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What makes labor economically valuable?

In industrialized countries, labor’s value arguably comes from expertise

® Def’'n Expertise: Domain-specific knowledge or competency thatas needed to accomplish a particular goal

Not all expertise is valuable — two conditions needed for specific expertise to have market value

@ Enables a valuable objective

® Data sciences, not (most) card tricks

@ s scarce

® Diamond water paradox

® The ‘Syndrome paradox’
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WHEN EVERYONE IS SPECIAL

=113
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Stranded expertise: London black cab drivers

London's Cabbies Say 'The Knowledge' Is
Better Than Uber And A GPS

OCTOBER 21, 2015 - 1:15 PM ET
HEARD ON ALL THINGS CONSIDERED

@ Leila Fadel

D © © ©

Taxis wait in London in June 2014. By law, the drivers of London's black cabs must memorize all of the city's
streets, a process that takes years of study. The taxi drivers are opposed to Uber and drivers using a GPS, but
the High Court ruled in favor of Uber last week.
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Why was computerization labor-displacing for admin assistants but not for economists?
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From expertise perspective, what makes an innovation ‘good’ or ‘bad’ for labor?

Expertise-complementary innovations

® Automate non-expert tasks
® Tasks that are not specialized but nevertheless complementary become cheaper, less labor-intensive
® Remaining labor-demanding tasks become scarcer, hence more valuable

® Relies on the idea that new expert labor is not elastically supplied
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From expertise perspective, what makes an innovation ‘good’ or ‘bad’ for labor?

Expertise-complementary innovations

® Automate non-expert tasks
® Tasks that are not specialized but nevertheless complementary become cheaper, less labor-intensive
® Remaining labor-demanding tasks become scarcer, hence more valuable

® Relies on the idea that new expert labor is not elastically supplied

® Instantiate new demands for expertise
® Novel human capital required that is not already abundant or very readily acquired
® Knowledge of new tool — Al radiology

® Provision of new good or service — Flight, indoor plumbing, pickleball instruction
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What makes an innovation ‘good’ or ‘bad’ for labor?

Expertise-displacing innovations

® ‘Strand’ previously valuable expertise — making it economically irrelevant (e.g., Waze + London taxi
drivers)

® Crowd workers into elastically supplied, non-expert tasks (Snow Crash scenario)

® Make expertise 'too’ abundant — the Syndrome paradox
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Many of these questions involve some notion of task bundling within jobs

See papers by
® Dessain and Santos, “Adaptive organizations,” JPE 2006

® Oren Danieli, “Revisiting US wage inequality at the bottom 50%" ReStud forthcoming
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Why a ‘Task Model'?
Linking Expertise, Tasks, and Technologies



Declining real wages among non-college workers after 1980 — Despite falling relative supply

Cummulative wage growth
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Occupational polarization, 1970 — 2016: % change in employment by occupational category

Changes in Occupational Employment Shares, 1970-2016
Working Age Adults (Percent Change Over Decade)
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Changes in employment shares 1970-2016 by broad category: Non-college v. college workers

Changes in Occupational Employment Shares among Working Age Adults, 1980-2016
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Occupational polarization in sixteen EU countries, 1993-2010
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Occupational polarization in 23 OECD countries, 1995-2015

Figure 3.A1.1. Job polarisation by country
Percentage point change in share of total employment, 1995 to 2015% bc,d
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Occupational polarization in 23 OECD countries: Table notes

Note: High-skill occupations include jobs classified under the ISCO-88 major groups 1, 2, and 3. That is, legislators, senior officials, and

managers (group 1), professionals (group 2), and technicians and associate professionals (group 3). Middle=skill'occtipations inclide jobs
—

1 m on A agncultural ﬁshery and mmmg
industries were not included in the analys1s those occupatlons within 1SCO-88 group 6 (sk111 agncultural and fisheries workers) were
likewise excluded. The above chart includes 15 of the 18 listed industries. The excluded industries are the following: Agriculture, hunting,
forestry and fishing (1), Mining and quarrying (2), and Community, social and personal services (18). As a result of unavailable data for 1995,
a different starting year was used for some countries. Norway, Slovenia, and Hungary used 1996; Finland, Sweden and the Czech Republic
used 1997, while the Slovak Republic used 1998. The OECD average is a simple unweighted average of the selected OECD countries. Data for
Japan over the period examined is reported under four different industry classifications and highly aggregate occupation groups.

OECD 2017
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Labor’s falling share of national income

Figure 2

Labor Share around the World
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Labor’s falling share of national income

Panel I. France Panel J. Italy Panel K. Mexico Panel L. Korea
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The Task Model — Key Ingredients



Task model — A model of skills, tasks and technologies

@ Explicit distinction between skills and tasks

® Tasks—Unit of work activity that produces output

® Skill—Worker's expertise in performing various tasks
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® Tasks—Unit of work activity that produces output

® Skill—Worker's expertise in performing various tasks

® Allow for comparative advantage among workers and machines in performing tasks

® Assignment of workers to tasks is endogenous (Roy, 1951)

© Allow for multiple sources of competing task ‘supplies’
® Workers of different skill levels
® Automation: Tasks subsumed by machines, AKA extensive margin technological A
® Capital deepening: Intensive margin technological A

® Trade in tasks also feasible (though won't develop that here)
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Task model — A model of skills, tasks and technologies

@ Explicit distinction between skills and tasks

® Tasks—Unit of work activity that produces output

® Skill—Worker's expertise in performing various tasks

® Allow for comparative advantage among workers and machines in performing tasks

® Assignment of workers to tasks is endogenous (Roy, 1951)

© Allow for multiple sources of competing task ‘supplies’
® Workers of different skill levels
® Automation: Tasks subsumed by machines, AKA extensive margin technological A
® Capital deepening: Intensive margin technological A
® Trade in tasks also feasible (though won't develop that here)
@ Fluid interplay between skills, tasks and technologies

® Technological advances can: displace workers from tasks; increase productivity; augment or reduce labor
demand; affect labor’s share of output

David Autor, MIT & NBER
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Task model — Origins

Framework builds on

® Dornbusch, Fischer, Samuelson (1977)

® Kremer (1993)

® Acemoglu and Zilibotti (2001)

® Autor, Levy, Murnane (2003)

® Grossman, Rossi-Hansberg (2008)

® Acemoglu and Autor (2011)

® Acemoglu and Restrepo (2016, 2017, 2018 — 2024)

® Autor, Chin, Salomons, Seegmiller (forthcoming)
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Task model: The key concepts

® Multiple forms of technological change — with distinct effects

@ Capital deepening (traditional)
@® Automation
© New task creation

O ‘Leveling up’ (augmentation)

David Autor, MIT & NBER Automation, New Work, & Human Expertise| 23 May 2024 23 /97



Task model: The key concepts

® Multiple forms of technological change — with distinct effects

@ Capital deepening (traditional)
@® Automation
© New task creation

O ‘Leveling up’ (augmentation)
® Key empirical manifestations

® Wages
® Labor share
© Labor tasks made obsolete (automation)

O Labor tasks newly created (new work)
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The Aggregate Production Function —
Tasks into Output



Tasks are complements

® Production requires the completion of a range of tasks

® Need not assume that task space is fixed/static

® Creation of new tasks will ultimately be important

©® Tasks are complements

® Automating a subset does not make the remainder redundant

® Extreme example: O-Ring Production Function (Kremer '93)

David Autor, MIT & NBER Automation, New Work, & Human Expertise| 23 May 2024
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Aggregate production function

Aggregate output Y

® Produced by combining the services, y(x), of a unit measure of tasks x € [N — 1, N]:

N
InY = / Iny(x)dx,
N

-1

® Tasks run between N — 1 and N allows for changes in range of tasks

® Notice that this is a Cobb-Douglas structure with identical factor shares for services of each task
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The production of individual tasks

Tasks produced by human labor, /(x), or by machines, m(x)
® Tasks above / are not technologically automated and must be produced by labor:
) e ()Ux) Fym(x)m(x)  if x e [N—1,1]
y(x) = { A (x)0(x) if x € (1, N].
® ~;(x) =productivity of labor in task x, increasing in x
® ~um(x) =productivity of machines in automated tasks
® Comparative advantage: 7.(x)/ym(x) is increasing in x

® [ workers and K units of capital (machines) supplied inelastically

David Autor, MIT & NBER Automation, New Work, & Human Expertise| 23 May 2024
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Restrictions on comparative advantage of labor versus capital

Simplifying assumption

® where R is the capital rental rate

® Implies that tasks below / are produced with machines/offshoring
Assumption says that new tasks (rising V) raise output

® Wage ratio not so high that new task creation lowers output

® Not so low so that technologically automated tasks are still performed by labor

David Autor, MIT & NBER Automation, New Work, & Human Expertise| 23 May 2024
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Aggregate output and total factor productivity

Aggregate output takes the form

I—N-+1 N—1
ol )
I—N+1 N—1
I N
© =exp (/ In ym(x)dx +/ In q/L(x)dx)
N—1 I

® Notice that this production function is pure Cobb-Douglas with non-constant shares

® © = Solow residual: All technological A generates Hicks-neutral TFP gains, raising ©

David Autor, MIT & NBER Automation, New Work, & Human Expertise| 23 May 2024

29 /97



Labor demand

The demand for labor is given by
W=(N-1)

~[<

® This expression is equal to labor share of total output, (N — /), times output Y divided by number of
workers L

® The share of labor in national income is given by

WL
SLZTZN_I
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Capital and Labor Augmenting Technical Change —
The Traditional Mechanisms



Capital augmenting technological A: A canonical mechanism

Machines get better at what they do

® Consider an increase in the productivity of machines by dInym(x) = dInyy > 0 for x < I, with no
change in the extensive margin of automation, /

® \Wage impact is
dinW=dInY/L=(—N+1)dInyy >0
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Capital augmenting technological A: A canonical mechanism

Machines get better at what they do

® Consider an increase in the productivity of machines by dInym(x) = dInyy > 0 for x < I, with no
change in the extensive margin of automation, /

® \Wage impact is
dinW=dInY/L=(—N+1)dInyy >0
This is a pure capital-labor complementarity
® Electric lighting increased operating hours, work precision, and safety w/o changing task allocation
® Improvements in tractors make farm workers more efficient (without changing task allocation?)

® Better auto-assembly robots improve quality of welds (robots have been doing the welding for years)
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Labor augmenting technological A: A canonical mechanism

An increase in labor productivity, d Inv.(x) > 0, with no A in extensive automation margin, /

® \Wage impact is
dinW=dinY/L=(N+1—NdInvy. >0

® This is a a pure factor-augmenting technological change, as in the Katz-Murphy/Tinbergen model

® This could come from rising education or better management practices
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Automation — Labor-Displacing Technical Change
A Non-Traditional Mechanism



Automation — Labor-displacing technical change

Automation or trade/offshoring (an increase in /) generates a displacement effect

® From prior equation

dnW _ din(N—1) _ din(¥/L)

dl dl dl
———— ———
Displacement Productivity

effect < 0 effect > 0

® The displacement effect implies that wages—marginal product of labor—can decline, despite the fact
that output per worker rises

® Wages necessarily grow by less than output per worker — labor share falls

dSL
BL_ _1<0
di <
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Displacement also has a productivity effect

By reducing cost of producing a subset of tasks, automation raises productivity in remaining tasks

“a = G) i) >0

® Note that In[w/v. (I)] — In[R/vm (1)] is the cost difference btwn labor and capital/offshoring in the
marginal task /

® Formally

David Autor, MIT & NBER Automation, New Work, & Human Expertise| 23 May 2024
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Displacement also has a productivity effect

The overall impact on labor demand can be written as

dInW: 1 _Hn(i)_n(R)
dl N—1 (1) m(/)
N——
Displacement Productivity
effect < 0 effect > 0

Net effect on labor demand (seen in the wage) is ambiguous

® Case 1: Productivity effect dominates displacement effect: vy (/)/R >> ~.(1)/W.
Productivity jump big enough to overcome displacement effect

® Case 1: Displacement effect dominates productivity effect: yu(/)/R ~ ~v.(1)/W.
New technologies/trade are so-so

David Autor, MIT & NBER Automation, New Work, & Human Expertise| 23 May 2024
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Automation visualized in the task model
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Automation visualized in the task model
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Automation visualized in the task model
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Automation visualized in the task model
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Labor-Reinstating Technical Change: New Task Creation
A Non-Traditional Mechanism



New task creation

Creation of new, labor-using tasks may be counterbalancing force

@ In 19th-century Britain, rapid expansion of new industries and jobs—engineers, machinists, repairmen,
and managers (Landes, 1969, Chandler, 1977, and Mokyr, 1990)

® In early 20th-century America, agricultural mechanization coincided with a large increase in employment
in new industry and factory jobs (Olmstead and Rhode, 2001, Rasmussen, 1982)

® From 1940 to 2018, new tasks and job titles explain large fraction of all employment growth (Autor,
Chin, Salomons, Seegmiller, 2022)

@ In general, new tasks have in the last four decades tended to be more skill-intensive—which is both good
and bad news, but this was not always so
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New tasks and the demand for labor

® An increase in N—the creation of new tasks—raises productivity

= <w(/\,/?* 1)) o <T%> -0

which is positive from Assumption

® Besides its effect on productivity, new tasks also increase labor demand and equilibrium wages by creating
a reinstatement effect:

ekl (ﬁ) - (%‘?7\/)) " &l—ﬂf

Productivity Reinstatement
effect > 0 effect > 0
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New tasks and automation

Creation of new tasks generates additional labor demand, raise share of labor in national income

o= [o(fg) - ]
# (i)~ Gt

1
+ gy (dN —dI),

® Total wage effect equals

and also for the labor share, we get
ds; = dN —dI.

® Labor share stable and wages increase 1:1 w/productivity iff new tasks, N, introduced at same rate as
automation, /
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New task creation visualized in the task model
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New task creation visualized in the task model
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New task creation visualized in the task model
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Compressing Productivity Differentials (‘Leveling Up') —

A Non-Traditional Mechanism



Leveling up

® Many tools are a lever for the application of expertise

® Instead of machines replacing labor tasks, they may enable workers to accomplish new tasks, or more
accomplish them more effectively

® But tools require their own expertise
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‘Leveling up’ visualized in the task model
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‘Leveling up’ visualized in the task model
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‘Leveling up’ visualized in the task model
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Task Model — Summing Up



Task model — What is it good for?

® A simple model for understanding different mechanisms of technical change
® Capital-labor complementarity
® Automation: capital-labor substitution, expertise elimination

® New task creation: new expertise requirements/opportunities
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Task model — What is it good for?

® A simple model for understanding different mechanisms of technical change

® Capital-labor complementarity
® Automation: capital-labor substitution, expertise elimination

® New task creation: new expertise requirements/opportunities

® A framework for analyzing how GPTs and specific technologies shape expertise demands

® The Industrial Revolution, the Information Age, the Al Era

® A basis for empirical exploration

® Reallocation of labor/skills across tasks
® Evolution of wages and productivity

® Shifts in labor's share of output

@ Of course, much is missing...
® Task bundling and within-job complementarities
® Organizational design

® Role for human agency
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Some Recent Work on New Work —
Autor, Chin, Salomons, Seegmiller 24



Objectives: Analyzing new work

@® What is the content of new work? Measure over eight decades, 1940-2018

® Where does new work come from? Explore its technological and economic origins

® What does new work do? Analyze its relationship to labor demand
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Conceptual model

GOODS j € S, U

Ys Yy

u(Yy,Ys) = YV P with B € (0,1)
a

Ny o-1 o-1
p=a( [ %0
Nj—1

l |

) . ) N\
TASKS y; (i), i € {N; — 1,N;} _ Bjq; (i) (k,-(l) + Vj(l)n,-(l)) ifi <[
1 yj(L) - 1-n;
' B, ()" (y;(DOmy () ifi >
withn; € (0,1)
' 11 | (1) = [OYRWDT Y with1> ay > as > 0
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Conceptual model

GOODS j € S, 1 u(Yy,Ys) = YAV P with g e (0,1)
a

Ys Yy Nj os1\o 1
peal [ %©F

o LNt
TASKS ¥;(1),i € (N; — 1,N;} Bia, ()" (ly () +y;(Dmy D) ifi <
[ |

1-1;
1 By, (0" (y;(my(D) ifi > I
withn; € (0,1)

' 11 | (1) = LOThOT Y with1> ay > a5 > 0
CAPITAL INTER- LABOR X
kl- MEDIATE n; Inelastic sup‘ply of k
! and h mobile between sectors
/I\ __________________________________________________
Elastic supply of E; mobile between sectors
Entrepreneurs E produce intermediates which raise I; or N;
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Main testable hypotheses (informally)

® Augmentation creates new tasks; Automation does not

® Augmentation complements labor's outputs, demands specialization, new expertise

® Conversely, automation substitutes labor’s inputs, doesn't generate labor-using tasks
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Main testable hypotheses (informally)

® Augmentation creates new tasks; Automation does not
® Augmentation complements labor's outputs, demands specialization, new expertise
® Conversely, automation substitutes labor’s inputs, doesn't generate labor-using tasks
® New task creation responds elastically to demand shocks

® Outward shifts in occupational demand accelerate emergence of new tasks

® Inward shifts in occupational demand slow emergence of new tasks
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Main testable hypotheses (informally)

® Augmentation creates new tasks; Automation does not
® Augmentation complements labor's outputs, demands specialization, new expertise
® Conversely, automation substitutes labor’s inputs, doesn't generate labor-using tasks
® New task creation responds elastically to demand shocks

® Outward shifts in occupational demand accelerate emergence of new tasks

® Inward shifts in occupational demand slow emergence of new tasks

©® Augmentation & automation occur in same occs—with opposing employment effects

® New task creation — Increases employment and wagebill

® Task automation — Decreases employment and wagebill
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Measuring New Work



Identify new titles using Census coding volumes, 1940-2018

New Titles

=
=
=

Decennial Census Alphabetical
Index (CA)

¢

®

New Title Measure
(By Occ)

David Autor, MIT & NBER

Automation Patents

@
/‘ E PN
Dictionary of Occupational Titles
(DOT)

‘

Augmentation Patents
=
= —
=

Decennial Census Alphabetical Patent
Index (CAI) Corpus

Augmentation Exposure Measure Automation Exposure Measure
(By Ind X Occ) (By Occ)

l —

Census/ACS

Employment and Wages
(By Ind X Occ)

Automation, New Work, & Human Expertise| 23 May 2024

6297



Census Alphabetical Index (CAIO) of Occupations and Industries 1940-2018

® Detailed lists of occupation titles (15K-30K) and
industry titles (10K—20K) in each decade

CLASSIC REPRINT SERIES

ALPHABETICAL INDEX
0oF OCCUPATIONS
BY INDUSTRIES AND
SociaL-EcoNomic
Grours, 1937

® Each title classified to a Census occupation or
Census industry

® Intended as coding aide for occupation and
industry write-ins

® Comprehensive list of specific industries and
occupations [...] continuously updated through
review of census and survey questionnaires’

ap

Alba 4. Edwards

® We use CAIO volumes 1940, 1950, 1960, 1970,
1980, 1990, 2000, 2010, 2018
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Example of Index of Occupation (CAIO) entries, 1990

208 HEALTH TECHNOLOGISTS AND E K, kg. technician— (840)
TECHNICIANS, N.E.C.

Ambulance driver, para-medic
Animal technician
Artificial-limb fitter—(372)

Assistant
Anesthesi
Anesthetic
Laboratory, n. s.—Medical school 850
Medical - (812)
Occupational

Ophthalmic

Optomeﬁc
tics

Pharmacist's

Physical therapist

Physical mev
Podiatrist’s — 830
Pre

Audiometrist

Biochemistry technician
Biological technician, health
Brace maker—2372,831,840

Brain-wave technician— (840)
C.M.T. (certified medical technician)
Cardlogmph opemov (840)
Cardmascullr lechnoiowl
Certified medical technician

Child-health associate—831,832,840
g::sed circuit screen watcher—831

s technician
E.e.g. technician— (840)
E.e.g. technologist

David Autor, MIT & NBER

Electrocavd;ogmph operator—. (840)

Electroencephalograph (achmc-ln— (340)

Emergency medical technician
Encephalographer— (831
Environmental health sanitarian
Environmental-health technician
Environmental-health technologist

Food-service technician—831,832,840
Health sanitarian
Hospital technician—831
Industrial hygienist

Inspector

Sanitarian—840

Laboratory technician, veterinary
loryiocmieun. n. 8.—030812

ubovulory technician, n. s.— Medical

Labm-tory tester—030,812
Medical

Laboratory worker, n. s.—Medical school 850

Medical-emergency technician

Medical research (less than bachelor's degree)
Medical service technician

Medtronics technician

0.B. technician—831
Occupational therapy technician

Orthoptic technician
Orthoptist

Orthotist

Otometric technician
Oxygen-equipment technician
Oxygen-therapy technician
Para-medic, emergency treatment

Para-medic, n. s.—401,910

Pediatric associate— 831,832,840
Perfusionist

Pharmacy labomofy technician—812- 840
Pharmacy techi

Physician's aide— 831,832,840

Prosthe!

Public-health technician
Public-health technologist
Radiological-health specialist

Radiological-health technician
Rehabilitation technician—831
Respiratory therapy technician
Restoration officer—831

Restoration technician—831,832,840
Sanitarian—470,471,831,840

Scrub technician—831

Supervisor
Cenlml supply—831
tral supply technician—831
leo'unxy Medical school 850

Surgical-brace maker
Surgical technician
Surgical technologist

Teachers, exc. elementary & secondary
Prosthetic aides—831,832,840

Technician, health type n.

Technician, n. s.—Medical nchool 850
Watch-closed-circuit screen—831
Water-poliution specialist

Examples of job titles
® Artificial-limb fitter
® Brain-wave technician
® Extracorporeal-circulation
specialist
® Ocular-care technician
® Surgical-brace maker

~30,000 titles per edition

Each title is classified
to a Census occupation

Identify new titles by
comparing successive
CAIO editions

23 May 2024
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What is new work? Example job titles captured by U.S. Census, 1940-2018

New job titles added to Census Index of Occupations

1940 | Automatic welding machine operator Acrobatic dancer

1950 | Airplane designer Tattooer

1960 | Textile chemist Pageants director

1970 | Engineer computer application Mental-health counselor
1980 | Controller, remotely-piloted vehicle Hypnotherapist

1990 | Circuit layout designer Conference planner
2000 | Artificial intelligence specialist Amusement park worker
2010 | Technician, wind turbine Sommelier

2018 | Cybersecurity analyst Drama therapist
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1930-1940 new vs. old titles

1940-1950 new vs. old titles

1950-1960 new vs. old titles

Google Ngram Viewer data: Census captures new titles as they popularize

1960-1970 new vs. old titles

- | - | - | - I
| fil\
@ 4 @ 4 | @ 4 \ @ 4 |
\ \ \ [1
@ [ @ [ @ \ @A /1
[ [ \ /1
< | < | < | <4 /" |
[ \ \ /
o~ 4 o~ o~ 4 o~ 4
| \ Y [ ' [ | o
[ \ \ NS [
° | ° A | © A | o L
1900 1950 2000 1900 1950 2000 1900 1950 2000 1900 1950 2000

1970-1980 new vs. old titles

Relative frequency by year

1980-1990 new vs. old titles

1990-2000 new vs. old titles

2000-2018 new vs. old titles

— — o | — 4 -
| |
@ | @ o @
| |
© 4 | 4 | @4 @
| |
<4 | ~ A | A <4
| |
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Frequency of new vs. old titles in published texts, 1900 - 2018
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Quantifying new work

¢ Quantifying the flow of new titles (‘new work’)
@ Flow of newtitles;: by Census occupation during a decade (e.g., 1940 — 1950)

. titles; . . L . .
@® or new title share % equals the flow of new titles over stock of titles within Census occupation during
>jt

a decade
® We do not use cardinal properties of measure in primary analysis

® Studying predictors of new title flows by occupation X decade

® When analyzing employment/wage outcomes, treat new titles as an intermediating variable, not a cause
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Majority of jobs done in 2018 not yet ‘invented’ as of 1940
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I Employment in job titles that existed in 1940
I Employment in job titles that have been added since 1940
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New work polarizes relative to pre-existing work between 1980 and 2018
Occupational locus of new vs. pre-existing work by education and era

High School or Below Education Some College or Above Education

Percentage points
- 0 5 10
L L |

o
o
S
o
3 |
5 =3 = 2 3 o & ! = = 5 2 o 9 &
R O & o & o S TS
N & $ & S & > @7 &F & ¢ P &
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Measuring Occupations’ Exposure to

Automation and Augmentation Innovations



Using patent texts to measure augmenting and automating innovations

Decennial Census Alphabetical
Index (CAI)

'
=
@

New Title Measure
(By Occ)

David Autor, MIT & NBER

=
=88 fa

Decennial Census Alphabetical Patent Dictionary of Occupational Titles
(DOT)

Index (CAl) Corpus

Innovation Exposure Measure Automation Exposure Measure
(By Ind X Occ) (By Occ)

Census/ACS

Employment and Wages
(By Ind X Occ)
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Health Technologists & Technicians: Outputs vs. Inputs (automation)

Census Index of Occupations, 1990 Dictionary of Occupational Titles, 1939,
208 HEALTH TECHNOLOGISTS AND £k g. technician— (840
TECHNICIANS, NEC. & ‘“;:j;h‘m’w iy Gpopts ocicen 'MEDICAL TECHNICIAN; hospital technican; Iabora-
ahver ) Em o i 640 Orthotist tory assistant, medical; laboratory technician, medical
At s 372 Emergoncy modcal tchrician Oeygen sampmen tochnican (medical ser.) 0-50.01. Performs medical duties in a hos-
Encephalographer — (831 h technician
Assistant Environmental health saritarian Para-medic, emergency treatment pital or medical laboratory making laboratory tests of
Nosshole' ' esectca achodt 850 S o s B s 10 a0 ‘urine, blood, animal parasites, infections, and animal
S mili] me‘“‘“‘”"“”“’ Paarany aboratory technician—812- 840 inoculations; makes blood counts and smears; gives bio-
al technician—831 Phamacy technician ) " . _
Gpnhame industrial hygenit Physician's ado—851852.84 logical skin tests; prepares vaccines; types blood for trans
mmmmwn " niaran—840 rusichout ochncan, fusions. May engage in research.
s
Laboratory technician, Radiological-health spacialist
Physical therapist Laboratory technician, n. s.—030812
cal Laboratory technician, n. a l-health technician
Podiatrist's—830 850 —
Proshelcs e Respraon hrepy techcan 078.361-014 MEDICAL TECHNOLOGIST (medical ser.)
Speech um-wym n.a—boose P o 31,632,040 Performs chemical, microscopic, serologic, hematologic, immunohe-
Speach therapy 'mmnﬂn";amw matologic, parasitic, and bacteriologic tests to provide data for use in
A trist Orthopedic: treatment and diagnosis of d : Receives speci s for laboratory,
Biochemistry techi . . - . -
technician, health Medical-emergency technician m 831 or obtains such body materials as urine, blood, pus, and tissue directly
i -0 Medical research (less than bachelor's degreo) Y technician—831 from paticnt, and makes quantitative and qualitative chemical analyses.
C.M. technician) 5“5"""""'»““_"“, Laboratory— school 850 Cultivates, isolates, and identifies pathogenic bacteria, parasites, and
Gardograph opersior— (840) Occupational technician S"Ws. 'g:g'wm:n“" other micro-organisms. Cuts, stains, and mounts tissue sections for
m. o Ocular-care technician Surgical technologist study by PATHOLOGIST (medical ser.). Performs blood tests for trans-
WWW'""?M Soular-care technologiet o1 Teachers, exc. W‘ secondary fusions, studies morphology of blood. Groups or types blood and cross-
) Qehthalmio techricien Prosthetic aides—831 matches that of donor and recipient to ascertain compatibility. Engages
i petgm A o {echnologet Technician, health in medical research to further control and cure discasc.
‘technician Optometric Technician, n. s.— oaul umooi 850
E.e.g. technician— (840) Orthopedic-brace Watch-cl
E.e.g. technologist Orthopedic Water-pollution wum
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Linking Augmentation & Automation technologies to occupations

[1] 2] <]

Strip punctuation, Extract vectors of word Generate TF-IDF

Calculate cosine

[+] [¢]

Retain 15% most

remove stop words, embeddings weighted average similarity similar
retain nouns and verbs, (Pennington et al. 2014)
lemmatization
= M .
= — — = - -
Cleaned CAI CAl word vectors CAl document Normalized similarity Summed matches for
corpus vectors score matrix occ/ind x patent pairs
picS ] /
- - i
Cleaned patent Patent word vectors Patent document
corpus vectors
o P
. &
Cleaned DOT DOT word vectors DOT document Normalized similarity Summed matches for

corpus vectors

score matrix occ x patent pairs
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Automation and augmentation co-occur in many occupations, 1940-1980

100
1

@ Mechanical engineers

Office machineé operators ©

80
1

©@Buyers and dept heads, store

© Civil and aeronautical engineers

60
1

Augmentation Patents Exposure (percentiles)

©Designers
Compositors and typesetters©
s @ Bookkeepers o Surveyors
< OTelegraph operators
O Professors and instructors
8 4 Conductors, railroad, bus & street railway © 0 Elevator operators
O Clergymen

o

T T T T T T

0 20 40 60 80 100

Automation Patents Exposure (percentiles)
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Automation and augmentation co-occur in many occupations, 1980-2018

_o

0 © ) . Assemblers of electrical equipment©_-
o Industrial engineers© &
=

g Power plant operators© _z

O .

b 8 4 O Operations and systems researchers and analysts

o

[J]

—_

=

8 8 i © Business and promotion agents

% O.Management support occupations

()

9]

+ J .

So OFinancial managers OTypists

o<

E O Athletes, sports instructors, and officials

p >

i) ©Bookbinders

Bo

© -

2N Cabinetmakers and bench carpeters©

5 Radiologic technologlsts and technicians
IS

g’ O Clergy and religious workers

<o 7 7

0 20 40 60 80 100
Automation Patents Exposure (percentiles)
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Where Does New Work Come From?



Do augmentation and automation have distinct relationships with new titles?

The hypothesis
® New titles emerge in augmentation-exposed occupations

* New titles do not (differentially) emerge in automation-exposed occupations

Testing the hypothesis
® Qutcome variable: Emergence rate of new titles in an occupation in each decade, 1940 — 2018
® Explanatory variables: Flows of augmentation & automation patents linked to that occupation in each

decade, 1940 — 2018

Prediction

® The flow of augmentation patents predicts new title emergence in each decade

® the flow of automation patents does not
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Do augmentation and automation have distinct relationships with new titles?

Relating augmentation and automation to new occupation titles, 1940-2018
In (E [newtitles;]) = f1AugX;, + B2AutX;e + &% + Dy (+Dye)

® newtitles;: Occupational new title count

AugX.: Occupational exposure to augmentation, log patent count
® AutXj;: Occupational exposure to automation, log patent count

® Controls: Occupational employment shares, and fixed effects, where J indexes 12 broad occupation
groups
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New titles emerge in augmentation-exposed occupations

Dependent Variable: Occupational New Title Count, 1940-2018

Augmentation Exposure

(1)

(2) ®3) (4)

(5)

17.81%**

21.46%** 16.85*** 21.02%**
(3.52) (3.74) (3.96) (3.54)
Automation Exposure 12.75%* 1.89 2.35
(3.93) (4.52) (4.07)
N 1,535 1,535 1,535 1,535 1,535
Occ Emp Shares X X X X X
Time FE X X X
Broad Occ x Time FE X X

Negative binomial models, coefficients multiplied by 100. Twelve broad occupations are defined consistently across all decades.
occupation X 40-year period in parentheses. Observations weighted by start-of-period occupational employment shares. Augmentation and automation exposure

measures correspond to the log of the weighted counts of matched patents. p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.

David Autor, MIT & NBER
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Blue Collar

Agriculture and Mining

Professional Information

Managers and Executives

Personal Services

Health Services

New job titles emerge in occupations experiencing technological augmentation
NeWtitIeSjt = ﬂlAngjt G ﬂ2 (EJt/ZJEJt) T Dt T Ejt

Commercial Services

Retail Sales minus

g4 g . Financial and Advertising
= | N N g
= h 7 o h g
=] o o o] R
o - - b 1
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[J) T % w0 a1 o 1obo 0000k T % a0 1 o 1o 0000k T h e 1wk o 1ok 10000k T % e ; abk wex wovoc g0
=
= Construction and Mechanics . Professionals plus Personal Services Technicians, Fire, and Police
; g | Financial and Advertising Sales 8 8]
v g =] g4 g |
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V] g £ 1 B
5 - s | / < s |
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1940-1980 1980-2018
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It's Not Only About Technology—

Demand shifts, More work, and New work



Do occupational demand shifts spur/retard new job type creation?

Relating new title emergence in consistent occupation cells to occupational exposure to changes in

industry demands, 1980/90-2018
InE [newtitles;]) = ﬂlDemandekt + D: +~Z;

® newtitles;: Occupational new title count
° k _ Ejt—1 k
DemandXj; = >, £, X Ademandj;
T
E”_‘:*ll: share of occupation j's employment in industry i at start of decade (t — 1)
it
b Ademandf;' industry i's predicted change in demand due to:
® A industry imports from China to developed countries other than the US; or

® A pop age structure X age-specific commodity demands
® Z;: Controls, including occupational employment shares, manufacturing employment shares, and
exposure to augmentation.

23 May 2024 82/97
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Occupational exposure to China-U.S. trade shock: It’s not just production occs

Production
Construction
Transportation
Clerical & Admin
Managers
Technicians
Sales
Professionals
Cleaning & protective svcs
Farm & mining
Personal svcs

Health svcs

David Autor, MIT & NBER

Power plant operators

e o
Concrete and cement workers

® @ L

Bus drivers

Insurance adjusters, examiners, and investigators

4

Managers of medicine and health occupations

®.

© [ ]
Sheriffs, bailiffs, correctional institution officers

[ ]
Retail salespersons and sales clerks

L 2 00 @0 D 9 ©ome @
Primary school teachers

[ ]
Crossing guards

o .
Farmers (owners and tenants)

¢ 0 ae @® @
Barbers Personal service occupations, n.e.c

(3¢ J
ng machine operators

) @D
Textile sewi
Industrial machinery repairers
: <
Machine feeders and offbearers
eo@o ®
Shipping and receiving clerks
@ *
Purchasing managers, agents, and buyers, n.e.c
¥ ¢
Programmers of numerically controlled machine too
<
Salespersons, n.e.c.

© <&
Electrical engineers

Janitors

Explosives workers

()
T T T T T T
0 20 40 60 80 100
Occupational exposure percentile, 1990-2018
@ Mean exposure percentile within broad occupation group
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Less new title creation in occupations exposed to import competition

Dependent Variable: Occupational New Title Count

Years 2000 & 2018 Years 1980 & 1990 (Placebo Test)

(1) (2 ®3) (4) (5) (6) (7 (8)
Import Exposure —15.44%* —12.13* —17.49%%% 17 73%¥* 3.95 11.77 —2.99 —1.76

(5.23) (5.53) (5.13) (5.17) (20.40) (20.47) (13.24) (12.53)
Augmentation Exposure 7.94+ 9.38%* 8.32%* 19.57%** 20.00%** 20.60%**

(4.60) (3.00) (2.91) (3.15) (1.77) (1.92)

N 610 610 610 610 588 588 588 588
Time FE X X X X X X X X
Occ Emp Shares X X X X X X X X
Ind Exposure Control X X X X X X X X
Broad Occ FE X X X X X X
A Occ Emp Shares X X

Negative binomial models, coefficients multiplied by 100. Standard errors clustered by occupation in parentheses. Observations weighted by start-of-period occupational employment shares.
Augmentation and automation exposure measures correspond to the log of the weighted counts of matched patents. *p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.
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What Does New Work Do?



Correlation: Where new titles emerge 1940-1980, employment grows

Decadalized A Log Occupational Employment

1.2+

1.0+

0.8

0.6

0.4+

0.2

0.0

-0.2+

-0.4

-0.6

Office machine operators

Stenographers, typists, and secretaries

Electricians .
Mechanics and repa
Bookkeepers
Telephone operators Credit
Machinists erative and kindred workers (nec)

Mine operatives and la Dressmakers and seamstresses, except factory; Milliners

operators Switchmen, railroad Farmers (owners and tenants)

Telegraph operators

50

100 250 500 1000 2000
New Title Count, 1940 - 1980
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Correlation equally strong in 1980-2018, driven by different occupations I,',O

Decadalized A Log Occupational Employment

0.8

0.6

0.4+

0.2

0.0+

-0.21

-0.4

-0.6 1

-0.8+

Computer software developers
Vocational and educational counselors
Stock and inventory clerks Registered nur

Laborers, freight, stock, and material handlers, n.e.c. .
Hairdr

nd cosmetologists

Secretaries and stenographers
@ Bank tellers

Machine feeders and offbearers

2 5 10 25 50 100 250 500 1000
New Title Count, 1980 - 2018
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Does augmentation expand employment—and does automation erode it?

The hypothesis

® Occupations exposed to augmentation technologies see rising employment

® Occupations exposed to automation technologies see falling employment

Testing the hypothesis
® Qutcome variable: Growth in occupation's employment, 1940-1980 & 1980-2018

® Explanatory variable 1: Flow of augmentation patents linked to occupation

® Explanatory variable 2: Flow of automation patents linked to occupation

Prediction
® Occupations that are augmented grow; those that are automated contract

® A strenuous test: Most occupations are exposed to both simultaneously

David Autor, MIT & NBER Automation, New Work, & Human Expertise| 23 May 2024
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Augmentation vs. automation: Opposite impacts on employment growth?

Predict employment growth within 3-digit ind-occ cells, 1940-1980 & 1980-2018

AE,‘j = ﬁlAngij + ﬂQAuth + D; (+DJ) + €jj

AEj: Log employment change by consistent Census occupation j and industry /, long differences over
1940-1980 and 1980-2018

AugX,: Augmentation exposure
® AutX;: Automation exposure

® Controls: Fixed effects, where J indexes 12 broad occupation groups.

Builds on Kogan et al '19, Webb '20, but with key addition: Augmentation
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1940-2018 (OLS & 1V): Emp grows with augmentation, shrinks with automation

Dependent Variable: Decadalized Log Employment Change in Occ-Ind Cells, Stacked Lonngifference"

(1) 2 ®3) (4) (5) (6)
OLS
Augmentation Exposure 0.82%** 1.18%** 1.51%** 1.36%**
(0.21) (0.21) (0.21) (0.22)
Automation Exposure —1.82%** —0.61 —2.27%** —1.00*
(0.27) (0.40) (0.27) (0.40)
R? 0.52 0.57 0.53 0.56 0.53 0.57
25LS
Augmentation Exposure 2.73%* 2.78** 4.34%%% 3.60%**
(0.92) (0.94) (0.93) (0.96)
Automation Exposure —3.24%%* —3.94%%* —4.02%** —4.21%**
(0.63) (0.91) (0.62) (0.93)
F-stat (Aug) 259.30 262.57 127.90 150.59
F-stat (Aut) 327.80 292.63 202.73 145.03
Ind x Time FE X X X X X X
Broad Occ x Time FE X X X

N = 33,900 changes in employment and wagebill in consistently defined Census occupations over 1940-1980 and 1980-2018. Dependent variable is decadalized and multiplied by 100 so that
growth rates are expressed in per-decade percentage points. *p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.
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Employment growth in industry-occupation cells, 1940-1980

1940 - 1980 : AE; = 1.85 AugX; (0.39) - 1.49 AutomX; (0.40) + vy + ¢;
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Employment growth in industry-occupation cells, 1980-2018

1980 - 2018

1980 - 2018 : AE; = 1.29 AugX; (0.22) - 3.88 AutomX; (0.34) + vy +¢;
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1940-2018 (OLS & 1V): Impacts both inside & outside of manufacturing

100 x Decadalized 100 x Decadalized
ALn(Employment) ALn(Adjusted Wagebill)
Non-Manuf Manuf Non-Manuf Manuf
(1) 2 ©) (4)
OLS
Augmentation Exposure 1.68%** 1.16%** 1.74%%* 1.11%%*
(0.25) (0.32) (0.29) (0.32)
Automation Exposure —2.65%** —1.01** —2.64%** —1.32%**
(0.33) (0.37) (0.35) (0.37)
R? 0.52 0.55 0.51 0.52
25LS
Augmentation Exposure 4.04%** 4.57** 4.90%** 4.77%*
(1.10) (1.77) (1.21) (1.76)
Automation Exposure —3.68%** —6.10%** —3.30%** —6.46%**
(0.70) (1.10) (0.74) (1.11)
F-stat (Aug) 90.41 79.05 90.41 79.05
F-stat (Aut) 155.31 58.28 155.31 58.28
Ind x Time FE X X X X
N 21,795 12,105 21,795 12,105

Changes in employment and wagebill in consistently defined Census occupations over 1940-1980 and 1980-2018. Standard errors clustered by industry-occupation cell in parentheses. *p < 0.10,
*p < 0.05, **p < 0.01, ***p < 0.001.
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Recap

® The content of new work

® More than 60% of 2018 employment in job titles that didn't exist in 1940
® Locus of new job title creation polarized after 1980

® 1940-80 — Flow of new work largely reflects stock of pre-existing work
® 1980-18 — Non-college low-paid personal svc occs, College prof and mgmt occs

® Where new work comes from

® Augmentation and demand shocks both shape where new work emerges

® Augmentation patents generate ‘new work’ (new titles) but automation patents do not
® New title flows respond elastically to inward/outward demand shocks

©® What new work does

® Task displacement and new task creation occur simultaneously, yet...
® Augmentation expands occupational employment and wagebills
® Automation erodes occupational employment and wagebills
® | abor displacement from automation appears to have accelerated since 1980
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Some concluding thoughts

Robert Solow '57 (1924-2023) established the central role of tech A in economic growth

® But economists over-learned Solow's lesson (though Solow did not)
® Growth is good, but consequences are potentially nuanced, not necessarily Pareto-improving

® This was long understood re international trade, only recently widely recognized re tech A
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Some concluding thoughts

Robert Solow '57 (1924-2023) established the central role of tech A in economic growth

® But economists over-learned Solow's lesson (though Solow did not)
® Growth is good, but consequences are potentially nuanced, not necessarily Pareto-improving

® This was long understood re international trade, only recently widely recognized re tech A
Some fairly urgent questions

® Do we have too much or too little automation?

® Do we have enough ‘new tasks’—and are these even needed?

® What shapes labor and skill complementarity /substitution attributes of new work?

@ Has automation accelerated relative to augmentation/reinstatement? And if so, why?

® How will Al change these answers?

These questions did not seem as urgent a decade ago as they do now
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Thank You
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