Reducing Racial Disparities in Consumer Credit: Evidence from Anonymous Loan Applications

By Poorya Kabir and Tianyue Ruan

Discussion:

Pulak Ghosh- IIMB

summary

Is it possible to Reduce racial disparities in access to Credit?

- Racial disparities have been an ongoing concern; Policymakers all around the world are trying to reduce it in every field.
- This paper studies this in the context of Credit Access
 - Uses an unique experiment where full names are anonymized at the time of application processing
 - Very interesting Fintech Data
 - Many other tests are conducted

Context

- Interesting and very Important topic
- Data from Singapore based Fintech- providing short term unsecured consumer loans-
- Analyze loan offers, origination and performance
- Post loan offers online, customer need to visit the lender in person before the loan origination--- Unique setting
- From Septemeber 2021, firm did not use names to screen applications for online offer, but names are being disclosed on subsequent proceedings.
- Used this as identification to test the effectiveness of anonymizing in reducing racial gap

- Very Rich Data and Setting
 - October 2020 January 2022
 - Detailed application characteristics including derived race- No Credit score
 - Lending decisions are done by Loan officers—no information on loan officers
 - Loan origination terms-amount, maturity, interest rates and processing fee
 - Loan performance for a subset sample

Main findings

- Racial gap is significantly high at 10%
- Disappears in the post treatment period- Economically sizable no
- Decrease in loan origination rate is 8%
- Average delinquency probability is lower for minority pre treatment
- Post treatment delinquency probability are same among Chinese and minority borrowers

Mechanism

- Not related to omitted variable bias!
- Can not distinguish between inaccurate beliefs and taste-based discrimination
- Statistical discrimination can not explain the results
- Potentially not due to in-group preferences

Overall

- Very topical
- Excellent paper
- Great Detail
- Careful analysis

- Data and Institution
 - Can one lender fund multiple loans? How many and how much?
 - Can multiple lender fund one loan- typical P2P fintech?
 - Credit score?
 - No characteristics about lender
 - Only one product?
 - Interest rates fixed for various products, various tenure and various lender?
 - Does Interest rate changes with maturity period?
 - Majority of the data period covers covid

Economics

- Racial disparity reduces drastically. How much money lender loose if this does not happen? Any back of the envelope analysis.
- Are discriminating returns lower?- should care about loan (expected) IRR. Analysis does not pin down the loan IRR
- Possible fix:
 - You know the interest rate for each loan
 - Hence, you can test whether the discriminating loans pay lower (or similar interest)
 - E.g., simply regress interest as LHS

Economics

- Reject loans
- What are the characteristics difference between reject loans/borrower and accept loan/borrower
- Prediction counterfactual on reject loans to figure out how many loans would have been accepted (rejected) if treatment is (not) enforced
- Aggregate effects:
 - For borrowers: Do more (safe/risky) borrower now get credit?
 - For lenders: do lenders invest (more/less) now? Or, just portfolio effect?
- Is there Real financial stakes?

Mechanism

- Taste vs. Statistical: look at different size loans/different stakes
 - If higher stakes, likelihood of taste lower given cost vs. benefit
 - Either higher or lower, if mistake beliefs same b/c think you are doing the right thing
- Time trend? Are results robust to time fixed effects?
- Are delinquencies correlated over time? Drop recent loans
- Statistical Discrimination: Lender adverse selection (Balyuk & Davydenko 2019)
- Taste-based discrimination: Effect on portfolio performance depends on under/over pricing
- Favoritism: In group bias, home bias (Lin & Viswanathan 2015)

- Mechanism: Alternate Interpretation of Statistical Discrimination
 - Suppose that it is easier to interpret/process the loan applications of the in-or dominant group- In this setting all most all lenders are Chinese
 - For example, I am more exposed to people of my in-group
 - Or, because Minority may be disadvantaged and more constrained to pay, I am more exposed to Non-minority
 - So my personal risk assessment of in(-dominant) group applications will have less noise
 - I use different threshold for each group. I am only willing to lend to higher quality borrowers of out- (disadvantaged) group because of the added classification risk
 - If I know I am not good at processing applications, especially out-group, I happily go by online decisions

- Mechanism: Alternate Interpretation of Statistical Discrimination
 - Such a story can generate differences in profit
 - What about heterogeneity results?
 - Suppose that places with more covid incidence have more homophilic networks (or worst opportunities for minority), then those should eb places where its harder to learn?
 - Finally, which type of borrowers can benefit most by anonymizing? (e.g, smaller loan, low ability to screen, low financial literacy, low education)

Ref

Chiu, Wolfe, Yoo (2020),

Do Fintech Lenders Fairly Allocate Loans Among Investors? Quid Pro Quo and Regulatory Scrutiny in Marketplace lending

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3281358

Conclusion

Very topical and Interesting paper

• Should definitely be published and read widely

• All the best!