# Climate Change Salience and International Equity Returns

David Parsley, Vanderbilt University and Helen Popper, Santa Clara University

May 2023

# Shunned, Regulated

### Dora Xia & Omar Zulaica

# **Physical Risk**

HANNIBAL WATER WORKS

#### **Productivity Losses**

HANNIBAL WATER WORKS

Ivan Rudik, Gary Lyn, Weiliang Tan, & Ariel Ortiz-Bobea, 2022



# **CREDIT SUISSE**

# CREDIT ST.

#### Financial firms carry debtors' exposure

BIS; NGFS; Choi, Gao, Jiang, & Zhang

# Infrastructure Reliance (Bohn 2022: commercial downtime)

ĸ

# Demand Effects (ECB)

e in

#### Deryugina and Hsiang (2014); & Dell, Jones, and Olken (2012)





# Transition Winners (e.g.: sequestration)



# The Point

# The range of potential avenues of exposure is broad.

# The Point

This paper:

Explore the pricing of climate change risk-broadly construed-in equity markets.

# Specifically,

#### 1. Construct a broad indicator of climate change salience...

# Specifically,

- 1. Construct a broad indicator of climate change salience, then:
- 2. Are equities exposed to a climate change salience risk?
- 3. Is the risk priced internationally?
- 4. Is the exposure widespread?

# **Preview Results**

- 1. Construct a broad indicator of climate change salience, then:
- 2. Are equities exposed to a climate change salience risk? (Yes)
- 3. Is the risk priced internationally? (Yes)
- 4. Is the exposure widespread? (Yes)

#### • Theory

Physical risks and transition risks: Giglio, Kelly, and Stroebel (2020), and Giglio, Maggiori, Rao, Stroebel, and Weber (2021)

#### • Carbon Risk

- International Equity Carbon Exposure: Bolton and Kacperczyk (2021)
- Carbon Pricing: Gorgen, Jacob, Nerlinger, Riordan, Rohleder, and Wilkens (2020)
- Empirical Critique: Aswani, Raghunandan, and Rajgopal (2022)
- Preference v. Fundamental: Xia and Zulaica (2022)
- Valuation: Choi, Gao, Jiang, and Zhang (2022)
- Climate Risk

Hedging: Engle, Giglio, Kelly, Lee, and Stroebel (2020)

- textual analysis of the Wall Street Journal
- sentiment-guided textual analysis with more sources.

U.S. Bonds: Huynh and Xia (2021)

• Theory

Physical risks and transition risks: Giglio, Kelly, and Stroebel (2020), and Giglio, Maggiori, Rao, Stroebel, and Weber (2021)

# • Carbon Risk

- International Equity Carbon Exposure: Bolton and Kacperczyk (2021)
- Carbon Pricing: Gorgen, Jacob, Nerlinger, Riordan, Rohleder, and Wilkens (2020)
- Empirical Critique: Aswani, Raghunandan, and Rajgopal (2022)
- Preference v. Fundamental: Xia and Zulaica (2022)
- Valuation: Choi, Gao, Jiang, and Zhang (2022)
- Climate Risk

Hedging: Engle, Giglio, Kelly, Lee, and Stroebel (2020)

- textual analysis of the Wall Street Journal
- sentiment-guided textual analysis with more sources.
- U.S. Bonds: Huynh and Xia (2021)

• Theory

Physical risks and transition risks: Giglio, Kelly, and Stroebel (2020), and Giglio, Maggiori, Rao, Stroebel, and Weber (2021)

• Carbon Risk

International Equity Carbon Exposure: Bolton and Kacperczyk (2021)

Carbon Pricing: Gorgen, Jacob, Nerlinger, Riordan, Rohleder, and Wilkens (2020)

Empirical Critique: Aswani, Raghunandan, and Rajgopal (2022)

Preference v. Fundamental: Xia and Zulaica (2022)

Valuation: Choi, Gao, Jiang, and Zhang (2022)

#### Climate Risk

Hedging: Engle, Giglio, Kelly, Lee, and Stroebel (2020)

textual analysis of the Wall Street Journal

- sentiment-guided textual analysis with more sources.
- U.S. Bonds: Huynh and Xia (2021)

• Google Trends' worldwide searches of 'climate change'

- U.S. investor perspective
- Monthly observations, scaled relative to searches & sample
- Construct innovations: ARIMA(111)(011)<sub>12</sub> à la U.S. Census Bureau (2020) & Dagum and Bianconcini (2016)
- Avoids editorial artifact
- Correlated with 'Negative Sentiment' (Crimson Hexagon)
- Related Search Work
  - Temperature & abnormal returns: Choi, Gao, and Jiang (2020)
  - ESG Flows: Brogger and Kronies (2021)
  - Stocktwits & Carbon Risk: Santi (2020)

• Google Trends' worldwide searches of 'climate change'

- ► U.S. investor perspective
- Monthly observations, scaled relative to searches & sample
- Construct innovations: ARIMA(111)(011)<sub>12</sub> à la U.S. Census Bureau (2020) & Dagum and Bianconcini (2016)
- Avoids editorial artifact
- Correlated with 'Negative Sentiment' (Crimson Hexagon)
- Related Search Work
  - Temperature & abnormal returns: Choi, Gao, and Jiang (2020)
  - ESG Flows: Brogger and Kronies (2021)
  - Stocktwits & Carbon Risk: Santi (2020)

• Google Trends' worldwide searches of 'climate change'

- ► U.S. investor perspective
- Monthly observations, scaled relative to searches & sample
- Construct innovations: ARIMA(111)(011)<sub>12</sub> à la U.S. Census Bureau (2020) & Dagum and Bianconcini (2016)
- Avoids editorial artifact
- Correlated with 'Negative Sentiment' (Crimson Hexagon)
- Related Search Work
  - Temperature & abnormal returns: Choi, Gao, and Jiang (2020)
  - ESG Flows: Brogger and Kronies (2021)
  - Stocktwits & Carbon Risk: Santi (2020)

# 1. Climate Change Salience: $\kappa_t$



2. Estimate Firm Exposure to Climate Change Salience,  $\kappa$ 

2. Estimate Firm Exposure to Climate Change Salience,  $\kappa$ 

# 60-month rolling regressions

Allows each firm's exposure to change slowly over time

$$r_{i,t} = \alpha_i + \beta_i^{\kappa} \kappa_t + f_t' \beta_i^f + \eta_{i,t}$$

2. Estimate Firm Exposure to Climate Change Salience,  $\kappa$ 

# 60-month rolling regressions

$$\mathbf{r}_{i,t} = \alpha_i + \beta_i^{\kappa} \kappa_t + f_t' \beta_i^f + \eta_{i,t}$$

144 rolling estimates of  $\beta_i^{\kappa}$  for each firm

 $\rightarrow$ 

Out-of-Sample Estimate of:

$$\mathbf{r}_{i,t} = \alpha + \left( \gamma^{\beta^{\kappa}} \hat{\beta}_{i,t-1}^{\kappa} + \dots + \varepsilon_{i,t} \right),$$

Out-of-Sample Estimate of:

$$\mathbf{r}_{i,t} = \alpha + \left( \gamma^{\beta^{\kappa}} \hat{\beta}_{i,t-1}^{\kappa} + \ldots + \varepsilon_{i,t} \right),$$

$$\gamma^{\beta^{\kappa}} < 0?$$

*Now*: 3. Does the exposure,  $\beta_i^{\kappa}$ , matter to investors?

Specifically, out-of-sample estimate of:

$$\mathbf{r}_{i,t} = \alpha + \gamma^{\beta^{\kappa}} \hat{\beta}_{i,t-1}^{\kappa} + \mathbf{g}_{i,t-1}' \gamma^{g} + \mathbf{h}_{i,t-1}' \gamma^{h} + \hat{\beta}_{i,t-1}^{\kappa} \mathbf{h}_{i,t-1}' \gamma^{h\beta} + \varepsilon_{i,t},$$

 $\hat{\beta}_{i,t-1}^{\kappa}$ , prior 5-year exposure  $g_{i,t-1}$ , past variables a là Fama-French  $h_{i,t-1}$ , variables to interact with  $\beta_{i,t-1}^{\kappa}$ 

Out-of-Sample Panel Estimate:

$$\mathbf{r}_{i,t} = \alpha + \gamma^{\beta^{\kappa}} \hat{\beta}_{i,t-1}^{\kappa} + \mathbf{g}_{i,t-1}' \gamma^{g} + \mathbf{h}_{i,t-1}' \gamma^{h} + \hat{\beta}_{i,t-1}^{\kappa} \mathbf{h}_{i,t-1}' \gamma^{h\beta} + \varepsilon_{i,t},$$

Panel follows Petersen (2009) to account for correlated errors.

# 3. Out of Sample Estimates – Baseline Regression

| Variable                        | (1)                              | (2)                               |  |
|---------------------------------|----------------------------------|-----------------------------------|--|
| $\gamma^{\beta^{\kappa}}$       | <mark>-0.0186</mark><br>(0.0008) | - <mark>0.0218</mark><br>(0.0009) |  |
| $\gamma^{\beta^{R_m}}$          | 0.4834<br>(0.0414)               | 0.6341<br>(0.0465)                |  |
| $\gamma^{eta^{smb}}$            | 0.0004<br>(0.0291)               | 0.0133<br>(0.0346)                |  |
| $\gamma^{eta^{hml}}$            | 0.1371<br>(0.0279)               | 0.2155<br>(0.0326)                |  |
| Firm Effects<br>Country Effects | no<br>yes                        | yes<br>yes                        |  |

A firm with a median value of  $\beta_{\kappa}$  has an annual return that is two percent greater than one at the 75<sup>th</sup> percentile.

# 3. Out of Sample Estimates - Nonlinearity

| Variable                     | (3)                   | (4)                  | (5)                  |
|------------------------------|-----------------------|----------------------|----------------------|
| $\gamma^{eta^\kappa}$        | 0.0149                | 0.0181               | 0.0277               |
|                              | (0.0034)              | (0.0036)             | (0.0062)             |
| $\gamma^{\kappa:eta^\kappa}$ | - <mark>0.0967</mark> | <mark>-0.1161</mark> | <mark>-0.0993</mark> |
|                              | (0.0095)              | (0.0100)             | (0.0096)             |
| $\gamma^{\kappa}$            | -1.5382               | -0.15434             | -1.5828              |
|                              | (0.0817)              | (0.0845)             | (0.0823              |
| $\gamma^{\beta^{R_m}}$       | 0.3684                | 0.5056               | 0.3543               |
|                              | (0.0426)              | (0.0482)             | (0.0425)             |
| $\gamma^{\beta^{smb}}$       | 0.0552                | 0.0833               | 0.0559               |
|                              | (0.0296)              | (0.0355)             | (0.0298)             |
| $\gamma^{eta^{hml}}$         | 0.0598                | 0.1270               | 0.0700               |
|                              | (0.0290)              | (0.0340)             | (0.0289)             |

At the median  $\kappa$ , a firm with a median  $\beta^{\kappa}$  earns an annual return again about 1.9 percent greater than a firm with a  $\beta^{\kappa}$  at the 75<sup>th</sup> percentile.

4. Accounting for  $\beta^{\kappa}$ 

# 4. Accounting for $\beta^{\kappa}$

$$\hat{\beta}_{i,t}^{\kappa} = \gamma_0 + m'_{i,t}\gamma^m + \gamma_{fin}d_{fin} + c'_{i,t}\gamma^c + \epsilon_{i,t},$$

 $m'_{i,t}$ , vector of reported emissions  $d_{fin}$ , financial firm indicator  $c'_{i,t}$ , firm-specific characteristics

| Variable                  | (1)      | (2)      | (3)      | (4)      |
|---------------------------|----------|----------|----------|----------|
|                           |          |          |          |          |
| In scope 1                | -0.2514  | 0.1298   | 0.0819   |          |
|                           | (0.1971) | (0.1807) | (0.1792) |          |
| In scope 2                | 0.0015   | 0.1734   | 0.1909   |          |
|                           | (0.2250) | (0.2337) | (0.2382) |          |
| In scope 3                | 0.0498   | 0.1829   | 0.1798   |          |
|                           | (0.1084) | (0.1047) | (0.1051) |          |
| . scope1                  |          |          |          |          |
| In sales                  |          |          |          | 0.1229   |
|                           |          |          |          | (0.1780) |
| In <u>scope2</u><br>sales |          |          |          | 0.3313   |
|                           |          |          |          | (0.2377) |
| In <u>scope3</u>          |          |          |          | 0.1901   |
| Sures                     |          |          |          | (0.1053) |
| In ppe                    | 0 3424   | -0.0080  | -0.0376  | -0 4479  |
| in ppc                    | (0.2519) | (0.2604) | (0.2651) | (0.2699) |
| den                       | -2.1879  | 0.4352   | -0.0520  | -0.4247  |
| -1111                     | (0.9504) | (0.8912) | (0.8809) | (0.8636) |
| In size                   | 3.1429   | 2.6844   | 2.7888   | 1.9627   |
|                           | (0.4874) | (0.4817) | (0.4924) | (0.4430) |
| In <del>b</del>           | 2.3874   | 1.7250   | 1.6922   | 1.4391   |
|                           | (0.4090) | (0.3737) | (0.3763) | (0.3736) |
| In sales                  | -0.7039  | -2.6843  | -2.6482  | . ,      |
|                           | (0.4867) | (0.4662) | (0.4688) |          |

- Climate change salience risk is unrelated to emissions.
- Small firms and growth firms exhibit more climate change salience risk.
- Additional sales conditionally indicate greater risk.

# 4. Accounting for $\beta^{\kappa}$

- Emission result is consistent with: Aswani, Raghunandan, and Rajgopal (2022)
- Overall, suggests the ubiquity of climate change risk

# 4. More accounting for $\beta^{\kappa}$

| Variable                    | (5)      |
|-----------------------------|----------|
| In scope 1                  | 0.1829   |
| ·                           | (0.2059) |
| In scope 2                  | 0.1453   |
|                             | (0.2484) |
| In scope 3                  | 0.2140   |
|                             | (0.1178) |
|                             | · . /    |
|                             |          |
|                             |          |
| Country Characteristics     |          |
|                             |          |
| emissions per capita        | -0.4402  |
|                             | (0.4082) |
| climate risk index          | 1.0277   |
|                             | (0.3998) |
| GDP per capita              | -1.7630  |
|                             | (0.7195) |
| climate change policy score | -0.4717  |
|                             | (0.3584) |
| political stability index   | -0.3010  |
|                             | (0.6888) |
| non-renewable energy use    | 0.1765   |
|                             | (0.6473) |
| oil producer                | 1.7250   |
|                             | (1.2092) |
| emerging market             | 0.4179   |
|                             | (1.0491) |

# Conclusions

Investors accept a lower return in order to hedge against a broad indicator of climate-change related risk.

- A discount for low climate salience risk exists.
- The discount is magnified when climate change salience is high.

#### Climate change salience risk is widespread: it extends beyond narrowly defined stranded assets or high-emitting firms.

- Exposure arises among among firms with all levels of emissions.
- Small firms, growth firms, and firms in countries with (so far) low weather related losses remain relatively unhedged against climate change salience risk.

- Aswani, J., A. Raghunandan, and S. Rajgopal (2022). Are carbon emissions associated with stock returns? *Columbia Business School Research Paper*.
- Bolton, P. and M. Kacperczyk (2021, February). Global pricing of carbon-transition risk. Working Paper 28510, National Bureau of Economic Research.
- Brogger, B. and A. Kronies (2021, April). Skills and sentiment in sustainable investing. Working paper, Copenhagen Business School.
- Choi, D., Z. Gao, and W. Jiang (2020). Attention to global warming. *The Review of Financial Studies* 33(3), 1112–1145.
- Choi, D., Z. Gao, W. Jiang, and H. Zhang (2022). Carbon stock devaluation. *Available at SSRN 3589952*.
- Dagum, E. B. and S. Bianconcini (2016). *Seasonal adjustment methods and real time trend-cycle estimation*. Springer.
- Dell, M., B. F. Jones, and B. A. Olken (2012, July). Temperature shocks and economic growth: Evidence from the last half century. *American Economic Journal: Macroeconomics* 4(3), 66–95.

- Deryugina, T. and S. M. Hsiang (2014). Does the environment still matter? daily temperature and income in the united states. Technical report, National Bureau of Economic Research.
- Engle, R. F., S. Giglio, B. Kelly, H. Lee, and J. Stroebel (2020, February). Hedging Climate Change News. *The Review of Financial Studies 33*(3), 1184–1216.
- Giglio, S., B. T. Kelly, and J. Stroebel (2020, December). Climate Finance. NBER Working Papers 28226, National Bureau of Economic Research, Inc.
- Giglio, S., M. Maggiori, K. Rao, J. Stroebel, and A. Weber (2021). Climate change and long-run discount rates: Evidence from real estate. *The Review of Financial Studies* 34(8), 3527–3571.
- Gorgen, M., A. Jacob, M. Nerlinger, R. Riordan, M. Rohleder, and M. Wilkens (2020). Carbon risk. *Available at SSRN 2930897*.
- Huynh, T. D. and Y. Xia (2021). Climate change news risk and corporate bond returns. *Journal of Financial and Quantitative Analysis* 56(6), 1985–2009.
- Petersen, M. A. (2009). Estimating standard errors in finance

panel data sets: Comparing approaches. The Review of financial studies 22(1), 435–480.

- Santi, C. (2020). Investors' climate sentiment and financial markets. *Available at SSRN 3697581*.
- U.S. Census Bureau (2020, July). X-13arima-seats reference manual. Technical report, Washington, DC.
- Xia, D. and O. Zulaica (2022). The term structure of carbon premia.