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Abstract
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1 Introduction

Technological standardization, the process of establishing universal rules and guidelines for

firms, is the foundation upon which innovation is built (Tassey, 2017). Once a standard is set,

companies operating within its domain are compelled to align their investments accordingly

(Lerner and Tirole, 2015; Baron and Schmidt, 2019). This alignment contributes to a substantial

increase in productivity and GDP growth rates, often approaching double-digit percentages.1

While academic research has contributed to our understanding of the economics tied to stan-

dard setting (Lerner and Tirole, 2006; Chiao, Lerner and Tirole, 2007; Lerner and Tirole, 2014;

Simcoe, 2012), the influence of standards on business outcomes, particularly those related to

critical technologies such as artificial intelligence (AI), have yet to be explored.

Unlike conventional standards, which primarily ensure compatibility, interoperability, and

performance across devices, AI standards are dedicated to guiding the secure, ethical, and inter-

operable development and operation of AI systems. They establish globally accepted criteria for

data quality, ensuring the accuracy, relevance, and security of the data used in AI systems. They

prescribe best practices for efficiently and reliably training AI models and integrating them into

older technologies, such as manufacturing. Furthermore, they aim to enable autonomous AI-

based systems to operate in a transparent, explainable, and fair manner, facilitating seamless

integration across various AI platforms and technologies.

Recognizing the significance of AI standardization for business, the US government has

proactively mandated the National Institute of Standards and Technology (NIST), through Ex-

ecutive Order (EO) 13859, to develop a federal strategy aimed at bolstering US involvement in

the creation of global AI standards. The European Commission, alongside other global play-

1The French Standardization Association (AFNOR) estimates that standardization is responsible for nearly a
quarter of France’s GDP growth. In a similar vein, the UK’s Department for Trade and Industry (DTI) suggests that
from 1948 to 2002, growth in standards played a pivotal role in fuelling approximately 13% of labor productivity
growth. Meanwhile, data from Canada shows that standardization accounted for 17% of the labor productivity
growth rate from 1981 to 2004, which translates to about 9% of the real GDP growth rate. Sources: https://bit.
ly/3Cvj6a0,https://bit.ly/3Nbqw7n,https://bit.ly/3JegGQU,https://bit.ly/3XniFs5.
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ers, is equally poised to assume a leading role in this endeavor.2 Standardizing AI however

presents unique challenges, not only because its decision-making can be opaque but also be-

cause it carries risks of unethical behavior or spiraling out of control.3 The commercialization of

AI therefore faces unique obstacles that necessitate the establishment of technical and ethical

standards, fostering transparent, reliable, and ultimately profitable outcomes.

In this paper, we provide the first investigation of the influence of AI standards on corporate

outcomes. While previous research indicates that standards boost capital expenditures and

R&D in the telecommunications industry (Baron and Schmidt, 2019), the effect of AI standards

on firm decisions remains unexplored. Considering AI’s role as a general-purpose technology

across multiple industries (Agrawal et al., 2018; Cockburn et al., 2018), addressing this gap is

crucial for advancing our understanding of AI’s corporate implications at large. This paper fills

this gap by providing the first evidence of the influence of AI standards on AI-specific invest-

ments and patenting activity, as well as broader capital and R&D spending.

The establishment of AI standards carries a multitude of implications for firms. On the pos-

itive side, AI standards offer widely accepted frameworks for implementing AI technologies,

thereby reducing the economic uncertainty faced by firms and encouraging higher corporate

investment. They delineate “best practices”, favoring certain technologies over competing al-

ternatives, potentially leading to positive productivity shocks for endorsed technologies and

negative ones for others. They can also enhance compatibility, thereby fostering positive net-

work externalities and accelerating diffusion of AI technologies.

On the flip side, AI standards that impose constraints and mandate adherence to certain

2See the Government Accountability Office (GAO) report on US government’s definition of and investments in
AI at https://bit.ly/3Jee856. See European Commission’s AI Strategy at https://bit.ly/42FRidI.

3Survey data indicates that the opaque nature of AI poses adoption challenges for business leaders. Practition-
ers argue that AI standards serve to "unlock the box", enhancing the transparency of AI. Sources: https://bit.
ly/445kz2D,https://bit.ly/3N9IZBc. In May 2023, OpenAI’s ChatGPT attracted 1.8 billion visits. OpenAI is
acutely aware of AI risks, acknowledging on their website that the pros and cons of AI, including potential misuse,
societal disruption, and unsafe competition, could reach a critical juncture. Moreover, a 2023 survey by the Centre
for the Governance of AI found that 91% of a diverse 13,000-person sample from 11 countries concurred on the
necessity of prudent AI management. Sources: https://bit.ly/43WIFfJ,https://bit.ly/3Copos1,https:
//bit.ly/3NauEnN.
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norms can curb the effectiveness of AI, potentially leading to reduced investment. Furthermore,

the improved compatibility and positive network externalities encouraged by standards may

unintentionally stifle radical innovation by incentivizing conformity to existing technologies,

potentially leading to technological lock-in. Finally, AI standards can open up a new avenue

for large companies with strong lobbying power to turn more of their patents into standard-

essential patents (SEPs). This can hurt other companies, forcing them to pay higher royalties to

use AI technologies, and limit their ability to develop and use their own innovations.4

To provide empirical evidence on how standardization of AI impacts businesses, we manu-

ally collect data on global AI standards. Our principal source is the report "US Leadership in AI:

A Plan for Federal Engagement in Developing Technical Standards and Related Tools," prepared

by NIST following EO 13859.5 This document provides a strategic blueprint that guides US par-

ticipation in global AI standardization and, in the process, identifies critical AI standardization

committees within international organizations. After identifying these committees, we collect

data on AI standards from each committee’s respective website and enrich it with additional

textual analysis and detailed interpretation.

To the best of our knowledge, our dataset is the first of its kind in the literature, offering

exclusive insights into the creation and content of global AI standards.6 It provides a com-

prehensive view of the key players in this domain, detailing which countries are pushing AI

standardization efforts by leading committees within international organizations and which

are contributing to the process by being members of these committees. Taking it a step further,

it also breaks down the specifics of AI standards through textual analysis, documenting a wide

spectrum of AI components to provide a deeper understanding of the subject matter. These

components include but are not limited to machine learning (including language models), big

4Qualcomm’s licensing practices, notably the “no license, no chip” policy, often draw criticism for stifling inno-
vation, driving over 75% of its pre-tax profits and highlighting their central role in the company’s business model.
See https://bit.ly/4afsUDS.

5This report is publicly accessible and can be downloaded from the following URL: https://bit.ly/43ywOoz.
6The Searle Center at Northwestern University hosts a dataset on non-AI standards predating the sampling

period of our paper. It can be accessed here: https://bit.ly/3THmMPt.
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data, data interchange, trustworthiness, and robotics, all of which likely have heterogeneous

effects on corporate outcomes.

Our data documents that the standardization of AI is not monopolistic but rather a glob-

ally collaborative endeavor. This said, countries across the world do exercise their influence

by securing key leadership roles within key committees, known as secretariats, or through ac-

tive membership in these committees. The secretariat oversees the committee’s technical and

administrative processes. A country being the secretariat of a standard-setting committee is

often regarded as having a strong influence on the shaping of global standards developed un-

der that committee (Blind and von Laer, 2022), potentially through strategic agenda setting and

information provision (Farrell and Simcoe, 2012), in favor of domestic firms.

To estimate the influence of AI standards on firms, we rely on the exogenous nature of

United Nations Security Council (UNSC) membership rotations. Kuziemko and Werker (2006)

show that countries rotating onto the UNSC see an increase in aid from permanent UNSC

member nations, hinting at potential quid pro quo arrangements. In our setting, as the ro-

tating UNSC members change, we observe significant changes in the number of AI standards

issued by committees under the secretariats of permanent UNSC members. This stems from

the changing percentage of committee members more or less sympathetic to the permanent

members’ agendas as countries cycle through UNSC membership. These random shocks en-

able us to assess the local impact of AI standards on firms within permanent UNSC member

nations through a two-stage least squares (2SLS) procedure.

Following the 2SLS strategy mentioned above, we show that increases in AI standards have

a significant impact on investment in capital and R&D expenditures. Under US secretariat, an

increase of one standard deviation in AI standards results in a 0.24 standard deviation increase

in R&D investments for the average US firm, relative to firms from countries with secretari-

ats. In terms of capital investments, the same increase in AI standards under US leadership

corresponds to a 0.08 standard deviation increase compared to firms from countries with sec-

retariats, and a 0.15 standard deviation increase compared to firms from other countries.

4



Countries other than the US that hold secretariats also experience positive effects on their

investment activity. For instance, under the leadership of the United Kingdom and France, an

increase of one standard deviation in AI standards leads to a 0.19 standard deviation increase

in capital investments. Similarly, compared to non-participating countries, it results in a 0.14

standard deviation increase in capital investments and a 0.29 standard deviation increase in

R&D investments. These estimates for the local average treatment effects of AI standards un-

derscore the significance of leadership in AI standards in driving local corporate activity.

To provide insights into the content of global AI standards, we conduct a detailed textual

analysis. We categorize AI standards into groups such as machine learning (including large

language models), big data, AI safety, privacy, physical equipment, and automation, among

others. Machine learning, data interchange, and privacy standards exhibit notable effects on

investment. A one standard deviation increase in machine learning standards leads to a 0.22

standard deviation increase in capital expenditures, while a one standard deviation increase in

data interchange standards corresponds to a 0.12 standard deviation increase in R&D invest-

ments. Conversely, a one standard deviation increase in privacy standards results in a signif-

icant 0.61 standard deviation decrease in R&D investments. Standards related to automation

and machinery and equipment also demonstrate statistically significant effects on investment

behavior. These findings highlight the nuanced ways in which different categories of AI stan-

dards can drive or hinder capital and R&D investments.

Our paper also looks into how AI standards influence firm value. Our estimates indicate that

a surge of one standard deviation in AI standards can improve firm value by up to 0.14, 0.31 and

0.46 standard deviations in the first, second and third years respectively. This finding signifies

that the ripple effects of AI standards extend beyond the initial near-term impacts, showcasing

a significant compound effect. Overall, our findings underscore the crucial role AI standards

play in influencing investment decisions and firm valuations.

Does the influence of AI standards extend to AI-specific investments? To explore this ques-

tion, we utilize novel data from the Center for Security and Emerging Technology (CSET) on
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AI-specific investments across 36 categories and AI-specific patent activity across 22 distinct

fields at the country-year level. Our evidence suggests that AI standards indeed foster increased

investments and patents in AI-related domains. Notably, AI standards spur growth in areas

such as robotics, manufacturing, cybersecurity, privacy, data analytics, software, facial recog-

nition technology, and education. We also observe a rise in AI patent applications in fields in-

cluding banking, finance, security, industrial manufacturing, machine learning, transportation,

telecommunications, and computer vision, following the adoption of AI standards.

To rationalize our empirical findings, we introduce a stylized model to study how a firm’s

investment is affected by the expected future publications of AI standards. A firm lives for an

infinite horizon. In each period and within each domain of AI investment, it decides on the

investment in two types of competing AI technologies. The investment is partially irreversible,

in the sense that disinvestment is costly. The firm expects a future random (Poisson) arrival of

the publication of AI standards, which could be either (i) technological standards that endorse

one type of AI technology over another within an AI investment domain, or (ii) privacy/ethical

standards that impose privacy-related or ethical constraints on the adoption of AI technolo-

gies. The firm also decides on capital expenditure investment in physical assets. Motivated by

the insight that AI is a general purpose technology that can lead to the fourth industrial revo-

lution, i.e., Industry 4.0 (Peres, Jia, Lee, Sun, Colombo and Barata, 2020), we argue that more

AI-related investment incentivizes the firm to increase capital expenditure in physical assets by

increasing the marginal productivity of such assets. Based on our theoretical framework, we

make the following empirical predictions: more technological standards published are asso-

ciated with more AI-related investment and capital expenditure post-publication, while more

privacy/ethical standards published are associated with less AI-related investment and capital

expenditure post-publication.

The remainder of the paper is organized as follows. Section 2 presents the literature review.

Section 3 develops our testable hypotheses. Section 4 presents our data. In Section 5, we intro-

duce our identification strategy and empirical findings in support of the theoretical predictions
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above. Section 6 concludes the article. To keep the main text concise, we present additional

material in the Appendix. Appendix Section A presents our theoretical framework and math-

ematical proofs. In Appendix Section B, we delve deeper into our supplementary summary

statistics and findings. Appendix Section C describes the data on AI-specific investments and

patents. Appendix Section D demonstrates a concrete example of how AI, guided by appropri-

ate standards, can be implemented in oil and gas production facilities to enhance efficiency,

safety, and decision-making, while ensuring regulatory compliance and efficient information

exchange with different stakeholders. Appendix Section E discusses the issue of bias in AI-

assisted decision-making and the standardization efforts made to address these challenges.

2 Literature Review

Our paper’s main contribution is to the emerging literature in financial economics on AI. Cao

et al. (2020) argue that AI influences corporate disclosure by reducing negative tones that algo-

rithms perceive unfavorably, and Cao et al. (2021) show that an AI-based analyst beats most hu-

man analysts. D’Acunto et al. (2019) highlight that adopters of robo advisors experience diver-

sification benefits, and Rossi and Utkus (2020) show robo advisors reduce investors’ holdings in

money market mutual funds and increases bond holdings. A strand of research argues that AI-

related investment (e.g., through the labor channel) increases firm innovation and productivity

(Aghion, Jones and Jones, 2018; Babina, Fedyk, He and Hodson, 2021); meanwhile, there also

have been discussions on the concerns of labor replacement (Acemoglu and Restrepo, 2018),

data privacy (Cong, Xie and Zhang, 2021b; Chen, Huang, Ouyang and Xiong, 2022; Canayaz,

Kantorovitch and Mihet, 2022; Liu, Sockin and Xiong, 2023), as well as decision biases, reliabil-

ity, and interpretability of AI algorithms (Wellman and Rajan, 2017; Agrawal, Gans and Gold-

farb, 2019a; Clark and Hadfield, 2019; Acemoglu, 2021).7 We contribute to the literature with a

7See also Agrawal, Gans and Goldfarb (2019b), which is a book with a comprehensive discussion of the eco-
nomics of AI and Goldstein et al. (2021); Farboodi and Veldkamp (2022); Cong et al. (2021a) on big or unstructured
data. See Cheng, Sokol and Zang (2023) on online platforms.
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unique perspective to examine the economic impact of AI standards.

Some recent papers discuss AI-related policies and regulations. Cuéllar, Larsen, Lee and

Webb (2022), for example, examine the impacts of potential AI regulations on managers’ per-

ceptions of AI ethical issues and their intentions to adopt AI technologies. Agrawal, Gans and

Goldfarb (2019a) emphasize three aspects of AI economic policies: data privacy, international

coordination, and AI liability. There are also papers comparing standards, which belong to self-

regulations, to compulsory government regulations. Using survey data, Blind, Petersen and

Riillo (2017) show that standards lead to higher innovation efficiency than public regulations

in markets with higher uncertainty. As AI technologies involve high uncertainty due to their

evolving nature, an implication of their result is that standards could be more important than

government regulations in promoting AI innovations and adoptions. Similarly, Clark and Had-

field (2019) argued that the evolving nature of AI technologies amplifies the importance to make

regulations more agile and adaptive, which gives self-regulation (e.g., global AI standards) an

advantage over government regulations. Our work contributes to the literature as being among

the first to study the effect of AI standards on firms’ actual investment decisions.8

Our paper also contributes to the literature on how standardization affects R&D investment

by shaping the infrastructure of innovation. On the one hand, researchers argue that standards

facilitate innovation by codifying knowledge (Marcus and Naveh, 2005; Großmann et al., 2016)

and securing minimum quality (Mirtsch et al., 2020). In addition, technological standards re-

duce the variety and increase the compatibility of technologies. This incentivizes innovation

by accelerating the wide adoption of new technologies because users won’t be trapped with a

standalone technology that barely interfaces with other systems and is scarcely used by others.

Instead, they will gain from the positive network externalities, where the value of a technology

increases in its user base size (Pelkmans, 2001; Lerner and Tirole, 2014). The importance of

8We also find that AI standards benefit younger firms more than older firms, which is in contrast with the con-
ventional wisdom that smaller and younger firms are more likely to be the victims of regulations than larger firms
(Canayaz, Kantorovitch and Mihet, 2022). These results are available upon request.
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compatibility and interoperability is especially pronounced for Information and Communica-

tion Technologies, because such technologies are subject to strict compatibility requirements

(Baron and Schmidt, 2019).9 On the other hand, standardization may hinder R&D investment

by reducing an industry’s degree of radical innovation (Foucart and Li, 2021) or increasing mar-

ket concentration (Windrum, 2004). However, the majority of the work is either conceptual or

using survey data. We contribute to the literature as being among the first to look at the causal

relationship between the publication of standards and firms’ actual investment decisions.

Our work is also related to the literature on the economics of standard-setting organizations

(SSOs). Lerner and Tirole (2006) and Chiao, Lerner and Tirole (2007) study theoretical models

with sponsors of technological standards (e.g., owners of technologies) strategically resorting

to more or less independent SSOs to endorse their technologies.10 Simcoe (2012) showed both

theoretically and empirically that when SSO participants favor specific technologies, the con-

flicts of interests among SSO participants will lead to inefficient delay of the publication of stan-

dards.11 We enrich the literature by being among the first to suggest the presence of conflicts of

interest in SSO using firm-level investment data. That is, the SSO leading participant (i.e., the

ISO committee secretariat country) actively promotes standards that prioritize companies from

their respective countries, because an increase in the publication of standards leads to a greater

investment boost for firms hailing from the secretariat countries compared to firms outside of

those countries.

Finally, our observation that firms tend to postpone their investments until the establish-

ment and publication of relevant standards, which consequently resolves the uncertainty sur-

9The importance of interoperability was also emphasized in the following public statement made by the Federal
Trade Commission. See https://bit.ly/3JbRkmw.

10They made the following theoretical predictions and verify with empirical evidence: (i) there is a negative
relationship between the extent to which an SSO favors technology sponsors and the concession level required
of sponsors and (ii) there is a positive correlation between the sponsor friendliness of the selected SSO and the
quality of the standard.

11In addition, Baron and Gupta (2018) describes a database on standardization procedures at the 3rd Generation
Partnership Project (3GPP), which is the most relevant SSO in the field of mobile telecommunications. Baron
and Spulber (2018) also supply information on technology standards, SSO membership, and SSO characteristics,
without a specific focus on AI.
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rounding productivity, finds parallels with established theories in the field of investment and

economics. This relationship specifically echoes the principles embodied within the literature

on real options theory and investment under uncertainty (Dixit and Pindyck, 1994; Grenadier,

2002; Grenadier and Wang, 2007).

3 Hypothesis Development

To motivate our empirical tests, we develop hypotheses on how a firm’s investment is affected

by the expected future publications of AI standards. We build a theoretical model in Internet

Appendix A to formally establish these hypotheses. In this section, we summarize the structure

of the model and the testable implications.

A firm lives for an infinite horizon. In each period, it faces decisions on the AI investment in

multiple AI domains. Examples of AI domains include computer vision and voice recognition.

Within each domain, the firm can invest in two types of competing AI technologies. In addition,

the firm faces capital expenditure (CapEx) investment decisions on physical investment, that is,

property, plant and equipment (PP&E). Both the investment in AI technologies and CapEx are

partially irreversible, i.e., disinvestment is costly due to fire sales.

The firm uses both PP&E and AI capital as inputs for production. Importantly, AI-related

capital and PP&E enter the production function with a multiplicative structure. That is, AI-

related capital complements physical capital. AI is commonly regarded as a general purpose

technology (GPT) that may lead to the fourth industrial revolution, i.e., Industry 4.0 (Peres, Jia,

Lee, Sun, Colombo and Barata, 2020). A more advanced AI technology has the potential to

make machines and equipment significantly more productive, thereby increasing the return of

investment in PP&E.

The firm operates under the anticipation of a stochastic event – the publication of AI stan-

dards, which alter the productivity of various AI technologies. However, how productivity varies

after the standards are published depends crucially on the nature of the standards.
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Suppose the standards published are technological standards, which typically specify the

“best practices” for technologies. Such standards narrow down the variety of technologies by

endorsing one technology over another (Lerner and Tirole, 2014). The endorsed technology

within that domain then witnesses a swifter adoption than the unendorsed counterpart, ben-

efiting from positive network externalities—its value grows as more users adopt it, according

to (Tassey, 2017). This leads to a bifurcation of productivity between the two technologies: the

chosen technology sees a surge in productivity following the standards’ release, whereas the

other suffers a decline in productivity. This division is further deepened by two additional fac-

tors that boost the favored technology’s productivity: (i) standards often codify the details of the

endorsed technology and provide a clear blueprint for the implementation, and (ii) standards

enhance the interoperability of the endorsed technology by creating a compatible ecosystem

that surrounds and supports this technology. The firm does not know ahead of time which

technology will receive endorsement. Anticipating the random bifurcation of productivity, the

option value of postponing its partically irreversible investment drives the firm to delay its in-

vestment until the publication of standards resolves the uncertainty. Therefore, firm investment

should increase after the publication of standards.

In addition, suppose each technological standard that can be potentially published covers

one particular domain of AI technology. Then more technological standards being published

imply that more domains of AI technology see resolution of uncertainty, boosting investment

even further. That is, we should see a positive correlation between the number of technological

standards published and AI-related investment post-publication. Furthermore, as AI-related

investment complements CapEx, the firm’s CapEx should also increase with the number of

technological standards published.

The situation is very different if the published standards are privacy/ethical standards, which

include the interpretability of AI algorithms and restrictions on data privacy. These restrictions

shrink the firm’s data pool and limit the scope of AI applications, as certain practices previ-

ously employed to maximize efficiency might no longer be permissible under new privacy and
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ethics rules. The publication of such standards play a crucial role in reinforcing the enforce-

ability of such constraints, making these concepts more tangible and provide a framework for

shaping future government policies.12 Unlike technological standards that boost productivity

of the endorsed AI technology over an unendorsed one, the privacy/ethical standards reduces

the productivity on all types of AI investment. Therefore, where more such standards are pub-

lished, the restrictions on AI productivity becomes more concrete and stringent, leading to less

investment or more disinvestment post-publication.

Based on our theoretical framework, we make the following empirical predictions.

Hypothesis 1. (i) Firm’s AI-related investment and CapEx are higher after the publication of stan-

dards, if a higher number of technological standards are published.

(ii) Firm’s AI-related investment and CapEx are lower after the publication of standards, if a

higher number of privacy/ethical standards are published.

4 Data Collection and Summary Statistics

This section elucidates the methodology employed in our data gathering process (see to Section

4.1) and offers a comprehensive overview of the main variables through summary statistics (see

Section 4.3).

4.1 Data on AI Standards

We gather data on AI standards from a range of resources, with the primary one being the "US

Leadership in AI: A Plan for Federal Engagement in Developing Technical Standards and Related

Tools" report produced by the National Institute of Standards and Technology (NIST). Prepared

in response to Executive Order (EO) 13859, this report guides the formulation of a strategy that

fosters Federal involvement in AI standard creation. It outlines important committees integral

12See Clark and Hadfield (2019): “There are numerous examples of cases in which public regulation has piggy-
backed on systems initially developed privately”.
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to AI standardization within international organizations such as the International Organiza-

tion for Standardization (ISO), International Electrotechnical Commission (IEC), and Institute

of Electrical and Electronics Engineers (IEEE). Acknowledged worldwide as authoritative ar-

biters, these committees wield decisive power in directing both the evolution and future course

of AI standards.13

After identifying AI-centric standardization organizations and their corresponding commit-

tees, we proceed with manual data collection directly from the respective websites of these

committees. Although our primary interest centers on the more recent standards developed by

these committees, we’ve curated a comprehensive timeline of their standards extending back to

the 1970s. Moreover, we delve into the processes behind the creation of these standards, partic-

ularly identifying the countries leading these initiatives and those involved as committee mem-

bers. Committee websites, as of 2023, typically offer the latest membership information. To

circumvent this constraint and access historical data, we utilize the Wayback Machine (accessi-

ble at https://archive.org/web/). This resource enables us to retrieve archived versions of

committee websites, thus permitting the collection of membership information from previous

years, going back to 2017. This timeframe aligns well with our research focus, which leans more

towards understanding the recent (AI-related) standards rather than the earlier ones.

Table 1 provides a detailed breakdown of the published standards, categorized by responsi-

ble committees and secretariats. In this context, secretariats refer to the countries that lead the

standardization efforts for their respective committees. They play a vital role in the ISO stan-

dardization process. A secretariat is typically held by a national standardization body from a

specific country. Hosting a secretariat for an ISO committee can bring significant benefits to

local firms and industries. By assuming the responsibility of a secretariat, a country gains a

13Consensus within the ISO voting process is achieved when a substantial majority (usually two-thirds) of partic-
ipating members vote in favor of a draft, even if there is some opposition. This demonstrates that the issues have
been thoroughly discussed, and efforts have been made to address any conflicting arguments. By setting a two-
thirds majority requirement for acceptance, ISO ensures that a significant majority of its member bodies support
the standard, establishing widespread acceptance and credibility within the international community.
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central coordinating role in the standardization process, allowing it to have a more direct influ-

ence on the committee’s work and the development of standards. This heightened involvement

presents a unique opportunity for local firms to actively shape the standards governing their

industries. It ensures that their specific needs and interests are taken into account, reducing

uncertainty related to their innovation paths.

Moreover, managing an ISO secretariat requires a high level of expertise in the specific field

of standardization. This expertise, developed by the national standardization body hosting the

secretariat, can directly benefit local firms by enhancing their knowledge and understanding

of international standards and best practices. It allows them to stay at the forefront of techno-

logical advancements, adapt to global market requirements, and maintain a competitive edge

in their respective industries. Hosting a secretariat also creates networking opportunities for

the country’s industries, enabling them to establish valuable relationships with stakeholders

from other countries. This international collaboration can foster knowledge sharing, innova-

tion, and the exchange of ideas, ultimately driving growth and competitiveness for local firms.

In summary, hosting an ISO secretariat not only grants a country a more influential role in the

standardization process but also provides local firms with the advantages of less uncertain in-

novation paths, enhanced expertise, and international networking, all of which can contribute

to business growth.

[Table 1 about here]

As displayed in Table 1, the total number of AI standards published by AI-centric commit-

tees from 1972 to 2023 is 5,456.14 The table reveals that ISO committees have published 2,055 AI

standards, while joint ISO/IEC committees have contributed 3,382 standards. In comparison,

IEEE, operating independently, has published 19 standards. These numbers underscore the

14it is worth noting that approximately 180 additional AI-related standards from the AI Standards Hub are not
included in this table due to formatting constraints. Nevertheless, our analysis remains robust even when consid-
ering these additional standards.
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significant contributions of ISO and ISO/IEC in the standardization of AI, with ISO/IEC com-

mittees leading in terms of the total number of standards published. Within the ISO Commit-

tees section, notable contributions include TC 184/SC 4 with the highest number of standards

at 1,771 publications, followed by TC 184/SC 5 with 96 standards. Turning to the ISO/IEC Com-

mittees section, notable examples include SC 29 with 1,168 standards, SC 27 with 432 standards,

SC 7 with 352 standards, and SC 17 with 338 standards.

[Figure 1 about here]

Figure 1 illustrates the number of standards published in a given year by each ISO secre-

tariat. As shown in the figure, the standardization process concerning AI, as indicated by the

standards published by committees recognized by the US government as influential in the field,

commenced in the 1970s. However, the advancement of AI standardization during the 1980s

and 1990s exhibited a relatively slow pace. In the 2000s, the pace of AI standardization signif-

icantly accelerated. Notably, US and Japanese secretariats played a pivotal role in driving this

progress. It is important to note that AI standards undergo cyclicality due to periodic reevalu-

ation, typically occurring every three to five years. During these evaluations, standards may be

withdrawn or accepted again, reflecting the evolving landscape and advancements in AI tech-

nologies.15

15We are in the process of manually collecting detailed data on the life cycle of each standard. See Figure B1 on
the life-cycle of standards published since 1972. The creation and acceptance of ISO standards follow a rigorous,
multi-stage process designed to ensure broad consensus, technical validity, and market relevance. The process
begins with a proposal stage, where a new work item proposal (NWIP) is made and requires approval from a two-
thirds majority of the national bodies that are members of the relevant technical committee or subcommittee,
with a commitment from at least five countries to actively participate in the work. Subsequently, a working draft
(WD) is developed in the preparatory stage, followed by the circulation of the draft to the technical committee or
subcommittee members for review and comment, resulting in a committee draft (CD). The draft then proceeds to
the enquiry stage as a Draft International Standard (DIS), where it must receive approval from at least two-thirds
of the national bodies that are voting members of the relevant committee, with no more than one-quarter of the
total votes cast being negative. If the DIS is approved, it moves to the approval stage as a Final Draft International
Standard (FDIS), requiring at least two-thirds approval from the voting members and no more than one-quarter of
the total votes cast being negative. Finally, upon successful completion of the approval stage, the ISO standard is
published and recognized as an International Standard.
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Appendix Table B1 offers a comprehensive overview of the activities and scopes of AI stan-

dardization committees listed previously in Table 1, encompassing a wide range of domains

such as data interchange, ethical AI, robotics, and industrial automation. For instance, ISO/IEC

JTC 1/SC 42 focuses on providing guidance and developing standards for AI while assisting

other ISO and IEC committees. For this reason, it’s named as the Artificial Intelligence com-

mittee. ISO/IEC JTC 1/SC 41 specializes in standardization within the field of the Internet

of Things (IoT) and digital twin technologies. Governance aspects related to IT, data, and IT-

enabled services are the focus of ISO/IEC JTC 1/SC 40. Noteworthy committees such as TC 184,

TC 184/SC 1, and TC 199 are engaged in industrial automation, industrial cyber and physical

device control, and safety standards for machinery, respectively. ISO/TC 299 focuses exclu-

sively on robotics standards, while TC 184/SC 4 and TC 184/SC 5 specialize in industrial data

exchange and industrial interoperability, respectively.16

[Figure 2 about here]

Figure 2 presents a circle pack figure that visually represents the number of AI standards

published under different committees and secretariats from 1972 to 2022. To enhance clarity,

the committee codes have been replaced with short descriptions–i.e., scopes–that reflect the

operations of each committee, as outlined in Table B1. The figure highlights the diverse areas

covered by AI standardization efforts under US secretariats, including industrial data, program-

ming languages, human biometrics, guidance on AI, and interoperability. The United States

has emerged as a significant contributor to AI standards, publishing a total of 2,572 standards.

Similarly, Japan has played a prominent role, publishing 1,259 standards primarily focusing on

16Section D of the Appendix discusses the role of AI in enhancing operational efficiency, safety, and decision-
making in oil and gas production facilities. AI implementation not only contributes to superior performance but
also aids in maintaining regulatory compliance and fostering transparent communication with various stakehold-
ers. The application of AI in this sector spans predictive maintenance, advanced analytics for decision support,
automation of routine tasks, and real-time monitoring of safety and performance indicators. As explained in this
section, several AI committees are dedicated to the task of establishing standards that facilitate such applications
in the oil and gas industry. These committees help create a structured and safe environment for the adoption of AI
technologies, ensuring these tools are used in an efficient, ethical, and regulation-compliant manner.
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digital information and electronic devices, including graphics and personal identification. Ger-

many has made substantial contributions with 560 standards related to industrial device con-

trol, safety, information security, and governance. The United Kingdom has produced 480 stan-

dards covering graphics, personal identification, automation, and software. AI standardization

efforts have extended beyond these specific countries, encompassing a wide range of domains

globally. These efforts have included the development of standards in areas such as governance,

industrial automation, robotics, IoT, and software development.

[Figure 3 about here]

Members of ISO committees play an important role in publishing global standards as well.

Figure 3 provides a visualization of the involvement of countries around the globe in ISO com-

mittees and secretariat roles from 2017 to 2023. As shown in the figure, the United States takes

the lead in terms of both secretariat years and committee membership years. Following the

United States, countries such as the United Kingdom, Japan, Germany, and South Korea (along

with France, Australia, and India, which also lead secretariats) demonstrate significant involve-

ment, measured by their committee years.

While many countries actively participate in standardization efforts, as evident from their

committee years, they do not hold secretariats. This group includes China, Russia, Canada,

South Africa, Poland, as well as Western European countries like Spain and Portugal, and South-

ern European countries like Italy. South American countries (such as Brazil, Argentina, and

Chile), Central American countries like Mexico, Central and Eastern European countries (in-

cluding Czech Republic, Turkey, Romania, and Bulgaria), as well as Middle Eastern and African

countries like Saudi Arabia and Iran exhibit weaker involvement. Additionally, several African

and Asian countries show no involvement in AI standards development.

It’s important to note that different committees may publish standards on similar subjects,

leading to overlapping areas of standardization. For example, standards concerning data or ma-

chine learning may be published by committees such as the industrial data committee, data in-
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terchange committee, information security committee, or even the robotics committee, among

others. Similarly, standards related to programming languages can be published by a dedicated

committee on programming languages or by another committee focused on data privacy.

To account for this diversity and offer a comprehensive analysis of AI standardization, con-

tent analysis based on the titles of standards becomes crucial. For this reason, by analyzing

the titles of standards, we identify common themes, emerging topics, and trends across various

committees and secretariats. This approach allows for a broader exploration of the standard-

ization landscape, enabling insights into the focus areas and evolving priorities within the AI

domain. Figure 4 provides an overview of the different yet non-exclusive categories of stan-

dards and their subject areas. We list some of these below and provide detailed descriptions for

them in Figure 4 ’s caption.

• Machine Learning: Standards related to machine learning algorithms, natural language

processing, fuzzy logic, neural networks, decision-making processes, semantic analysis,

training methodologies, and speech and image recognition.

• Programming Languages: Standards covering programming languages, software devel-

opment practices, program design, software quality assurance, and specific languages

like SQL, Pascal, BASIC, Linux, C#, Java, C++, and Python.

• Safety and Accountability: Standards addressing governance, ethics, security, explain-

ability, trustworthiness, and societal impact of AI systems.

• Data: Standards for data management, privacy, security, exchange, and interoperability,

excluding those standards that are already labeled as machine learning standards.

• Interchange: Standards focusing on the interchange or exchange of data, including data

formats, protocols, and representation standards.
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• Privacy: Standards for privacy protection, cybersecurity, biometric data, and human rights

considerations.

• Automation: Standards for automated decision-making, process automation, and work-

flows, excluding those that are already labeled as machine learning standards.

• Interoperability: Standards addressing compatibility and connectivity between AI sys-

tems, as well as integration with other technologies such as IoT, digital twins, internet

protocols, and IoT connectivity standards.

[Figure 4 about here]

As illustrated in Figure 4, the standardization efforts within the field of AI have seen a signif-

icant surge in the domains of Machine Learning, Programming Languages, and Safety and Ac-

countability during our sampling period from 2017 to 2022, aligning with the vision of EO 13859.

It is worth noting that the relatively lower frequency of standards in the Data category does not

diminish the importance of data standards. Instead, it indicates that extensive guidelines for

data management have already been established through previous standardization efforts.

In the Data category, the new standards predominantly revolve around Machine Learning

(and we count them as such) and incorporate accountability aspects. This signifies the evolv-

ing landscape of AI applications and reflects the need to address the challenges and consid-

erations specific to ML models. Similarly, the standards related to Data Interchange follow a

similar pattern, focusing on integrating data with ML models and ensuring effective and secure

data exchange. Conversely, automation standards, including those associated with physical

equipment, have experienced a decline in frequency. This shift in focus can be attributed to the

increasing emphasis on advancing AI technologies and their integration into various processes.

[Figure 5 about here]
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Figure 5 illustrates each country’s contributions to machine learning and safety & account-

ability standards from 2017 to 2023 using color gradients. Countries including the United States,

Canada, China, Russia, India, Australia, and several Western European nations are significantly

engaged in the global standardization efforts for both machine learning and ethical AI, as evi-

dent from the considerable number of standards published by the committees they are part of.

This considerable involvement suggests that unprecedented shocks assisting the US or other

countries in promoting their strategic objectives, especially when supported by politically-aligned

countries within the committee or under its secretariats, can have substantial implications for

the direction and pace of machine learning and ethical AI standardization.

On examining the global landscape, we also observe that countries such as Mexico, Ar-

gentina, Saudi Arabia, Iran, and South Africa appear to wield more influence over the formula-

tion of ethical standards as compared to machine learning standards. This disparity may poten-

tially stem from the technical capacities inherent to the complexity of their economies. The em-

phasis on ethical standards in these countries might reflect their societal and regulatory focus

on AI’s broader implications, highlighting the importance they place on ethical considerations

in AI’s deployment and use.17

In summary, this section offers an overview of our AI standards data. We delineate the data

sources and emphasize the pivotal role of committees and secretariats in AI standardization.

Furthermore, we present evidence showcasing the evolution of standards issued by AI-centric

committees over time. In the subsequent section, we expand our analysis by providing descrip-

tive statistics on AI standards data and its impact on business outcomes.

4.2 Data on AI Investments and AI Patents

Our investigation into AI-specific investments leverages data sourced from the Country Activity

Tracker (CAT), developed by the Center for Security and Emerging Technology (CSET). The CAT

17Section C of the Appendix discusses the role of bias in AI systems and AI-based decision making.
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offers a detailed and novel dataset that highlights national-level AI activities. It covers a broad

spectrum of metrics, such as patents, research, and investments in the private sector, thereby

illuminating the global landscape of AI competition. Importantly, the CAT also provides the

capability to delve into specific AI subfields and applications, offering novel insights into AI

investments and patent activities.18

The CAT dataset encompasses a broad spectrum of AI investments, covering 36 diverse cat-

egories including, but not limited to, agriculture, biotechnology, cybersecurity, finance, manu-

facturing, natural language processing (NLP), and robotics. Furthermore, it extends to AI patent

activities, encapsulating both applications and granted patents across 22 categories. These cat-

egories range from banking and finance to computer vision, machine learning, industrial man-

ufacturing, logic and programming, security, telecommunications, and transportation. For a

more comprehensive elaboration of the CAT data, refer to the detailed descriptions provided in

Appendix Section C.

4.3 Summary Statistics

In this section, we present an overview of the data used in our empirical analyses. Table 2 pro-

vides descriptive statistics on the variables employed in our study. Panel A specifically high-

lights important details regarding corporate outcomes. Our corporate data, obtained from the

Worldscope database, covers the period from 2017 to 2022 based on the committee member-

ship data from the Wayback Machine, encompassing firm-year (i, t) observations. Notably, we

also label the headquarters location of each firm as country c, a critical element of our empirical

approach.

[Table 2 about here]

Two notable financial metrics in our analysis are the CAPEX/AT and R&D/AT ratios, which

18We express our gratitude to Zachary Arnold for providing the CAT data. For more information, see https:
//www.brookings.edu/articles/can-democracies-cooperate-with-china-on-ai-research/.
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serve as our primary dependent variables.19 These ratios represent the proportions of capital

and R&D expenditures in relation to the lagged total assets. Their medians (means) stand at

2.14% and 2.11% (4.82% and 5.31%), respectively. Sales/ATi ,c,t , which signifies the Sales-to-

Assets ratio, or Asset Utilization, has an average value of 84.68% in the sample. Its median stands

at 67.19%, and its standard deviation, a significant 82.09%, points to considerable variability in

firms’ efficiency at generating sales using their assets.

The Log(BVA) denotes the natural logarithm of the Book Value of Assets in US dollars. Its

mean and median both align at 2.95, with a relatively small standard deviation of 0.13. For the

Cash Flow-to-Assets ratio (CF/AT), the data suggests a median of 0.03. Its standard deviation

of 0.42 denotes a significant variation across firms. The Leverage ratio (Leverage) presents an

average value of 0.25, and Short-Term Leverage (ST Leverage) stands at a mean of 0.51. Finally,

Log(Age) has a median (mean) of 2.71 (2.48), which suggests that the median (mean) firm in our

sample is approximately 15 (12) years old.

At the bottom of Panel A, we report summary statistics on two additional variables. The first

one, Log(Committees), refers to the natural logarithm of the number of ISO committees that a

country is a member of in a given year for each firm. It represents the level of participation and

involvement of a firm’s headquarters country in ISO committees. It displays a mean of 1.90 with

a median of 2.48. The variable % UNSC Members indicates the percentage of rotating United

Nations Security Council Members under a country’s secretariat in a given year and remains at

zero for countries without secretariats in all years.

In our main specification, the countries with non-zero % UNSC Members values are France,

the United Kingdom, and the United States.20 In later stages of the paper, we use countries

with secretariats but without permanent UN Security Council positions as placebos because it

is unlikely for such countries to exert influence over the AI standardization process using the

19Similar to Gutierrez and Philippon (2017); Rajan and Zingales (1998), we also deflate CAPEX with PPE, i.e., we
use Worldscope ITEM 8411, which has significantly fewer observations. These results are available upon request.

20For example, the United States in 2021 had 5 UNSC members among the 44 countries under its secretariat.
This suggests that the instrumental value for 2022 for the United States is equal to 5

44 = 11.36%.

22



UN Security Council. These countries are Sweden, Germany, India, Japan, Australia, and South

Korea.21 With an average of 2%, it suggests a low proportion of UNSC member firms. However,

the standard deviation of 4% illustrates substantial variability in this measure.

Panel B of the table pivots towards an examination of AI standards spanning diverse do-

mains. It provides a detailed account of the log number of AI standards deployed in diverse

areas including machine learning, data, accountability, automation, programming languages,

interchange, interoperability, privacy, equipment, media, Internet of Things (IoT), and human

biometrics, which are previously explained in Section 4.1. These measures correspond to the

different categories of AI standards, providing a holistic perspective on the implementation and

prevalence of these standards across firms.

The variable Log(AI Standards) represents the logarithm of AI standards published under

the secretariat of a given country in a given year, for all of its local firms. It has a mean of 1.51

and a standard deviation of 1.73. This suggests, for the average firm, the number of yearly AI

standards published in that firm’s country’s secretariat is 4.31. The range between the 5th and

95th percentiles is 0.00 and 64.07, showcasing the wide distribution of AI standardization activ-

ity across countries.

The average log value for machine learning standards is 0.73, indicating the widespread

adoption of these standards in the AI industry. Similarly, the mean of the logged data stan-

dards is 0.55, reflecting considerable utilization of data-related standards. Log(Accountability

Standards), a measure of accountability norms in AI utilization, shows a mean of 0.23 and

a standard deviation of 0.56. Log(Automation Standards) captures the extent of automation

norms across firms with a mean of 0.42 and a standard deviation of 1.20. This is followed by

Log(Programming Standards), and Log(Interoperability Standards) which hold similar implica-

tions in their respective areas.

Standards related to privacy and human biometrics are represented by Log(Privacy Stan-

21Similarly, Germany had 49 countries in its secretariats in 2020, and 4 of these were UNSC members. This
suggests that the placebo instrumental variable for Germany for 2021 is 4

49 = 8.16%.

23



dards) and Log(Human Biometric Standards), with means of 0.34 and 0.37 respectively. Next,

we have measures of multimedia and Internet of Things (IoT) standards, with Log(Multimedia

Standards) and Log(IoT Standards) showing means of 0.60 and 0.14 respectively. The machinery-

related standards are captured by Log(Equipment Standards) with a mean value of 0.35. Finally,

any standards not falling under the previous categories are represented by Log(Unlabeled Stan-

dards), with a mean of 0.34. Each category’s median is at zero, suggesting a large number of

firms have yet to adopt these specific standards. The standard deviations, being consistently

larger than the mean values, indicate a high level of variation in these practices across firms.

Figure B4 in the Appendix illustrates the covariance matrix for these variables. The figure re-

veals a notable 70% correlation between the adoption of machine learning and data standards,

despite their distinct definitions. Conversely, the correlation between machine learning and

ethical standards stands at 21%.

Panel C of Table 2 provides summary statistics on the country-year level CAT data. As shown,

the mean Log(AI Investment) is reported at 2.08, with a median of 0.69. Both Log(AI Patent Ap-

plications) and Log(AI Patents Granted) show lower mean values of 0.85 and 0.63, respectively.

In summary, this section offers a comprehensive overview of corporate performance met-

rics and the expansion of AI standards during our sampling period. In the following section, we

discuss our empirical strategy and present the main empirical findings of our paper.

5 Empirical Findings

In this section, we lay out our empirical approach and deliver our primary empirical conclu-

sions. Section 5.1 elucidates our empirical models and assumptions related to identifiability,

while Section 5.2 details the various types of effect heterogeneity we quantify and the associ-

ated modeling choices. Section 5.3 outlines our core findings on investment, and Section 5.4

introduces supplementary results concerning other corporate outcomes.
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5.1 Identification Strategy

Our main dependent variable of interest, yi ,c,t , refers to capital expenditures to lagged assets,

or R&D expenditures to lagged assets of firm i from country c in year t. The dependent variables

are measured at the end of year t. We assume that

yi ,c,t =β0 +β1Log(AI Standardsi ,c,t )+γXi ,c,t−1 +τWc,t−1 + Fixed Effects+ϵi ,c,t , (1)

where Log(AI Standardsi ,c,t ) represents the logarithm of the number of AI Standards pub-

lished in year t by all committees under the secretariat of country c, where firm i is located. It’s

therefore equal to zero for firm-years belonging to countries without secretariats. Xi ,c,t−1 is a

vector of observable firm characteristics. It contains logged book value of assets, cash flows to

assets, leverage, and logged age of firm i from country c in year t-1. Wc,t−1 is a vector of ob-

servable country characteristics. It contains the logged number of AI committees country c is

a member of in year t-1. It serves as a control variable to account for the potential impact of

participating in global AI standardization efforts, even if a country is not leading those efforts.

Specification (1) also includes firm and year, or firm and industry × year fixed effects. With

industry× year fixed effects we separate out the effects of AI standards from the potential effects

of contemporaneous shocks at the industry-year level. This is necessary because AI standards

can be more prevalent in certain industries compared with others in a given year. For example,

AI standardization may matter more for tech firms in years of patenting spikes or in years with

important tech regulations, e.g. CCPA (see Canayaz et al. (2022)), and tech firms may coordinate

and lobby for AI standards differently and make investments differently than firms from other

industries in such years.

By incorporating firm fixed effects, we investigate firms over time. We include these fixed

effects to account for the fact that AI standardization activity may have varying importance for

different firms on average. Firm fixed effects help control for unobserved factors that could oth-

erwise contribute to variations in investments, providing a more accurate analysis. We two-way
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cluster standard errors at country and industry (Fama-French 48) levels to account for the pres-

ence of serial correlation in each country and industry. Our findings are robust to employing

alternative clustering methods. Specifically, we conducted additional analyses using clustering

at the country level, industry level, and a two-way clustering approach at the country and year

levels. Across all these clustering methods, the results consistently support our main findings,

providing further confidence in the robustness of our results.

How do we estimate the causal effect of AI standards on investment? An ordinary least

squares (OLS) estimate of β1, our coefficient of interest, may not reveal any causal effect of AI

standards on financial outcomes due to endogeneity. For instance, companies of higher unob-

served "quality" can leverage their influence to advocate for the development of more standards

that benefit them, thereby reducing uncertainty about the nature of forthcoming standards for

these firms. Consequently, these firms don’t need to postpone their investments waiting for

the standards to be announced, as they foresee that future standards will be aligned with their

existing investment. This unobserved higher firm “quality” (i.e., an omited variable) is thus

negatively correlated with firm investment post-publication, and positively correlated with the

number of standards published, causing a downward bias on β1.

We therefore estimate specification (1) by using a two-stage least squares (2SLS) procedure.

To do so, we employ a well-established shock previously utilized in the literature, namely two-

year rotations in UN Security Council (UNSC) membership. These rotations can either facilitate

or hinder the process of passing AI standards in committees led by US and other ISO secretari-

ats, which also hold permanent UNSC membership.

Ten of the 15 seats on the UNSC are held by elected rotating members serving two-year

terms. Kuziemko and Werker (2006) show that a rotating member country’s US aid increases

by 59 percent and its UN aid by 8 percent when it rotates onto the council.22 These allow us

22Kuziemko and Werker (2006) find that these effects increase during years in which key diplomatic events take
place. In untabulated results, we confirm that our main findings do not change if we study “import years”, but
based on our observation most years after 2017 are “important years” based on the war in Ukraine.
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to make a formally testable relevance assumption. We assume that the number of AI standards

published under the secretariats of the United States and other permanent members of the

UNSC increases (decreases) as the percentage of rotating UNSC members under their secre-

tariats increases (decreases). This is based on the expectation that more (or fewer) countries

will align with and support the initiatives of these leading secretariats in their respective com-

mittees. We empirically support this assumption by employing F-tests with well-known rules of

thumb (Lee et al., 2022) and confirm that our test statistics comfortably surpass the necessary

threshold values.

The remaining identifiability assumptions of the 2SLS procedure are instrumental uncon-

foundedness and exclusion. The unconfoundedness assumption (also known as independence)

states that there are no backdoor paths between the instrument and the dependent variables

of specification (1). This relies on the conditional orthogonality between elections of rotat-

ing UNSC members and our financial outcome variables (yi ,c,t ) beyond the control structures

introduced in specification (1). Although unconfoundedness is not a formally verifiable as-

sumption, we provide ample empirical evidence for the rotating countries’ inability to time

their two-year UNSC memberships based on observable proxies for investment such as eco-

nomic complexity indices (Hidalgo et al. (2009)).23 We also find no evidence for rotating UNSC

members timing their AI committee and UNSC memberships in coordination. These provide

supplementary evidence for the arguments in Kuziemko and Werker (2006) on the orthogonal-

ity of two-year UNSC rotations against other world events.

The exclusion restriction assumption is also formally untestable, and it states that our in-

strument’s effect on financial outcome variables are fully through AI committee membership.

Thanks to our controls variables and the fixed effects (i.e., firm and industry × year), back-

door paths through which rotating UNSC membership can influence financial outcomes are

limited. Additionally, we perform a placebo test by employing the percentage of rotating mem-

23See, for example, Appendix Figure B3, which presents empirical evidence indicating that rotating UNSC mem-
bers do not specifically target AI Committees.
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bers under the secretariats of countries without permanent UNSC membership (e.g., Sweden,

Germany, India, Japan, Australia, and South Korea) as an instrument for their AI standardiza-

tion efforts. Importantly, this estimation yields both economically and statistically insignificant

outcomes, suggesting that our instrument does not exert any influence on AI standardization

beyond its specific local context.24

Based on the identification assumptions above, we run first-stage regressions on the below

model:

Log(AI Standardsi ,c,t ) =α0 +α1% UNSC Membersi ,c,t−1 +γXi ,c,t−1

+τWc,t−1 + Fixed Effects+ϵi ,c,t , (2)

where % UNSC Membersi ,c,t−1 serves as an instrumental variable, representing the percent-

age of rotating UNSC members in the year t-1 within the secretariats of permanent UNSC mem-

ber country c. To calculate the ratio, we divide the total number of rotating UNSC members

across the committees under the secretariat of country c in a given year by the total number of

committee members under the same secretariat in that year. We assign this percentage value to

all firms i headquartered in country c. It therefore measures the percentage of ISO members in

the secretariats of the United States, the United Kingdom, and France for a specific year. How-

ever, it is equal to zero for all other countries in the Worldscope universe. This instrumental

variable enables us to compare the standards issued under the secretariats of countries that ex-

perience random variations in the composition of committee members, against countries that

do not undergo such changes.

24We also conduct an informal test of the exclusion restriction with a zero-first-stage test that evaluates the use-
fulness of our instrument in a subsample, e.g., industries that are weakly dependent on AI, in which the instrument
affects financial outcomes minimally (Angrist et al. (2010); Altonji et al. (2005)). The underlying idea is that if the
first stage, which captures the effect of the instrumental variable (IV) on the treatment variable, is zero within a
specific subsample, then the reduced form, which represents the effect of the IV on the outcome, should also be
zero if the exclusion restriction is met. Our results on these tests are also available upon request
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In the second stage of our 2SLS procedure, we run regressions on the below model:

yi ,c,t =β0 +β1 áLog(AI Standardsi ,c,t )+γXi ,c,t−1 +τWc,t−1 + Fixed Effects+ϵi ,c,t , (3)

where áLog(AI Standardsi ,c,t ) denotes the instrumented Log(AI Standardsi ,c,t ) from the first

stage. This identification strategy allows us to estimate the effect of an increase in the number

of AI standards under a country’s secretariat on financial outcomes locally on firms headquar-

tered there. In doing so, we exploit time-series variation in AI standard publications driven by

changes in the prevalence of politically-aligned AI committee members under a secretariat.

5.2 Estimation of Effect Heterogeneity

We employ three additional tests to address crucial economic questions related to the signifi-

cance of AI standards for corporate investments. The first question we tackle is related to effect

heterogeneity across AI standardization committees. Understanding the differential impact of

AI standards published by various committees is crucial. The effects of an AI standard devel-

oped by a committee specializing in ethics, for example, can be fundamentally different from

those of a standard issued by a committee focused on software or equipment.

Each committee’s specific domain of expertise brings unique considerations and implica-

tions for the development, implementation, and outcomes of AI technologies. Analyzing these

distinctions allows for a more nuanced understanding of the varied effects and potential ben-

efits of AI standards across different sectors and application areas. Importantly, tackling this

question also allows us to reduce our dependence on country-year level instruments and rather

use instruments at the committee-secretariat-year level. For these reasons, we employ the fol-

lowing 2SLS procedure, beginning with first-stage regressions on

Log(AI Standardsk
i ,c,t ) =αk

0 +αk
1 % UNSC Membersk

i ,c,t−1 +γk Xi ,c,t−1

+τkWc,t−1 + Fixed Effects+ϵk
i ,c,t , (4)
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separately for each AI committee k. Log(AI Standardsk
i ,c,t ) above denotes the logged number

of AI Standards published in year t by committee k under the secretariat of country c where

firm i is located at. % UNSC Membersk
i ,c,t−1 is equal to the percentage of UNSC members in

committee k in year t-1 for firms from the secretariat, and zero otherwise.

[Figure 6 about here]

Figure 6 illustrates the variation of committee-level instruments across different AI com-

mittees and over time. The instrumental variable, %UNSC Membersk
i ,c,t−1, displays different

patterns among each committee k. Comparing the years 2018 and 2019, for example, we ob-

serve an increase in %UNSC Membersk
i ,c,t−1 for committees SC 17, SC 4, and SC 42, indicating a

higher percentage of rotating UNSC members within these committees during that period. In

contrast, a decrease in our instruments is observed for committees SC 32, SC 22, SC 5, SC 24,

and SC 37. These variations reflect the dynamic nature of rotating UNSC member composition

across different AI committees over time.

Related to this, Appendix Figure B5 shows a histogram showcasing the distribution of the

combined committee-level instruments, represented by %UNSC Membersk
i ,c,t−1, across AI com-

mittees. Additionally, the figure also displays the distribution of permanent UNSC members in

the corresponding committees. Importantly, it illustrates how rotating members can marginally

– nearly by 50% incrementally, on average – influence the distribution of votes, potentially fa-

voring permanent UNSC members by augmenting their influence.

In the second stage of our 2SLS procedure, we run regressions on:

yi ,c,t =βk
0 +βk

1
áLog(AI Standardsk

i ,c,t )+γk Xi ,c,t−1 +τkWc,t−1 + Fixed Effects+ϵk
i ,c,t , (5)

where áLog(AI Standardsk
i ,c,t ) denotes the instrumented Log(AI Standardsk

i ,c,t ) from the first

stage, and βk
1 provides an estimate of the average effect of AI standards published by commit-

tee k on firms headquartered in the secretariat country, separately for each committee k. The
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coefficients βk
1 represent different local effects compared to β1 in equation (3). While β1 cap-

tures the overall effect of AI standards on firms headquartered in all countries with secretariats,

βk
1 quantifies the specific effects of AI standards published by committee k on firms located in

particular countries with secretariats (e.g., depending on the country of the secretariat).

The second question we address pertains to the different types of AI standards and their im-

pact on corporate investment. While analyzing individual committees within AI standardiza-

tion space is economically important and advantageous in terms of causal inference, it is insuf-

ficient to provide evidence on effect heterogeneity across categories of standards. Various types

of AI standards, including machine learning, data, interoperability, and privacy standards, can

have distinct effects on corporate investment outcomes. For instance, machine learning stan-

dards in robotics can stimulate innovation and drive investment and efficiency, while machine

learning standards related to ethics or child privacy may impose constraints that potentially

hinder investment and efficiency. Moreover, machine learning standards can be published by

different committees, introducing variations in their effects that cannot be estimated by equa-

tion (5).

To comprehensively analyze the relationship between AI standards and investment, we con-

duct content analysis and provide novel indicators categorizing standards into Machine Learn-

ing, Safety and Accountability, Data, Programming Languages, Interoperability, Interchange,

Automation, Privacy, Unlabeled, Human-related, and Graphics (Multimedia). Subsequently, we

analyze the influence of these standards on corporate investment separately, enabling a more

nuanced examination of their specific implications for different aspects of corporate outcomes.

We provide detailed descriptions of how we conduct the content analysis in Section 4.1.

The third question we tackle explores the heterogeneity of effects relative to countries from

diverse geographic and economic contexts. The impact of AI standards on US firms may, for

example, differ when compared to firms from Germany, which also have secretariats, as well as

when compared to firms from China or Russia, which are permanent members of the United

Nations Security Council (UNSC) without secretariats. The effects of AI standards on US firms
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may further vary when compared to firms from countries that are not actively involved in AI

standardization processes or countries that are not members of the United Nations Security

Council (UNSC). By examining these variations, we can capture the nuanced effects of AI stan-

dardization across countries, offering valuable insights into the interplay between AI standards,

corporate behavior, and international contexts.

To that end, we utilize a pairwise estimation approach across nine distinct groups of firms.

In these groups, the treatment units consist of firms from various combinations of permanent

United Nations Security Council (UNSC) member nations with ISO Secretariats. These include

the United States, a combined group of France and the United Kingdom, and a group com-

prising the United States, France, and the United Kingdom. On the other hand, the control

units consist of firms from nations with ISO Secretariats that are not permanent UNSC mem-

bers (Germany, India, Japan, Australia, South Korea, and Sweden), as well as permanent UNSC

member nations without ISO Secretariats (Russia and China), and nations not associated with

either UNSC or ISO.

5.3 Main Findings

In this section, we present the results of our analysis on the impact of AI standards on capital

and R&D investments. We employ the 2SLS procedure outlined in section 5.1 to estimate the

effects. Table 3 displays our findings from the second stage regressions, reporting the coefficient

estimates in percentage terms.

[Table 3 about here]

Table 3 shows that an increase in the logarithm of AI standards in year t significantly in-

creases both capital and R&D expenditures at the end of year t . This is demonstrated by the co-

efficients of 0.48% and 0.50% for the first two models (representing capital expenditures), and

1.86% and 1.65% for the third and fourth models (representing R&D expenditures), respectively.
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These results are statistically significant at the 1% level. These results suggest that a 100% in-

crease in AI standards would increase capital expenditures by 0.50% and R&D expenditures by

1.65%. Translating these results into standard-deviation terms, a standard deviation increase in

logged AI standards would increase capital expenditures by 0.11 standard deviations and R&D

expenditures by 0.28 standard deviations. The F-statistics derived from the excluded first-stage

instrument and the reported critical tF values at the bottom of the table provide support for

the formally testable relevance condition of the 2SLS procedure. These findings indicate that AI

standards have a significant impact on capital and R&D expenditures. They are also consistent

with part (i) of our Hypothesis 1, as it predicts a positive relationship between investment and

technological standards, which dominates the total number of AI standards being analyzed as

depicted in Table B1.

[Table 4 about here]

Table 4 is divided into four panels, providing findings from reduced-form regressions (Panel

A), first-stage regressions (Panel B), ordinary least squares (OLS) regressions (Panel C), and a

placebo test (Panel D). These analyses help to deepen our understanding of the effect of AI

standards on corporate investments estimated in Table 3. Panel A highlights a clear, positive

link between the lagged percentage of United Nations Security Council (UNSC) members for

each country and the ratios of both capital expenditures (CAPEX) and R&D expenditures to

total assets (AT). The coefficients range from 7.08% to 7.33% for CAPEX/AT and from 27.54% to

24.57% for R&D/AT, respectively. Essentially, a standard deviation increase in the percentage

of UNSC members correlates with a 0.29% rise in capital expenditures and a 1.10% increase in

R&D.

Panel B emphasizes the strong positive correlation between the percentage of UNSC mem-

bers and the natural logarithm of AI Standards. The coefficients, significant across all specifica-

tions, are between 14.63 and 14.85. Interpreting these results suggests that a 100% increase in

the percentage of UNSC members correlates with a growth in AI standards by up to 15.96%.
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Panel C presents the OLS regression estimates using Log(AI Standards) as the primary ex-

planatory variable. The coefficients show a positive and significant association across all spec-

ifications, amounting to 0.35% for CAPEX/AT and varying from 0.74% to 0.84% for R&D/AT.

However, when compared to the results from Table 3, our OLS estimates yield smaller coeffi-

cients - as low as 70% and 45% of the 2SLS coefficients. This comparison illustrates the potential

underestimation of the effect of AI standards on corporate investments in the OLS regressions.

Lastly, in our placebo test results shown in Panel D, we find no significant effects on the vari-

ables C APE X /ATi ,c,t and RD/ATi ,c,t . The estimated coefficients for áLog(AI StandardsPl acebo
i ,c,t )

are 0.27%, 0.06%, 0.23%, and -0.54%, respectively. However, none of these estimates reach sta-

tistical significance, with p-values greater than the conventional threshold. These findings in-

dicate that the instrument we used for the placebo test does not have any meaningful impact

on the variables of interest.

5.3.1 Findings on Effect Heterogeneity

This section presents our findings on effect heterogeneity. Table 5 delivers a comparative anal-

ysis of the impact of AI standards on capital and R&D expenditures, featuring a pairwise esti-

mation strategy across different groups of treatment and control units. As shown in Panel A,

the treatment units comprise combinations of permanent UNSC member nations possessing

ISO Secretariats. Meanwhile, the control units consist of three different categories: (i) countries

with ISO Secretariats but without permanent UNSC membership, (ii) permanent UNSC mem-

ber nations lacking ISO Secretariats, and (iii) countries unaffiliated with either UNSC or ISO.

Countries labelled with "X" are excluded.

[Table 5 about here]

Panel B of Table 5 reveals the local average treatment effects of AI standards on both types

of expenditures, scaled by total assets, for each group. Given the change in the table format, it is

important to note that the displayed coefficients correspond to the estimated treatment effects
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for each group after incorporating covariates, firm-specific fixed effects, and industry-year in-

teractive fixed effects as in Table 3. The results suggest nuanced relationships that highlight the

differential advantages of leading an AI secretariat, particularly among UNSC member nations.

In Groups 1, 2, and 3, which consist of firms from the United States, United Kingdom, and

France, countries leading an ISO Secretariat, we observe significant responses to AI standards.

The coefficients associated with these groups indicate that AI standards have a substantial pos-

itive impact on both capital expenditure and research and development investment. Notably,

the effects are primarily driven by firms from the United States. The maximum estimated eco-

nomic magnitudes of these effects are 0.35% for CAPEX/AT and 1.42% for RD/AT.

In Groups 4, 5, and 6, the data indicates that leading an AI Secretariat provides a particular

advantage to UNSC members, such as the United States, United Kingdom, and France. The

firms from these nations boost their investments more substantially than those from China

and Russia (the remaining permanent UNSC members) after the publication of AI standards.

The economic magnitude of these effects is considerable, with increases ranging from 0.73% to

0.86% for CAPEX/AT and from 1.03% to 1.49% for R&D/AT.

Lastly, the results from Groups 7, 8, and 9 point to larger treatment effects when firms from

treated countries are compared with firms from nations without ISO or UNSC affiliations dur-

ing our sampling period. Interestingly, when we remove from consideration the countries that

play a role in the AI standardization process—even if they do not lead the committees as sec-

retariats—we find that firms from these outsider countries appear to suffer. The observed eco-

nomic effects in these groups are substantial, with increases ranging from 0.52% to 0.69% for

CAPEX/AT and from 1.30% to 2.00%for R&D/AT. Taken together, these results highlight the im-

portant role that AI standards play in corporate investment decisions and underscore the strate-

gic benefits of leading an AI Secretariat, particularly for firms in UNSC member countries.

[Table 6 about here]

To achieve a comprehensive understanding of the relationship between AI standards and
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corporate investment, we carry out a content analysis that helps us categorize AI standards into

distinct groups: Machine Learning, Safety and Accountability, Data, Programming Languages,

Interoperability, Interchange, Automation, Privacy, Unlabeled, Human-related, and Graphics,

as described in Section 4.1. In the subsequent analysis, we individually assess the influence of

these standards on corporate investment, enabling a more granular examination of their spe-

cific implications for different aspects of corporate outcomes.

Table 6 presents the results of this detailed breakdown, revealing how different AI standard

categories impact capital and R&D expenditures. The coefficients show the average effects of

each AI standard category on CAPEX and R&D, both scaled by lagged total assets. Panel A fo-

cuses on the impacts on Capital Expenditures (CAPEX). The results show significant positive

relationships between capital expenditures and standards associated with Machine Learning,

Data, Automation, Programming Language, Interchange, and Machinery & Equipment. The

magnitude of these effects varies, with Machine Learning and Interchange Standards showing

the strongest impacts, with 1.58% and 0.30% increases in CAPEX/AT, respectively. However,

standards related to Ethics & Accountability and Privacy show a negative, albeit insignificant,

relationship with CAPEX.

Panel B examines the impact on R&D expenditures. Machine Learning, Data, Automation,

Interchange, and Machinery & Equipment standards all have significant positive relationships

with R&D, with Machine Learning and Interchange Standards again having the most substantial

impact (5.17% and 1.00% increase in R&D/AT, respectively). Ethics & Accountability standards

show a negative, but insignificant impact on R&D. Privacy standards, on the other hand, show

a significant negative relationship with R&D, resulting in a 9.36% decrease in R&D/AT.

Consistent with Hypothesis 1, these findings highlight the nuanced ways in which different

categories of AI standards can drive or hinder investment in CAPEX and R&D. Firm investments

in CapEx and R&D are positively correlated with the number of published technological stan-

dards such as (a) Interchange Standards, which serve to increase interoperability of the AI eco-

system, and (b) Machine Learning and Programming Language standards, which aim to provide
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instructions on implementations of AI technologies. However, investment is discouraged after

the publication of Privacy standards, which impose constraints on AI technologies. This un-

derscores the importance of individual categorization and consideration when interpreting the

effects of AI standards on corporate investment decisions.

It’s also of economic importance to discern how the impact of an AI standard promulgated

by a committee focusing on industrial data varies from one published by a committee address-

ing other aspects such as biometrics or ethics. Another significant scenario to consider is the

case of standards related to programming languages. It is crucial to investigate whether the

programming language standards published by their dedicated committee have a discernible

impact. Addressing this question allows us to limit our dependence on country-year level in-

struments and instead employ instruments at the committee-secretariat-year level. To that end,

we employ a two-stage least squares (2SLS) procedure, following specification (5).

[Table 7 about here]

In Table 7, we examine the effect heterogeneity driven by different standardization commit-

tees, focusing on CAPEX (Panel B) and R&D expenditures (Panel C). These panels reveal the in-

fluence of various types of AI standards, which include but aren’t limited to Machine Learning,

Data, Automation, Programming Language, Interoperability, Machinery & Equipment, Ethics &

Accountability, and Privacy.

Panel B highlights the impact of these standards on Capital Expenditures. Group 3, the com-

mittee focusing on Programming Languages, shows a significant positive relationship (1.27%)

with CAPEX, whereas Group 4 (Data Interchange) and Group 6 (Guidance on AI) demonstrate

significant negative relationships (-0.86% and -0.78% respectively). Moreover, Groups 7 and

10, centered on Automation and IT Governance, show substantial positive impacts (5.69% and

8.59%) on CAPEX.25

25See Appendix Figure B2 on the categories of standards published by US committees during our sampling pe-
riod.

37



In Panel C, the analysis of R&D Expenditures reveals significant positive relationships for

Group 1 (Industrial Data), Group 2 (Interoperability), and Group 3 (Programming Languages),

with increases of 0.34%, 1.85%, and 3.27%, respectively. Conversely, negative relationships are

observed for Group 4 (Data Interchange), Group 5 (Biometrics), and Group 6 (Guidance on AI),

with decreases of -1.52%, -1.54%, and -1.91%, respectively.

The data thus indicates that the type of committee issuing AI standards has a notable in-

fluence on corporate investment decisions. While some committees, like the one focusing on

Programming Languages (Group 3), stimulate significant increases in both types of investment,

others, notably the Data Interchange committee (Group 4), seem to discourage investment.

This further underscores the importance of nuanced interpretation when considering the im-

pacts of AI standards on corporate investment choices.

The above findings provide evidence for effect heterogeneity. A comparative analysis is

shown across different groups of treatment and control units, examining the impact of AI stan-

dards on capital and R&D expenditures. The results reveal that firms from the United States,

United Kingdom, and France, countries leading ISO Secretariats, show significant positive re-

sponses to AI standards, driving higher levels of CAPEX and R&D investment. Additional find-

ings highlight the importance of the type of AI standard and the issuing committee, with varying

effects observed across different categories and committees.

5.4 AI Standards and Firm Value

The effects of AI standards on firm valuation are important to analyze, as they provide a forward-

looking perspective regarding the influence of AI standards on firms. In this section, we employ

two approaches to analyze firm valuation. Firstly, we examine the one-year ahead impact of AI

standards on valuation ratios and provide insights into how AI standards influence investors’

expectations and market perception of firms’ long-term prospects. Secondly, we assess the dy-

namic treatment effects on valuation ratios by examining valuations from a year ago up to three
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years later. By observing the shifts in Tobin’s Q or M/B over time, we explain the anticipation,

persistence, and trajectory of the impact of AI standards on firm valuation.

[Table 8 about here]

Table 8 provides insights into our initial approach. It outlines the local treatment effects

of AI standards on future Tobin’s Q and M/B ratios, indicating a significant increase in firm

value. Based on our estimates, an increase of one standard deviation in AI standards increases

next year’s firm value by up to 0.12 and 0.14 standard deviations (respectively based on M/B

and Tobin’s Q regressions) for the average firm. Crucially, our first-stage estimates surpass the

necessary threshold for the relevance condition. It’s important to note that AI standards can

offer effects beyond a single year as their imprint on firm activities deepens. For this reason, we

further scrutinize firm value dynamics over an extended period.

[Figure 7 about here]

Figure 7 illustrates the dynamics of the effects. As shown, the pre-standardization period

reveals no distinguishable trends. However, a pronounced positive impact on firm value be-

comes evident from the first year onward, demonstrating economic and statistical significance,

along with a sense of persistence. Our Tobin’s Q regression estimates indicate that a surge of one

standard deviation in AI standards can boost firm value by up to 0.31 and 0.46 standard devia-

tions in the second and third years respectively. Collectively, this section signifies that the ripple

effects of AI Standards extend beyond the initial near-term impacts, showcasing a compelling

compound effect.

5.5 AI Standards and AI Investments

In this section we present our findings on the influence of AI standards on AI-specific invest-

ments at the country level. To that end, we run regressions on the below model:

yc,t =β0 +β1 áLog(AI Standardsc,t )+αi +γt +ϵc,t , (6)
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Our main dependent variable of interest, yc,t , refers to one of Log(AI Investmentc,t ), which

is defined as the logarithm of one plus the AI investments made in country c in year t ; Log(AI

Patent Applicationsc,t ), which represents the logarithm of one plus the number of AI patent

applications filed in country c in year t , and Log(AI Patents Grantedc,t ), which is the logarithm

of one plus the number of AI patents granted in country c in year t . áLog(AI Standardsc,t ) denotes

the instrumented Log(AI Standardsc,t ) from the first stage. % UNSC Membersc,t−1 serves as an

instrumental variable, representing the percentage of rotating UNSC members in the year t-1

within the secretariats of permanent UNSC member country c.

[Table 9 about here]

We present our findings in Table 9. Our findings indicate a positive and statistically signif-

icant relationship between Log(AI Standards) and other AI-related investments within coun-

tries over time. Specifically, a unit increase in Log(AI Standards) is associated with increases in

logged AI investments, patent applications, and total AI patents granted by coefficients of 0.23,

0.46, and 0.35, respectively. These results underline the strong influence of AI standards on

investment and patenting activities in the AI domain. These findings are also consistent with

part (i) of our Hypothesis 1, which predicts a positive relationship between AI investments and

technological standards.

[Figure 8 about here]

We further examine how AI standards influence different areas of AI investments and patent

applications. Figure 8 shows that AI standards notably boost investments in areas such as

robotics, manufacturing, cybersecurity, privacy and finance security, data analytics, software,

face recognition, and education. This demonstrates the wide-ranging impact of standardizing

AI across various fields. Furthermore, the number of AI patent applications increases in sectors

like banking and finance, security, industrial manufacturing, machine learning, transportation,
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telecommunications, and computer vision, following the adoption of AI standards.26 Overall,

our findings highlight that as AI standards are adopted, both the funding for AI technologies

and the number of AI patent applications, including those patents that are granted, increase.

6 Conclusion

Standardization is an influential force in shaping innovation and business performance across

various sectors. However, its impact on emerging technologies such as artificial intelligence

(AI) remains largely untouched. This paper aims to bridge this gap by examining how AI stan-

dards shape corporate outcomes. In line with the adage, ’Frameworks are akin to toothbrushes.

Everyone needs one but prefers not to use another’s,’ the standardization of AI is a painful yet

vital task. It has multifaceted effects for businesses. On the one side, standards offer a concrete

roadmap for AI applications, lower the entry threshold for firms, diminish uncertainty, boost

compatibility among AI systems, and encourage beneficial network externalities. On the other

hand, AI standards enforcing restrictions or compliance to certain norms can curtail AI effi-

ciency, deplete investment, amplify market concentration, create entry barriers, impede radical

innovation, and disproportionately favor certain firms at the expense of others.

In this paper, we provide empirical evidence highlighting the influence of AI standards on

corporate investments. Our findings suggest that universal adoption of AI standards signifi-

cantly affect capital investment and R&D expenditure. AI standards leadership, particularly in

the United States, spurs higher investment levels than countries with secretariats, like China

and Russia, or non-participating countries. The committee issuing AI standards also plays a

vital role in investment decisions, with certain committees prompting substantial investment

growth while others deter it. We further delve into the nature of AI standards by conducting

a content analysis. Our results underscore the growing importance of machine learning, AI

26Although we have additional results indicating that AI standards related to specific domains further stimulate
patenting and investments in those domains, these details are not included here but are available upon request.
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safety and accountability, programming language, and big data standards. Standards related to

machine learning, data interchange, and privacy show significant effects on investment, while

automation and machinery and equipment standards also have positive impacts.

In summary, this paper illuminates the impact of AI standards on corporate outcomes, pro-

viding critical insights for both businesses and policymakers. Our empirical evidence indicates

that AI standards substantially sway investment behavior, and the type of standards and is-

suing committees are crucial determinants. These insights deepen our understanding of the

repercussions of AI standardization, underlining the necessity for meticulous planning and ex-

ecution of AI standards to cultivate transparent, reliable, and profitable outcomes.
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Table 1. Breakdown of Standards by AI-Centric Organizations and Secretariats

This table presents the number of standards published by international standardization organizations, categorized by responsible committees and secretariats (i.e.,
countries tasked with leading the standardization endeavors of their respective committees, provided in ISO alpha-3 format). Standards published by the Institute of
Electrical and Electronics Engineers (IEEE) are presented separately, and IEEE is shown as an independent secretariat. The committees are derived from "U.S. Leadership
in AI: A Plan for Federal Engagement in Developing Technical Standards and Related Tools" report produced by the National Institute of Standards and Technology (NIST)
in response to Executive Order (EO) 13859. The data covers the period from 1972 to 2022.

Secretariat
AUS FRA DEU IEEE IND JPN KOR SWE GBR USA Total

ISO Committees

TC 184 0 30 0 0 0 0 0 0 0 0 30
TC 184/SC 1 0 0 39 0 0 0 0 0 0 0 39
TC 184/SC 4 0 0 0 0 0 0 0 0 0 1,771 1,771
TC 184/SC 5 0 0 0 0 0 0 0 0 0 96 96
TC 199 0 0 89 0 0 0 0 0 0 0 89
TC 299 0 0 0 0 0 0 0 30 0 0 30

Subtotal 0 30 128 0 0 0 0 30 0 1,867 2,055

ISO/IEC Committees

JTC 1/SC 7 0 0 0 0 352 0 0 0 0 0 352
JTC 1/SC 17 0 0 0 0 0 0 0 0 338 0 338
JTC 1/SC 22 0 0 0 0 0 0 0 0 0 248 248
JTC 1/SC 24 0 0 0 0 0 0 0 0 142 0 142
JTC 1/SC 27 0 0 432 0 0 0 0 0 0 0 432
JTC 1/SC 28 0 0 0 0 91 0 0 0 0 0 91
JTC 1/SC 29 0 0 0 0 1,168 0 0 0 0 0 1,168
JTC 1/SC 32 0 0 0 0 0 0 0 0 0 265 265
JTC 1/SC 36 0 0 0 0 0 0 70 0 0 0 70
JTC 1/SC 37 0 0 0 0 0 0 0 0 0 176 176
JTC 1/SC 40 42 0 0 0 0 0 0 0 0 0 42
JTC 1/SC 41 0 0 0 0 0 0 42 0 0 0 42
JTC 1/SC 42 0 0 0 0 0 0 0 0 0 16 16

Subtotal 42 0 432 0 352 1,259 112 0 480 705 3,382

IEEE Committee 0 0 0 19 0 0 0 0 0 0 19

Total 42 30 560 19 352 1,259 112 30 480 2,572 5,456
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Table 2. Summary Statistics

This table presents summary statistics of corporate outcomes (Panel A) and AI standards (Panel B) for the sampling period from
2017 to 2022. Panel A’s data is from Worldscope, and Panel B’s data is hand-collected following a report titled "U.S. Leadership
in AI: A Plan for Federal Engagement in Developing Technical Standards and Related Tools." This report is produced by the
National Institute of Standards and Technology (NIST) in response to Executive Order (EO) 13859. The unit of observation is
firm i from country c in year t. The statistics include the number of observations (N), mean, median, standard deviation (SD),
5th percentile (P5), and 95th percentile (P95) for each variable. Variable descriptions for Panels A, B, and C are provided in
Appendix Sections B.1.1, B.1.2, and B.1.3, respectively.

Panel A: Summary Statistics on Corporate Outcomes

N Mean Median SD P5 P95

CAPEX/ATi ,c,t 201,833 4.82 2.14 7.87 0.01 18.67
RD/ATi ,c,t 77,563 5.31 2.11 10.38 0.04 22.17
Sales/ATi ,c,t 201,732 84.68 67.19 82.09 1.07 238.21
Log(BVA)i ,c,t−1 201,701 2.95 2.95 0.13 2.75 3.16
CF/ATi ,c,t−1 201,762 -0.03 0.03 0.42 -0.29 0.17
Leveragei ,c,t−1 199,149 0.25 0.18 0.33 0.00 0.64
ST Leveragei ,c,t−1 173,048 0.51 0.48 0.35 0.00 1.00
Log(Q)i ,c,t 185,455 0.95 0.80 0.47 0.48 1.86
Log(M/B)i ,c,t 185,557 0.69 0.55 0.55 0.09 1.77
Log(Age)i ,c,t−1 199,357 2.48 2.71 0.82 0.69 3.56
Log(Committees)i ,c,t−1 176,108 1.90 2.48 1.19 0.00 2.94
% UNSC Membersi ,c,t−1 187,632 0.02 0.00 0.04 0.00 0.11

Panel B: Summary Statistics on AI Standards

N Mean Median SD P5 P95

Log(AI Standards)i ,c,t 201,833 1.51 0.00 1.73 0.00 4.16
Log(Machine Learning Standards)i ,c,t 201,833 0.73 0.00 1.10 0.00 3.00
Log(Data Standards)i ,c,t 201,833 0.55 0.00 1.23 0.00 3.95
Log(Accountability Standards)i ,c,t 201,833 0.23 0.00 0.56 0.00 1.10
Log(Automation Standards)i ,c,t 201,833 0.42 0.00 1.20 0.00 3.76
Log(Programming Standards)i ,c,t 201,833 0.73 0.00 1.10 0.00 2.77
Log(Interchange Standards)i ,c,t 201,833 0.43 0.00 1.19 0.00 3.83
Log(Interoperability Standards)i ,c,t 201,833 0.35 0.00 0.68 0.00 2.08
Log(Privacy Standards)i ,c,t 201,833 0.34 0.00 0.70 0.00 2.08
Log(Human Biometric Standards)i ,c,t 201,833 0.37 0.00 0.71 0.00 2.08
Log(Multimedia Standards)i ,c,t 201,833 0.60 0.00 1.07 0.00 3.37
Log(IoT Standards)i ,c,t 201,833 0.14 0.00 0.44 0.00 1.61
Log(Equipment Standards)i ,c,t 201,833 0.35 0.00 0.71 0.00 1.95
Log(Unlabeled Standards)i ,c,t 201,833 0.34 0.00 0.53 0.00 1.61

Panel C: Summary Statistics on Country-Year Level AI Investments and AI Patents

N Mean Median SD P5 P95

Log(AI Investmentc,t ) 684 2.08 0.69 2.60 0.00 7.27
Log(AI Patent Apps.c,t ) 684 0.85 0.00 1.94 0.00 5.60
Log(AI Patents Grantedc,t ) 684 0.63 0.00 1.69 0.00 4.85
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Table 3. Effects of AI Standards on Capital and R&D Expenditures

This table presents our estimates of the local treatment effects of AI standards on capital and R&D expenditures using a
two-stage least squares (2SLS) procedure. Our sampling period is from 2017 to 2022. The number of AI standards is instru-
mented with the % of UNSC members in a given year under a given secretariat. The control variables included in the analysis
are described as follows: Log (BV Ai ,c,t−1): The logarithm of firm-level book value of assets at time t − 1, representing the
financial health of the firm.C F /ATi ,c,t−1: Cash flow scaled by total assets at time t −1, indicating the firm’s liquidity position.
Lever ag ei ,c,t−1: The leverage ratio of the firm at time t − 1, measuring the extent of debt financing. Log (Ag ei ,c,t−1): The
logarithm of the firm’s age at time t − 1, capturing the maturity of the firm. Log (Commi t teesi ,c,t−1): The logarithm of the
number of committees the firm is involved in at time t −1, reflecting the firm’s level of engagement in standardization activities.
Fixed effects are included for both firm and year, and interaction effects are considered for industry and year. Detailed variable
descriptions can be found in Table 2’s caption. Our findings from reduced-form, first-stage and ordinary least squares (OLS)
regressions, and placebo tests are presented separately in Table 4. Coefficient estimates are reported in percentage terms and
marked with ⋆⋆⋆, ⋆⋆, and ⋆ indicate statistical significance at the 1%, 5%, and 10% levels, respectively. The standard errors
are two-way clustered at the country and industry (FF48) levels. We also report F-statistics for the excluded instrument from
the first stage regressions and tF critical values for 5% and 1% level tests (

p
c0.05(F ) and

p
c0.01(F )) as in Lee et al. (2022) to

further assess the significance of the second stage coefficient estimates.

C APE X /ATi ,c,t C APE X /ATi ,c,t RD/ATi ,c,t RD/ATi ,c,t

(1) (2) (3) (4)áLog(AI Standardsi ,c,t ) 0.48*** 0.50*** 1.86*** 1.65***
(4.65) (3.80) (9.46) (4.88)

Log (BV Ai ,c,t−1) 45.84*** 44.99*** -6.34*** -5.72***
(6.86) (6.90) (-3.04) (-3.65)

C F /ATi ,c,t−1 -2.17*** -2.18*** -5.91*** -5.88***
(-11.82) (-11.06) (-8.61) (-8.43)

Lever ag ei ,c,t−1 -1.04 -0.94 2.45*** 2.46***
(-0.92) (-0.85) (3.06) (3.03)

Log (Ag ei ,c,t−1) -2.84*** -2.74*** -3.89** -3.54**
(-5.26) (-5.26) (-2.10) (-2.11)

Log(Committees)i ,c,t−1 -0.04 0.04 0.40 0.53
(-0.10) (0.11) (0.46) (0.63)

Fixed Effects
Firm Yes Yes Yes Yes
Year Yes No Yes No
Industry × Year No Yes No Yes

Observations 171,238 171,238 67,654 67,647

F-stat (Excl. Inst.) 66.10 63.68 97.02 93.12p
c0.05(F ) 2.06 2.07 1.97 1.98p
c0.01(F ) 3.26 3.28 3.05 3.06
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Table 4. Reduced-form, First-stage, and Placebo Results

This table presents the outcomes of reduced-form, first-stage, and ordinary least squares regressions and our placebo tests to
provide additional evidence on the influence of AI standards on corporate investments. Panel A displays the reduced-form
regression results where the C APE X /ATi ,c,t and RD/ATi ,c,t ratios are regressed on the lagged percentage of UNSC members for
each country. Panel B presents the first-stage regression results on the natural logarithm of AI Standards (Log(AI Standardsi ,c,t )),
again using the lagged percentage of UNSC members as the instrumental variable. Panel C reports the ordinary least squares
(OLS) regression estimates, with Log(AI Standardsi ,c,t ) as the key explanatory variable. Panel D displays our findings from our
placebo test. We utilize the percentage of UNSC rotating members under the secretariats of countries without permanent
UNSC membership (e.g., Sweden, Germany, India, Japan, Australia, and South Korea) as an instrument for their AI standard-
ization efforts. We present second-stage coefficient estimates for the instrumented variable, Log(AI StandardsPl acebo

i ,c,t ). Finally,
Panel E delineates the control variables employed in the analyses across Panels A, B, C, and D, which include firm fixed effects
(Firm FE), year fixed effects (Year FE), and industry-year fixed effects (Industry × Year FE), each applied in corresponding
specifications in their columns. Detailed variable descriptions can be found in Table 2’s caption. Our sampling period is from
2017 to 2022. Coefficient estimates are reported in percentage terms. The robust standard errors, two-way clustered at the
country and industry (FF48) levels, are reported in parentheses under the coefficients, and significance levels are marked as
⋆⋆⋆ (1%), ⋆⋆ (5%), and ⋆ (10%).

Panel A: Reduced-Form Regressions on Corporate Outcomes

C APE X /ATi ,c,t C APE X /ATi ,c,t RD/ATi ,c,t RD/ATi ,c,t

(1) (2) (3) (4)
% UNSC Membersi ,c,t−1 7.08*** 7.33*** 27.54*** 24.57***

(4.33) (3.57) (13.50) (5.18)

Observations 171,238 171,238 67,654 67,647
R-squared 0.029 0.028 0.134 0.126

Panel B: First-Stage Regressions on Log(AI Standardsi ,c,t )

(1) (2) (3) (4)
% UNSC Membersi ,c,t−1 14.64*** 14.63*** 14.80*** 14.85***

(8.13) (7.98) (9.85) (9.65)

Observations 171,238 171,238 67,654 67,647
R-squared 0.343 0.339 0.334 0.331

Panel C: Ordinary Least Squares (OLS) Regressions on Corporate Outcomes

C APE X /ATi ,c,t C APE X /ATi ,c,t RD/ATi ,c,t RD/ATi ,c,t

(1) (2) (3) (4)
Log(AI Standardsi ,c,t ) 0.35*** 0.35*** 0.84*** 0.74**

(4.08) (3.67) (2.86) (2.52)

Observations 171,238 171,238 67,654 67,647
R-squared 0.029 0.028 0.132 0.125

Panel D: Placebo Test

C APE X /ATi ,c,t C APE X /ATi ,c,t RD/ATi ,c,t RD/ATi ,c,t

(1) (2) (3) (4)áLog(AI StandardsPl acebo
i ,c,t ) 0.27 0.06 0.23 -0.54

(0.41) (0.06) (0.13) (-0.56)

Observations 171,238 171,238 67,654 67,647

Panel E: Explanatory Variables for Panels A, B, C, and D

(1) (2) (3) (4)
Table 3 Controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Year FE Yes No Yes No
Industry × Year FE No Yes No Yes
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Table 8. Effects of AI Standards on Firm Valuation

This table presents our estimates for the local treatment effects of AI standards on logged future Tobin’s Q and M/B ratios
using our two-stage least squares (2SLS) procedure. Our sampling period is from 2017 to 2022. The number of AI standards
is instrumented with the % of UNSC members in a given year under a given secretariat. The control variables incorporated
in this analysis align with those in Table 3, with the exclusion of the book value of assets and cash flow variables, as they can
function as mediators of AI standards in the event dynamics. Fixed effects are included for both firm and year, and interaction
effects are considered for industry and year. Detailed variable descriptions can be found in Table 2’s caption. Our findings
from reduced-form, first-stage and ordinary least squares (OLS) regressions, and placebo tests are available upon request.
Coefficient estimates are reported in percentage terms and marked with ⋆⋆⋆, ⋆⋆, and ⋆ indicate statistical significance at the
1%, 5%, and 10% levels, respectively. The standard errors are two-way clustered at the country and industry (FF48) levels. We
also report F-statistics for the excluded instrument from the first-stage regressions and tF critical values for 5% and 1% level
tests (

p
c0.05(F ) and

p
c0.01(F )) as in Lee et al. (2022) to further assess the significance of the second-stage coefficient estimates.

Log(M/Bi ,c,t+1) Log(M/Bi ,c,t+1) Log(Qi ,c,t+1) Log(Qi ,c,t+1)

(1) (2) (3) (4)áLog(AI Standardsi ,c,t ) 3.67** 2.84** 3.60*** 3.08**
(2.25) (2.08) (2.93) (2.74)

Controls Yes Yes Yes Yes

Fixed Effects
Firm Yes Yes Yes Yes
Year Yes No Yes No
Industry × Year No Yes No Yes

Observations 134,353 134,352 134,252 134,251

F-stat (Excl. Inst.) 66.10 63.68 97.02 93.12p
c0.05(F ) 2.14 2.15 2.13 2.15p
c0.01(F ) 3.47 3.48 3.44 3.48
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Table 9. Effects of AI Standards on AI Investments and AI Patents

This table provides our estimates for the local treatment effects of AI standards on AI investments, AI patent applications, and
AI patents granted. We utilize a two-stage least squares (2SLS) procedure for the coefficient estimates presented in the first
three columns. The fourth column presents the results of the first stage. Our sampling period is from 2017 to 2022. The number
of AI standards is instrumented with the % of UNSC members in a given year under a given secretariat. Detailed variable
descriptions can be found in Section C. Coefficient estimates marked with ⋆⋆⋆, ⋆⋆, and ⋆ indicate statistical significance at
the 1%, 5%, and 10% levels, respectively. The standard errors are clustered at the country level.

Log(AI Investmentc,t ) Log(AI Patent Apps.c,t ) Log(AI Patents Grantedc,t ) Log(AI Standardsc,t )

(1) (2) (3) (4)áLog(AI Standardsc,t ) 0.23** 0.46** 0.35***
(2.19) (2.23) (6.40)

% UNSC Membersc,t−1 7.10***
(2.86)

Fixed Effects
Country Yes Yes Yes Yes
Year Yes No Yes No

Observations 684 684 684 684
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Figure 1. Yearly Publication of Standards by ISO Secretariats

This figure illustrates the number of AI standards published in a given year by each secretariat. The data are hand collected following "U.S. Leadership in AI: A Plan for
Federal Engagement in Developing Technical Standards and Related Tools" report produced by the National Institute of Standards and Technology (NIST) in response to
Executive Order (EO) 13859. On the horizontal axis, the years are listed chronologically, providing a timeline of the standards’ development. The vertical axis represents
the number of AI standards published. Each secretariat is color-coded to facilitate easy differentiation.
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Figure 2. Power Spheres: Standards by Each Secretariat

This circle pack figure visually represents the number of standards published under each scope for each secretariat, covering
the sampling period from 1972 to 2022. The sizes of the circles correspond to the numbers of standards published, providing
a visual representation of the relative volume of standards within each scope. To save space, the names of secretariats are
presented in ISO-2 format. Each secretariat is labeled in distinct colors.
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Figure 3. ISO Committee and Secretariat Involvement by Country

The world map provides a visualization of countries’ involvement in ISO committees and secretariat roles from 2017 to 2023. Using distinct color gradients, each country
is painted to indicate the number of secretariat and committee years. The two-dimensional figure on the right side presents the distribution of secretariat and committee
years. It uses a color-coded system to categorize countries based on the combination of their involvement. Countries without ISO involvement are shown in white.
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Figure 4. The Rise of AI Standards

The figure illustrates the types of AI standards published by secretariats within the International Organization for Standardization (ISO). Machine Learning includes stan-
dards that pertain to different aspects of machine learning, such as artificial intelligence, learning algorithms, natural language processing, fuzzy logic, neural networks,
decision-making processes, semantic analysis, training methodologies, and speech and image recognition. Safety and Accountability focus on issues of accountability,
governance, safety, ethics, robustness, security, and societal impact concerning AI systems and technologies. Data comprises standards related to data management, pro-
cessing, and analytics, covering areas such as data governance, data privacy, data security, data exchange, data interoperability, and data quality assurance. We exclude
machine learning standards from data standards. Programming Languages encompasses standards related to programming languages, software development practices,
program design, software quality assurance, and specific programming languages like SQL, Pascal, BASIC, Linux, C#, Java, C++, and Python. Interoperability covers stan-
dards addressing interoperability, compatibility, and connectivity between AI systems, as well as integration with other technologies, including the Internet of Things (IoT),
digital twins, internet protocols, and IoT connectivity standards. Interchange denotes standards related to the interchange or exchange of data, including data formats,
data protocols, and data representation standards. Automation includes standards associated with automation technologies, addressing aspects like automated decision-
making, process automation, and the integration of AI systems into automated workflows. We exclude machine learning standards from automation standards. Standards
under Privacy are on privacy protection, cybersecurity, secure data handling, biometric data privacy, human rights considerations, and ensuring the privacy of personal
information within AI systems. The Unlabelled category represents standards that do not fall into any of the specific types mentioned above along with Human-related and
Graphics, which are not plotted to save space. Human-related includes standards addressing human-related aspects of AI, such as biometrics, human-machine interaction,
genomics, and ethical considerations related to the impact of AI on individuals and society. Graphics concern graphics, visualization, multimedia technologies, audio and
video encoding, and media formats like MPEG and acoustics. Detailed descriptions are presented in Table 2’s caption.
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Figure 5. Involvement in Machine Learning and Ethical AI Standards by Country

This world map illustrates each country’s contributions to machine learning and ethics & accountability standards from 2017 to 2023 using color gradients. Countries are
shaded based on their roles as either committee members or secretariats in publishing committees. The two-dimensional figure on the right side categorizes countries
based on their respective involvement. Countries without any contributions remain white.
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Figure 6. Committee-Level Instruments: UNSC Rotations and ISO Committees

This figure displays the percentage of rotating United Nations Security Council (UNSC) members in AI committees of permanent UNSC member countries between 2017
and 2022. Committee membership data is collected manually using the Wayback Machine (https://archive.org/web/), which provides ISO committee membership
data from 2017. The figure illustrates the dynamic changes in %UNSC Membersk

i ,c,t−1 for different AI committees, highlighting the varying composition of rotating UNSC
members within these committees over time.
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Figure 7. Effect Dynamics Based on Valuation Regressions

This figure displays estimates for the local average treatment effects (LATE) on Logged Tobin’s Q and M/B during the event time
of AI standards implementation. The LATE estimates are derived following our base regression models, where the dependent
variables are Logged Tobin’s Q and M/B from one year before ("Pre-Publication") to three years after AI standardization ("3
Years After Publication"). Each x-axis label corresponds to the LATE derived from a different 2SLS regression. The coefficient
estimates are in percentage terms. The figure also outlines the 95% confidence intervals for these estimates. For details on our
instrumental variable approach, please refer to Section 5.3.1.
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Figure 8. The Influence of AI Standards on Categories of AI Investment and AI Patents

This table provides our estimates for the local treatment effects of AI standards on different types of AI investments. The y-axis
presents the coefficient estimates based on Equation (6), and the x-axis presents t-statistics. AI investment or patent types with
t-statistics less than two are not labeled for readability. In Panel A, Robotic stands for robotics, Manufac for manufacturing,
CybSec for cyber security, PrivSecu for privacy and security, ConGood for consumer goods, Educate for education, Finance for
finance, ProfSer for professional service, DataAna for data and analytics, GenPurp for general purpose, Hardwr for hardware,
Simulat for simulation, MobPlat for mobile, platforms, and internet services, Softwr for software, and FaceRec for facial recog-
nition. In Panel B, BankFinance stands for Banking and Finance, PlanSched for Planning and Scheduling, Security for Security,
IndManuf for Industry and Manufacturing, AnalytAlg for Analytics and Algorithms, Transprt for Transportation, MachLearning
for Machine Learning, General for General, Business for Business, PhysSciEn for Physical Sciences and Engineering, PersDev
for Personal Devices and Computing, Telecom for Telecommunications, CtrlMeth for Control Methods, CompV for Computer
Vision, SpeechPr for Speech Processing, LogicProg for Logic Programming, EnergMgmt for Energy Management, OntoEng for
Ontology Engineering. Detailed variable descriptions can be found in Section C.

Panel A: Effect Heterogeneity Across AI Investment Categories

Panel B: Effect Heterogeneity Across AI Patent Categories
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A Theory

To illustrate how AI standards affect firm investment, we introduce a stylized model featuring delayed

investment due to uncertainty.

A.1 Model Setup

Firm Investment Consider one firm with an infinite horizon. Time is discrete. In each period t , the firm

decides on its AI-related investment, which may include the R&D investment to install and/or improve the

AI application/system. There are N domains of AI investment that are accessible to the firm. Examples

of AI domains are voice recognition, computer vision, robotics, etc. Within each domain, there are two

competing types of AI technologies the firm can invest in, type A and type B . The capital stocks of domain-

n, type-i AI technology at the start of period t is denoted as AI n,i
t , n ∈ {1,2, ..., N }, for i = A,B . Denote the

total AI factor as

AIt ≡
N∑
n

(
s̃n,A

t F (AI n,A
t )+ s̃n,B

t F (AI n,B
t )

)
(7)

is the summation of AI factors across N domains. Within each domain n, the AI factor is the summation

across the two competing technologies, where s̃n,i
t ≥ 0 is the (potentially random) productivity of technol-

ogy i within domain n; F (·) > 0 is strictly increasing, concave, and satisfies Inada condition that F ′(0) =∞
and F ′(∞) = 0.

To produce the output of the firm, the AI factor needs to be combined with two other input factors,

namely, physical capital Kt and data. The firm adjusts the physical capital Kt through choosing the capital

expenditure at the start of each period. Let D is the hypothetical data pool accessible to the firm, absence

of any privacy restrictions (e.g., constraints on data collection and data sharing). To focus on the invest-

ment in AI and physical capital, we abstract away from the investment in data and instead, assume the

firm takes D as given.

The firm’s production function in each period t is

Yt = AIαt K 1−α
t D(1− τ̃t ), (8)

where τ̃t ∈ [0,1). The (potentially random) variable τ̃t embodies the prevailing limitations on data privacy.

As the restrictions on data privacy increase, the actual data pool accessible to a firm shrinks, either due

to reduced data collection or diminished data sharing. In addition, τ̃t captures the constraining effect of

ethical AI requirements on the productivity of AI technologies, as the focus on ethical considerations may

limit the scope of automation and the speed of decision-making processes.

Observe that the three input factors enter the production function through a multiplicative structure.

This is motivated by the fact that the three factors are complements of each other, as an increase in one

factor boosts the marginal product of another. To start with, AI investment complements physical in-

vestment in property, plant, and equipment (PP&E), as AI is commonly regarded as the technology that

may lead to the fourth industrial revolution, i.e., Industry 4.0 (Peres, Jia, Lee, Sun, Colombo and Barata,

2020). A more advanced AI technology has the potential to make machines and equipment significantly
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more productive, thereby increasing the return of investment in PP&E. Moreover, AI complements data,

as more investment in AI advances the AI technology, enabling the firm to utilize its data more efficiently;

meanwhile, a bigger data pool helps to train and improve the AI algorithms, empowering the algorithms

(O’Leary, 2013).

At the start of each period, the firm decides and makes the investment on all types of AI investments

and physical investment. Both types of investment are partially irreversible in the sense that disinvest-

ment is costly. Given investment I in AI-domain n and type i , the cost of investment is C In(I ) = I if I ≥ 0

(positive investment), and C In(I ) = C n I if I < 0 (disinvestment), with C n ∈ (0,1). That is, only a fraction

C n of disinvestment amount can be salvaged. Similarly, the investment cost for physical investment K is

that C IK (I ) = I if I ≥ 0, and C IK (I ) = C K I if I < 0, with C K ∈ (0,1). The partically irreversible feature of

investment aligns with the vast body of literature on real options following Dixit and Pindyck (1994) and is

motivated by the significant cost of disinvestment (e.g., due to fire-sales).

The firm’s investment problem in each period j ≥ 1 is

max
{I n,A

AI ,t ,I n,B
AI ,t ,IK ,t }∞t= j

E
∞∑

t= j
βt−1{AIαt K 1−α

t D(1− τ̃t )−
N∑

n=1

(
C In(I n,A

AI ,t )+C In(I n,B
AI ,t )

)−C IK (IK ,t )
}

s.t .(AI factor) AIt =
N∑
n

(
s̃n,A

t F (AI n,A
t )+ s̃n,B

t F (AI n,B
t )

)
(capital dynamics) AI i

t = AI n,i
t−1 + I n,i

AI ,t , for i = A,B ,n ∈ {1,2, ..., N }.

Kt = Kt−1 + IK ,t .

(costly disinvestment) C In(I ) =
I if I ≥ 0

C n I if I < 0

C IK (I ) =
I if I ≥ 0

C K I if I < 0

(9)

where β ∈ (0,1) is the discount factor, and the initial capital stocks are AI n,i
0 = K0 = 0, for i = A,B , n ∈

{1,2, ..., N }.27 For simplicity, we assume that max{C n ,C k } < l for all n = 1,2, ..., N . That is, the cost of disin-

vestment is sufficiently large.28

AI-Related Standards The firm’s investment decisions are crucially influenced by the future publications

of AI-related standards. We assume that the firm expects an event with potential AI-standards publication

to arrive on a random future period, period T . For simplicity, the arrival can happen at most once. The

publication event follows Poisson arrival. That is, for any period t prior to which the arrival has occurred,

the likelihood of the publication event happening within that period is λ ∈ [0,1]. We assume the publi-

cation event takes place at the end of period T , after period T investment has been made and period T

27For simplicity, we assume zero depreciation rate. The qualitative results hold as long as the depreciation rate is not too high.
28Under this assumption, the firm does not reduce the investment in the unendorsed AI technology if a technological standard

is published, as such disinvestment is too costly.
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profit has been realized. That is, the publication of standards affects the production in period T +1 and

onwards.29

Conditional on the arrival of the event, the type of standards potentially published is random. With

probability π ∈ (0,1), only technological standards are potentially published, while with probability 1−π,

only privacy and ethical standards can be published.30 The publication of AI standards alters the economic

environment the firm faces, depending on the nature of the standards.

Technological AI Standards Suppose the standards that are published are technological AI standards,

which may specify the recommended “foundation and architecture” as well as the “best practices” of AI

technologies. The publication of such standards narrows the future paths of AI development by endorsing

a subset of AI technology paths over other competing ones. We model this effect by assuming that if a

technological standard pertaining AI domain n is published, then one of the two AI technologies in domain

n is endorsed by the standards. Consequently, after the publication, the productivity of the endorsed

technology increases relative to the pre-publication level, while the productivity of the unendorsed type

decreases relative to the pre-publication level. This bifurcation of productivity is due to the network effect.

That is, a positive feedback loop occurs to the standards-endorsed technology, as the wider adoption of

the technology after standards publication induces more systems and applications being developed to be

compatible with it. This enhanced interoperability feeds back positively into the attractiveness of using

this technology. On the contrary, a negative loop occurs with the technology not endorsed, as standards

publication results in a smaller user base.31

To capture effect of the publication of technological AI standard, we assume that conditional on (1)

the arrival of the event in period T and (2) only technological standards can be published, domain n of AI

technology sees a standard publication with probability q ∈ (0,1). The publication of AI standards across

domains are independent and identically distributed. Denote m ∈ {0,1,2, ..., N } as the realized number

of total technological standards published. Higher m implies that more domains of AI technologies have

standards being publishes.

To characterize the bifurcation of productivity within domain n, we assume the productivity before the

publication of standards is constant over time, that is, s̃n,A
t = s̃n,B

t = sn > 0, for t ≤ T , where T denotes the

random publication period. There is a divergence in productivity between the two technologies after the

publication. With probability pn,A ∈ (0,1), type-A is endorsed by the standard, so (s̃n,A
t , s̃n,B

t ) = (s̄n , sn), for

all t > T ; while with probability pn,B = 1−pn,A, type-B is endorsed, so (s̃n,A
t , s̃n,B

t ) = (sn , s̄n), for all t > T .

29This assumption does not affect the qualitative result.
30For simplicity, we do not consider the simultaneous publications of both technological and ethical standards within the

event. The reason is to highlight the fundamental differences in how these two types of standards affect productivity. This
separate analysis is also aligned with our empirical analysis in Table 6, where we separately consider the impact of technological
and ethical/privacy standards publication on firm investment.

31At the heart of the network effect argument is the importance of “interoperability” in AI ecosystem. This is motivated by
the observation that interoperability is essential to the thriving of any information technologies. The bifurcation of productivity
is exacerbated by the following two factors that further enhance the productivity of the endorsed technology: (i) technologi-
cal standards often codify the details of the endorsed technology and provide a clear blueprint for the implementation, and
(ii) technological standards enhance the interoperability of the endorsed technology by creating a compatible ecosystem that
surrounds and supports this technology.
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Here we assume 0 < sn < sn < s̄n .

Privacy and Ethical AI Standard In the scenario where only privacy and ethical standards are potentially

published, the publication of such standards can constrain the firm’s overall productivity with AI, physical

capital, and data by specifying requirements of data privacy and ethical AI algorithms. These restrictions

shrink the firm’s data pool and limit the scope of AI applications, as certain practices previously employed

to maximize efficiency might no longer be permissible under new privacy and ethics rules. The publication

of such standards enhances the enforceability of the ethical restrictions by making these concepts more

tangible and providing a framework for shaping future government policies.

To capture the constraining effects of privacy and ethical AI standards, we normalize the pre-publication

level of τ̃t = 0 for all t ≤ T and the post-publication level to be τ(me ) ∈ (0,1), where me ∈ {0,1,2, ..., Ne } is the

realized number of total privacy/ethical standards published. Higher me implies that more and stronger

constraints have been imposed on AI technologies and data in general. The variable τ is assumed to be an

strictly increasing in me , implying that more ethical/privacy standards published lead to a larger overall

drop in firm productivity. Conditional on (1) the arrival of the event in period T and (2) only privacy/ethical

standards can be published, me follows Binomial distribution with Ne possible candidate standards for

publication, each being published with probability qe ∈ (0,1).

Standards and Firm Investment The firm understands the distribution of standards publication, but

does not know ahead of time when and what standards will be published. That is, there is uncertainty

about the future productivity of the two AI technologies before the publication date, while the publication

of the standards resolves that uncertainty. Consequently, there is an option value of delaying investment,

because the firm wants to hold off its partially irreversible investment decision until the publication of

the standards reveals the general productivity of AI technology and which AI technology is relatively more

productive.

Intuitively, more publication of technological standards resolves uncertainty of more AI domains, po-

tentially boosting more investment post-publication. More publication of privacy and ethical standards, in

contrast, imposes stronger restrictions on productivity, leading to larger disinvestment post-publication.

The next proposition formalizes this insight. Denote the net total AI investment in period T +1, across all

domains and types of AI technologies, as

I AI ,T+1 =
N∑
n

(
I n,A

AI ,T+1 + I n,B
AI ,T+1

)
, (10)

where T is the period with standard publications. That is, this term is the total AI investment one-period

immediately after the publication.

Proposition 1 (Investment and Standards Publication). (i) Consider the scenario where only technological

standards can be published. Then the firm’s net total AI investment post-publication, I AI ,T+1, as defined in

(10), increases in the total number of technological standards published, m. The same argument holds for

the firm’s post-publication capital expenditure investment, IK ,T+1.
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(ii) Consider the scenario where only privacy/ethical standards can be published. Then the firm’s net total AI

investment I AI ,T+1 post-publication decreases in the total number of privacy/ethical standards published,

me . The same argument holds for the firm’s post-publication capital expenditure investment, IK ,T+1.

We use the following example to illustrate the equilibrium. Suppose there are two domains of AI, each

hosting two types of AI technologies. Therefore, there are only two potential technological standards that

can be published (N = 2). Also, suppose there are also only two potential privacy/ethical standards that

can be published (Ne = 2). Let the probability of each standard being published be q = qe = 1/2. Let

τ(0) = 0, τ(1) = 0.35, and τ(2) = 0.7. Assume full symmetry between and within domains, that is, sn = 1,

s̄n = h = 1.2, sn = l = 0.8, C n =C K =C = 0.75, and pn,A = 1/2, for all n. Lastly, let π= 0.9, α= 1/2, β= 0.8,

and D = 1. Assume λ = 1, that is, the firm knows for sure that the publication event will arrive at the end

of the first period, but the firm does not know which type of standards and how many standards will be

published.

Figure A1 plots the equilibrium investment in period 2, which is the period immediately after the pub-

lication event. Consistent with Proposition 1, if the standards published are technological standards, then

the investment after publication increases in the number of standards published for both AI investment

I AI ,2 and for physical investment in IK ,2. In particular, as the number of technological standards pub-

lished increases from one to two, I AI ,2 increases from 14.2 to 15.2, while IK ,2 increases from 27.3 to 29.1.

On the contrary, if the standards published are privacy and ethical standards, then the investment after

publication decreases in the number of standards published for both AI investment I AI ,2 and for physical

investment in IK ,2. As the number of privacy and ethical standards published increases from one to two,

I AI ,2 decreases from -3.9 to -24.9, while IK ,2 decreases from -8.5 to -50.6.

Next, we decompose the total AI investment plotted in Figure A1 into investment regarding individual

AI technologies. Consider first the scenario where only one technological standard is published. In period

2, the endorsed AI technology receives an investment of 7.6, the unendorsed AI technology within the

same domain receives an investment of zero, while the two AI technologies within the domain that has

no standard publication receives an investment of 3.3. Next, consider the case where both domains see

publications of technological standards. In period 2, the endorsed AI technology receives an investment

of 7.6, while the unendorsed AI technology within the same domain receives an investment of zero. Lastly,

if privacy/ethical standards are published, each AI technology receives a negative investment of -1.0 (-6.2)

if one standard is (two standards are) published.

A.2 Mathematical Proofs

Proof of Proposition 1

Proof. First, consider the continuation decision problem in period T+1, when either a subset M ⊂ {1, . . . , N }

of technological standards are endorsed at the end of period T , or τ̃t increases to τ. Due to symmetry, we
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analyze only the case where A technology is endorsed for every n ∈M . The problem writes:

max
{AI

n, j
t ,Kt }t ,n, j

∞∑
t=T+1

βt−T−1

((∑
n, j

s̃n, j F (AI n, j
t )

)α
K 1−α

t D(1− τ̃t )−∑
n, j

cn, j
t (AI n, j

t − AI n, j
t−1)− cK

t (Kt −Kt−1)

)
,

where s̃n, j = sn if j = A and n ∈ M , s̃n, j = sn if j = B and n ∈ M , s̃n, j = sn if n ∉ M . Moreover, cn, j
t is the

subgradient w.r.t. AI n, j
t at AI n, j

t−1, with cn, j
t = 1 if AI n, j

t > AI n, j
t−1, cn, j

t =C n ∈ (0,1) if AI n, j
t < AI n, j

t−1, and cn, j
t ∈

[C n ,1] if AI n, j
t = AI n, j

t−1. Similarly, cK
t ∈ [C K ,1] is the subgradient w.r.t. Kt . Denoting AIt ≡∑

n, j s̃n, j F (AI n, j
t ),

the first-order conditions w.r.t. AI n, j
t and Kt read:

cn, j
t −βcn, j

t+1 = D(1− τ̃t )αs̃n, j F ′(AI n, j
t )AIα−1

t K 1−α
t , (11)

cK
t −βcK

t+1 = D(1− τ̃t )(1−α)AIαt K −α
t . (12)

Let:

AI n, j
t ≡ (F ′)−1

(
1−β

D(1− τ̃t )αs̃n, j AIα−1
t K 1−α

t

)
, AI

n, j
t ≡ (F ′)−1

(
C n(1−β)

D(1− τ̃t )αs̃n, j AIα−1
t K 1−α

t

)
, (13)

K t ≡
(

1−β

D(1− τ̃t )(1−α)AIαt

)−1/α

, K t ≡
(

C K (1−β)

D(1− τ̃t )(1−α)AIαt

)−1/α

. (14)

If AI n, j
t+1 > AI n, j

t but AI n′, j ′
t+1 < AI n′, j ′

t for some (n, j ) ̸= (n′, j ′), then cn, j
t+1 = 1 and cn′, j ′

t+1 = C n′
, and (11)

implies:

s̃n, j F ′(AI n, j
t )

s̃n′, j ′F ′(AI n′, j ′
t )

= cn, j
t −βcn, j

t+1

cn′, j ′
t −βcn′, j ′

t+1

⩽
cn, j

t+1 −βcn, j
t+2

cn′, j ′
t+1 −βcn′, j ′

t+2

= s̃n, j F ′(AI n, j
t+1)

s̃n′, j ′F ′(AI n′, j ′
t+1 )

< s̃n, j F ′(AI n, j
t )

s̃n′, j ′F ′(AI n′, j ′
t )

,

a contradiction. Therefore, AI n, j
t+1 > AI n, j

t implies AI n′, j ′
t+1 ⩾ AI n′, j ′

t , and similarly, AI n, j
t+1 < AI n, j

t implies

AI n′, j ′
t+1 ⩽ AI n′, j ′

t .

Next, if AI n, j
t+1 > AI n, j

t for some (n, j ), then Kt+1 < Kt will lead to a contradiction with a similar argument

to the previous paragraph. Moreover, if Kt+1 > Kt , then cn, j
t+1 = 1 and cK

t+1 = 1, and (11) and (12) imply:

(D(1− τ̃t ))
1
αα(1−α)

1−α
α F ′(AI n, j

t ) = cn, j
t −βcn, j

t+1

(cK
t −βcK

t+1)
α−1
α

⩽
cn, j

t+1 −βcn, j
t+2

(cK
t+1 −βcK

t+2)
α−1
α

= (D(1− τ̃t ))
1
αα(1−α)

1−α
α F ′(AI n, j

t+1) < (D(1− τ̃t ))
1
αα(1−α)

1−α
α F ′(AI n, j

t ),

a contradiction. Therefore, we must have Kt+1 = Kt . Symmetrically, one can show that AI n, j
t+1 < AI n, j

t also

implies Kt+1 = Kt .

Suppose AI n, j
t+1 > AI n, j

t for some (n, j ), then cn, j
t+1 = 1, AI n, j

t+1 ⩾ AI n, j
t for all (n, j ), and Kt+1 = Kt . From

(11), we have cn, j
t+1 −βcn, j

t+2 < cn, j
t −βcn, j

t+1, which leads to cn, j
t+2 <C n , a contradiction. Similarly, AI n, j

t+1 < AI n, j
t

leads to a contradiction. Therefore, AI n, j
t+1 = AI n, j

t for all (n, j ). Applying the same logic to (12), we also

conclude Kt+1 = Kt .
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In summary, after period T , AI n, j
t and Kt remain constant for all (n, j ). With the definition of cn, j

t and

cK
t , (11) and (12) imply AI n, j

T+1, AIT+1 and KT+1 as solution to the following system:

AI n, j
T+1 = max

{
min

{
AI n, j

T , AI
n, j
T+1

}
, AI n, j

T+1

}
, ∀ n, j , (15)

KT+1 = max
{

min
{

KT ,K T+1

}
,K T+1

}
, (16)

AIT+1 = ∑
n, j

s̃n, j F (AI n, j
T+1). (17)

Now consider the comparative statics on τ, conditional on τ̃t = τ after publication of privacy/ethical

standards. With an increase in τ that is due to higher me , suppose AI n, j
T+1 strictly increases for some (n, j ).

Then AI n, j
T+1 and AI

n, j
T+1 must strictly increase for all (n, j ), and as a result, AIT+1 strictly increases according

to (17). Also, KT+1
AIT+1

must strictly increase according to (13) and (15). Since (14) implies that
K T+1
AIT+1

and K T+1
AIT+1

both decrease, and KT
AIT+1

strictly decreases, we have KT+1
AIT+1

decreases, a contradiction. Therefore, AI n, j
T+1

decreases, and KT+1 decreases from (14) and (16). Since capital stock prior to publication does not change

with τ, we show that investment in both AI and K decreases.

To analyze the comparative statics on the set M conditional on the publication of technological stan-

dards, we need to study the properties of AI n, j
T and KT , before the announcement. Consider the problem

in period 1, where the firm just started with no capital:

max
{AI

n, j
t ,Kt }t ,n, j

∞∑
t=1

(β(1−λ))t−1
((∑

n, j
snF (AI n, j

t )
)α

K 1−α
t D −∑

n, j
cn, j

t (AI n, j
t − AI n, j

t−1)− cK
t (Kt −Kt−1)

+βλW
(
{AI n, j

t }n, j ,Kt

))
,

where W
(
{AI n, j

t }n, j ,Kt

)
is the expected continuation value if the announcement arrives at the end of pe-

riod t . The first-order conditions w.r.t. AI n, j
t and Kt read:

cn, j
t −β(1−λ)cn, j

t+1 −βλEcn, j
T+1 = DαsnF ′(AI n, j

t )AIα−1
t K 1−α

t , (18)

cK
t −β(1−λ)cK

t+1 −βλEcK
T+1 = D(1−α)AIαt K −α

t . (19)

With the same logic as before, one can show that AI n, j
t and Kt must be constants until after the announce-

ment period T . Because the firm starts with no capital, it has to be the case that cn, j
t = cK

t = 1 for all t ⩽ T .

The constants satisfy:

AI n, j
T = (F ′)−1

(
1−β+βλ(1−Ecn, j

T+1)

Dαsn AIα−1
T K 1−α

T

)
, (20)

KT =
(

1−β+βλ(1−EcK
T+1)

D(1−α)AIαT

)−1/α

, (21)

AIT = ∑
n, j

snF (AI n, j
T ). (22)
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Now consider the change of capital stocks from period T to T +1, after a set M of technology standards

are published but no ethical standard published. Suppose AIT+1 = AIT , then KT+1 ⩾ KT , AI n,A
T+1 > AI n,A

T

and AI
n,B
T+1 > AI n,B

T for n ∈M , AI n, j
T+1 ⩾ AI n, j

T for n ∉M , j = A,B . Therefore, AIT+1 > AIT , a contradiction.

Suppose instead AIT+1 < AIT , then there exists (n, j ) such that AI
n, j
T+1 < AI

n, j
T , which means KT+1

AIT+1
< KT

AIT
by

(13). However, (14) requires that
K T+1
AIT+1

⩾
K T
AIT

and K T+1
AIT+1

⩾ K T
AIT

, and therefore KT+1
AIT+1

⩾ KT
AIT

, a contradiction.

Therefore, we must have AIT+1 > AIT and K T+1 > KT . This means KT+1 = K T+1, and KT+1
AIT+1

> KT
AIT

. As

a result, AI n,A
T+1 > AI n,A

T and AI
n,B
T+1 > AI n,B

T for n ∈ M , AI n, j
T+1 ⩾ AI n, j

T for n ∉ M , j = A,B . Therefore,∑
n, j AI n, j

T+1 >
∑

n, j AI n, j
T and KT+1 > KT .

Finally, consider the effect of adding n∗ to M on capital stocks in period T +1. Holding all s̃n, j fixed

except that s̃n∗,A = sn∗ > sn∗
and s̃n∗,B = sn∗ ∈ (C n∗

sn∗
, sn∗

). From the previous paragraph we know that

with any realized M , KT+1 = K T+1, AI n,A
T+1 = AI n,A

T+1 and AI n,B
T+1 = max{AI n,B

T+1, AI n,B
T } for n ∈ M , AI n,A

T+1 =
AI n, j

T+1 for n ∉ M , j = A,B . In particular, KT+1
AIT+1

does not change with the addition of n∗. Then, AI n∗,A
T+1

strictly increases, AI n∗,B
T+1 remains unchanged because AI

n∗,B
T+1 after the inclusion of n∗ is higher than AI n∗,B

T+1

before the inclusion. AI n, j
T+1 remains unchanged for n ∉ M . As a result,

∑
n, j AI n, j

T+1 and KT+1 both strictly

increase with the inclusion of n∗.

B Additional Analyses

B.1 Data Description

B.1.1 Financial Variables

CAPEX/AT refers to the capital expenditures to total assets ratio, calculated as the ratio of capital expendi-

tures to lagged total assets (ITEM4601/L.ITEM2999), and it’s presented in percentage terms. RD/AT rep-

resents the R&D expenditures to total assets ratio, calculated as the ratio of R&D expenditures to lagged

total assets (ITEM1201/L.ITEM2999), and it’s presented in percentage terms. Sales/AT denotes the pro-

portion of sales to lagged book value of assets (ITEM1001/L.ITEM2999), and it’s presented in percentage

terms. Log(BVA) represents the logarithm of the book value of assets (ITEM2999). CF2AT (NI/BVA) in-

dicates the cash flow to total assets ratio, calculated as the ratio of net income to business value added

(NI/L.ITEM2999). Leverage refers to the leverage ratio, calculated as the ratio of debt to lagged total as-

sets (ITEM3255/L.ITEM2999). ST Leverage denotes the short-term leverage ratio, representing the pro-

portion of short-term debt in relation to the sum of short-term debt and long-term debt (ITEM3051/

(ITEM3051+ITEM3251)). To ensure data quality, we excluded rows with return on equality values below

-100%, firms with less than five observations, countries with less than 250 observations, and Fama French

48 industries categorized as "Other (48)". We winsorize all variables at 2% levels and report summary

statistics on rows with non-missing CAPEX/AT values. Log(Committees) refers to the natural logarithm of

the number of ISO committees that a country is a member of in a given year for each firm. It represents

the level of participation and involvement of a firm in ISO committees, which are international standard-

ization bodies. % UNSC Members denotes the percentage of rotating United National Security Council

(UNSC) Members under a given country’s secretariat and zero for countries without secretariats. We man-
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ually collect this data from the UNSC website.

B.1.2 Variables on Standard Types

Log(AI Standards) denotes the logged number of AI standards published under the secretariat of a given

country and year, and it’s equal to zero for countries without secretariats. The remaining variables denote

the number of standards published by a given country’s secretariat in a given year, categorized based on

their standard titles in lowercase. Machine Learning Standards refer to the standards which contain any of

the following terms related to machine learning in their titles: “algo", "code", "decision", "fuzzy", "image",

"intelligence", "language", "learning", "logic", "neural", "processing", "probabi", "recognition", "robot",

"semantic", "speech", "training", "vision". Data Standards refer to the standards which contain the term

“data" in their titles but do not contain terms associated with machine learning. Safety and Accountability

Standards refer to the standards which contain any of the following terms related to accountability in their

titles: “accountability", "ethic", "governance", "robustness", "safety", "security", "societal". Automation

Standards refer to the standards which contain the term “automation" in their titles but do not contain

terms associated with machine learning. Programming Languages Standards refer to the standards which

contain any of the following terms related to programming in their titles: “basic", "c#", "c++", "java", "lan-

guage", "linux", "pascal", "program", "programming", "python", "software", "sql". Interchange Standards

refer to the standards which contain any of the following terms related to interchange in their titles: “ex-

change", "interchange". Interoperability Standards refer to the standards which contain any of the follow-

ing terms related to interoperability in their titles: “compatib", "connectiv", "Internet", "IoT", "of things",

"opera", "twin". Privacy Standards refer to the standards which contain any of the following terms related

to privacy in their titles: “biomet", "children", "cybersecurity", "human", "private", "privacy". Physical

Equipment Standards refer to the standards which contain any of the following terms related to equip-

ment in their titles: “card", "circuit", "equipment", "machine", "office", "physical", but do not contain

terms related to privacy. Graphics Standards refer to the standards which contain any of the following

terms related to graphics in their titles: “acoust", "audio", "graphic", "media", "mpeg", "picture", "visual".

Internet of Things (IoT) Standards refer to the standards which contain any of the following terms re-

lated to the Internet of Things (IoT) in their titles: “Internet", "IoT", "of things", "twin". Human Related

Standards refer to the standards which contain any of the following terms related to humans in their titles:

“biomet", "genom", "human". Unlabeled Standards refer to the standards which do not contain any terms

related to the previously defined categories (Machine Learning, Data, Safety and Accountability, Automa-

tion, Programming Languages, Interchange, Interoperability, Privacy, Physical Equipment, Graphics, IoT,

Human Related) in their titles. If none of the terms are found, the standards are classified as “Unlabeled

Standards".

B.1.3 Variables on AI Investments and AI Patents

Log(AI Investment) is defined as the logarithm of one plus the AI investments made in a given country

in the given year. Similarly, Log(AI Patent Apps.) represents the logarithm of one plus the number of
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AI patent applications filed, and Log(AI Patents Granted) is the logarithm of one plus the number of AI

patents granted. The dataset originates from the Center for Security and Emerging Technology (CSET).

We begin with CSET’s list of countries, excluding all countries with zero patent applications, grants, and

investments. Data collection and description are detailed in Appendix Section C.

B.2 Additional Tables and Figures

This section details our additional findings. Figure B1 illustrates the life cycle events of AI standards pub-

lished from 1972 to 2023. Figure B2 represents the distribution of published standards by US secretariats

between 2017 and 2022. Figure B3 examines the potential link between economic complexity Hidalgo et

al. (2009) and AI committee membership. Figure B4 provides a correlation matrix for our committee-level

instrumental variables.
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Appendix Figure A1. Post-Publication Investment and the Number of Standards Published

(a) Post-Publication Investment: Technological Standards

(b) Post-Publication Investment: Privacy and Ethical Standards
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Appendix Table B1. Scopes and Activities of AI Standardization Committees

This table provides an overview of the activities and scopes of AI standardization committees, with the names of the secretariats associated with each committee listed in
parentheses and in italic format. The committees (represented in bold) are derived from "U.S. Leadership in AI: A Plan for Federal Engagement in Developing Technical
Standards and Related Tools" report produced by the National Institute of Standards and Technology (NIST) in response to Executive Order (EO) 13859. The data
represented in the table are manually collected from the official ISO webpage. The sources for any additional information provided in the table are cited for reference.

Committee Scope Description of Standardization Activities

ISO/IEC JTC 1/SC 42 Guidance on AI Development of AI standards and guidance to other ISO and IEC committees developing AI applications.
(Sec: United States) Standardization in the areas of foundational AI standards, Big Data, AI trustworthiness, use cases,

governance implications of AI, computational approaches of AI, testing, ethical and societal concerns.
Sources: https://bit.ly/42XocXH and https://bit.ly/42YSklq.

ISO/IEC JTC 1/SC 41 IoT Standardization in the area of Internet of Things (IoT) and digital twin, i.e., virtual modelling of physical world.
(Sec: South Korea) Sources: https://bit.ly/41WntFp and https://bit.ly/44ZPizj.
ISO/IEC JTC 1/SC 40 Governance Standardization in (i) governance of IT, (ii) governance of data, (iii) IT service management, and (iv) IT-enabled
(Sec: Australia) services. Sources: https://bit.ly/44Z5Veq.
ISO/IEC JTC 1/SC 37 Human Biometric Standardization of generic biometric technologies pertaining to human beings to support interoperability
(Sec: United States) and data interchange among applications and systems. Sources: https://bit.ly/41Dkxgz.
ISO/IEC JTC 1/SC 36 Education Standardization in the field of information technologies for learning, education, and training to support
(Sec: South Korea) individuals, groups, or organizations, and to enable interoperability and reusability of resources and tool.

Examples: learning analytics interoperability, individualized adaptability and accessibility in e-learning,
education and training, and human factor guidelines for VR content. Source: https://bit.ly/3WqBpWT.

ISO/IEC JTC 1/SC 32 Data Interchange Standards for data management within and among local and distributed information systems environments.
(Sec: United States) Help set up the structure of data, i.e., data domains, data types and structures, and semantics.

Create rules for storing data safely and for allowing simultaneous access and updates without conflicts;
develop languages, services, and protocols for sharing data among different systems;
organize and register metadata (data about data), which is essential for sharing data and making systems
interoperable. Source: https://bit.ly/43f9D1W.

ISO/IEC JTC 1/SC 29 Digital Information Standardization in the field of (a) efficient coding of digital representations of images, audio and moving
(Sec: Japan) pictures, including conventional (natural, computer-generated and immersive) images, moving pictures

and audio, invisible light and other sensory (e.g. medical and satellite) images, and static and dynamic
graphic objects; (b) efficient coding of other digital information, including multimedia, environment
and user-related metadata, sensor and actuator information related to audiovisual information,
and other digital data in agreement with the relevant committee, such as genomics; (c) digital information
support, including synchronization, presentation, storage and transport of single or combinations of
media, media security and privacy management, and quality of experience evaluation and system
performance metrics. Source: https://bit.ly/3ohCX92.
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Committee Scope Description of Standardization Activities

ISO/IEC JTC 1/SC 28 Electronic Devices Standardization of basic characteristics, test methods and other related items of products such as 2D and 3D
(Sec: Japan) Printers/Scanners, Copiers, Projectors, Fax and Systems composed of their combinations.

Source: https://bit.ly/3MqoVtK.
ISO/IEC JTC 1/SC 27 Information Security The development of standards for the protection of information and ICT. This includes generic methods,
(Sec: Germany) techniques and guidelines to address both security and privacy aspects. Source: https://bit.ly/3pTTvV3.
ISO/IEC JTC 1/SC 24 Graphics Computer graphics, image processing, virtual reality, augmented reality, and mixed reality, environmental data
(Sec: United Kingdom) representation, visualization of, and interaction with, information. Source: https://bit.ly/3IvmXHz.
ISO/IEC JTC 1/SC 22 Programming Languages Programming languages, their environments and system software interfaces. Source: https://bit.ly/3MK7ohr
(Sec: United States)
ISO/IEC JTC 1/SC 17 Personal Identification Identification and related documents, cards, security devices and tokens and interface associated with their use
(Sec: United Kingdom) in inter-industry applications and international interchange. Source: https://bit.ly/3Ot83VT.
ISO/IEC JTC 1/SC 7 Software Standardization of processes, supporting tools and supporting technologies for the engineering of software
(Sec: India) products and systems. Source: https://bit.ly/3ClcTNK.
ISO/TC 184 Industrial Automation Standardization in automation systems and their integration for design, sourcing, manufacturing, production
(Sec: France) and delivery, support, maintenance and disposal of products and their associated services.

Source: https://bit.ly/42V0agu.
ISO/TC 184/SC 1 Industrial Device Control Develop standards on industrial cyber and physical device control. Examples: data modeling and numerical
(Sec: Germany) control systems for industrial automation systems, functional safety for automated machines, and integration

of manufacturing operations. Source: https://bit.ly/3ojzW8m.
ISO/TC 184/SC 4 Industrial Data Establishes common rules and guidelines for exchanging data with stakeholders in industrial environments.
(Sec: United States) Examples: data models, data exchange formats, and data access interfaces. Source: https://bit.ly/41TpJgv.
ISO/TC 184/SC 5 Industrial Interoperability Standards on interoperability between devices, integration, and architectures for enterprise systems and
(Sec: United States) automation applications. Source: https://bit.ly/3omW8hW.
ISO/TC 199 Safety Standardization of basic concepts and general principles for safety of machinery incorporating terminology,
(Sec: Germany) methodology, guards and safety devices. Source: https://bit.ly/439ghGO.
ISO/TC 299 Robotics Standardization in the field of robotics, excluding toys and military applications. Examples: safety, performance,
(Sec: Sweden) and robotic applications (e.g., in healthcare). Source: https://bit.ly/43hZly7.
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Appendix Figure B1. The Life Cycle of Standards Published by AI-Critical Committees

The figure illustrates the life cycle events of AI standards published by each secretariat within the International Organization for Standardization (ISO) from 1972 to
2023. These life cycle events are color-coded and labeled based on ISO’s international harmonized stage codes. The "Published" stage (60) represents the successful
completion of the review process and the official release of the standard. The "Being reviewed" stage (90) signifies the ongoing development of standards, where thorough
reassessment takes place. The "Reviewed and confirmed" stage (90.93) indicates the validation and endorsement of a standard after periodic reviews, ensuring its
relevance and applicability. Lastly, the "Reviewed and withdrawn" stage (90.95) signifies the removal or retirement of previously published standards for various reasons.
Each secretariat is color-coded, facilitating easy differentiation.
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Appendix Figure B2. Categories of Standards Published by U.S.-lead AI Committees

The tree cluster figure represents the distribution of published standards by US secretariats between 2017 and 2022, show-
casing the various types of standards as a percentage of the total. The types of standards included in the figure are as in Table B1.
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Appendix Figure B3. Do Rotating UN Security Council Members Target AI Committees?

This figure provides an empirical analysis on the potential influence of Economic Complexity Index (ECI) as in Hidalgo et al. (2009) on the number of AI committee
memberships for each country from 2017 to 2022. UNSC and non-UNSC member countries are denoted by orange triangles and blue hollow circles, respectively. Blue and
orange fitted lines represent quadratic predictive models for non-UNSC and UNSC nations based on ECI and its square. Each line is accompanied by a 95% confidence
interval. .
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Appendix Figure B4. Covariance Matrix: Interplay of Variables in AI Standard Categories

This figure provides a correlation matrix for the following variables: Log(AI Standards)i ,c,t , Log(Machine Learning Standards)i ,c,t , Log(Data Standards)i ,c,t ,
Log(Accountability Standards)i ,c,t , Log(Automation Standards)i ,c,t , Log(Programming Standards)i ,c,t , Log(Interchange Standards)i ,c,t , Log(Interoperability Standards)i ,c,t ,
Log(Privacy Standards)i ,c,t , Log(Human Biometric Standards)i ,c,t , Log(Multimedia Standards)i ,c,t , Log(IoT Standards)i ,c,t , Log(Equipment Standards)i ,c,t , and
Log(Unlabeled Standards)i ,c,t .
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Appendix Figure B5. The Distribution of Committee-Level Instruments

The figure illustrates a histogram depicting the distribution of combined committee-level instruments, denoted as
%UNSC Membersk

i ,c,t−1, across AI committees. Furthermore, it also showcases the distribution of permanent UNSC members
within the respective committees. For a more detailed explanation for our instrument, please refer to Section 5.3.1.
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C Data on AI-Specific Investments and Patents

Our research delves into AI-specific investments and patents, utilizing data from the Country Activity

Tracker (CAT), a comprehensive dataset developed by CSET. This dataset offers a broad view of national AI

activities, providing a foundation for our investigation of AI-specific investments and patenting.

AI Investment Data CAT’s AI-investment data, sourced from Crunchbase, concentrates on equity in-

vestments into private AI-focused companies. This dataset excludes publicly traded companies and non-

equity funding types like debt finance, grants, and crowdfunding. It encompasses venture capital, private

equity transactions, and mergers and acquisitions. AI companies are identified through keywords, indus-

try tags, and inclusion in the CSET’s private-sector AI-Related Activity Tracker (PARAT), with investments

categorized by application fields based on Crunchbase data.32 Company and investor nationalities are

determined by headquarters location.

CAT aggregates investment data first at the AI-company level, adding up disclosed values. It then cal-

culates country-level AI investment figures, considering the target’s location, investor nationalities, and

the investment’s primary application field. These country-level figures, representing the AI investment

landscape, require careful interpretation due to the intricate nature of investment transactions involving

multiple parties.33

Using the CAT AI-investment data, we construct a measure of country-level AI investment, Log(AI

Investmentc,t ), which is the logarithm of one plus the AI investments made in country c in year t . That is,

Log(AI Investmentc,t )=Log(1+Incoming Disclosed Investmentc,t ), where Incoming Disclosed Investmentc,t

is the total AI-related investment made into the target country c by all countries in year t .

Patent Data On the patent side, CAT includes data from 1790 Analytics, PATSTAT, and The Lens. Through

a collaborative effort between CSET and 1790, this data is carefully structured to offer insights into AI-

related patent families, which includes both applications and granted patents. The organization into

patent families aids in understanding the landscape of AI innovations and how they are protected across

different legal jurisdictions. This dataset is pivotal for analyzing the spread and focus of AI-related patent-

ing activities worldwide.

In particular, CAT’s patent dataset aggregates data from 52 patent offices globally, encompassing both

national (e.g., U.S. Patent and Trademark Office) and international bodies (e.g., European Patent Office).

It provides metrics on the number of patent filings per country, focusing on where patents are filed rather

than the inventors’ nationality. CAT exclusively features AI-related patents, identified from the extensive

databases of 1790 and The Lens. This identification leverages a method developed by CSET and 1790

Analytics, using keywords and patent classification codes to pinpoint AI patents and link them to specific

AI techniques.34.

32See https://shorturl.at/fipC0.
33For a detailed explanation of the methodology and its application, refer to the CSET report’s methodology section and

appendices.
34Details on patent data methodology are available in CSET’s paper on AI patents and the associated Github repository.
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Using the CAT AI-patent data, we develop two measures on AI patents: Log(AI Patent Applicationsc,t ),

which is the logarithm of one plus the number of AI patent applications filed in country c in year t , and

Log(AI Patents Grantedc,t ), which is the logarithm of one plus the number of AI patents granted in country

c in year t .
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D Standards on Industrial Data

In this section, we describe how AI can be utilized in oil and gas production facilities to improve efficiency,

safety, and decision-making, while also allowing for the necessary compliance with regulators and the ex-

change of necessary information with different stakeholders. Figure D1 summarizes the life-cycle model

of a typical plant in oil and gas industry.35 As shown, several parts of the plant’s operations rely on the

measurement of data that is utilized by computer systems which perform tasks such as learning, reason-

ing, problem-solving, and forecasting. Such systems further provide results to various stakeholders such

as customers, regulators, employees, and various decision makers within the company. Below, we provide

a list of how AI can be used in oil and gas production facilities.

• Predictive Maintenance: AI can analyze sensor data from equipment and machinery to identify

patterns and predict potential failures or maintenance needs. This allows for proactive maintenance

scheduling, minimizing downtime and reducing costs. These could, for example, be done under

“Field Maintenance” or “Shop Maintenance” models in Figure D1. The relevant ISO standards could

be published, for example, by ISO/TC 184/SC 4 (Industrial Data).

• Asset Optimization: AI algorithms can optimize the performance of oil and gas assets by analyzing

large amounts of data and providing opportunities to improve interoperability. This includes opti-

mizing drilling parameters, production rates, and reservoir management to maximize production

and minimize costs. These could, for example, be done under the “Performance Analysis” model in

Figure D1. The relevant ISO standards could be published, for example, by ISO/TC 184/SC 1 (Device

Control) or ISO/IEC JTC 1/SC 32 (Data Interchange).

• Environmental and Reservoir Monitoring: AI can analyze sensor data and satellite imagery to mon-

itor and detect environmental changes, such as oil spills, leaks, or emissions. This enables early de-

tection and timely response to minimize the environmental impact. AI can also analyze seismic data,

well logs, and historical production data to create accurate reservoir models. These models help in

understanding subsurface characteristics, predicting reservoir behavior, and optimizing production

strategies. These could, for example, be done under the “Performance Analysis”, ‘Demolishment

& Uninstalling” and “Demolishment & Disposal” models in Figure D1. The relevant ISO standards

could be published, for example, by ISO/IEC JTC 1/SC 42 (Guidance on AI related to ethical and

societal concerns).

• Production Optimization: AI can optimize production rates by analyzing real-time data from mul-

tiple sources, including production sensors, weather conditions, and market demand. This enables

operators to make informed decisions on adjusting production levels and scheduling maintenance

activities. These could, for example, be done under the “Feedstock Acquisition”, “Operations” and

“Product Sales” models in Figure D1. The relevant ISO standards could be published, for example,

by ISO/TC 184/SC 1 (Device Control) or ISO/TC 184 (Automation).

35See https://bit.ly/3P9Bb4S for details on a plant life-cycle model.
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• Robotics and Automation: AI-powered robots and autonomous systems are used for various tasks,

such as pipeline inspection, maintenance, and hazardous operations. These technologies improve

safety by reducing the need for human intervention in potentially dangerous environments. These

could, for example, be done under the “Performance Analysis” and “Operations” models in Figure

D1. The relevant ISO standards could be published, for example, by ISO/TC 299 (Robotics).

• Biometrics and Natural Language Processing: AI techniques enable the extraction and analysis of

information from unstructured data sources, such as technical documents and reports from various

vendors, or facial recognition and security services for restricted access. This helps in gathering

insights, identifying trends, and making informed decisions based on a vast amount of information.

These could, for example, be done under the “Procurement & Subcontracting” model in Figure D1.

The relevant ISO standards could be published, for example, by ISO/TC 184/SC 4 (Industrial Data),

ISO/IEC JTC 1/SC 37 (Human Biometric), or ISO/IEC JTC 1/SC 22 (Programming Languages).

• Safety and Risk Management: AI is used for risk analysis and safety management, helping to identify

potential hazards and mitigate risks. It can also analyze historical data and real-time conditions to

predict safety incidents and enable proactive measures. These could, for example, be done under

the “Performance Analysis” and “Demolishment & Disposal” models in Figure D1. The relevant ISO

standards could be published, for example, by ISO/TC 199 (Safety).

The above list outlines the applications of AI in a typical oil and gas production facility. It is crucial to

note that throughout the entire lifespan of a facility, starting from conceptual design, through engineering

and construction, to ongoing operations and maintenance, the exchange of information among the in-

volved parties is imperative. Accomplishing this on a global scale and across all software systems utilized

in the process industries is an immensely challenging task. The relevant ISO standards could be published

by ISO/TC 184/SC 4 (Industrial Data). To provide an example of how standardization of data that AI models

rely on, we use ISO standard 15926 on the integration of life-cycle data for oil and gas production facilities.

ISO 15926 provides standards for data integration, sharing, exchange, and hand-over between com-

puter systems.36 Suppose, for example, that operations of a gas production plant heavily depend on

the performance of a 101-pump (see, e.g., https://bit.ly/42Arf7u). The facility therefore actively

collects data on the performance of the pump, reports to the regulators, and runs a machine learning

algorithm to predict potential failures or maintenance needs. How is the data collected by the facility

reported and standardized for safety? ISO 15926 allows different plants with different pumps to report

their data and predictions to interested parties in a readable and explaninable way. Each data point is

linked with a knowledge graph (e,g„ pump id 1 is linked with heat 100 F and timestamp January 1st, 2024

etc.) and shared with regulators in the correct way following, for example, https://bit.ly/3NlpHKn and

https://bit.ly/3NpGNa7.37

36see https://bit.ly/3qJuAUs and https://bit.ly/3p60DNY for details.
37Also see the slides at https://bit.ly/3NoiWY7.

86

https://bit.ly/42Arf7u
https://bit.ly/3NlpHKn
https://bit.ly/3NpGNa7
https://bit.ly/3qJuAUs
https://bit.ly/3p60DNY
https://bit.ly/3NoiWY7


Appendix Figure D1. A Plant Life-cycle Model For oil and gas production facilities

The figure portrays a plant’s Life-cycle (Activity) Model, crucial in industries such as oil and gas production. It offers a comprehensive overview of a plant’s life stages,
encompassing everything from inception and planning to design, construction, operation, maintenance, and ultimate decommissioning. This model fosters a complete
understanding of the plant’s lifecycle, enabling more informed decisions, enhancing sustainability, and bolstering efficiency at each stage. For a more detailed view of the
figure and related information, please refer to the provided link: https://15926.org/topics/plant-lifecycle-model/index.htm.
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E Bias in AI Systems and AI-Aided Decision Making

AI systems are becoming more prevalent in various industries, including finance, IT, defense, healthcare,

and others, where they play a greater role in corporate decision-making. However, it is important to rec-

ognize that these systems are susceptible to biases that can arise unintentionally within their algorithms

or be introduced through biased training data (see Caliskan et al. (2017), for example). One relevant ISO

standard that addresses bias in AI systems is ISO/IEC TR 24027:2021. This standard, published by the In-

ternational Organization for Standardization (ISO), provides guidelines for identifying and managing bias

in AI systems. It emphasizes the importance of understanding and assessing the potential biases that can

arise at different stages of the AI system’s lifecycle, including data collection, algorithm design, and system

deployment. By following the guidelines outlined in this standard, organizations can proactively mitigate

bias and promote fairness in their AI systems.

Autonomous vehicles (AVs) serve as a prime example of how AI-aided decision making and bias can

significantly impact outcomes. AVs have the potential to revolutionize transportation by enhancing safety

and efficiency. Nevertheless, they encounter challenging scenarios where they must make complex choices,

such as prioritizing passenger safety or minimizing harm to pedestrians. Designing algorithms to govern

these moral decisions is a complex endeavor that incorporates societal values and preferences. What eth-

ical principles guide the decision-making process of machine learning algorithms?

Appendix Figure E1. Moral Machine Experiment

Image taken from the Moral Machine Experiment–see for example Bonnefon et al. (2016)–, which presents an intriguing survey
that explores the ethical dilemma faced by autonomous vehicles. The experiment raises the question of whether the vehicle
should prioritize the lives of individuals inside the vehicle or those of pedestrians. To delve deeper into the details of this
thought-provoking experiment, visit the official website at https://www.moralmachine.net/.

Experiments conducted by Bonnefon et al. (2016) have demonstrated that people generally approve

of AVs that prioritize the greater good, even if it means sacrificing the passengers based on experiments
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like the one shown in Figure E1. However, when it comes to their own safety, individuals prefer AVs that

prioritize their well-being over others. This discrepancy in preferences poses a challenge in designing

AI systems that align with societal values while also considering individual preferences. They also drive

uncertainty regarding AI investments and along with potential litigation risk. It’s not immediate what the

ethical standards should be in this scenario, but a systemic way of measuring the influence of data biases

on the machine learning algorithms can still be helpful.

Appendix Figure E2. Pseudo Code: AI-Driven Child Safety Protocol in Vehicle Crashes

This figure shows a pseudo code aimed at child safety in vehicle crashes, utilizing programming languages to process data and
feature extraction for critical safety factors. It models crash scenarios to protect children, acknowledging potential prediction
errors. The program’s effectiveness is rooted in adherence to ISO standards, ensuring global safety and quality compliance,
crucial for saving young lives.

By following the guidelines outlined in ISO/IEC TR 24027:2021, firms in the AV industry can work to-

wards developing AV systems that are fair, transparent, and accountable. The standard promotes the use

of metrics to assess bias and fairness, allowing organizations to evaluate and improve their AV systems.

For example, in section 3.2 of the document, it provides clear definitions for automation bias, bias, human
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cognitive bias, confirmation bias, data bias, and statistical bias, which are helpful for the manufacturers

to fix bias in their machine learning models by following a universally accepted norms. Implementing

the recommendations from ISO/IEC TR 24027:2021 can therefore help promote safety, equity, and public

trust. By addressing bias, the standard can contribute to the wider adoption of AV technology by alleviat-

ing concerns about unfair decision-making and potential negative impacts on different stakeholders, such

as passengers and pedestrians. Ultimately, the standard can help shape the development and deployment

of AVs that prioritize ethical considerations, enhance public safety, and minimize societal harm.

Figure E2 further illustrates a pseudo code, which is a simplified version of a computer program, de-

signed to save the lives of children in vehicle crashes. As shown, the code uses programming languages to

process collected data. It identifies key features from this data through a process called feature extraction.

These features are then used in modeling to predict and respond to crash scenarios, specifically focus-

ing on protecting children. However, predicting such events isn’t always perfect, and the pseudo code

includes assumptions about possible errors in its predictions. The accuracy and safety of this program de-

pend heavily on the standards set by the shown ISO committees, which ensure that the technology meets

international safety and quality guidelines. These standards are crucial in making sure the program not

only functions correctly but also reliably saves lives in real-world situations.
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