EXIM's Exit:

The Real Effects of Trade Financing by Export Credit Agencies

Poorya Kabir (NUS) Adrien Matray (Stanford GSB, NBER, CEPR) Karsten Mueller (NUS) Chenzi Xu (Stanford GSB, NBER, CEPR)

Motivation & Question

Industrial policy often targets trade financing because

- Important source of income and growth
- Requires financing ... but private trade financing potentially underprovisioned

Motivation & Question

Industrial policy often targets trade financing because

- Important source of income and growth
- Requires financing ... but private trade financing potentially underprovisioned

Question: Is there a role for government intervention?

Context:

- Ubiquitous agencies across countries: Export Credit Agencies
- In well-developed financial markets: the US

A Priori Unclear

Pros: ECAs (export credit agencies) fill in a "missing market" and promote trade because:

- Trade financing by the private banking sector is:
 - Specialized (e.g., Paravisini Rappoport Schnabl, 2023)
 - Concentrated (e.g., Niepmann Schmidt-Eisenlohr, 2017)
 - \implies Potentially suboptimal provision due to market power

A Priori Unclear

Pros: ECAs (export credit agencies) fill in a "missing market" and promote trade because:

- Trade financing by the private banking sector is:
 - Specialized (e.g., Paravisini Rappoport Schnabl, 2023)
 - Concentrated (e.g., Niepmann Schmidt-Eisenlohr, 2017)
 - ⇒ Potentially suboptimal provision due to market power
- Government agency has:
 - Lower mark-ups: not only optimizing over profits
 - Different costs: access to different technologies
 - \Longrightarrow Lower prices

A Priori Unclear

Pros: ECAs (export credit agencies) fill in a "missing market" and promote trade because:

- Trade financing by the private banking sector is:
 - Specialized (e.g., Paravisini Rappoport Schnabl, 2023)
 - Concentrated (e.g., Niepmann Schmidt-Eisenlohr, 2017)
 - ⇒ Potentially suboptimal provision due to market power
- Government agency has:
 - · Lower mark-ups: not only optimizing over profits
 - Different costs: access to different technologies
 - ⇒ Lower prices

Cons: ECA support is...

- Inframarginal: firms can substitute to private sector provision
- Not inframarginal but fosters misallocation: benefiting low productivity (politically connected) firms

Empirical questions:

1. Is ECA support inframarginal for **firms**?

2. Is ECA support inframarginal for aggregate US exports?

3. Does ECA increase misallocation?

Empirical questions:

1. Is ECA support inframarginal for **firms**?

2. Is ECA support inframarginal for aggregate US exports?

3. Does ECA increase misallocation?

Context: 2015-2019 Shutdown of the Export-Import Bank of the United States (EXIM)

• Compare firms / sectors reliant on EXIM support versus not

Empirical questions:

1. Is EXIM support inframarginal for firms? No: on average, ↓ global sales, K, L

2. Is EXIM support inframarginal for aggregate US exports?

3. Does EXIM increase misallocation?

Context: 2015-2019 Shutdown of the Export-Import Bank of the United States (EXIM)

 \bullet Compare firms / sectors reliant on EXIM support versus not

Empirical questions:

- 1. Is EXIM support inframarginal for firms? No: on average, ↓ global sales, K, L
 - Channels? Exports and financial frictions
- 2. Is EXIM support inframarginal for aggregate US exports?

3. Does EXIM increase misallocation?

Context: 2015-2019 Shutdown of the Export-Import Bank of the United States (EXIM)

• Compare firms / sectors reliant on EXIM support versus not

Empirical questions:

- 1. Is EXIM support inframarginal for firms? No: on average, ↓ global sales, K, L
 - Channels? Exports and financial frictions
- 2. Is EXIM support inframarginal for aggregate US exports? No: trade creation

3. Does EXIM increase misallocation?

Context: 2015–2019 Shutdown of the Export-Import Bank of the United States (EXIM)

• Compare firms / sectors reliant on EXIM support versus not

Empirical questions:

- 1. Is EXIM support inframarginal for firms? No: on average, ↓ global sales, K, L
 - Channels? Exports and financial frictions
- 2. Is EXIM support inframarginal for aggregate US exports? No: trade creation

- 3. Does EXIM increase misallocation? Probably not
 - Firms with higher export opportunity & MRPK were more affected

Context: 2015–2019 Shutdown of the Export-Import Bank of the United States (EXIM)

• Compare firms / sectors reliant on EXIM support versus not

Contribution to the Literature

1. Finance and trade

Bank credit and export volume (Amiti and Weinstein, 2011; Paravisini, Rappoport, Schnabl, and Wolfenzon, 2014; Demir, Michalski, and Ors, 2017; Xu, 2022; Beaumont and Lenoir, 2023; Bruno and Shin, 2023; Monteiro and Moreira, 2023)

Banking networks and export patterns: (Michalski and Ors, 2012; Niepmann and Schmidt-Eisenlohr, 2017; Niepmann and Schmidt-Eisenlohr, 2017; Paravisini, Rappoport, and Schnabl, 2020; Xu and Yang, 2022)

2. Effects of industrial policies

Juhasz, 2018; Criscuolo, Martin, Overman, and Van Reenen, 2019; Choi and Levchenko, 2021; Garin and Rothbaum, 2022; Lane, 2023; Juhasz, Lane, Oehlsen, and Perez, 2022; Juhasz and Steinwender, 2023; and Juhasz, Lane, and Rodrik, 202

3. Export credit agencies

Germany (Felbermayr and Yalcin, 2013; Heiland and Yalcin, 2021); Austria (Badinger and Url, 2013); Pakistan (Zia, 2008; Defever, Riano, and Varela, 2020); Korea (Hur and Yoon, 2022); US (Desai and Hines, 2008; Benmelech and Monteiro, 2023)

Institutional Context

 ${\sf Large} \ \textbf{fixed} \ \textbf{costs} + {\sf High} \ \textbf{asymmetric information} \Longrightarrow {\sf private} \ {\sf market} \ {\sf is} :$

 $\textbf{Large fixed costs} + \textbf{High asymmetric information} \Longrightarrow \textbf{private market is:}$

- Specialized (e.g., Paravisini Rappoport Schnabl 2023)

 ${\sf Large} \; \textbf{fixed} \; \textbf{costs} \; + \; \mathsf{High} \; \textbf{asymmetric} \; \textbf{information} \Longrightarrow \mathsf{private} \; \mathsf{market} \; \mathsf{is} :$

- Specialized (e.g., Paravisini Rappoport Schnabl 2023)
- Non-competitive (e.g., Niepmann and Schmidt-Eisenlohr 2017)

Large fixed costs + High asymmetric information ⇒ private market is:

- Specialized (e.g., Paravisini Rappoport Schnabl 2023)
- Non-competitive (e.g., Niepmann and Schmidt-Eisenlohr 2017)

⇒ Role for intervention

Large fixed costs + High asymmetric information \Longrightarrow private market is:

- Specialized (e.g., Paravisini Rappoport Schnabl 2023)
- Non-competitive (e.g., Niepmann and Schmidt-Eisenlohr 2017)

⇒ Role for intervention

ECAs could:

Large fixed costs + High asymmetric information \Longrightarrow private market is:

- Specialized (e.g., Paravisini Rappoport Schnabl 2023)
- Non-competitive (e.g., Niepmann and Schmidt-Eisenlohr 2017)

 \implies Role for intervention

ECAs could:

- Service a missing market.

Large fixed costs + High asymmetric information \Longrightarrow private market is:

- Specialized (e.g., Paravisini Rappoport Schnabl 2023)
- Non-competitive (e.g., Niepmann and Schmidt-Eisenlohr 2017)

⇒ Role for intervention

ECAs could:

- Service a missing market.
- Breakeven or even be profitable.

The Export-Import Bank of the United States (EXIM)

Mandate:

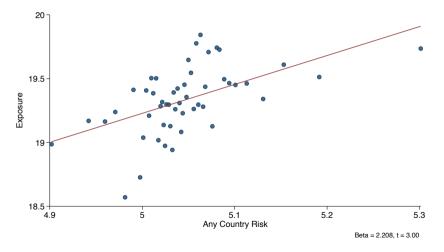
"To support jobs in the United States by facilitating the export of U.S. goods and services [...and to] ensure a level playing field for U.S. exports in the global marketplace."

- Each transaction must be justified to satisfy this mission
- Tools: two types of products
 - Insurance & guarantees: protection against payment default for firm and country risks
 - Credit & loans: working capital & long-term loans

The Export-Import Bank of the United States (EXIM)

• Mandate:

"To support jobs in the United States by facilitating the export of U.S. goods and services [...and to] ensure a level playing field for U.S. exports in the global marketplace."


- Each transaction must be justified to satisfy this mission
- Tools: two types of products
 - Insurance & guarantees: protection against payment default for firm and country risks
 - Credit & loans: working capital & long-term loans

EXIM's profitability:

- Federal Credit Reform Act (FCRA, 1990): each EXIM transaction must be "subsidy neutral" or generate "negative subsidy"
 - Fees and interest collected on each transaction to offset defaults, cost of borrowing from US Treasury, and operational expenses
- Since 1992, EXIM returned net profit of \$9 billion to the U.S. Treasury
- Default rate on EXIM loans is capped at 2%.
- EXIM's profitability or lack thereof won't affect the interpretation of real economic effects.

Evidence of "Missing Market" in Trade Financing

EXIM Exposure strongly correlated with the riskiness of a destination country

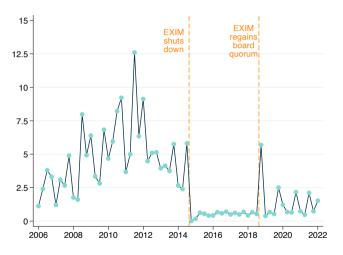
Hassan et al (2023) annual measures of country risk perceived by any firm

Evidence of Missing Market in Trade Financing

EXIM Exposure

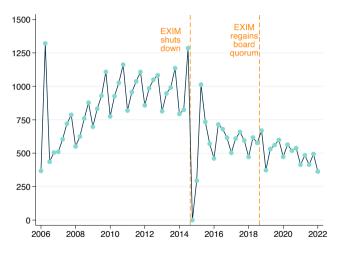
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Risk (by all)	2.265***	2.208***						
	(0.743)	(0.739)						
Risk (by financial)			1.702**	2.027***				
			(0.642)	(0.607)				
Risk (by foreign)					1.570*	1.433*		
					(0.888)	(0.810)		
Risk (by domestic)							-0.005	0.041
							(0.083)	(0.077)
Controls	_	✓	_	√	_	√	_	√
Country FE	\checkmark							
Year FE	\checkmark	✓						
R-squared	0.816	0.836	0.815	0.836	0.814	0.833	0.816	0.831
Observations	822	795	822	795	822	795	668	651

Hassan et al (2023) annual measures of country risk perceived by any firm

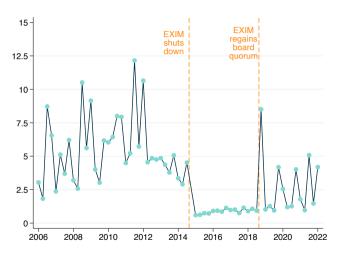

EXIM Shutdown

- 2015: full shutdown of EXIM for five months
 - Driven by Republicans (Tea Party, Paul Ryan) criticizing the bank for "providing corporate welfare"

- 2015–2019: no board quorum for four years
 - Full board = five people
 - Republican blocked nomination of three vacant seats
 - \Rightarrow EXIM cannot approve long-term transactions and loans larger than \$10M


Effect of Shutdown on Operations

• Total value of new financial support (\$B): -84%


Effect of Shutdown on Operations

• Number of new loans: -37%

Effect of Shutdown on Operations

• Average loan size (\$M): -75%

Data

Data

• EXIM dependence: EXIM loans

• Loan level data: 2006–2022 (FOIA)

• Matched on firm name

• Firm outcomes: Compustat

• Panel: 2010-2019

• Segment: includes foreign sales

• Firm exports: Datamyne

 \bullet Universe of maritime exports at the firm \times product \times destination level

• Aggregate trade flows: BACI

ullet Bilateral: country imes product imes year

Empirical Strategy

Firm i, in industry j, at time t:

$$\mathbf{Y}_{i,j,t} = \beta_t \; \mathsf{EXIM}_i \times Post_{\geq 2015} + \alpha_i + \gamma_{j,t} + Destinations_{i,t_0} \times \delta_t + X_{i,t} + \varepsilon_{i,j,t}$$

• EXIM; : Firm received EXIM support over 2010–2014

• Post $_{\geq 2015}$: Year ≥ 2015 ; no staggered treatment

Firm i, in industry j, at time t:

$$Y_{i,j,t} = \beta_t \text{ EXIM}_i \times Post_{\geq 2015} + \alpha_i + \gamma_{j,t} + Destinations_{i,t_0} \times \delta_t + X_{i,t} + \varepsilon_{i,j,t}$$

• EXIM; : Firm received EXIM support over 2010–2014

• Post $_{\geq 2015}$: Year ≥ 2015 ; no staggered treatment

Firm i, in industry j, at time t:

$$\textbf{\textit{Y}}_{i,j,t} = \beta_t \; \mathsf{EXIM}_i \times \textit{Post}_{\geq 2015} + \alpha_i + \gamma_{j,t} + \textit{Destinations}_{i,t_0} \times \delta_t + \textit{X}_{i,t} + \varepsilon_{i,j,t}$$

• EXIM; : Firm received EXIM support over 2010–2014

 \bullet Post $_{\geq 2015}$: Year ≥ 2015 ; no staggered treatment

• Firm : Remove level differences

Firm i, in industry j, at time t:

$$Y_{i,j,t} = \beta_t \; \mathsf{EXIM}_i \times Post_{\geq 2015} + \alpha_i + \gamma_{j,t} + Destinations_{i,t_0} \times \delta_t + X_{i,t} + \varepsilon_{i,j,t}$$

• EXIM; : Firm received EXIM support over 2010–2014

• Post $_{\geq 2015}$: Year ≥ 2015 ; no staggered treatment

• Firm : Remove level differences

• Industry×year : Industry specific shocks

Estimating Effect of Exposure to EXIM

Firm i, in industry j, at time t:

$$Y_{i,j,t} = \beta_t \text{ EXIM}_i \times Post_{\geq 2015} + \alpha_i + \gamma_{j,t} + Destinations_{i,t_0} \times \delta_t + X_{i,t} + \varepsilon_{i,j,t}$$

- EXIM;
- Post≥2015
- Firm
- Industry×year
- Destinations × year

: Firm received EXIM support over 2010-2014

: Year \geq 2015; no staggered treatment

: Remove level differences

: Industry specific shocks

: Export markets specific shocks

Top 10 destinations from 10-K (Hoberg-Moon, 2017)

Estimating Effect of Exposure to EXIM

Firm i, in industry j, at time t:

$$Y_{i,j,t} = \beta_t \text{ EXIM}_i \times Post_{\geq 2015} + \alpha_i + \gamma_{j,t} + Destinations_{i,t_0} \times \delta_t + X_{i,t} + \varepsilon_{i,j,t}$$

EXIM;

Post_{≥2015}

• Firm

 \bullet Industry \times year

 $\bullet \ \, \mathsf{Destinations} \! \times \! \mathsf{year}$

• Firm ex-ante characteristics×year

: Firm received EXIM support over 2010-2014

: Year \geq 2015; no staggered treatment

: Remove level differences

: Industry specific shocks

: Export markets specific shocks

Top 10 destinations from 10-K (Hoberg-Moon, 2017)

: Additional firm controls

Identifying Assumption

Parallel trends: outcomes between treated (EXIM_i = 1) and control (EXIM_i = 0) groups would have evolved similarly absent the reform, after controls

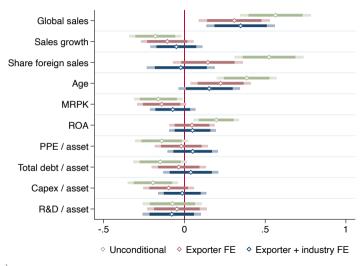
Does not require...

- ullet Random selection of treated vs control \longrightarrow firms (industries) with EXIM loans can be systematically different
 - Additional robustness using within-EXIM exposure
- Random timing of shutdown

 EXIM could have coincided with other macroeconomic events

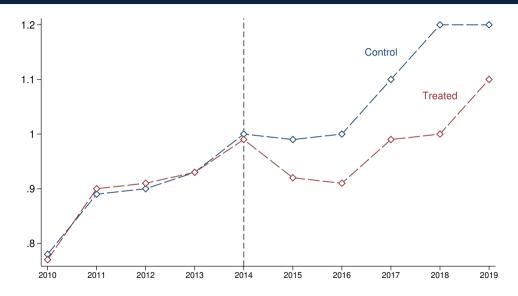
Threat to identification: other unobserved reform/event coinciding with EXIM loan exposure in 2015

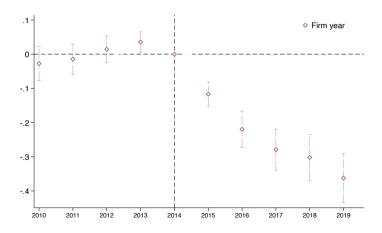
Covariate Balance (2010–2014)


Unconditionally different

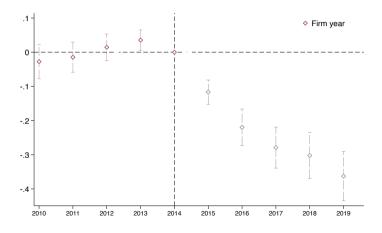
(Industry composition)

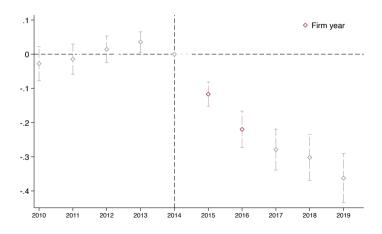
Covariate Balance (2010-2014)

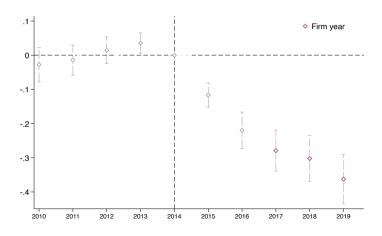

• Control for industry and exporter: reduced differences

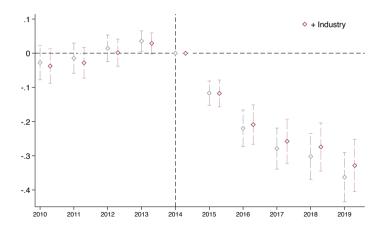

(Industry composition)

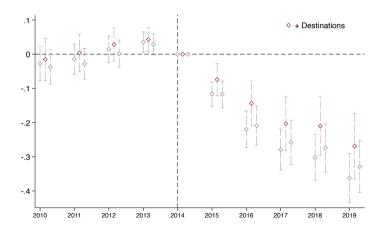
1. Is EXIM Support Inframarginal?

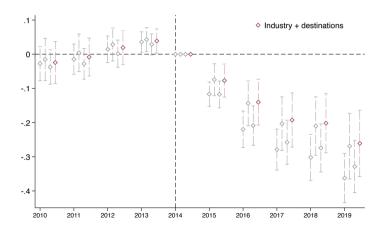

Impact on Firms' Global Sales: Raw Data

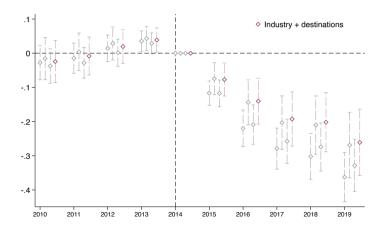

• $Y_{i,j,t} = \beta_t \text{ EXIM}_i \times Post_{\geq 2015} + \alpha_i + \delta_t + \gamma_{j,t} + Destinations_{i,t_0} \times \delta_t + \varepsilon_{i,j,t}$


• No differential pre-trend


• Sharp drop


No recovery


• $Y_{i,j,t} = \beta_t \text{ EXIM}_i \times Post_{\geq 2015} + \alpha_i + \gamma_{j,t} + Destinations_{i,t_0} \times \delta_t + \varepsilon_{i,j,t}$


• $Y_{i,j,t} = \beta_t \text{ EXIM}_i \times Post_{\geq 2015} + \alpha_i + \gamma_{j,t} + Destinations_{i,t_0} \times \delta_t + \varepsilon_{i,j,t}$

• $Y_{i,j,t} = \beta_t \text{ EXIM}_i \times Post_{\geq 2015} + \alpha_i + \gamma_{j,t} + Destinations_{i,t_0} \times \delta_t + \varepsilon_{i,j,t}$

• Average effect: -18%

Robustness to EXIM Exposure: Within-treatment Variation

• EXIM characteristics: \$10M contract or long-term support

$$\begin{aligned} \textbf{\textit{Y}}_{i,j,c,t} &= \beta \ \textit{EXIM}_i \times \textit{Post} \times \textit{EXIM} \ \text{characteristics}_i + \alpha_i \\ &+ \textit{EXIM}_i \times \delta_t + \textit{EXIM}_i \otimes \left[\gamma_{j,t} + \textit{Destinations}_{i,t_0} \times \delta_t\right] + \varepsilon_{i,j,t} \end{aligned}$$

Robustness to EXIM Exposure: Within-treatment Variation

- EXIM characteristics: \$10M contract or long-term support
- Estimate effects within EXIM backed firms ⇒ rules out results driven by other differences of EXIM backed vs. non backed

$$\begin{aligned} \textit{Y}_{i,j,c,t} &= \beta \; \textit{EXIM}_i \times \textit{Post} \times \textit{EXIM} \; \text{characteristics}_i + \alpha_i \\ &+ \textit{EXIM}_i \times \delta_t + \textit{EXIM}_i \otimes \left[\gamma_{j,t} + \textit{Destinations}_{i,t_0} \times \delta_t \right] + \varepsilon_{i,j,t} \end{aligned}$$

Robustness to EXIM Exposure: Within-treatment Variation

- EXIM characteristics: \$10M contract or long-term support
- Estimate effects within EXIM backed firms ⇒ rules out results driven by other differences of EXIM backed vs. non backed

Dependent Variable		Global sales	
	(1)	(2)	(3)
$Treated \! imes \! Post$	-0.18*** (0.030)		
$Treated \times Post \times Large EXIM$		-0.19*** (0.060)	
$Treated \times Post \times Long\text{-term}$ EXIM			-0.20** (0.072)
Fixed Effects			
Firm	✓	✓	✓
$Industry \times Year$	✓	✓	✓
Destinations×Year	✓	✓	✓
$Treated\!\times\!Year$	_	✓	✓
Observations	28,386	28,386	28,386

Additional Effects: Treated Firms Scale Down

• Decrease in capital, tangible and intangible (Peters and Taylor 2017)

	Tangible capital	Intangible capital	Employment	ROA
	(1)	(2)	(3)	(4)
$Treated \! imes \! Post$	-0.16***	-0.18***	-0.093***	0.0062
	(0.040)	(0.044)	(0.034)	(0.0074)
Fixed Effects				
Firm	✓	✓	✓	✓
$Industry \times Year$	✓	✓	✓	✓
$Destinations {\times} Year$	✓	✓	✓	✓
Observations	27,972	28,245	28,386	28,386

Additional Effects: Treated Firms Scale Down

• Decrease in employment

	Tangible capital	Intangible capital	Employment	ROA	
	(1)	(2)	(3)	(4)	
$Treated \! imes \! Post$	-0.16***	-0.18***	-0.093***	0.0062	
	(0.040)	(0.044)	(0.034)	(0.0074)	
Fixed Effects					
Firm	✓	✓	✓	✓	
$Industry \times Year$	✓	✓	✓	✓	
$Destinations {\times} Year$	✓	✓	✓	✓	
Observations	27,972	28,245	28,386	28,386	

Additional Effects: Treated Firms Scale Down

No change in ROA → EXIM support not infra-marginal & just boosting firms' profits
 (Event study)

	Tangible capital	Intangible capital	Employment	ROA
	(1)	(2)	(3)	(4)
$Treated \! imes \! Post$	-0.16***	-0.18***	-0.093***	0.0062
	(0.040)	(0.044)	(0.034)	(0.0074)
Fixed Effects				
Firm	✓	✓	✓	✓
$Industry \times Year$	✓	✓	✓	✓
$Destinations {\times} Year$	✓	✓	✓	✓
Observations	27,972	28,245	28,386	28,386

Channels

Financial Constraints Become More Binding: Why?

1. Exports are particularly sensitive to external financing

2. Firms cannot fully substitute to alternative sources of financing

Financial Constraints Become More Binding: Why?

- 1. Exports are particularly sensitive to external financing
 - Empirical challenge: Firm exports feature a lot of entry & exit, particularly disaggregated data with product×destination coverage

2. Firms cannot fully substitute to alternative sources of financing

Financial Constraints Become More Binding: Why?

- 1. Exports are particularly sensitive to external financing
 - Empirical challenge: Firm exports feature a lot of entry & exit, particularly disaggregated data with product×destination coverage
 - Solution:
 - Create balanced panel
 - Collapse average pre / post
 - Outcomes: midpoint growth rate = $(X_t X_{t-1})/[(X_t + X_{t-1}) \times 0.5]$
- 2. Firms cannot fully substitute to alternative sources of financing

• Compustat Segment: "Foreign Sales"

Sample	Compustat Segment	Hoberg-Moon Datamyne						
Dependent variable	Δ Foreign sales	Δ # 10K mention	on Δ Maritime export		port			
Unit of analysis	Firm	Firm	Firm	Firm Firm×destination×product				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Exim×Post	-0.16**	-0.12*	-0.39**	-0.39**	-0.33*	-0.44***	-0.31**	
	(0.077)	(0.070)	(0.18)	(0.17)	(0.19)	(0.16)	(0.15)	
Fixed Effects								
$Industry {\times} Post$	✓	✓	✓	\checkmark	\checkmark	\checkmark	✓	
$Product \! \times \! Post$	_	_	_	_	\checkmark	_	\checkmark	
$Destination {\times} Post$	_	_	_	_	_	\checkmark	\checkmark	
Observations	2,012	3,131	600	126,938	126,938	126,938	126,938	

• Hoberg-Moon: count in 10K mention of activity abroad

Sample	Compustat Segment	Hoberg-Moon Datamyne				npustat Segment Hoberg-Moon Datamyne		
Dependent variable	Δ Foreign sales	Δ # 10K mention		ΔΝ	/laritime ex	port		
Unit of analysis	Firm Firm		Firm	Firm Firm×destination×product				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Exim×Post	-0.16**	-0.12*	-0.39**	-0.39**	-0.33*	-0.44***	-0.31**	
	(0.077)	(0.070)	(0.18)	(0.17)	(0.19)	(0.16)	(0.15)	
Fixed Effects								
$Industry {\times} Post$	✓	✓	✓	\checkmark	\checkmark	\checkmark	✓	
$Product {\times} Post$	_	_	_	_	\checkmark	_	\checkmark	
$Destination {\times} Post$	_	_	_	_	_	\checkmark	\checkmark	
Observations	2,012	3,131	600	126,938	126,938	126,938	126,938	

 Datamyne: Maritime exports effect larger → consistent with financing frictions (e.g., Amiti and Weinstein, 2011; Xu, 2022)

Sample	Compustat Segment	ent Hoberg-Moon			Datamyne		
Dependent variable	Δ Foreign sales	Δ # 10K mention	Δ Maritime export		ion Δ Maritime export		
Unit of analysis Firm Firm		Firm Firm×destination			tion×produ	n×product	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Exim×Post	-0.16** (0.077)	-0.12* (0.070)	-0.39** (0.18)	-0.39** (0.17)	-0.33* (0.19)	-0.44*** (0.16)	-0.31** (0.15)
Fixed Effects	(6.611)	(6.6.6)	(0.10)		(0.20)	(0.10)	(0.20)
$Industry {\times} Post$	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$Product \! \times \! Post$	_	_	_	_	\checkmark	_	\checkmark
$Destination {\times} Post$	_	_	_	_	_	\checkmark	\checkmark
Observations	2,012	3,131	600	126,938	126,938	126,938	126,938

• Decompose firm export at the product×destination (market)

Sample	Compustat Segment	Hoberg-Moon			Datamyne			
Dependent variable	Δ Foreign sales	Δ # 10K mention	Δ Maritime export					
Unit of analysis	Firm	Firm	Firm Firm×destination×product				ct	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Exim×Post	-0.16**	-0.12*	-0.39**	-0.39**	-0.33*	-0.44***	-0.31**	
	(0.077)	(0.070)	(0.18)	(0.17)	(0.19)	(0.16)	(0.15)	
Fixed Effects								
$Industry \times Post$	✓	✓	\checkmark	\checkmark	\checkmark	✓	✓	
$Product \! \times \! Post$	_	_	_	_	\checkmark	_	\checkmark	
$Destination {\times} Post$	_	_	_	_	_	\checkmark	\checkmark	
Observations	2,012	3,131	600	126,938	126,938	126,938	126,938	

- Decompose firm export at the product×destination (market)
- Product×Post: compare firms exporting same 6-digit product

Sample	Compustat Segment	Hoberg-Moon			Datamyne			
Dependent variable	Δ Foreign sales	Δ # 10K mention	Δ Maritime expor		port	port		
Unit of analysis	Firm Firm		Firm	Fir	m×destina	tion×produ	ct	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Exim×Post	-0.16** (0.077)	-0.12* (0.070)	-0.39** (0.18)	-0.39** (0.17)	-0.33* (0.19)	-0.44*** (0.16)	-0.31** (0.15)	
Fixed Effects								
$Industry \times Post$	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$Product \times Post$	_	_	_	_	✓	_	✓	
$Destination {\times} Post$	_	_	_	_	_	\checkmark	✓	
Observations	2,012	3,131	600	126,938	126,938	126,938	126,938	

- Decompose firm export at the product×destination (market)
- Destination country×Post: compare firms exporting to same country

Sample	Compustat Segment	t Hoberg–Moon	Datamyne				
Dependent variable Unit of analysis	Δ Foreign sales	Δ # 10K mention	n Δ Maritime export				
	Firm	Firm Firm		Fir	m×destina	tion×produ	ct
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Exim×Post	-0.16** (0.077)	-0.12* (0.070)	-0.39** (0.18)	-0.39** (0.17)	-0.33* (0.19)	-0.44*** (0.16)	-0.31** (0.15)
Fixed Effects							
$Industry \times Post$	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓
$Product {\times} Post$	_	_	_	_	\checkmark	_	✓
$Destination {\times} Post$	_	_	_	_	_	\checkmark	✓
Observations	2,012	3,131	600	126,938	126,938	126,938	126,938

- Decompose firm export at the product×destination (market)
- Joint: absorb most possible unobserved demand shocks

Sample	Compustat Segment	ment Hoberg-Moon	Datamyne				
Dependent variable	Δ Foreign sales	Δ # 10K mention	Δ Maritime export				
Unit of analysis	Firm Firm		Firm	Fir	m×destina	tion×produ	ct
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Exim×Post	-0.16** (0.077)	-0.12* (0.070)	-0.39** (0.18)	-0.39** (0.17)	-0.33* (0.19)	-0.44*** (0.16)	-0.31** (0.15)
Fixed Effects							
$Industry{\times}Post$	✓	✓	✓	\checkmark	\checkmark	\checkmark	✓
$Product \times Post$	_	_	_	_	\checkmark	_	✓
$Destination {\times} Post$	_	_	_	_	_	\checkmark	✓
Observations	2,012	3,131	600	126,938	126,938	126,938	126,938

Firm Financing Friction Heterogeneity

- Proxies for financing frictions:
 - High leverage (e.g., Giroud and Mueller, 2016; Giroud and Mueller, 2019)

Dependent variable			Global sales	
Financing frictions proxy:		Leverage	Dividends	Hoberg and Maskimovic (2015)
	(1)	(2)	(3)	(4)
$EXIM{\times}Post$	-0.18*** (0.037)			
$EXIM \times Post \times Constrained$		-0.16**	-0.21**	-0.25***
		(0.077)	(0.087)	(0.081)
Fixed Effects (interacted)				
Firm	✓	\checkmark	\checkmark	✓
$Destinations \times Year$	✓	\checkmark	\checkmark	✓
$Industry \times Year$	✓	✓	\checkmark	✓
$Treated \! imes \! Year$	_	\checkmark	\checkmark	\checkmark
Observations	26,732	25,592	25,297	25,438

Firm Financing Friction Heterogeneity

- Proxies for financing frictions:
 - Low dividends (e.g., Fazzari, Hubbard, and Petersen, 1988)

Dependent variable	Global sales				
Financing frictions proxy:		Leverage	Dividends	Hoberg and Maskimovic (2015)	
	(1)	(2)	(3)	(4)	
$EXIM{\times}Post$	-0.18*** (0.037)				
$EXIM{\times}Post{\times}Constrained$		-0.16** (0.077)	-0.21** (0.087)	-0.25*** (0.081)	
Fixed Effects (interacted)					
Firm	✓	✓	\checkmark	✓	
$Destinations \times Year$	✓	✓	\checkmark	✓	
$Industry \times Year$	✓	✓	\checkmark	✓	
$Treated \! \times \! Year$	_	\checkmark	\checkmark	✓	
Observations	26,732	25,592	25,297	25,438	

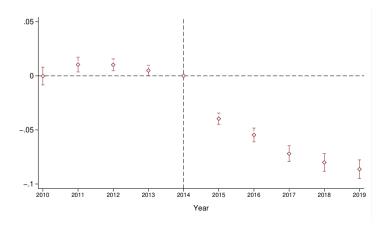
Firm Financing Friction Heterogeneity

- Proxies for financing frictions:
 - High mention of financing frictions in 10K (Hoberg and Maksimovic, 2015)

Dependent variable	Global sales				
Financing frictions proxy:		Leverage	Dividends	Hoberg and Maskimovic (2015)	
	(1)	(2)	(3)	(4)	
$EXIM{\times}Post$	-0.18*** (0.037)				
$EXIM {\times} Post {\times} Constrained$		-0.16**	-0.21**	-0.25***	
		(0.077)	(0.087)	(0.081)	
Fixed Effects (interacted)					
Firm	\checkmark	\checkmark	\checkmark	✓	
$Destinations \times Year$	\checkmark	\checkmark	✓	✓	
$Industry \times Year$	\checkmark	✓	✓	✓	
$Treated\!\times\!Year$	_	\checkmark	\checkmark	✓	
Observations	26,732	25,592	25,297	25,438	

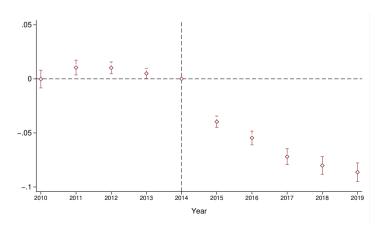
Robustness

• Quarterly sales: decline starts exactly after shutdown in June (Result)


- Additional firm controls: lobbying, state, fiscal month, size, profitability, leverage (Result)
- Remove the 10 largest beneficiaries (Result)
- Different level of SIC industry (Result) and HS products (Result)

• Different winsorization levels (Result)

2. Aggregate Impact of EXIM Support


Aggregate Exports from US Drops

- Total export at the product×destination level from BACI
- Estimate: $Export_{p,d,t}/Export_{p,d,t=2014} = EXIM_p \times Post_{t\geq 2015} + \alpha_p + \gamma_{d,t}$ $EXIM_p$: top quintile of total EXIM / total export pre shut-down

Aggregate Exports from US Drops

- Estimate: $Export_{p,d,t}/Export_{p,d,t=2014} = EXIM_p \times Post_{t \geq 2015} + \alpha_p + \gamma_{d,t}$ $EXIM_p$: top quintile of total EXIM / total export pre shut-down
- ullet Overall drop o EXIM create exports eq business stealing across US firms

- 1. EXIM support not inframarginal for firms
 - ullet Average effect: \uparrow global sales, exports, K, L

- 1. EXIM support not inframarginal for firms ... because it alleviates financing frictions
 - \bullet Average effect: \uparrow global sales, exports, K, L

- 1. EXIM support <u>not</u> inframarginal for firms ... because it alleviates financing frictions
 - Average effect: † global sales, exports, K, L
- 2. EXIM support not inframarginal in aggregate
 - Creates trade for the US

- 1. EXIM support not inframarginal for firms ... because it alleviates financing frictions
 - Average effect: \uparrow global sales, exports, K, L
- 2. EXIM support not inframarginal in aggregate
 - Creates trade for the US
- 3. How "efficient" was EXIM support?
 - High export opportunities firms
 - High MRPK firms

3. Implications for Capital Allocation

Firms with Higher Export Opportunities are More Affected

Export opportunities: above median ΔUS exports at the industry level (possibly correlated with US prod.)

Dependent variable	Global sales			
Proxy for export opportunities		US exports	Other countries exports	
	(1)	(2)	(3)	
EXIM×Post	-0.13*** (0.041)			
$EXIM {\times} Post {\times} Export \ opportunities$		-0.23*** (0.088)	-0.28*** (0.089)	
Fixed Effects (interacted)				
Firm	\checkmark	✓	✓	
${\sf Destinations}{\times}{\sf Year}$	\checkmark	✓	✓	
$Industry \times Year$	\checkmark	✓	✓	
$EXIM \times Year$	_	\checkmark	✓	
Observations	12,281	11,319	11,308	

Note: restricted to manufacturing firms

Firms with Higher Export Opportunities are More Affected

Export opportunities: above median ∆other developed countries exports (ADH, 2013; Hombert Matray, 2018)

Dependent variable	Global sales			
Proxy for export opportunities		US exports	Other countries exports	
	(1)	(2)	(3)	
EXIM×Post	-0.13*** (0.041)			
$EXIM {\times} Post {\times} Export \ opportunities$		-0.23*** (0.088)	-0.28*** (0.089)	
Fixed Effects (interacted)				
Firm	\checkmark	✓	✓	
${\sf Destinations} {\small \times} {\sf Year}$	\checkmark	✓	✓	
$Industry \times Year$	\checkmark	✓	✓	
$EXIM { imes} Year$	_	\checkmark	\checkmark	
Observations	12,281	11,319	11,308	

Note: restricted to manufacturing firms

Firms with Higher Export Opportunities are More Affected

⇒ EXIM benefit firms more likely to have NPV > 0 projects ≠ supporting sluggish firms

Dependent variable	Global sales			
Proxy for export opportunities		US exports	Other countries exports	
	(1)	(2)	(3)	
$EXIM \times Post$	-0.13*** (0.041)			
$EXIM {\times} Post {\times} Export \ opportunities$		-0.23*** (0.088)	-0.28*** (0.089)	
Fixed Effects (interacted)				
Firm	\checkmark	✓	✓	
${\sf Destinations}{\times}{\sf Year}$	\checkmark	✓	✓	
$Industry \times Year$	\checkmark	✓	✓	
$EXIM { imes} Year$	_	\checkmark	✓	
Observations	12,281	11,319	11,308	

Note: restricted to manufacturing firms

Misallocation Increases Within Listed Firms

- Estimate change in capital misallocation (Bau-Matray, 2022)
- With Cobb-Douglas, MRPK = $\frac{\partial Revenue_{it}}{\partial K_{it}} = \alpha_j^k \frac{Revenue_{it}}{K_{it}} \rightarrow$ within industries α_j^k is the same \Rightarrow APK = MRPK
- High MRPK = above industry median [2010–2014]

Misallocation Increases Within Listed Firms

- Estimate change in capital misallocation (Bau-Matray, 2022)
- High MRPK = above industry median [2010–2014]
- Capital shrinks more for high MRPK firms ⇒ misallocation increases

Dependent variable	Capital			
Sample	Low	High	All	
	(1)	(2)	(3)	
EXIM×Post	-0.044	-0.25***		
	(0.055)	(0.061)		
$Treated {\times} Post {\times} MRPK$			-0.21***	
			(0.087)	
Fixed Effects (interacted)				
Firm	\checkmark	\checkmark	\checkmark	
$Industry \times Year$	\checkmark	\checkmark	\checkmark	
$Destinations {\times} Year$	\checkmark	\checkmark	\checkmark	
$Treated \! imes \! Year$	_	_	\checkmark	
Observations	13,782	13,691	27,473	

Conclusion

Export credit agencies are ubiquitous across countries, but usually difficult to evaluate their effects

US EXIM had large overall and allocative effects in a context with

- Developed financial markets
- Large, publicly listed firms

 \Longrightarrow Empirical support for the special role of industrial policy for financing in international trade

Thank You!