \sum_{t=1}^{\infty} \left(\tilde{\eta}_t \right) \right\} + \lim_{k \to \infty} E_t s_{t+k} - k\bar{s}$$

Convenience yield: $E_t RER_{t+1} - RER_t - (r_{h,t} - r_{f,t}) \equiv \tilde{\eta}_t$

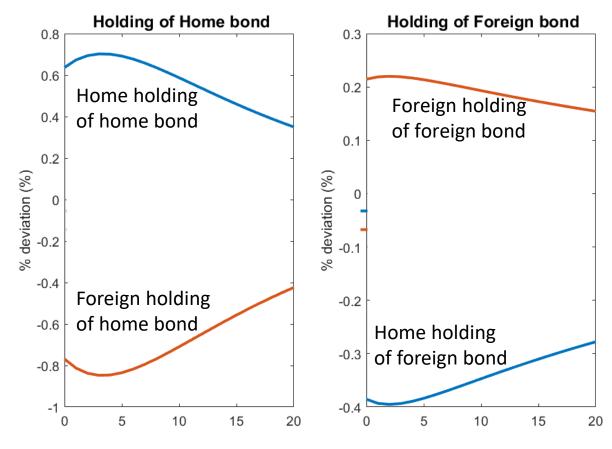


• Despite lower home interest rate r_h , USD appreciates because of strong convenience yield demand

IRF of *ϑ* shock – reserves currency paradox

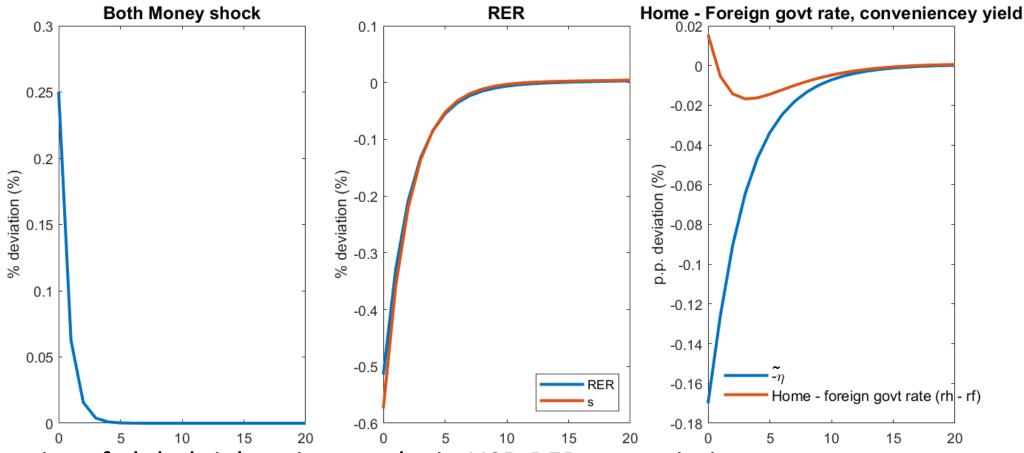

IRF of ϑ shock – reserves currency paradox

• Recall that $RER_t = TOT_t^{2\omega-1} \times D_t$


 Despite a wealth transfer to RoW → rise in TOT, RER appreciation because of deviation of LOOP

IRF of ϑ shock – real outcomes

- Intuition:
- Home bond is great
- → Home banks shift out from investment more during a crisis
- → Home output drops more


IRF of ϑ shock – capital flows

- > Home banks demand more of the least constraint bond
- > Foreign selling home bonds despite they also demand more of the liquid bond
- → Retrenchment of capital flows

Note: direction of capital flows ≠ demand revelation

IRF of symmetric money shock (currency wars?)

- Same size of global tightening results in USD RER appreciation
- Convenience yield demand drives most of the RER appreciation
- In eqm, the US interest rate is lower than the Foreign
- → Home inflation pressure is less than the Foreign

Road map

- 1. Quantitative Model
- 2. IRFs to mimic GFC
- 3. Exchange rate moments

2nd moment calibration

- Standard process for TFP and monetary shocks
- Calibrate the financial shock ϑ , ϑ^* persistence and standard deviation for
- 1) Financial shock explain 90% of exchange rate (Itskhoki and Mukhin 2021, Miyamoto et al F'coming)
- 2) $Corr(\Delta nx, \Delta RER) \cong 0$

Replicate Engel Wu empirical regression

$$\Delta s_{j,t} = \alpha_j + \beta_0 s_{j,t} + \beta_1 \Delta \eta_{j,t} + \beta_2 \Delta (i - i^*)_{j,t} + \beta_3 \eta_{j,t} + \beta_4 (i - i^*)_{j,t} + u_{j,t}$$

	G10 panel regression	Model implied
$S_{j,t}$	-0.06**	-0.01
	(0.02)	
$\Delta \eta_{j,t}$	-1.65**	-1.90
	(0.76)	
$\Delta(m{i}-m{i}^*)_{m{j},m{t}}$	-2.61***	-3.04
	(0.97)	
$\eta_{j,t}$	-2.08**	-0.10
	(0.87)	
$(i-i^*)_{j,t}$	-0.44**	-0.07
	(0.22)	

Note: S.E. cluster by time. Quarterly data

Exchange rate moments

	Data moment (Itskhoki and Mukhin 2021)	Model implied
$\sigma(\Delta NER)/\sigma(\Delta GDP)$	5.2	2
$\sigma(\Delta NER)/\sigma(\Delta c)$	6.3	7
ho(RER)	0.94	0.9
Fama eta	<0	-1.4
$Corr(\Delta nx, \Delta RER)$	~0	-0.045

Conclusion

- A DSGE model of endogenous convenience yield
- Convenience yield links to banking friction no exogenous yield / noise trader
- One single asymmetry US bond is a better collateral
- Matches US external positions and exchange rate dynamics well
- A lot more implications are coming!

Conclusion

- A DSGE model of endogenous convenience yield
- Convenience yield links to banking friction no exogenous yield / noise trader
- One single asymmetry US bond is a better collateral
- Matches US external positions and exchange rate dynamics well
- A lot more implications are coming!

THANK YOU