Discussion of "ESG Shocks in Global Supply Chains" by Bisetti, She, and Žaldokas (2023)

Clemens A. Otto (Singapore Management University)

Big picture

Econometrics

Big picture

- Econometrics
- Suggestions

ESG incidents are bad news for the firms that experience them

- Negative stock market reaction (Gantchev et al. 2022)
- Downward revision of analysts' EPS forecasts (Derrien et al. 2022)

ESG incidents are bad news for the firms that experience them

- Negative stock market reaction (Gantchev et al. 2022)
- Downward revision of analysts' EPS forecasts (Derrien et al. 2022)

• One likely reason: Customers do not want to buy from ESG sinners!

ESG incidents are bad news for the firms that experience them

- Negative stock market reaction (Gantchev et al. 2022)
- Downward revision of analysts' EPS forecasts (Derrien et al. 2022)
- One likely reason: Customers do not want to buy from ESG sinners!
- This paper documents the above in detail
 - US firms reduce trade with foreign suppliers after ES(G) incidents

ESG incidents are bad news for the firms that experience them

- Negative stock market reaction (Gantchev et al. 2022)
- Downward revision of analysts' EPS forecasts (Derrien et al. 2022)
- One likely reason: Customers do not want to buy from ESG sinners!
- This paper documents the above in detail
 - US firms reduce trade with foreign suppliers after $\mathsf{ES}(\mathsf{G})$ incidents
- Maybe not too surprising...
 - Same idea documented in Koenig and Poncet (2022)

We want to save the planet (and be nice to people)

- We want to save the planet (and be nice to people)
- ▶ If firms don't do it on their own, we will impose ESG regulation

- We want to save the planet (and be nice to people)
- If firms don't do it on their own, we will impose ESG regulation
- But what if firms outsource to suppliers outside of our jurisdiction?

- We want to save the planet (and be nice to people)
- If firms don't do it on their own, we will impose ESG regulation
- But what if firms outsource to suppliers outside of our jurisdiction?
- ► Then we will hold firms accountable for their suppliers' behavior!

- We want to save the planet (and be nice to people)
- If firms don't do it on their own, we will impose ESG regulation
- But what if firms outsource to suppliers outside of our jurisdiction?
- ► Then we will hold firms accountable for their suppliers' behavior!
- Crucial: This helps save the planet only if it affects suppliers' behavior

- We want to save the planet (and be nice to people)
- If firms don't do it on their own, we will impose ESG regulation
- But what if firms outsource to suppliers outside of our jurisdiction?
- ► Then we will hold firms accountable for their suppliers' behavior!
- Crucial: This helps save the planet only if it affects suppliers' behavior
- But what can firms do? Not much, except not buy from ESG sinners

- We want to save the planet (and be nice to people)
- If firms don't do it on their own, we will impose ESG regulation
- But what if firms outsource to suppliers outside of our jurisdiction?
- ► Then we will hold firms accountable for their suppliers' behavior!
- Crucial: This helps save the planet only if it affects suppliers' behavior
- But what can firms do? Not much, except not buy from ESG sinners
- How potent is cutting trade for improving suppliers' ESG?

▶ I think this is the super important question the paper should focus on!

- ▶ I think this is the super important question the paper should focus on!
- Currently, really focused on customers' trade adjustments ($\approx 90\%$)

- I think this is the super important question the paper should focus on!
- Currently, really focused on customers' trade adjustments (\approx 90%)
- Effect on suppliers' ESG examined only at very end (p. 30, Table 10)

- I think this is the super important question the paper should focus on!
- Currently, really focused on customers' trade adjustments (\approx 90%)
- Effect on suppliers' ESG examined only at very end (p. 30, Table 10)
- I would prefer 10% trade adjustment and 90% effect on suppliers' ESG

- I think this is the super important question the paper should focus on!
- Currently, really focused on customers' trade adjustments (\approx 90%)
- Effect on suppliers' ESG examined only at very end (p. 30, Table 10)
- I would prefer 10% trade adjustment and 90% effect on suppliers' ESG
- We really need to know how domestic firms' actions change foreign suppliers' ESG to design effective "supply-chain-ESG regulation"

- Econometrics
- Suggestions

Table 3: The Effect of Supplier E&S Incidents on Trade

Dep. Var. =	Log(1+Containers)	1(Trade>0)	Log(1+Containers)
		Extensive Margin	Intensive Margin
	(1)	(2)	(3)
Treat Supp×Post	-0.111***	-0.042***	-0.095*
	(0.039)	(0.014)	(0.054)
Pair×Cohort FE	Yes	Yes	Yes
Firm×Year×Cohort FE	Yes	Yes	Yes
Obs.	990,439	990,439	410,322
Adj. R ²	0.392	0.160	0.640

Table 3: The Effect of Supplier E&S Incidents on Trade

Dep. Var. =	Log(1+Containers)	1(Trade>0)	Log(1+Containers)
((1)	Extensive Margin (2)	Intensive Margin (3)
Treat Supp×Post	-0.111***	-0.042***	-0.095*
	(0.039)	(0.014)	(0.054)
Pair×Cohort FE	Yes	Yes	Yes
Firm×Year×Cohort FE	Yes	Yes	Yes
Obs.	990,439	990,439	410,322
Adj. R ²	0.392	0.160	0.640

"We show that U.S. firms cut imports by 11.1%..."

see, e.g., Cohn, Liu, and Wardlaw (2022)

see, e.g., Cohn, Liu, and Wardlaw (2022)

 In general, β from Ln(1 + y) = α + βx + ν is NOT equal to "percentage-change in y for unit change in x"

see, e.g., Cohn, Liu, and Wardlaw (2022)

- In general, β from Ln(1 + y) = α + βx + ν is NOT equal to "percentage-change in y for unit change in x"
- Semi-elasticity of E[y|x] with respect to x is

$$\varepsilon = \frac{\partial E[y|x]}{\partial x} \times \frac{1}{E[y|x]}$$

see, e.g., Cohn, Liu, and Wardlaw (2022)

• Semi-elasticity of E[y|x] with respect to x is

$$\varepsilon = \frac{\partial E[y|x]}{\partial x} \times \frac{1}{E[y|x]}$$

• But
$$\beta$$
 from $Ln(1 + y) = \alpha + \beta x + \nu$ is

$$\beta = \frac{\partial E[y|x]}{\partial x} \times \frac{1}{1 + E[y|x]} = \varepsilon \times \frac{E[y|x]}{1 + E[y|x]}$$

see, e.g., Cohn, Liu, and Wardlaw (2022)

Semi-elasticity of E[y|x] with respect to x is

$$\varepsilon = \frac{\partial E[y|x]}{\partial x} \times \frac{1}{E[y|x]}$$

• But
$$\beta$$
 from $Ln(1 + y) = \alpha + \beta x + \nu$ is

$$\beta = \frac{\partial E[y|x]}{\partial x} \times \frac{1}{1 + E[y|x]} = \varepsilon \times \frac{E[y|x]}{1 + E[y|x]}$$

• E[y|x] unobserved, so unclear how to recover semi-elasticity from β

see, e.g., Cohn, Liu, and Wardlaw (2022)

• Semi-elasticity of E[y|x] with respect to x is

$$\varepsilon = \frac{\partial E[y|x]}{\partial x} \times \frac{1}{E[y|x]}$$

• But
$$\beta$$
 from $Ln(1 + y) = \alpha + \beta x + \nu$ is

$$\beta = \frac{\partial E[y|x]}{\partial x} \times \frac{1}{1 + E[y|x]} = \varepsilon \times \frac{E[y|x]}{1 + E[y|x]}$$

• E[y|x] unobserved, so unclear how to recover semi-elasticity from β

• E.g., at E[y|x] = 0.942 (= E[y]), estimated semi-elasticity is $\approx 23\%$

see, e.g., Cohn, Liu, and Wardlaw (2022)

Problem 2 with Ln(1+y) see, e.g., Cohn, Liu, and Wardlaw (2022)

If there are non-linear relations between different <u>covariates</u>, then the estimator for β in Ln(1 + y) = Xβ + ν is generally biased Problem 2 with Ln(1+y) see, e.g., Cohn, Liu, and Wardlaw (2022)

- If there are non-linear relations between different <u>covariates</u>, then the estimator for β in Ln(1 + y) = Xβ + ν is generally biased
- β -estimates from $Ln(1+y) = X\beta + \nu$ may even have the wrong sign!

Problem 2 with Ln(1+y) see, e.g., Cohn, Liu, and Wardlaw (2022)

- If there are non-linear relations between different <u>covariates</u>, then the estimator for β in Ln(1 + y) = Xβ + ν is generally biased
- β -estimates from $Ln(1+y) = X\beta + \nu$ may even have the wrong sign!
- Simple solution to Problems 1 and 2: Poisson regressions

Table 3: The Effect of Supplier E&S Incidents on Trade

Dep. Var. =	Log(1+Containers)	1(Trade>0)	Log(1+Containers)
	(1)	Extensive Margin (2)	Intensive Margin (3)
Treat Supp×Post	-0.111***	-0.042***	-0.095*
	(0.039)	(0.014)	(0.054)
Pair×Cohort FE	Yes	Yes	Yes
Firm×Year×Cohort FE	Yes	Yes	Yes
Obs.	990,439	990,439	410,322
Adj. R ²	0.392	0.160	0.640

Table 3: The Effect of Supplier E&S Incidents on Trade

Dep. Var. =	Log(1+Containers)	1(Trade>0)	Log(1+Containers)
	(1)	Extensive Margin (2)	Intensive Margin (3)
Treat Supp×Post	-0.111***	-0.042***	-0.095*
	(0.039)	(0.014)	(0.054)
Pair×Cohort FE	Yes	Yes	Yes
Firm×Year×Cohort FE	Yes	Yes	Yes
Obs.	990,439	990,439	410,322
Adj. R ²	0.392	0.160	0.640

"Conditional on trade continuation, container shipments drop by 9.5%..."

Intensive Margin (aka Conditional on Positive Effect) see, e.g., Angrist and Pischke (2009)

Intensive Margin (aka Conditional on Positive Effect) see, e.g., Angrist and Pischke (2009)

$$\underbrace{E\left[Y|D=1\right] - E\left[Y|D=0\right]}_{\text{Total Effect}} = \underbrace{\left[\Pr\left(Y > 0|D=1\right) - \Pr\left(Y > 0|D=0\right)\right]}_{\text{Extensive Margin}} \\ \times E\left[Y|Y > 0, D=1\right] \\ + \underbrace{\left(E\left[Y|Y > 0, D=1\right] - E\left[Y|Y > 0, D=0\right]\right)}_{\text{Intensive Margin}} \\ \times \Pr\left(Y > 0|D=0\right)$$

where D = 1 indicates that treatment was received (i.e., Treat Supp \times Post = 1)

Intensive Margin does **NOT** have Causal Interpretation

... even if treatment is randomly assigned (!) and irrespective of Ln(1+y) or Poisson

Intensive Margin does <u>NOT</u> have Causal Interpretation ... even if treatment is randomly assigned (!) and irrespective of Ln(1+y) or Poisson

$$\underbrace{(E[Y|Y > 0, D = 1] - E[Y|Y > 0, D = 0])}_{\text{Intensive Margin}} = E[Y_1|Y_1 > 0] - E[Y_0|Y_0 > 0]$$
$$= \underbrace{E[Y_1 - Y_0|Y_1 > 0]}_{\text{Causal Effect}}$$
$$+ \underbrace{E[Y_0|Y_1 > 0] - E[Y_0|Y_0 > 0]}_{\text{Selection Bias}}$$

where Y_1 and Y_0 denote potential outcomes for D = 1 and D = 0, respectively (i.e., "what would have happened if treatment were/were not received")

Table 3: The Effect of Supplier E&S Incidents on Trade

Dep. Var. =	Log(1+Containers)	1(Trade>0)	Log(1+Containers)
	(1)	Extensive Margin (2)	Intensive Margin (3)
Treat Supp×Post	-0.111***	-0.042***	-0.095*
	(0.039)	(0.014)	(0.054)
Pair×Cohort FE	Yes	Yes	Yes
Firm×Year×Cohort FE	Yes	Yes	Yes
Obs.	990,439	990,439	410,322
Adj. R ²	0.392	0.160	0.640

- Big picture
- Econometrics
- Suggestions

- 1. Focus on "How potent are trade cuts for changing suppliers' ES(G)?"
- 2. Poisson instead of Ln(1+y) throughout
- 3. Drop analysis of intensive margin