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Abstract

Corporate decision-making entails complex, high-dimensional, non-linear stochastic
control during which managers learn and adapt via dynamic interactions with the
market environment. We propose a data-driven-robust-control (DDRC) framework to
complement traditional theory, reduced-form models, and structural estimations in cor-
porate finance research, emphasizing both empirical explanation and prediction of firm
outcomes while delivering policy recommendations for a variety of business objectives.
Specifically, we develop a predictive environment module using supervised deep learning
and integrate a decision-making module based on generative deep reinforcement learn-
ing. By incorporating model ambiguity and robust control techniques, our framework
not only better explains and predicts corporate outcomes in- and out-of-sample but
also prescribes key managerial actions that significantly outperform historical ones. We
document rich heterogeneity in model prediction performance, ambiguity, and policy
efficacy in the cross section of U.S. public firms and across time regimes. Importantly,
DDRC helps delineate where theory and causal analysis should concentrate, integrate
fragmentedknowledge (e.g., via transfer learning), and reveal managerial preferences
(through an extension combining inverse reinforcement learning).
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1 Introduction

Corporate finance research studies firm decision-making and outcomes using theoreti-

cal models and archival data. The literature is built on simplified and tractable repre-

sentations of the corporate environment where rational agents optimize their utilities and

interact. Notably, scholars have raised concerns about the low predictability and limited

explainability of corporate outcomes, underscoring a systematic gap in our understanding

of corporate decision-making (see, e.g., Graham, 2022, Presidential Address of the Amer-

ican Finance Association). Many theoretical models in corporate finance are static, ana-

lyze partial-equilibrium, or overlook the interactions with the environment, while empirical

studies typically report evidence that is merely “consistent with” ex-ante a priori theories

without providing a realistic alternative (Spiegel, 2023). In contrast, real-world managerial

actions and firm outcomes are now recorded with exceptional granularity and timeliness.

Our paper demonstrates that a data-driven perspective — leveraging abundant data, algo-

rithm advances, and powerful computation — can reveal novel empirical patterns and deliver

valuable economic insights to guide both academic research and managerial practice.

Implementing a data-driven approach to uncover empirical patterns and advise corporate

decision-making presents several challenges. First, managers face a combination of complex

decisions in a high-dimensional action space, often contingent on numerous state variables.

Their interdependent actions produce highly nonlinear effects that go beyond the reach of

conventional econometric models and low-dimensional causal inference. Second, managerial

decisions interact dynamically with the economic environment, with market feedback fur-

ther influencing subsequent choices (e.g., Bond et al., 2010, 2012; Edmans et al., 2012, 2015).

Such feedback loops not only impose significant costs but also complicate empirical analyses.1

Moreover, because optimal corporate decisions are rarely “labeled” in historical data, stan-

dard supervised learning techniques are of limited use. Third, unlike physical laws, financial

markets evolve rapidly; consequently, concerns about data distributional shifts become both

relevant and pressing.2

1More generally in social science research, real-time online interaction to generate new data is impractical,
either because unfiltered, continuous data collection is expensive (e.g., in high-frequency trading), unethical
(e.g., hiring and firing employees), or possibly dangerous (e.g., law enforcement). Even in domains where
online interaction is feasible, we might still want to utilize previously collected data instead — for example,
if the domain is complex and effective generalization requires large datasets. Therefore, as explained later,
we pursue an offline reinforcement learning (RL) approach using historical data similar to Cong et al. (2020).

2Data shifts, also known as distributional shifts, occur when the joint distribution of inputs and outcomes
differs between training and test samples.
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Given that managerial decision-making is essentially robust control problems character-

ized by high dimensionality, nonlinearity, dynamic learning, and evolving complexity, existing

models often fall short of providing practical policy recommendations for corporate execu-

tives. For example, reduced-form empirical models can illuminate the economic mechanisms

underlying a particular policy for a selective group of agents; however, their focus is typically

local and low-dimensional. As a result, they lack the capacity to explain broader empirical

outcomes, generate comprehensive counterfactuals, or yield generalizable recommendations

beyond isolated causal effects. Structural estimations excel at managing model complex-

ity to generate counterfactuals by modeling environments in a holistic manner that retains

interpretability and a clear economic rationale. However, these models confine themselves

to analytically tractable theories and conventional Markov decision processes (MDPs) with

pre-specified transition probabilities, largely neglecting dynamic feedback and continuous

learning about the environment. Doing so limits their ability to accurately explain observed

data, generate reliable out-of-sample predictions, or ultimately provide practical guidance

for managerial decision-making.

To advance predictions of firm outcomes under various counterfactual managerial deci-

sions — and ultimately to guide corporate decision-making — we integrate deep learning,

offline reinforcement learning, and robust control based on ambiguity, thereby framing corpo-

rate decision-making as a data-driven-robust-control (DDRC) problem. The framework we

propose (“AlphaManager model”) serves as a data-driven counterpart to structural estima-

tions by searching a broader modeling space that lends theoretical insights with data-driven

patterns. In doing so, it provides a comprehensive depiction of the economic system, explain

corporate outcomes, and generate high-dimensional, effective recommendations for enterprise

decisions. In our DDRC framework, managerial decision-making is modeled as a robust con-

trol problem in which managers maximize their utilities based on contemporaneous states.

AlphaManager comprises two modules: (1) the predictive environment module (PEM) and

(2) the decision-making module (DMM). In PEM, we leverage supervised deep learning to

capture the nonlinear, high-dimensional features inherent in financial big data. In DMM,

assuming PEM as given, we apply offline deep reinforcement learning (RL) to reduce search

costs and incorporate of flexible managerial objectives along with dynamic feedback.3 Fi-

3Reinforcement learning (RL) is “learning how to map situations to actions so as to maximize a numerical
reward signal.” It is one of the three paradigms of modern machine learning together with supervised learning
and unsupervised learning. In RL, an agent learns about states of its environment and takes actions that po-
tentially affect states going forward as well as its objective function to maximize. RL is particularly well suited
for this task because it learns optimal actions through sequential decision-making and iterative experience ac-
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nally, the robust control techniques such as ambiguity aversion are introduced as constraints,

ensuring that AlphaManager remains conservative in the face of high model uncertainty (for

instance, due to overfitting, data shifts, or endogeneity concerns), thus mitigating risks.

AlphaManager first constructs predictive environments to test counterfactual via PEM,

which generates counterfactual forecasts that both explain and predict variations in corporate

outcomes. This process circumvents the need for costly experimentation or explicit causal

identification, while still capturing environmental feedback effects. Despite apparent com-

plexity, the DDRC framework enhances traditional reduced-form and structural approaches

in several important ways. First, by simulating outcomes from a range of counterfactual

managerial decisions, PEM uncovers empirical patterns that can both challenge and refine

existing theories — informing new theoretical research. Second, it signals scenarios in which

historical data and theory alone are insufficient, underscoring the necessity of reduced-form

or structural models for effective learning. To assess model uncertainty, PEM deploys an

ensemble of deep neural networks with identical architectures but different initializations; dis-

agreement among these networks indicates that the model is extrapolating beyond its train-

ing data, rendering counterfactual predictions less reliable. Finally, our framework integrates

insights from both reduced-form and structural models through ambiguity-guided transfer

learning.4 In situations where ambiguity is high, empirical causal identification and theoret-

ical modeling play a joint, critical role in enriching the base for counterfactual predictions.

AlphaManager then incorporates a decision-making module (DMM) for managerial pol-

icy optimization, marking our work the first to combine RL with robust control in corporate

finance. At its core, corporate finance problems can be viewed as involving a “system”

(the firm and its environment) and a “controller” (the manager).5 The controller’s objec-

tive is to optimally manage the system, constrained by (1) the manager’s knowledge of the

cumulation (Sutton and Barto, 1998). Unlike dynamic programming in structural estimation – which relies on
known transition probabilities and fixed rewards structures — RL addresses a more general MDP where tran-
sition probabilities and rewards are unknown. RL does it either via a model-based approach (e.g., AlphaMan-
ager which learns the a model of the environment from data) or a model-free approach (e.g., Q-learning).

4Transfer learning has proven valuable across many domains; for instance, the pre-training used in large
language models (LLMs) is a form of transfer learning. This approach can be tailored to economics and
finance (see Chen et al. (2023)).

5Traditionally control theory is generally designed to solve linear (or linear quadratic) systems with
well-defined objectives, law of motions for states, and constraints. However, real-world systems are
nonlinear, and techniques that linearize these systems are limited to specific cases. Moreover, accurately
modeling such system is challenging, which is why traditional model-driven control approaches — such as
structural models in corporate finance — often exclude systems whose underlying dynamics are not fully
known. The complexity of these systems increases when addressing hyper-scale issues, such as financial
contagion or climate change responses, where unknown nonlinearities and unobserved environmental states
render standard dynamic programming and simulation methods inadequate.
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system’s state and environment — information that is gleaned via “system sensors” like

accounting, auditing, and reporting — and (2) the limited set of parameters that can be

directly controlled. In AlphaManager, these two aspects are operationalized by first training

a deep supervised learning based PEM from historical data that allows effective counter-

factual analysis and data generation. We then train DMM using RL to identify the most

effective combination of managerial actions for a given business objective. RL generates the

optimal control trajectory based on an exogenously defined reward structure (e.g., market

capitalization appreciation) using unlabeled data and by interacting with the environment.

In doing so, it offers normative recommendations for managerial decision-making. Finally, by

integrating robust control theory — particularly through ambiguity aversion — we guide the

training of AlphaManager to extract optimal decisions even under high model uncertainty

(Hansen and Sargent, 2023).

Our AlphaManager application is trained on Compustat, which contains a long panel of

fundamental variables of US-listed firms. We study nearly 20 thousand distinct firms with

over half-a-million unique firm-quarter observations, ranging from 1976 to 2023. We supple-

ment our dataset with additional stock market data from CRSP, and incorporate macro-level

data; e.g., the National Financial Conditions Index (NFCI), from the Chicago Fed. We de-

fine two sets of variables: state variables and managerial decision variables. State variables

describe the state that a firm faces in a given period of time. Typical examples involve

fundamentals of firms (internal states), and macroeconomic or market conditions (external

states). Managerial decision variables mediate the future state dynamics and also influence

the utility functions of managers.

In PEM, a deep neural network is trained to minimize the mean-squared error (MSE)

between real future states and predicted ones, with the input of current states and current

managerial decisions. Our PEM achieves high accuracy in predicting and explaining the

evolution of firm outcomes (the state variables) with the help of information on managerial

decisions, i.e., the managerial planning one period forward. For instance, AlphaManager

produces a 64.7% cross-sectional R2 for book asset growth and 3.2% for market cap growth,

both out of sample. To make it comparable to other empirical research in corporate fi-

nance, we also calculate the predictability without managerial planning information. The

predictability and explanability remain high for many variables, but more interestingly, for

outcomes such as book asset, market capitalization, and enterprise value, the out-of-sample

R2s become negative. This finding is consistent with empirical asset pricing research where

the market environment is simply too noisy. Critically for our analysis, however, these results
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inform us which managerial decision variables matter most for firm dynamics going forward.

Based on PEM, we are able to analyze the heterogeneous outcomes and model ambiguity

under counterfactual managerial decisions by state variable, sector, book-to-market decile,

and macroeconomic regimes. PEM performs particularly well in trade and transportation,

education and healthcare, and manufacturing; predictability is also higher during expansions.

Firms with higher firm-level states in the cross section have lower MSE and ambiguity.

Notably, model ambiguity is highest for high book-to-market firms.

In DMM, with an exogenously specified utility function of managers, we obtain optimal

policies that generate managerial decisions that maximize utilities based on current states.

When optimizing the short-term market cap growth, the quarterly outperformance of optimal

decisions compared to real managerial decisions is 10.1%. When optimizing the long-term

market cap growth, the quarterly outperformance is 8.7%. We find similar patterns when

the objective is set as enterprise value growth, with quarterly outperformance of 4.4% and

2.7%, for short and long-term growth, respectively.

We contrast DMM-suggested policy under short-term versus long-term growth in firm

value, as well as the term structure of this growth under DMM suggested optimal managerial

policy. The contrast between short- and long-term oriented managerial decisions and their

implications for firm value are receiving renewed interest in the corporate finance literature

(see, e.g., Almeida et al., 2024). Short-term AlphaManager RL outperforms long-term RL

in the long run but with higher ambiguity. After ambiguity adjustment, the performance

of short-term RL is decreasing in the evaluation time horizon compared to the long-term

RL. We further discuss the long-term implication of firm valuation under managerial short-

termism from the point of view of board members. Notably, this approach does not require

any knowledge of real decisions, which is the key difference between RL and commonplace

supervised machine learning algorithms.

Naturally, the action and information space of a manager is vast. One might wonder about

the set of variables needed for a given application and about when should one stop collecting

data and constructing new variables. Conveniently, our proposed approach is not hampered

by these concerns. Among other things, most variables one uses in applied corporate finance

research already convey information about many others. For example, the firm’s capital

structure already conveys information about its access to credit, risk, asset mix (collateral),

and more. The same applies to firm size, or as to whether it is publicly traded, hence the

amount of information available to investors. Data “confoundedness” is a plus — not a chal-

lenge — to our data-driven approach. The approach we propose is less prone to criticism re-
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garding inconsistencies in variable selection made by researchers in existing studies (see Mit-

ton, 2022) — inconsistencies leading to practices like P -hacking and ex-post theory-fitting.

Given the large counterfactual tests we do using the predictive environmental module,

AlphaManager necessarily makes extrapolation and interpolation from historical data. Given

that historical data are endogenously generated, potential model misspecification poses a par-

ticular challenge. The literature traditionally examines parameter stability using Chow-type

tests (Andersen et al., 2015). One can also detect static misspecification’s by testing moment

conditions under a GMM framework (Pan, 2002). For dynamic misspecification tests, Jarrow

and Kwok (2015) provide an intuitive exact calibration approach utilizing analytical theoreti-

cal models. Our use of deep neural networks goes beyond economic theory and is data-driven.

While it explores a much larger modeling–functional space, model misspecification is gener-

ally dynamic and hard to detect with conventional econometric tools. Therefore, to guard

against and mitigate misspecifications, we adapt the new approach of utilizing ambiguity

aversion and entropy-based measures to a data-driven setting. The model ambiguity measure

also informs us of scenarios where additional knowledge from theories and causal identifica-

tions is important and the ones where predictive models trained on historical observations suf-

fice. It not only guides corporate finance researchers on the dimensions to focus on, but also

allows the integration of fragmented knowledge through ambiguity-guided transfer learning.

Our study contributes to the emerging literature on AI in finance. Machine learning

and natural language processing have been widely applied in investment and asset pricing

(e.g. Cong et al., 2020, 2021; Gu et al., 2020; Feng et al., 2020). They have also seen

applications in studies on corporate finance or financial market risk (e.g., Cong et al., 2018;

Li et al., 2020; Bellstam et al., 2020; Hanley and Hoberg, 2019; Campello et al., 2024); but

their applications beyond creating or improving the measure of some explanatory variables

are rather limited. Exceptions to this line of work include Erel et al. (2018) on predicting

board director performance, Cao et al. (2023) on how machines and managers interact in

the context of conference calls and earnings announcements, Cao et al. (2021) on how an AI

analyst can provide additional insights on stock market forecasts to human analysts. We note

that these studies employ standard — often rudimentary — models designed for prediction

or focus exclusively on supervised learning (learning through examples) without applying

the core paradigm (i.e., deep RL) in AI innovations in the past two decades. In contrast,

we present the first AI and robust control application in finance. In fact, we are among

the first to apply model-based offline RL in economics to offer a data-driven alternative to

reduced-form models and structural estimations.
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Our paper also contributes to the literature on model uncertainty (“ambiguity”) and

robust control. Ambiguity represents a source of uncertainty where an economic agent is not

confident in which prior models to choose for prediction tasks Hansen and Sargent (2023).6

Its applications in finance are rare and mostly focus on asset pricing and investment (e.g.,

Wang, 2005; Mamaysky et al., 2007; Dicks and Fulghieri, 2021), with Dicks and Fulghieri

(2019) (financial intermediation), Garlappi et al. (2017) (corporate investment), Izhakian et

al. (2022) (capital structure), and Malenko and Tsoy (2020) (security design) as exceptions.

Meanwhile, robust control has been put forth in Hansen and Sargent (2001) where a rational

agent solves a stochastic control problem under ambiguity aversion. Studies about robust

control are mostly theoretical, except for Barnett et al. (2020) which applies robust control

to the context of climate change risks. Our work contributes to the literature on model

uncertainty as the first empirical/methodological application of the ambiguity concept in

corporate finance. We also add to robust control studies by estimating ambiguity with

the help of deep learning and then approximate solutions to robust control problems using

estimated ambiguity and offline RL.

Finally, our work can be placed in the context of the emerging computer science literature

on offline RL (a.k.a, batched RL, e.g., Fujimoto et al., 2019; Kidambi et al., 2020).7 A number

of papers have illustrated the power of such an approach in enabling data-driven learning

of policies for dialogue (Jaques et al., 2019), robotic manipulation behaviors (Ebert et al.,

2018; Kalashnikov et al., 2018), and robotic navigation skills (Kahn et al., 2021). While

Cong et al. (2020) is the first finance paper that applies offline RL (with online updates) to

portfolio management, the authors do not fully optimize the environment module to mimic

the real environment. We instead follow Kidambi et al. (2020) to build and optimize an

environment module to calculate the transition probability across states without requiring

experimenting via a simulator or costly interactions with the actual corporate or market

environment. Together with Chen et al. (2023), we are the first studies introducing transfer

learning in finance. Transfer learning leverages knowledge from one task or domain and apply

6Hansen and Sargent (2023) defines three sources of uncertainty: risk (in-model innovation), ambiguity
(model uncertainty), and misspecification (model class uncertainty). Campello and Kankanhalli (2024)
provide a comprehensive review of the research of uncertainty in corporate finance.

7Unlike online RL where real-time interactions with the actual environment or environment simulators
are possible and counterfactual statements can be evaluated directly, offline RL often works only on historical
data without any online interactions with the environment to generate additional data for model training
(e.g., Fu et al., 2020). In a pure data-driven scheme, offline RL enables researchers to explore fields that are
considered infeasible by classical online RL algorithms, especially those closely related to human behaviors
where environment interaction is costly, infeasible, or dangerous (Levine et al., 2020).
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it to improve learning in a different but related task or domain. Our DDRC framework

is compatible to incorporate inferences from existing empirical causalities and theoretical

models to our PEM for better internal validity. Our innovation also lies in using ambiguity to

guide the choice of transfer learning and the application in corporate finance. More broadly,

our study adds to emerging studies utilizing AI for goal-oriented search, which involves both

heuristic search using RL and greed search using panel trees (Cong et al., 2022, 2023).

The rest of the paper is organized as follows. Section 2 describes the DDRC framework.

Section 3 details data and model training. Section 4 reports the functionality and empirical

results from PEM, whereas Section 5 investigates the optimal managerial actions DMM

recommends under various given objectives. Section 6 discusses novel research questions

that DDRC is particularly suited for. Section 7 concludes.

2 The Data-Driven-Robust-Control Framework

The DDRC approach is comprised of two modules, one utilizes a collection of deep learners

to describe the market environment and how the outcomes of interest respond to manage-

rial actions, and the other involves a reinforcement learner offering an optimal policy while

dynamically interacting with the market environment and incorporating feedback. The re-

sulting AlphaManager architecture is illustrated in Figure 1. The uses of the rectifier or

ReLU (rectified linear unit) and tanh activation functions are standard in deep learning; the

self-attention mechanism is widely seen in many deep learning models, such as transformer

models; the state variable vector Xt and managerial control vector ut are introduced shortly.

2.1 Predictive Environment Module (PEM)

To conduct counterfactual analyses in our context, we need to model the market environ-

ment. Conventional causal analyses (e.g., instrumental variables and regression discontinuity

designs) do not provide a comprehensive solution because these identification strategies are

hard to come by or costly to establish (e.g., through experiments). Even when we have

them, causal links are only identified locally and typically when varying a single treatment

dimension. We are interested in learning about the outcomes of not only large corporate

events, such as mergers or bankruptcies, but also any marginal decisions, such as combi-

nations of increasing dividend payouts and reducing investment spending — decisions that

are far more frequent and high-dimensional in the practice of financial management. By
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Figure 1: AlphaManager (AM) Architecture

Note: This figure visualizes the AlphaManager architecture. Panel A displays the predictive environment
module (PEM) with an input layer of a state vector Xt concatenated with a decision (control) vector
ut. The state vector Xt (in blue color) includes firm-specific state variables such as firm fundamentals,
macroeconomic variables, etc. The decision vector ut (in red color) contains leverage, cash holdings, equity
financing, etc. Appendix A contains a full list of firm-specific state variables and control variables. The
second, third, and fourth layers are fully-connected layers with rectified linear unit (ReLU ) activation
functions with a self-attention mechanism. The fifth layer of tanh function transforms the output spectrum
to interval [-1, 1] and the last layer is the output layer with predictions of the system state evolution.
Similarly, Panel B shows the structure of the decision-making module (DMM) mapping current state vector
Xt to the optimal control ut for a given managerial objective. When implemented, AlphaManager uses
DMM to generate the optimal managerial actions and then predicts system state evolution using PEM.
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building a market environment, we are taking a model-based RL approach that is similar to

a structural estimation, except that the structure is data-driven rather than based on theory

with more restrictive assumptions and closed-form solutions.

In AlphaManager, we use a deep neural network to model how the internal state vari-

ables and external market states going forward react to potentially high-dimensional man-

agerial actions. Neural networks are designed to capture non-linear dependencies in high-

dimensional spaces, and they have the potential to approximate any functional form (referred

to as the universal approximation theorem in computer science, see, e.g., Hornik et al., 1989).

The large number of corporate finance variables and decisions available and the potential

nonlinear interactions among them necessitate such a module, which we refer to as the

Predictive Environment Module (PEM).

Our approach recognizes that corporate decisions involve the manager taking a sequence

of high-dimensional actions to optimize some given economic objective, which makes them

stochastic control problems. Suppose the dynamics of the state variables in the system follow:

∆Xt+1 = f(Xt, ut) + εt+1, εt+1 ∼ N(0,Σ), (1)

where Xt denotes a firm’s internal state variables (e.g., accounting fundamental) and exter-

nal state variables (e.g., inflation and unemployment) which are out of the manager’s control

at time t, ut stands for the vector of managerial actions that are made by managers at time

t, f describes how the expected value of state change, ∆Xt+1, corresponds to current state

and managerial actions, and εt+1 is the normally distributed risk term which represents the

in-model uncertainty (i.e., the uncertainty that has been captured by the model). We can

then use a fully connected neural network to approximate the function f .

PEM is expected to generate reliable out-of-sample predictions for counterfactual evalu-

ations — tasks that require both extrapolation and interpolation. This process is inherently

problematic because historical data are generated by endogenous managerial decisions, leav-

ing gaps in some regions of the action-state space. Similar to reduced-form models, two pri-

mary challenges arise: overfitting and data shift. In structural estimations, these concerns

are mitigated by assuming that the theoretical model perfectly represents the underlying

system. Analogously, if the state variables we include fully capture the system’s evolution,

the risks associated with extrapolation and interpolation would be minimized.

Various statistical procedures can mitigate these concerns without relying on such strong

assumptions. For instance, to address overfitting, one common approach is to include L1-
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norm or L2-norm penalties in the loss function during the training of a supervised deep

neural network (e.g., Kaniel et al., 2023). Furthermore, by leveraging the virtue of complex-

ity (e.g., Kelly et al., 2024), our over-parameterized PEM in the empirical implementation is

designed to reduce overfitting and enhance out-of-sample performance. However, even when

overfitting is controlled, PEM inherently introduces model ambiguity (Hansen and Sargent,

2023) because the data-generating process may shift, leading to uncertainty about whether

a properly trained model will generalize to new datasets. In other words, neural network

models with different parameters might perform similarly on the training data, yet yield

divergent predictions due to a combination of residual overfitting and data shifts. As such,

selecting the appropriate model ex ante adds an additional layer of uncertainty. In Section

2.3, we demonstrate how to empirically estimate ambiguity for any point in the variable space

and address this issue by incorporating ambiguity aversion into the objective function.8

2.2 Decision-making Module and Offline Reinforcement Learning

Managers take a sequence of actions to solve the following stochastic control problem:

max
{ut0 ,...,ut0+T }

Et0

t0+T∑
t=t0

r(Xt, ut) s.t. ∆Xt+1 = f(Xt, ut) + εt+1, εt+1 ∼ N(0,Σ), (2)

where r(Xt, ut) is the instantaneous reward function given the state Xt and the managerial

decision ut, and T is the length of the optimizing time period associated with the managerial

objective. An example of instantaneous reward function is the enterprise value growth for

the next period given current state and managerial decisions.

The conventional approach to stochastic control problems involves deriving HJB equa-

tions to obtain closed-form solutions. When analytical solutions are unattainable, numerical

algorithms can yield reliable, low-variance empirical approximations — provided the problem

is low-dimensional. In our setting, the dynamics lack an analytical characterization, and the

environment evolves in a high-dimensional, potentially nonlinear manner, which motivates

our use of reinforcement learning.

In order to functionally represent managerial decisions of interest, we follow the canonical

policy gradient algorithm in RL (Sutton and Barto, 1998) and assume that decisions are made

8This approach essentially adds a penalty based on relative entropy (also known as Kullback-Leibler
divergence in computer science literature).
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contingent on the state variable X. Specifically,

ut = g(Xt), (3)

where the functional representation g is called decision-making module (DMM), serving as a

decision-making device contingent on the state vector. By substituting (3) into (2), we can

reformulate the stochastic control problem as:

max
g(·)

Et0

t0+T∑
t=t0

r(Xt, ut)

s.t. ∆Xt+1 = f(Xt, ut) + εt+1, εt+1 ∼ N(0,Σ)

ut = g(Xt).

AlphaManager continuously learns about the environment through interactions and re-

fines her understanding using the predictive environment module (PEM), which models the

function f(Xt, ut). At the same time, she maximizes her expected cumulative payoff by

optimizing over a broad space of dynamic policies, represented by g(Xt), using the decision-

making module (DMM).

2.3 Robust Control and Ambiguity Aversion

Neural networks usually have more free parameters than available training samples, lead-

ing to under-identified parameter estimates. Even when fewer parameters are used, endo-

geneity issues in the training data can undermine a model’s out-of-sample predictive power

because data-driven training does not distinguish causal relationships or separate supply-

side shocks from demand-side shocks. Consequently, variations in parameter initialization

or model architecture may produce multiple models that perform similarly in-sample yet

yield different out-of-sample predictions. Traditional model selection focuses on validation

set performance, but when the first moment of predictions is comparable across models, ad-

ditional metrics to guide model choices become necessary. Data shifts further compound the

problem; the dispersion of predictions on the test set not only signals potential overfitting

but also reflects model uncertainty arising from these shifts. This “across-model” uncer-

tainty is referred to as ambiguity in robust control literature (Hansen and Sargent, 2023).

The literature typically handles ambiguity problems in two steps. First, researchers estimate

ambiguity through some metrics (e.g., relative entropy) to summarize the discrepancy among
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multiple models defined as statistical distributions indexed by different parameters. If this

discrepancy for a given test sample is large, the ambiguity for this specific sample is high.

Second, when modeling a decision-maker’s problem, a punishment for ambiguity is added to

the original objective function, making the agent ambiguity-averse.

To estimate ambiguity, we apply the idea of boosting to train a set of neural networks

with similar structures for PEM, under the same loss function but with different initial

coefficients or slight variations in the model specification.9 In the supervised learning scheme,

these networks perform the same functionality in-sample, as errors would be punished during

the training process consistently. In contrast, out-of-sample — especially for unprecedented

scenarios or unusual events that are not covered in the training sample —, the performances

of these models might diverge. Accordingly, the disagreement level of these models is a

natural proxy of whether a given input is likely within the training set span or not. When

the disagreement level of these models is high, it is either because the current states are

“unusual” or the current managerial decisions are “uncommon.” Formally, we trained a set of

environment modules i = 1, 2, ..., I mapping (Xt, ut) to X̂ i
t+1. The boosting error, motivated

by the relative entropy which is a theoretical metric of ambiguity, for (Xt, ut) is calculated as:

BoostingError(Xt, ut) =
1

D

D∑
d=1

(
max

i=1,2,...,I
X̂ i

t+1,d − min
i=1,2,...,I

X̂ i
t+1,d

)2

, (4)

where D is the number of dimensions for state vector X and ut is an arbitrary managerial

control attempted. Note that there are alternative specifications of boosting errors one can

use, which still capture the concept of ambiguity.

In addition to punishing ambiguity directly, a common practice in economics and com-

puter science is to consider an agent solving a max-min problem.10 Under model uncertainty,

the agent tries to maximize the lowest reward generated by a set of models. This pessimism

effectively serves as an additional device, together with ambiguity aversion, to control for

model uncertainty in suggesting decisions.

To train DMM and solve the RL problem, we use fully connected neural networks to

parameterize the decision-making device g, the mapping from state to control. We also

9The choice of ambiguity metrics could vary, as shown in Hansen and Sargent (2023). We choose to use
boosting error in our context given its simplicity of calculation and its intuition of maximum dispersion of
predictions for models around our main PEM in the sense of model structure and parameter initialization
under the same training process.

10See Barnett et al. (2020) in economics and Jin et al. (2021) in computer science for modeling pessimistic
agents solving max-min problems to mitigate ambiguity.
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incorporate the idea of Kidambi et al. (2020) and Yu et al. (2020) on how to incorporate

pessimistic reward and punishment on ambiguity in the training process. Specifically, in

training DMM, for any given state Xt0 , the empirical objective function is calculated as:

J(Xt0) :=

t0+T∑
t=t0

min
i=1,2,...,I

ri (Xt, g(Xt))−δ·max

{
0, max

t=t0,...,t0+T
BoostingError (Xt, g(Xt))− θ(Xt0)

}
(5)

In Eq (5), ri (Xt, g(Xt)) denotes the instantaneous reward function by environment module i,

given state PEM-predicted time-t state, Xt, and the decision-making device g, and we take

the lowest instantaneous reward across I different environment modules. The ambiguity

punishment parameter, δ, is chosen to be very large so that we guarantee that the boosting

error is always small enough. Empirically we pick δ = 107. BoostingError(Xt, g(Xt)) is the

boosting error at time t, given PEM-predicted time-t state, Xt, and the decision-making

device g, calculated as Eq (4). The benchmark error, θ(Xt0), is calculated as a constant α

plus β times the boosting error of Xt0 and the lagged real managerial decisions ūt0−1 which

is known at time t:

θ(Xt0) = α + β · BoostingError(Xt0 , ūt0−1), (6)

where β > 0 and ūt0−1 is the actual managerial decision in the previous period just a simple

benchmark for how ambiguous the states correspond to. What we do here is essentially

prioritizing the reduction in ambiguity over the baseline rewards, if the ambiguity exceeds

some threshold. When considering different optimizing period T , given the monotonicity of

maxt=t0,...,t0+T BoostingError (Xt, g(Xt)), we choose higher values of α and β when optimiz-

ing under a higher T . The empirical choices of α and β under different optimizing period T

are detailed in Appendix C.

3 Data and Training

3.1 Data and Variables

Our panel data is fairly standard in corporate finance research and is based on quarterly

CRSP–Compustat merged database, where we are able to include 20,485 different firms

ranging from 1976:Q1 to 2023:Q2, with 784,460 firm-quarter observations. The variables in

this paper fall into two classes: state variables (Xt) and managers’ decision variables (ut).

In each period, managers make their decisions and their decisions will impact state variable
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dynamics for the next period. Examples of state variables include fundamental variables that

are not entirely determined by managers, such as the firm’s market capitalization, interest

expenses, sales growth, earnings forecasts, and Tobin’s Q. They also include past managerial

decisions. Decision variables ut reflect managerial decisions directly (or at least largely so).

Examples include corporate investment spending, cash savings, and capital structure.

In order to train our supervised learning-based PEM, we require the existence of obser-

vations for two consecutive fiscal quarters in standard Compustat dataset (with “datafmt”

code to be “STD”). We only focus on domestic (with “popsrc” code to be “D”) industrial

companies (with “indfmt” code to be “INDL”), and we exclude financial and utility firms

(with “naics2” code to be 22 or 52) from our sample. We also require book assets to be

positive. AlphaManager has a rolling training for RL. We divide our dataset by fiscal quar-

ter to have roughly 30% initial training set, which implies that the initial burn-in is until

1991. We winsorize each variable at 1% and 99%, and subsequently normalize them to be

bounded inside [−1, 1] for training convenience. We also consider macroeconomic states for

the same time period, using the Chicago Fed National Financial Condition Index (NFCI)

subindices (risk, credit, financial leverage, and non-financial leverage) as macro covariates.

The detailed variable selection is listed in Appendix A. Summary statistics for firm-level

variables are reported in Table 1.

3.2 Training and Computation

We describe the training of the AlphaManager model here and list the hyperparameter

choices in Appendix B. PEM has 268 inputs, including 12 firm fundamental variables (e.g.,

log book assets), 12 variables capturing their growth (first difference in variable values).

We further incorporate the corresponding variables lagged 1 through 4 quarters to capture

patterns in the time series. Involving lagged variables provides additional information on

time dependence, and incorporating the changes in values helps neural networks better ex-

tract more information than typically learned from the levels of state variables alone. We

additionally include lagged decisions and their growth, which are publicly observable at the

current time point, as well as their 1-4 quarter lagged versions. We also have 2 stock market

states and their current growth, together with the 1-4 quarter lagged values. For the 4 macro

states, we only consider their current levels and their levels lagged 1 through 4 quarters. For

managerial decisions, we have 9 decision variables (e.g., leverage) and their correspondingly

changes (growth) from their previous values. The output of PEM has 14 dimensions, namely
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Table 1: Summary Statistics for Firm-specific States and Managerial Decisions

variable count mean median std

Leverage 784,460 0.2449 0.2020 0.2333
Acquisition 784,460 0.0047 0.0000 0.0227
Investment 784,460 0.0144 0.0068 0.0227

Cash 784,460 0.2041 0.0932 0.2651
Dividend 784,460 0.0019 0.0000 0.0051
DebtIssue 784,460 0.9122 0.0000 1.8047

EquityIssue 784,460 0.5231 0.0010 1.0551
RDExp 784,460 0.0130 0.0000 0.0309

Repurchase 784,460 0.0026 0.0000 0.0095
Total Assets 784,460 5.2788 5.0987 2.2292

Current Assets 784,460 4.2719 4.2478 2.1785
Sales 784,460 3.7052 3.6178 2.2490

Payables 784,460 2.7043 2.3038 2.0113
COGS 784,460 3.3015 3.1079 2.1523

InterestExp 784,460 0.5467 0.0000 1.1486
Inventory 784,460 2.4818 2.1510 2.2778

CurrentLiability 784,460 3.5870 3.3725 2.1935
Receivables 784,460 3.1032 2.9350 2.1419

Revenue 784,460 3.6999 3.6127 2.2525
MarketCap 784,460 5.2181 5.0620 2.2858

EnterpriseValue 784,460 5.7726 5.6021 2.2511
Volume 784,460 10.3049 10.4611 2.6685
Return 784,460 -0.0140 0.0000 0.2872

Note: This table documents the summary statistics of our firm-level state variables and decision variables.
Our sample starts from 1976:Q1 to 2023:Q2, and covers 784,460 unique firm-quarter observations. In the
sample selection, we keep domestic industrial firms (with “popsrc” code to be “D” and “indfmt” code to be
“INDL”) from standard Compustat (with “datafmt” code to be “STD”). We exclude financial and utility
firms (with “naics2” code to be 22 or 52) from the sample. We also require book assets to be positive.
We winsorize our each variable at 1% and 99%. The detailed variable definitions and formulations are in
Appendix A.

12 next-quarter changes in fundamental and 2 next-quarter changes in return and volume.

For training PEM, we first initialize a neural network and train the model in mini-batch

mode (with batch size to be 2048 observations) using data until 1991:Q4, which is ready to

predict system states in 1992:Q1 “out-of-sample.” In this stage, we train our neural network

for 30 epochs. Next, we include 1992:Q1 data into our training set to update the environment

module and use the updated model to predict the system states in 1992:Q2 for additional

5 epochs, and so on. We also train 10 auxiliary models with different realizations in the

initialization phase and with slightly different model designs at the same time for ambiguity
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estimation. We use four hidden layers in the baseline PEM, with each layer having 512

neurons. In total, we have 1,186,304 parameters.

Our DMM has 250 inputs, namely the inputs of PEM excluding current decisions and

their growth versions (9 + 9 = 18), and has 9 outputs, which are changes in current deci-

sions compared to the last-quarter ones. For training DMM, we initialize a neural network

and train the RL model using data until 1991 to recommend managerial decisions in 1991.

We train the model for 64 epochs first, and then when the loss function (after ambiguity

punishment) turns positive, we continue to train the model for 5 epochs and move on to

the next stage. Then, we focus on 1992 data to recommend 1992 managerial decisions,

and follow the same training scheme going forward in time. As baseline specifications, we

consider two objectives, market capitalization growth and enterprise value growth. We do

this for two horizons: one quarter ahead (“short horizon”) and eight quarters ahead (“long

horizon”). We use a four-hidden layer network in training our DMM, with each layer having

256 neurons. In total, we have 265,993 parameters.

We train our neural networks on the Red Cloud platform, with 16 CPUs, 55G memory,

and an A100 GPU.11 The training process takes 30-35 hours for PEM (including the auxiliary

models), 8 hours for the DMM with short-term objectives, and 75-80 hours for the DMM

under long-term objectives. We use Adam optimizer (Kingma and Ba, 2014) in training

neural networks.

4 The Economic Environment for U.S. Public Firms

4.1 Supervised PEM: A Corporate Finance “World Model”

When implemented on U.S. equities, PEM predicts next period system evolution, includ-

ing reactions to current period managerial actions. In other words, environment module

predicts Xt+1 given Xt and ut. As discussed earlier, a deep neural network representation

could easily fit the training sample, but is not guaranteed to produce sensible out-of-sample

counterfactuals, especially in the presence of distributional shifts. Let us discuss this in turn.

Suppose there is a rarely observed — or an unseen — event in the training sample,

which is the general focus of event studies and causal identification strategies. One can

use a dummy variable to denote whether this event occurs or not. In the training sample,

11Red Cloud is a subscription-based Infrastructure as a Service cloud that provides root access to virtual
servers and storage on-demand under Cornell University Center for Advanced Computing (link).
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this variable is almost always labeled 0 and only rarely 1, which makes it a phenomenon

too “weak” to pick up. In this case, the ambiguity for our test sample is infinite, i.e., any

models trained on our training set could provide unconstrained estimations on the treatment

effect. To address this concern of ambiguity, we follow the idea of boosting and train a set

of auxiliary neural networks to estimate the ambiguity by their dispersion in predictions.12

Acting as a metric of ambiguity, boosting error differentiates scenarios where all mod-

els coincide in predictions versus ones where model predictions are highly dispersed. By

punishing the boosting error in the training of our decision-making module later on, the

ambiguity averse agent avoids high-ambiguity actions which we have little reference from

prior empirical data, and only explores the action domain with low ambiguity. Similar ideas

are also seen in computer science literature related to offline reinforcement learning, such as

Kidambi et al. (2020) and Yu et al. (2020).

4.2 Predicting Firm Fundamentals and Market Reactions

To train PEM, we use standard mean-squared error (MSE) as our loss function. We

standardize input variables to be in the range [−1, 1] to fit the tanh(·) function in the neural

networks, rather than normalizing them to be with zero mean and unit variance.

To better understand the economic implication of training loss, we convert the technical

loss to pseudo R2 by dependent variables.The expression of pseudo R2 for the dth state for

a given sample Sd with corresponding predictions Ŝd is:

Pseudo R2(Sd, Ŝd) = 1−
∑

Xd∈Sd
(Xd − X̂d)

2∑
Xd∈Sd

(Xd − X̄d)2
, (7)

where Xd ∈ Sd is a sample of the dth dimension of state vector, and X̂d ∈ Ŝd is its corre-

sponding prediction from PEM; X̄d is the initial training set (i.e., sample before 1991:Q4)

average of Xd. It is not surprising that our environment module gains very high pseudo R2

for most variables, as decision variables are used as network inputs. The pseudo R2 for stock

return growth is not as high as other variables, since it is driven by investors’ demand —

which incorporates factors like sentiment and liquidity — that is out of managers’ control,

at least before the control decisions are revealed to the investors in subsequent quarters.

12The main difference between our boosting method and commonly used algorithms such as AdaBoost lies
in how we use the auxiliary predictors. These auxiliary networks share a similar structure with our neural
network but with different initialization. Traditional applications combine all the auxiliary predictors to be
a stronger predictor, while we use auxiliary predictors to jointly form a natural gauge of model ambiguity.
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Table 2: Pseudo R2 for the Growth of State Variables Without and With Control Information

Ignoring Control Information Including Control Information

State Variable Training R2 Test R2 Training R2 Test R2

Total Assets –4.09% –8.15% 55.44% 62.56%
Current Assets –3.58% –7.10% 44.49% 51.21%
Sales 29.54% 28.68% 31.33% 30.88%
Payables 21.46% 24.43% 24.40% 27.64%
COGS 25.68% 26.76% 27.00% 28.56%
InterestExp 73.26% 77.17% 73.36% 77.28%
Inventory 12.78% 13.71% 17.04% 18.92%
CurrentLiability 8.88% 7.72% 21.89% 22.69%
Receivabless 17.52% 18.77% 21.59% 23.20%
Revenue 29.51% 28.59% 31.31% 30.80%
MarketCap 1.32% –3.33% 9.32% 7.07%
EnterpriseValue –0.97% –5.73% 14.61% 13.14%
Volume 12.81% 16.53% 15.77% 20.75%
Return 47.90% 45.27% 50.04% 48.19%

Note: This table documents the pseudo R2 for the growth of state variables without and with the current
control (ut). PEM intends to predict future firm-specific state variables given current state and control.
Since the current control vector is private information (for instance the manager’s planning on leverage for
the next period), it is not observable by outsiders such as investors or econometricians. In predicting the
future, we first ignore all controls, by setting them to be 0, calculate PEM predictions, and then the pseudo
R2 (ignoring control) for each firm-specific state variable. Then, we incorporate control variables as inputs,
calculate PEM predictions, and then the pseudo R2 (with control) for each firm-specific state variable.

Table 2 shows the pseudo R2 of future fundamentals ignoring or with managerial decision

information for training sets (in-sample) and test sets (out-of-sample). With managerial

decision information, we exploit the full capacity of PEM to generate counterfactuals for

future firm-level states by feeding in current state variables as well as managerial decisions

to be made. To evaluate the importance of managerial planning in predictions, we ignore

the managerial decisions by setting them to be their corresponding last-quart values — as if

firms stick with their latest decisions — and generate counterfactuals.

By comparing pseudo R2s of future fundamentals ignoring or with managerial planning,

we are able to identify pivotal state variables that managerial decisions tend to influence

more. For outcomes such as gross revenue or net income, whether we consider the managerial

action does not matter much in predictions. However, managerial actions seem to have a

significant impact on state variables such as total asset and market capitalization. This

reveals that some corporate outcomes are influenced by managerial actions while others are

not, at least not immediately. We consider both the case with and without controls because
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from outside investors’ perspective, managerial controls are only disclosed with a delay and

constitute “insider” information that outsiders may not use for trading. Another way to

interpret this “controllability” result is to look at the outcome variables less affected by the

manager. For example, growth in trading volume is likely driven by traders in the secondary

market rather than directly by the manager of the firm.

Table 3 reports PEM’s heterogeneous performance (measured by OOS MSE) for each

state variable by its cross section ranking. We report results for three subsets of cross sec-

tions: pre-dot com bubble, between the dot com bubble and the great financial crisis (GFC),

and post-GFC, where cutoff points of these two events are based on the NBER recession end

months. For each state variable, we rank firms in each cross section as “low” and “high” by

comparing the state variable level to its cross-sectional median, and calculate average and

standard deviation of PEM MSE within each subsample. For most firm-level state variables,

the lower half generally has higher prediction error, with the exceptions of book value of cur-

rent asset, interest paid and book value of current liability. For macro state variables, the dot

com to GFC period is the hardest to predict; the same applies to our two objectives (market

capitalization and enterprise value). Table 4 reports PEM’s heterogeneous performance by

sector, defined as the first digit of North American Industry Classification System (NAICS)

code. Trade and Transportation sector (“naics1” = 4), Education and Healthcare (“naics1”

= 6), and Other Services sector (“naics1” = 8) always have the lowest prediction error across

three episodes. Table 5 reports PEM’s performance by book-to-market decile, where 1 indi-

cates the lowest decile and 10 indicates the highest decile. The best performers with regard

to prediction error of PEM oscillate among middle deciles and the distribution across deciles

exhibits a U-shape MSE, while the bottom decile always has the worst performance.

Table 6 results reveal heterogeneous ambiguity for each state variable (measured by

boosting error defined in the previous section), following the same logic. For most firm-level

state variables, the lower half generally has lower ambiguity. The dot com to GFC period

usually has the highest ambiguity, and the pre dot com period has the lowest in general. In

Table 7, we do the same exercise for sector. Manufacturing (“naics1” = 3), Education and

Healthcare (“naics1” = 6) and Other Services (“naics1” = 8) achieve the lowest ambiguity

across three episodes. Mining and Construction (“naics1” = 2) has low ambiguity in the pre

dot com period, while the ambiguity for Education and Healthcare sector (“naics1” = 6)

gradually goes up. Table 8 shows that the highest three deciles of book-to-market has the

lowest ambiguity over the three episodes.

Even though PEM is high-dimensional, we can analyze low dimensional action combi-
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nations, which are the focus of conventional reduced-form models. Appendix D uses firm

recapitalization as an example to showcase how to use PEM to analyze low-dimensional

policy conterfactuals.

4.3 Predicting the Evolution of Macroeconomic States

Macroeconomic state variables are distinct from firm-specific fundamentals or stock mar-

ket reactions. These variables operate on a broader scale, influence firm fundamentals, and

are largely insulated from the direct influence of individual firm decisions. For example,

changes in an individual firm’s leverage — whether it issues more debt or equity — are un-

likely to substantially affect macroeconomic indicators like aggregate non-financial leverage

or credit risk. These macroeconomic variables tend to be co-integrated and exhibit minimal

cross-sectional variability, making them difficult to predict with precision.

In this context, the National Financial Conditions Index (NFCI) subindices, including

risk, credit, financial leverage, and non-financial leverage, provide an important summary

of macroeconomic conditions. However, predicting these macroeconomic variables poses a

significant challenge due to their overlapping information content and their strong interrela-

tionships. To investigate whether neural networks can overcome this, we compare the pre-

dictive performance of neural networks and vector autoregressive (VAR) models, which have

long been considered a gold standard in time series forecasting for macroeconomic variables.

Our neural network approach achieves much better performance (measured by out-of-

sample pseudo R2s) in all four dimensions, especially for risk and credit where VAR fails

to attain positive pseudo R2s while our neural network gets 11.4% and 27.3% out-of-sample

pseudo R2s respectively. We detail the time series results in Appendix E.

5 Optimal Policy Recommendations to Managers

5.1 Reinforcement Learning and the Decision-Making Module

The decision-making module, built on the predictive environment module, intends to

seek optimal managerial decision-making processes given a certain utility function (i.e., ob-

jective) of the manager. Managers make decisions contingent on the current state of the firm

including the current macroeconomic status, a neural network could projection the decision-

making process as a function of current states: ut = g(Xt). The neural network is trained
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Table 3: Heterogeneous PEM Performance for System States

Variable Full Sample Pre-Dotcom Dotcom–GFC Post-GFC

Mean Std Mean Std Mean Std Mean Std

Total Assets
high 1.60% 6.28% 1.82% 6.58% 1.79% 6.70% 1.32% 5.75%

low 2.95% 9.34% 3.33% 9.89% 2.96% 9.07% 2.66% 9.04%

Current Assets
high 2.76% 8.20% 2.68% 7.62% 2.88% 8.36% 2.76% 8.54%

low 4.04% 11.33% 4.31% 11.33% 3.78% 10.83% 3.99% 11.62%

Sales
high 3.17% 10.00% 3.33% 10.01% 3.10% 9.94% 3.09% 10.03%

low 6.92% 16.94% 6.56% 15.42% 6.30% 15.35% 7.56% 18.80%

Payables
high 5.43% 12.57% 6.25% 13.54% 5.74% 13.06% 4.61% 11.40%

low 6.39% 13.21% 5.22% 11.08% 6.14% 12.65% 7.42% 14.82%

COGS
high 2.75% 10.55% 3.09% 11.64% 2.66% 10.25% 2.53% 9.82%

low 4.12% 12.40% 4.18% 12.10% 4.01% 12.25% 4.14% 12.70%

InterestExp
high 1.72% 5.59% 1.25% 4.69% 1.79% 6.05% 2.03% 5.90%

low 1.84% 7.63% 1.45% 6.62% 1.89% 8.18% 2.11% 8.00%

Inventory
high 5.06% 12.85% 5.48% 13.68% 5.39% 13.40% 4.55% 11.82%

low 4.85% 14.89% 4.82% 14.28% 4.58% 14.40% 5.03% 15.61%

CurrentLiability
high 5.23% 13.24% 5.65% 13.76% 5.46% 13.75% 4.78% 12.50%

low 6.55% 15.11% 6.52% 14.43% 6.40% 14.87% 6.66% 15.74%

Receivables
high 3.29% 9.37% 3.47% 9.61% 3.41% 9.43% 3.07% 9.15%

low 6.87% 16.00% 5.92% 14.21% 6.60% 15.24% 7.76% 17.58%

Revenue
high 3.16% 9.99% 3.34% 10.13% 3.07% 9.89% 3.07% 9.94%

low 6.90% 16.93% 6.56% 15.46% 6.30% 15.39% 7.52% 18.74%

MarketCap
high 7.68% 15.70% 9.92% 18.70% 8.30% 16.43% 5.55% 11.96%

low 12.53% 21.42% 12.99% 21.63% 13.62% 22.77% 11.55% 20.38%

EnterpriseValue
high 6.06% 13.67% 8.59% 17.98% 6.14% 12.80% 4.05% 9.24%

low 10.34% 18.96% 11.53% 20.69% 11.55% 20.10% 8.73% 16.65%

Volume
high 4.01% 8.49% 4.89% 8.76% 3.68% 8.21% 3.52% 8.38%

low 7.74% 14.11% 8.83% 14.05% 8.21% 14.96% 6.65% 13.57%

Return
high 5.05% 10.92% 5.88% 12.14% 5.43% 11.49% 4.19% 9.41%

low 6.77% 14.92% 7.48% 15.94% 7.51% 15.95% 5.79% 13.37%

MacroRisk
high 6.00% 6.71% 6.42% 6.80% 5.99% 6.54% 4.84% 5.88%

low 4.91% 5.78% 4.62% 5.33% 4.63% 5.37% 4.97% 6.11%

MacroCredit
high 5.86% 6.64% 6.59% 6.90% 6.26% 6.70% 5.01% 6.10%

low 4.70% 5.53% 4.74% 5.47% 4.44% 5.18% 4.81% 5.89%

MacroFinLev
high 5.43% 6.28% 5.43% 6.10% 5.53% 6.26% 5.26% 6.22%

low 5.05% 5.91% 5.64% 6.28% 5.14% 5.81% 4.55% 5.74%

MacroNonfinLev
high 5.75% 6.36% 6.35% 6.74% 5.16% 5.96% 5.06% 6.26%

low 4.82% 5.83% 4.58% 5.33% 5.47% 6.09% 4.77% 5.75%

Note: This table shows the heterogeneous PEM performance for each state variable. For each cross section,
we divide firms in low and high groups for each state variable, and we calculate mean and standard deviation
of PEM MSE for the focal state variable within three subsamples: pre dot com, between dot com and GFC,
and post GFC.
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Table 4: Heterogeneous PEM Performance for Sectors

MSE full sample pre-dotcom dotcom–GFC post-GFC

sector mean std mean std mean std mean std

agriculture 7.00% 7.03% 7.40% 7.59% 7.04% 6.58% 6.62% 6.74%
mining & construction 6.84% 7.00% 6.20% 6.32% 7.23% 7.20% 7.10% 7.30%
manufacturing 4.95% 5.93% 4.98% 5.77% 5.17% 6.00% 4.78% 6.02%
trade & transportation 4.35% 5.17% 4.60% 5.36% 4.33% 5.09% 4.15% 5.05%
information & professional services 5.14% 5.92% 6.28% 6.76% 5.18% 5.71% 4.24% 5.15%
education & healthcare 4.37% 5.22% 4.99% 5.57% 4.05% 4.76% 4.02% 5.11%
recreation & accommodation 4.76% 5.44% 5.09% 5.22% 4.66% 5.03% 4.52% 5.85%
other services 3.89% 4.66% 4.27% 5.05% 3.52% 4.07% 3.60% 4.39%
public administration 7.00% 7.66% 7.52% 7.99% 7.09% 7.63% 5.05% 6.15%

Note: This table shows the heterogeneous PEM performance for each sector, defined by the first digit
of North American Industry Classification System (NAICS) code. For each firm-quarter observation, we
calculate average MSE of PEM for state variables to get the average MSE of PEM for each firm-quarter
observation, and then for each cross section, we calculate mean and standard deviation of PEM MSE within
three subsamples: pre dot com, between dot com and GFC, and post GFC, and we take the average across
state variables. The top three sectors (with the lowest MSEs) within each time period is marked in red.

Table 5: Heterogeneous PEM Performance for “Value” Deciles

MSE full sample pre-dotcom dotcom–GFC post-GFC

book-to-market decile mean std mean std mean std mean std

1 6.45% 6.98% 7.40% 7.34% 6.41% 6.77% 5.72% 6.73%
2 5.68% 6.45% 6.53% 6.94% 5.55% 6.07% 5.08% 6.19%
3 5.19% 6.10% 5.89% 6.51% 5.20% 5.95% 4.64% 5.78%
4 4.75% 5.72% 5.41% 6.13% 4.88% 5.63% 4.16% 5.38%
5 4.68% 5.65% 5.14% 5.91% 4.77% 5.56% 4.27% 5.48%
6 4.68% 5.60% 4.96% 5.72% 4.95% 5.69% 4.31% 5.43%
7 4.72% 5.66% 4.86% 5.52% 4.96% 5.78% 4.47% 5.69%
8 4.82% 5.70% 4.78% 5.37% 5.13% 5.93% 4.67% 5.80%
9 5.13% 5.85% 4.97% 5.63% 5.29% 5.99% 5.15% 5.92%
10 6.03% 6.55% 5.37% 5.98% 6.06% 6.59% 6.50% 6.88%

Note: This table shows the heterogeneous PEM performance for each book-to-market decile. For each
firm-quarter observation, we calculate average MSE of PEM for state variables to get the average MSE of
PEM for each firm-quarter observation, and then for each cross section, we calculate mean and standard
deviation of PEM MSE within three subsamples: pre dot com, between dot com and GFC, and post GFC,
and we take the average across state variables. The top three deciles (with the lowest MSEs) within each
time period is marked in red.
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Table 6: PEM: Heterogeneous Ambiguity for System States

variable
full sample pre-dotcom dotcom–GFC post-GFC

mean std mean std mean std mean std

Total Assets
high 9.35% 4.19% 8.45% 3.85% 9.56% 4.17% 9.93% 4.33%

low 7.96% 3.84% 7.04% 3.19% 7.78% 3.57% 8.76% 4.24%

Current Assets
high 10.68% 4.74% 8.99% 3.95% 10.85% 4.68% 11.90% 4.93%

low 9.56% 4.59% 8.07% 3.62% 9.57% 4.31% 10.68% 5.07%

Sales
high 9.15% 4.35% 7.66% 3.48% 9.44% 4.31% 10.13% 4.66%

low 8.81% 4.85% 7.13% 3.25% 8.79% 4.46% 10.10% 5.63%

Payables
high 9.51% 4.34% 7.84% 3.52% 9.60% 4.19% 10.74% 4.58%

low 8.65% 4.38% 7.01% 3.23% 8.33% 3.96% 10.07% 4.88%

COGS
high 9.52% 4.30% 8.50% 3.92% 9.90% 4.36% 10.09% 4.40%

low 9.07% 4.25% 8.07% 3.61% 9.10% 4.02% 9.82% 4.64%

InterestExp
high 7.43% 3.64% 6.11% 2.82% 7.58% 3.65% 8.33% 3.88%

low 6.96% 3.47% 6.18% 2.85% 7.26% 3.53% 7.40% 3.77%

Inventory
high 8.87% 4.02% 7.51% 3.35% 9.39% 4.11% 9.60% 4.18%

low 9.10% 4.32% 7.82% 3.57% 9.21% 4.12% 10.00% 4.71%

CurrentLiability
high 11.21% 4.93% 9.49% 4.26% 11.51% 5.06% 12.37% 4.96%

low 10.31% 5.00% 8.77% 4.03% 10.22% 4.99% 11.52% 5.34%

Receivables
high 9.24% 3.96% 7.99% 3.44% 9.64% 3.95% 9.96% 4.11%

low 9.08% 4.34% 7.69% 3.39% 9.12% 3.91% 10.10% 4.89%

Revenue
high 9.00% 4.36% 7.52% 3.48% 9.24% 4.31% 10.00% 4.67%

low 8.69% 4.87% 7.03% 3.30% 8.71% 4.44% 9.95% 5.68%

MarketCap
high 13.33% 6.97% 11.10% 5.06% 15.98% 8.97% 13.50% 6.31%

low 12.96% 8.25% 9.56% 4.60% 15.10% 9.74% 14.24% 8.63%

EnterpriseValue
high 12.39% 6.32% 10.08% 4.63% 14.63% 7.83% 12.86% 5.87%

low 11.81% 7.66% 8.57% 4.13% 13.69% 8.70% 13.15% 8.26%

Volume
high 11.07% 4.64% 9.77% 4.07% 11.98% 5.18% 11.55% 4.51%

low 9.50% 4.46% 7.98% 3.48% 10.40% 5.21% 10.10% 4.33%

Return
high 11.13% 5.86% 8.93% 4.24% 12.94% 7.11% 11.74% 5.60%

low 11.62% 6.57% 8.92% 4.23% 13.57% 8.11% 12.53% 6.36%

MacroRisk
high 10.82% 4.17% 8.85% 3.28% 11.45% 4.33% 10.68% 3.93%

low 9.47% 3.72% 7.53% 2.60% 9.44% 3.51% 10.82% 4.04%

MacroCredit
high 10.55% 4.07% 8.95% 3.31% 11.18% 4.43% 10.81% 4.03%

low 9.29% 3.66% 7.64% 2.68% 9.79% 3.59% 10.70% 3.93%

MacroFinLev
high 10.46% 4.12% 8.14% 2.99% 11.33% 4.50% 10.88% 4.01%

low 9.37% 3.65% 8.26% 3.08% 9.69% 3.49% 10.62% 3.94%

MacroNonfinLev
high 9.78% 3.85% 8.81% 3.27% 11.49% 4.19% 10.59% 4.04%

low 9.91% 3.94% 7.48% 2.56% 9.56% 3.75% 10.89% 3.93%

Note: This table shows the heterogeneous ambiguity for each state variable measured by the greatest
different in predictions among PEM and its auxiliary models for that specific state variable. For each cross
section, we divide firms in low and high groups for each state variable, and we calculate mean and standard
deviation of ambiguity for the focal state variable within three subsamples: pre dot com, between dot com
and GFC, and post GFC.
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Table 7: PEM: Heterogeneous Ambiguity for Sectors

Ambiguity full sample pre-dotcom dotcom–GFC post-GFC

sector mean std mean std mean std mean std

agriculture 10.77% 4.04% 9.59% 3.48% 11.55% 4.33% 11.40% 4.08%
mining & construction 10.55% 4.02% 8.45% 2.76% 11.72% 4.39% 11.44% 4.02%
manufacturing 9.42% 3.94% 7.70% 2.90% 10.10% 4.04% 10.49% 4.15%
trade & transportation 9.63% 3.76% 7.73% 2.65% 10.35% 4.04% 10.84% 3.77%
information & professional services 10.07% 3.70% 8.82% 3.28% 10.53% 3.89% 10.73% 3.65%
education & healthcare 9.21% 3.35% 7.88% 2.70% 9.81% 3.49% 9.99% 3.42%
recreation & accommodation 9.81% 3.65% 8.35% 2.78% 10.41% 3.81% 10.79% 3.82%
other services 8.62% 3.22% 7.22% 2.55% 9.42% 3.22% 10.19% 3.24%
public administration 9.81% 3.83% 8.76% 3.24% 10.66% 4.26% 11.84% 3.67%

Note: This table shows the heterogeneous ambiguity for each sector, defined by the first digit of North
American Industry Classification System (NAICS) code. The ambiguity is measured by the greatest dif-
ferent in predictions among PEM and its auxiliary models for each state variable. For each firm-quarter
observation, we calculate average ambiguity of PEM for state variables to get the average ambiguity of
PEM for each firm-quarter observation, and then for each cross section, we calculate mean and standard
deviation of PEM ambiguity within three subsamples: pre dot com, between dot com and GFC, and post
GFC, and we take the average across state variables. The three sectors with the lowest ambiguity within
each time period is marked in red.

Table 8: PEM: Heterogeneous Ambiguity for “Value” Deciles

Ambiguity full sample pre-dotcom dotcom-GFC post-GFC

book-to-market decile mean std mean std mean std mean std

1 11.50% 4.30% 9.86% 3.40% 11.99% 4.38% 12.51% 4.50%
2 10.56% 3.98% 8.97% 3.09% 11.11% 4.10% 11.50% 4.14%
3 10.17% 3.92% 8.55% 3.08% 10.78% 4.13% 11.07% 3.98%
4 9.90% 3.78% 8.43% 3.05% 10.37% 3.94% 10.79% 3.86%
5 9.79% 3.74% 8.21% 2.99% 10.48% 3.96% 10.59% 3.74%
6 9.55% 3.69% 8.01% 2.92% 10.29% 3.98% 10.30% 3.67%
7 9.40% 3.66% 7.83% 2.86% 10.18% 3.93% 10.11% 3.67%
8 9.36% 3.74% 7.69% 2.81% 10.07% 3.95% 10.20% 3.81%
9 9.27% 3.73% 7.40% 2.59% 9.85% 3.95% 10.29% 3.80%
10 8.96% 3.75% 6.94% 2.43% 9.38% 3.81% 10.16% 3.89%

Note: This table shows the heterogeneous ambiguity for each book-to-market decile. The ambiguity is
measured by the greatest different in predictions among PEM and its auxiliary models for each state
variable. For each firm-quarter observation, we calculate average ambiguity of PEM for state variables to
get the average ambiguity of PEM for each firm-quarter observation, and then for each cross section, we
calculate mean and standard deviation of PEM ambiguity within three subsamples: pre dot com, between
dot com and GFC, and post GFC, and we take the average across state variables. The three deciles with
the lowest ambiguity within each time period is marked in red.
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to maximize the expected objective value predicted by PEM. To mitigate the uncertainty of

predictive environment module under unusual decisions, we punish directly the boosting er-

ror defined in Equation (4) and train a model based on the discrete version of utility function

in Equation (5).

We start from a randomly initialized neural networks whose inputs are current states

and outputs are current decisions to be made. We optimize an exogenously specified objec-

tive function using RL. The value of the objective function is given by the counterfactual

statements from PEM. For each epoch, the decision-making module first gives out a set of

decisions to be made, then together with state variables, these decisions are fed into PEM to

generate counterfactual market reactions in the next quarter. Finally, the difference between

counterfactual market capitalization (alternatively, enterprise value) and current market cap-

italization (enterprise value) is treated as the objective function value for this trait. After

the feed-forward process is complete, backward propagation takes place and the parameters

of the DMM are updated, given the loss function to be negative objective value.

We consider a set of reasonable objective functions and also a spectrum of horizons

for managers’ objectives. Specifically, we consider both short-term (1 quarter) and long-

term (2 years) market capitalization and enterprise value as our objectives. We ignore

agency problems and take managers as maximizing shareholders’ value or overall investors’

value. The DDRC framework is flexible to allow other objectives and these two are useful

benchmarks to consider.

5.2 Performance Under Various Managerial Objectives

Long-term objectives maximizing valuation growth in 2 years. To outperform in

the longer run, AlphaManager needs to have a longer horizon in its objective. We therefore

examine how AlphaManager performs if the object is to maximize increases in the market

capitalization or enterprise value over the subsequent 8 quarters instead of just over the

next quarter. For long-term model with capitalization growth as the objective function,

the average quarterly return is 8.73% while the first quarter performance is on average only

3.09%. When using enterprise value growth as the objective function, these two numbers

become 4.43% and 1.28%, respectively.

Short-term objectives centering on next quarter valuation growth. We then con-

sider a somewhat myopic objective of increasing market equity valuation over the next
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quarter. We estimate the corresponding short-term ambiguity constraint parameters un-

der optimal long-term AM agents to make the results comparable. The overall average

out-performance is 12.02% quarterly in the short-term when using market capitalization

growth as the objective. When the enterprise value growth serves as the objective, the out-

performance becomes 6.01%. The cross-sectional dispersion is non-trivial, as seen in the

75th and 25th percentile firms in Figure 2.

Figure 2: Out-performance of AlphaManager with Short-term Objectives

Note: This figure shows the out-performance of AlphaManager trained with short-term market cap growth
(left) and enterprise value growth (right) as objective functions. The solid blue line shows the median
performance, the orange line and the green line show the 75th and 25th percentiles respectively, and the
dotted blue line shows the median for each year. The y-axis is in percentage of the change in objective for
the next quarter predicted by the PEM.

Figure 3 depicts what myopic behavior (a focus on next quarter outcomes) implies for

the long-term (the next two-year) performance of the firms. This relationship is tracked over

30 years of data. Ex-ante, several outcomes could appear. On the one hand, one could argue

that managers historically may not be myopic, and as such, historical actions may generate

better long-term performance if short-termism hurts firm fundamentals in the intermediate

or long run. On the other hand, even with potentially longer-term goals, managers could

have taken very suboptimal actions historically. The 1-quarter-market-cap-focused myopic

AlphaManager can end up perform much better. In the data, we observe that though Al-

phaManager outperforms under the specified objective, over the intermediate term (i.e.,

for a different objective with longer horizon) it underperforms. Algorithmic predictions do

not capture cross-sectional “risk” (in-model volatility), so the algorithmic predictions (black

lines) have much smaller variations.

Figure 4 shows the term structure for short-term and long-term AM under the objective
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Figure 3: Long-Term Performance Under Short-Termism

Note: This figure shows the long-term performance of AlphaManager trained with short-term market cap
growth (left) and enterprise value growth (right) as objective functions. The solid blue line shows the
median average performance of actual managerial decisions, while the solid black line shows the median
performance of actions suggested by the RL module.

of market cap growth. In the left panel, the short-term AM is out performing the long-term

AM in longer terms’ rewards, but this out performance is at the cost of high ambiguity. In

the right panel, we adjust reward (i.e., market cap growth) using the formula:

Adj. Rewardt =
1 + Rewardt√

max{1, BoostingErrort
BoostingErrort0

}
− 1, (8)

where Rewardt is the reward that AM achieves under the PEM at time t, BoostingErrort is

the boosting error for the AM-suggested managerial decisions at time t, and BoostingErrort0
is the benchmark boosting error at time t0. When the ambiguity is as low as the benchmark

ambiguity, there is no punishment on the reward; the adjusted reward is decreasing in ambi-

guity of AM. After the adjustment, even though the short-term AM outperforms in the short-

term, the long-run performance is worse than the long-term AM, and further into the future,

the gap between adjusted rewards from short-term AM and long-term AM is also wider.

Table 9 reports heterogeneous predicted performance under the objective of 2-year enter-

prise value growth for the RL-recommended decisions by each state’s cross-sectional ranking.

It is worth noting that AM’s impressive performance is driven by small and illiquid firms dur-

ing high-risk episodes. The pre-dot com period enjoys the highest performance of AM. Table

10 documents the heterogeneous performance of RL. Manufacturing sector has high perfor-

mance across three episodes. Table 8 shows the heterogeneity by book-to-market deciles.

The best performers are gradually shifting down as time goes by.
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Table 9: Heterogeneous Performance of AlphaManager Across Firms

variable
full sample pre-dotcom dotcom-GFC post-GFC

mean std mean std mean std mean std

Total Assets
high 7.13% 12.91% 6.67% 10.42% 3.61% 16.67% 10.27% 11.01%

low 9.35% 4.15% 7.54% 13.18% –1.19% 21.68% 11.17% 18.34%

Current Assets
high 6.54% 14.13% 6.56% 11.28% 2.15% 17.91% 10.15% 12.39%

low 10.14% 4.56% 8.06% 13.21% –0.98% 22.18% 11.59% 18.80%

Sales
high 6.78% 12.98% 6.67% 10.16% 2.84% 16.68% 10.03% 11.26%

low 8.88% 4.20% 7.68% 13.75% –1.25% 22.53% 11.56% 19.01%

Payables
high 6.95% 12.99% 6.45% 10.24% 3.31% 16.81% 10.26% 11.33%

low 9.40% 4.31% 7.72% 13.32% –0.90% 21.59% 11.16% 18.07%

COGS
high 6.60% 13.16% 6.53% 10.25% 2.59% 16.85% 9.84% 11.52%

low 9.26% 4.20% 7.82% 13.69% –1.03% 22.50% 11.81% 18.90%

InterestExp
high 6.74% 15.01% 7.59% 11.89% 1.71% 19.12% 9.88% 13.59%

low 7.12% 3.51% 6.73% 12.40% 0.10% 20.43% 11.47% 16.79%

Inventory
high 6.37% 13.89% 6.25% 10.45% 1.93% 17.72% 10.14% 12.56%

low 8.62% 3.96% 8.25% 13.72% –0.39% 21.98% 11.47% 18.18%

CurrentLiability
high 6.35% 13.88% 6.43% 10.89% 1.96% 17.65% 9.86% 12.26%

low 10.77% 4.86% 8.22% 13.60% –0.69% 22.47% 11.97% 18.87%

Receivables
high 6.90% 12.90% 6.63% 10.09% 2.93% 16.82% 10.19% 11.09%

low 9.16% 3.92% 7.57% 13.34% –0.56% 21.55% 11.20% 18.09%

Revenue
high 6.64% 13.09% 6.67% 10.37% 2.60% 16.73% 9.94% 11.39%

low 8.63% 4.19% 7.81% 13.97% –1.30% 22.94% 11.73% 19.17%

MarketCap
high 6.43% 14.13% 6.08% 11.78% 2.32% 17.96% 10.06% 11.78%

low 13.14% 6.94% 8.19% 12.37% –0.62% 21.48% 11.50% 18.53%

EnterpriseValue
high 6.85% 13.51% 6.34% 11.24% 3.10% 17.27% 10.21% 11.32%

low 12.29% 6.23% 7.81% 12.72% –0.94% 21.52% 11.26% 18.39%

Volume
high 6.22% 16.26% 6.02% 12.92% 1.25% 19.87% 10.55% 15.04%

low 10.74% 4.57% 8.52% 11.03% 0.38% 19.80% 11.00% 15.94%

Return
high 5.44% 15.88% 6.04% 12.02% –0.92% 19.56% 9.98% 14.42%

low 10.81% 5.76% 8.22% 12.16% 2.63% 19.96% 11.53% 16.40%

MacroRisk
high 6.13% 14.24% 6.36% 12.97% –0.39% 22.55% 10.36% 14.79%

low 4.53% 14.18% 8.02% 11.18% 2.11% 16.58% 11.28% 16.30%

MacroCredit
high 6.87% 14.10% 6.74% 12.94% 0.54% 21.97% 13.37% 15.83%

low 4.02% 14.20% 7.51% 11.52% 1.15% 17.62% 8.92% 14.94%

MacroFinLev
high 5.05% 15.23% 6.37% 12.10% –0.17% 23.13% 12.02% 15.79%

low 5.38% 13.36% 7.87% 12.13% 1.77% 16.30% 9.60% 15.07%

MacroNonfinLev
high 5.50% 13.95% 6.57% 12.90% 0.43% 23.55% 12.17% 16.63%

low 5.04% 14.42% 7.88% 11.19% 1.23% 15.89% 8.92% 13.59%

Note: This table shows the heterogeneous performance under RL-recommended decisions by each state
variable. For each cross section, we divide firms in low and high groups for each state variable, and
we calculate mean and standard deviation of the performance of RL-recommended decisions within three
subsamples: pre dot com, between dot com and GFC, and post GFC.
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Figure 4: Term Structure of Reward and Ambiguity-adjusted Reward

Note: This figure shows the term structure for AlphaManager trained with short-term market cap growth
with reward (left) and ambiguity-adjusted reward (right). The ambiguity adjustment follows Eq.(8). The
solid blue lines show the median performance of long-term AM, while the solid black lines show the median
performance of short-term AM. Dashed lines show the 25th and 75th percentiles.

Table 10: Heterogeneous Performance of AlphaManager Across Industries

RL performance (quarterly avg) full sample pre-dotcom dotcom-GFC post-GFC

sector mean std mean std mean std mean std

agriculture 8.08% 15.11% 7.83% 12.73% 2.83% 16.35% 11.30% 15.50%
mining & construction 7.87% 16.41% 6.97% 11.83% 0.40% 19.85% 11.91% 16.05%
manufacturing 7.94% 17.66% 6.76% 12.23% 0.71% 20.87% 13.58% 17.63%
trade & transportation 8.76% 14.04% 7.27% 10.45% 4.12% 16.60% 12.46% 14.23%
information & professional services 7.55% 17.03% 7.86% 12.94% -0.23% 19.64% 12.39% 16.13%
education & healthcare 7.40% 16.24% 7.58% 11.84% -0.04% 19.05% 11.76% 16.09%
recreation & accommodation 7.67% 13.95% 8.03% 11.02% 2.13% 16.42% 10.68% 13.76%
other services 6.45% 13.34% 6.35% 10.94% 1.12% 16.34% 11.03% 12.44%
public administration 6.17% 16.39% 7.49% 13.75% -0.04% 19.18% 13.18% 15.21%

Note: This table shows the heterogeneous performance under RL-recommended decisions by each sector,
defined by the first digit of North American Industry Classification System (NAICS) code. For each cross
section, we calculate mean and standard deviation of the performance of RL-recommended decisions within
three subsamples: pre dot com, between dot com and GFC, and post GFC. The top three sectors (with
the highest average rewards) within each time period is marked in red.
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Table 11: Heterogeneous Performance of AlphaManager Across Value Deciles

RL performance (quarterly avg) full sample pre-dotcom dotcom-GFC post-GFC

book-to-market decile mean std mean std mean std mean std

1 3.98% 19.72% 4.22% 15.90% -3.89% 23.80% 9.99% 17.76%
2 5.37% 17.42% 5.63% 13.74% -1.00% 20.94% 10.27% 16.36%
3 5.87% 16.05% 6.28% 11.79% -0.26% 19.94% 10.42% 15.07%
4 6.53% 15.47% 7.28% 11.31% 0.43% 18.94% 10.67% 14.83%
5 7.17% 15.04% 7.81% 10.90% 1.73% 18.68% 10.90% 14.42%
6 7.72% 14.69% 8.40% 10.81% 2.54% 18.10% 11.32% 14.05%
7 8.10% 14.91% 8.67% 10.72% 3.46% 18.16% 11.48% 14.84%
8 8.15% 15.10% 8.56% 10.63% 3.36% 18.55% 11.50% 15.24%
9 8.05% 15.54% 9.06% 10.18% 2.88% 19.60% 10.67% 15.73%
10 7.88% 15.38% 8.88% 10.72% 2.20% 17.65% 10.51% 16.63%

Note: This table shows the heterogeneous performance under RL-recommended decisions by each book-
to-market decile. For each cross section, we calculate mean and standard deviation of the performance of
RL-recommended decisions within three subsamples: pre dot com, between dot com and GFC, and post
GFC. The top three deciles (with the highest average rewards) within each time period is marked in red.

The analysis shows that AlphaManager again outperforms historical actions and there

is heterogeneity in the cross-section. The average outperformance is much lower, reflecting

that over the longer horizon, we just cannot predict much. Notably, these patterns also

emerge in papers based on CEO surveys (e.g., Graham, 2022).

5.3 AI-Recommended Actions

We analyze the managerial actions recommended by AlphaManager under the four spec-

ified objective functions. Our analysis compares actual historical decisions (e.g., leverage

levels) with model-generated recommendations for changes in these variables (e.g., lever-

age growth rates). When model-implied decisions exceed feasible bounds (such as negative

leverage), we apply boundary constraints (setting them to zero, for instance).

Focusing first on the objective of next-quarter market capitalization maximization, as

shown in Figure 5, AlphaManager’s recommendations diverge from historical practices in

several key aspects: (1) pursuing more aggressive acquisition strategies, (2) maintaining

higher cash reserves, (3) adopting a more equity-heavy capital structure while reducing debt

(thereby decreasing leverage), (4) increasing dividend payouts, and (5) boosting investment

expenditures, particularly in R&D. The model further suggests managers should tolerate

greater investment variability and implement more share repurchases during economic down-

turns.
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Figure 5: Empirical and Optimal Decisions under 1-QTR Market Cap Growth

Note: This figure shows the empirical (red) and optimal decisions (blue) suggested by AM under 1-quarter
market cap growth as the objective to maximize. We plot median to represent cross-sectional variation.
The decisions are acquisitions (Faqc fund), cash holdings (Fcash hold), debt issuance (Fdebt issue log),
equity issuance (Fequity issue log), investment ratio (Finv ratio2), leverage (Flev market), dividend (Fpay-
out div), repurchase (Fpayout repurchase), and R&D expenses (Frd exp), with formal definitions detailed
in Appendix A.

In Figure 6, when optimizing for short-term enterprise value maximization, AlphaMan-

ager generates recommendations largely consistent with the market capitalization objective,

with one notable exception: our DMM suggests maintaining or even moderately increasing

debt issuance rather than reducing it. This recommendation reflects the general benefits of

leverage, particularly during the pre-financial crisis period, where higher leverage appears to

have been value-enhancing.

In Figure 7, under the objective of maximizing long-term market capitalization growth

(over eight quarters), AlphaManager recommends several strategic adjustments relative to

historical practices: (1) pursuing more acquisitions, particularly for small firms; (2) main-

taining higher cash reserves; (3) moderately increasing debt issuance while also issuing more
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Figure 6: Empirical and Optimal Decisions under 1-QTR Enterprise Value Growth

Note: This figure shows the empirical (red) and optimal decisions (blue) suggested by AM under 1-quarter
enterprise value growth as the objective to maximize. We plot median to represent cross-sectional variation.
The decisions are acquisitions (Faqc fund), cash holdings (Fcash hold), debt issuance (Fdebt issue log), eq-
uity issuance (Fequity issue log), investment ratio (Finv ratio2), leverage (Flev market), dividend (Fpay-
out div), repurchase (Fpayout repurchase), and R&D expenses (Frd exp), with formal definitions detailed
in Appendix A.

equity (with the latter being especially beneficial for small firms); and (4) reallocating in-

vestment by reducing R&D expenditures while increasing capital expenditures, dividend

payouts, and share repurchases. Additionally, the model suggests a net reduction in leverage

despite the slight increase in debt, as the equity issuance more than offsets it.

Finally, in Figure 8, for the objective of maximizing long-term enterprise value (over

eight quarters), AlphaManager recommends pursuing more aggressive acquisition strategies

while maintaining moderately higher cash reserves. The model suggests increasing both debt

and equity issuance, resulting in slightly higher leverage during normal economic conditions

but reduced leverage following the onset of the GFC. Additional recommendations include

moderately decreasing dividend payouts, expanding share repurchase programs, and reducing
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Figure 7: Empirical and Optimal Decisions under 8-QTR Market Cap Growth

Note: This figure shows the empirical (red) and optimal decisions (blue) suggested by AM under 8-quarter
market cap growth as the objective to maximize. We plot median to represent cross-sectional variation.
The decisions are acquisitions (Faqc fund), cash holdings (Fcash hold), debt issuance (Fdebt issue log),
equity issuance (Fequity issue log), investment ratio (Finv ratio2), leverage (Flev market), dividend (Fpay-
out div), repurchase (Fpayout repurchase), and R&D expenses (Frd exp), with formal definitions detailed
in Appendix A.

RD expenditures. These strategic adjustments collectively aim to optimize capital structure

while reallocating resources toward growth-oriented activities.

6 New Research Questions in Corporate Finance

Our DDRC approach focuses more on producing reliable empirical predictions and pol-

icy recommendations. It does not serve as a substitute for theory, reduced-form models, or

structural estimations, because it does not offer insights on the underlying economic mech-

anisms. The associated cost of the many connections AlphaManager establishes in the data

is that they are sometimes difficult to rationalize — they lack the usual notion of ex-ante
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Figure 8: Empirical and Optimal Decisions under 8-QTR Enterprise Value Growth

Note: This figure shows the empirical (red) and optimal decisions (blue) suggested by AM under 8-quarter
enterprise value growth as the objective to maximize. We plot median to represent cross-sectional variation.
The decisions are acquisitions (Faqc fund), cash holdings (Fcash hold), debt issuance (Fdebt issue log), eq-
uity issuance (Fequity issue log), investment ratio (Finv ratio2), leverage (Flev market), dividend (Fpay-
out div), repurchase (Fpayout repurchase), and R&D expenses (Frd exp), with formal definitions detailed
in Appendix A.

theory predictions or causality statements — and they can be computationally expensive.

However, both problems can be mitigated by incorporating theoretical guidance (multiple

concurrent models). DDRC is still a useful approach for understanding the underlying

economic mechanisms by complementing other paradigms in corporate finance research. In

a way, DDRC is a data-driven version of the structural approach that allows the incorporation

of knowledge from theory and reduced-form models, as well as from financial big data. To

wit, DDRC is not at odds — nor compete — with reduced causal exercises and theory-driven

structural estimations. Instead, they give us guidance as to when we should use those other

approaches to data analysis.

We next discuss how the measure of model ambiguity in AlphaManager reveals the types
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of corporate decisions, firms, and market environment that would benefit more from theoret-

ical guidance or causal identifications, as well as the types for which big data and powerful

algorithms suffice. We then discuss how to incorporate the insights from other approaches

into DDRC through ambiguity-guided transfer learning. Finally, we demonstrate how DDRC

enables us to study managerial preferences.

6.1 Ambiguity and the Need for Theory/Reduced-Form Models

Our measure of ambiguity or relative entropy among the boosted PEMs informs how much

we can rely on the data-driven approach. First, when the dispersion in predictions is high,

one has to go back to theory or reduced-form models (with or without causal identification) in

order to fully explain or predict firm outcomes, or to make counterfactual recommendations.

Second, robust control makes DMM avoid exploring policies with more dispersed responses

from PEMs. AlphaManager is thus conservative in the offline learning at the expense of

missing out learning more profitable policies, the knowledge of which has to be derived from

other conventional approaches. Figure 9 plots the estimated average ambiguity time series

for each one of our state variables. For example, at the turns of macroeconomic regimes,

ambiguity is estimated to be high.

This apparent limitation of AlphaManager is its strength in disguise. The corporate fi-

nance literature has documented and studied a large collection of phenomena. Yet findings

are typically siloed without a unified framework. DDRC, in addition to guiding managers

in practice, provides insights about what areas in corporate finance research deserve more

emphasis and attention going forward. This is so because along the dimensions that Al-

phaManager has greater ambiguity, theoretical insights and causal identification would be

particularly informative and thus deserve more attention.

6.2 Ambiguity-Guided Transfer Learning from Other Models

Even after identifying the areas firms, and macroeconomic conditions where theory,

reduced-form models, or structural estimations can be particularly informative, the question

remains how one can incorporate the insights gained into a DDRC framework. A modified

transfer learning technical comes to the rescue.

Transfer learning is a powerful machine learning technique that leverages the knowledge

gained while solving one problem to solve a different but related problem. This approach is

particularly useful when dealing with scenarios where the data for the new task is scarce or
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Figure 9: Average Ambiguity Time Series by State Variables

Note: This figure shows average estimated ambiguity time series for key state variables—total assets, sales,
COGS, interest expenses, market cap, and enterprise value. Ambiguity is calculated as follows: we first
compute the square-rooted boosting error for each observation, aggregate these values at the state-quarter
level, and then apply a 4-quarter moving average to the aggregated series.

when training a model from scratch would be computationally expensive. By transferring

and adapting pre-trained models to new tasks, researchers and practitioners can achieve

significant improvements in model performance with less data and in shorter training times.

Transfer learning has found widespread applications across various domains, including nat-

ural language processing, computer vision, and speech recognition, demonstrating its versa-

tility and efficiency in enhancing learning processes and outcomes in diverse settings.

In our setting, if one wants to incorporate any theoretical predictions (e.g., Hennessy

and Whited, 2005; Bolton et al., 2011), or relationships identified in reduced-form models,

or counterfactual predictions from structural estimations, one can use them to generate

data to be added to the training sample for PEM. Note that using the historical data in

reduced-form empirical models is unlikely to work. For example, a causal identification may

concern only one particular firm and the effect would be too “weak” to be picked up in

AlphaManager. Therefore, one has to necessarily generate more such cases by extending the

reduced-form results to the cross section and broader ranges of the treatments, in order to

generate sufficient observations.

Transfer learning is traditionally applied to one related dataset. Yet as we discuss earlier,

we have many insights drawn from extant corporate finance research. How to incorporate

them in a unified framework? Where to draw the line? That is where the ambiguity metric
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can be used to guide the weights we put on the data for the transfer learning. If a pattern

is rarer or more ambiguously described by PEM, one should increase the weights of data

concerning that pattern in the transfer learning.

6.3 Revealed Managerial Preferences

In our DMM, we derive optimal decisions by optimizing exogenous objective functions.

However, empirical managers often consider additional factors beyond our model’s specifi-

cations, such as ESG commitments or various forms of compensation. This divergence in

objective functions naturally leads to differences between the theoretically optimal decisions

suggested by our model and actual managerial decisions observed in practice.

Our key insight emerges from analyzing performance differentials across different ob-

jectives: the objective function yielding the smallest performance gap between model pre-

dictions and empirical decisions likely best approximates true managerial preferences. Mo-

tivated by this observation, we formulate the revealed preference problem as a min-max

optimization challenge. To solve this, we employ advanced techniques like generative adver-

sarial networks (GANs) to efficiently explore a broad space of potential managerial objective

functions. The optimal function is identified as the one that minimizes the performance

differential between our model’s recommendations and observed decisions.

This methodology effectively projects the true managerial preferences onto a space spanned

by observable candidate objectives, providing a data-driven approach to understanding man-

agerial decision-making processes.

7 Concluding Remarks

For any given managerial objective, corporate decision-making can be modeled as a high-

dimensional, nonlinear stochastic control problem where managers learn about and interact

to the evolving economic environment while formulating optimal dynamic policies. Conven-

tional approaches in corporate finance and stochastic control often fall short of explaining

or predicting empirical firm outcomes and have limited practical adoption. We introduce

an AI-assisted, data-driven framework that prioritizes empirical performance and the gen-

eration of the useful counterfactuals to deliver effective policy recommendations for diverse

business objectives.

Our approach first constructs a predictive environment module using supervised neural
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networks and then integrates a decision-making module based on deep reinforcement learn-

ing. This dual-module structure goes beyond mere hypothesis testing on historical data

or simulations by incorporating model ambiguity and robust control techniques. As a re-

sult, our framework not only improves in-sample and out-of-sample prediction of corporate

outcomes but also identifies critical managerial decisions and offers dynamic policies that

adapt to market evolution and feedback. Moreover, it distinguishes scenarios where theoret-

ical insights and causal identification are essential from those where data-driven predictive

models suffice. The framework’s flexibility is further enhanced by its ability to incorporate

insights from theory, reduced-form, and structural models through ambiguity-guided transfer

learning, making it a promising unified approach for corporate finance research.

We believe that the DDRC approach opens the door to investigating a range of impor-

tant, yet previously unexplored, topics. For instance, while we assume a given managerial

objective in this paper, techniques exist to learn historical managerial objectives from data.

Additionally, our framework provides new insights into the heterogeneity of managerial ac-

tions, firm controlability, and their interactions with macroeconomic conditions – areas that

warrant further study.
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Appendix A - Variable Selection and Definitions

Table 12 shows how we construct our firm-specific state and decision variables using

Compustat and CRSP.

Table 12: Variable Selection and Definitions

variable explanation category formula source

lev leverage Decision (dtllq + dlcq) / L.atq Compustat
aqc acquisition Decision aqcq / L.atq Compustat
inv ratio investment Decision capxq / L.atq Compustat
cash hold cash holding Decision cheq / L.atq Compustat
div payout dividend Decision devq / L.atq Compustat
log debt issue debt issuance Decision log(1 + dltisq) Compustat
log eq issue equity issuance Decision log(1 + sstkq) Compustat
rd exp R&D expenses Decision xrdq / L.atq Compustat
repurchase repurchases Decision prstkcq / L.atq Compustat
log at book asset State log(1 + atq) Compustat
log act current asset State log(1 + actq) Compustat
log sale gross revenue State log(1 + saleq) Compustat
log ap accounts Payables State log(1 + apq) Compustat
log cogs cost of good sold State log(1 + cogsq) Compustat
log intpn net interest paid State log(1 + intpnq) Compustat
log invt inventories State log(1 + invtq) Compustat
log lct current liabilities State log(1 + lctq) Compustat
log rect Receivabless State log(1 + rectq) Compustat
log revt net revenue State log(1 + revtq) Compustat
log market cap market cap State log(1 + csho * prccq) Compustat
log enterprise val enterprise value State log(1 + atq + csho *

prccq - ceqq - txdbq)
Compustat

log vol trading volume State log(1 + VOL) CRSP
log ret equity return State log(1 + RET) CRSP

macro1 risk Macro risk ChicagoFed
macro2 credit Macro credit ChicagoFed
macro3 leverage Macro leverage ChicagoFed
macro4 non-financial leverage Macro nonfinancial leverage ChicagoFed
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Appendix B - Technical Details

B.1 Predictive Environment Module Hyper-Parameters

Table 13: Predictive Environment Module: Neural Network Hyperparameters

Hyperparameter Value (main) Value (macro)

optimizer Adam Adam
learning rate 0.000003 0.0005
batch size 2048 full
epoch (first) 40 50
epoch (rolling) 12 3
depth (main & aux) 4 2
neurons (main) (512, 512, 512, 512) (300, 300)
aux network num 10 -
dropout 0.3 -
l2 norm 0.00001 0.01

B.2 Decision-making Module Hyperparameters

Table 14: Decision-making Module: Neural Network Hyperparameters

Hyperparameter Value

optimizer Adam
periods in obj. func. {1, 8}
learning rate 0.00003
batch size full
epoch 64
depth 4
neurons (256, 256, 256, 256)
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Appendix C - Ambiguity Constraint Parameters

We first estimate parameters in the ambiguity constraints, namely α and β in Eq.(6), for

the long-term models. We follow an iterative process to search for proper constraints that

could give out positive and reasonable long-term performance. For each cross section, we

start from a tight lower-bound for these parameters, with 0 intercept and 1 slope. Essentially,

this constraint requires AM managerial decisions as certain as the last set of observable

decisions (the benchmark). Instead of search for optimal decisions which maximize long-

term firm values, AM in this stage tries to minimize ambiguity of suggested managerial

decisions. After 10 training epochs, we use a dynamic programming algorithm to estimate α

and β so that the constraint never binds and the area under the curve is minimized. In this

way, the ambiguity punishment for the current AM equals to 0, and the ambiguity constraint

is tight enough that AM performance is not likely to be irrationally high. After training for

5 more epochs, we examine whether the reward after ambiguity punishment is positive on

average. If yes, we continue to train AM for 5 epochs and move on to the next cross section;

if not, the current ambiguity constraint is likely too tight, so that AM is too ambiguity-averse

and does not have sufficient incentive to explore the environment and reach for higher firm

value. In this case, we re-estimate α and β to loose the ambiguity constraint again and try to

train the model for 5 more epochs, until it has a positive reward after ambiguity punishment.

We then estimate α and β for the short-term models. To make short-term models com-

parable to the corresponding long-term models in each cross section, we first calculate the

long-term AM’s short-term boosting error, and then we use the dynamic programming al-

gorithm to estimate α and β. Throughout the training of the short-term AM for that cross

section, we stick with this ambiguity constraint and try to optimize short-term objective.

The short-term AM is expected to behave better than the long-term AM, because under the

long-term AM, the suggestion managerial decisions fall inside the constraint, while short-

term objective values are suboptimal.
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Appendix D - An Illustration of Firm Recapitalization

Even though PEM is high-dimensional, we can analyze low dimensional action combina-

tions, which are the focus of conventional reduced-form models. Firm recapitalization that

shows up in every corporate finance textbook serves as an excellent illustration. Specifically,

we ask how the enterprise value changes when a manager (firm):

(1) raises $1 in debt and put that $1 into its cash savings

(2) raises $1 in equity and put that $1 into its cash savings

(3) raises $1 in debt and $1 less equity

(4) puts $1 cash into investment

(5) raises $1 in debt and put that $1 into investment

(6) raises $1 in equity and put that $1 into investment

Figure 10: Recapitalization Exercises: Capital Structure and Financing Investments

Note: This figure shows the recapitalization exercises where counterfactuals are generated by PEM. The
x-axis is the calendar year, and the y-axis is dollar change in enterprise value. Solid lines plot the median
value of the change in enterprise value for each cross section, and their legends explain the content of the
recapitalization exercises.

Exercises 1–3 primarily address capital structure adjustments, whereas Exercises 4–6

focus on financing investments. Overall, Exercise 6 emerges as the optimal recapitalization

strategy for increasing enterprise value. Notably, the dispersion in performance among the

six strategies has grown over time.

We observe several patterns. First, Exercise 4 corresponds to the return on asset invest-

ment and is only marginally above zero. Second, in Exercise 3, altering the capital structure

while keeping enterprise value constant results in a reduction in enterprise value — suggest-

ing that firms generally carry excessive leverage and should decrease their debt proportion.
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Third, Exercises 1, 2, 5, and 6 show that debt financing is less effective in boosting enterprise

value compared to equity financing.
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Appendix E - Detailed Results on PEM for Macroeco-

nomic Predictions

Figure 11: Predicting macroeconomic variables using neural network and VAR

Figure 11 shows the predicted change in next month for macroeconomic state variables

using current and one-month lagged macroeconomic states generated by a neural network

model and a VAR model. Neural networks, with their capability to handle collinear variables,

are enhanced by adding current growth rates of macroeconomic state variables as additional

inputs, along with their historical data. VAR models are generally used in time series

modelling, which are widely used to model macroeconomic variables. In our setting, the

neural network model is comparable to the VAR model because they are using the same

information set as well as the same training paradigm when predicting the macroeconomic

growth. Consistent with PEM, we update the VAR model every year using all available
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observations till that year. We find that using simple VAR models to predict these four time

series generates much lower (or even negative) out-of- sample pseudo R2 than PEM.

Risk Prediction The neural network achieves an R2 of 11.40% when predicting changes

in risk, demonstrating moderate predictive power. The model captures significant risk fluc-

tuations, particularly during periods of financial distress like the 2008 crisis, though it still

leaves some noise in the actual values. On the other hand, the VAR model performs poorly,

with a negative R2 of -2.21%, indicating that its predictions are worse than simply using the

mean of the data. The VAR model struggles to capture key peaks and troughs, especially

in volatile periods.

Credit Prediction The neural network fares better in predicting credit changes, achieving

an R2 of 27.28%, with the model capturing general trends during financial disruptions. The

VAR model, however, performs significantly worse with an R2 of -6.59%, highlighting its

inability to accurately model credit risk in this context.

Leverage Prediction For leverage, the neural network attains an R2 of 23.13%, demon-

strating reasonable predictive capability. The model captures key variations in leverage,

especially during volatile periods like 2008, though it struggles during calmer periods. The

VAR model continues to underperform, with an R2 of -0.32%, reflecting its failure to model

significant leverage shifts accurately.

Non-Financial Leverage Prediction The neural network excels in predicting non-financial

leverage, achieving an R2 of 63.90%, the highest across all variables. The model effectively

tracks the changes in non-financial leverage across economic expansions and contractions,

particularly during the financial crisis and the COVID-19 pandemic. The VAR model per-

forms better than for other variables, achieving a positive R2 of 15.90%, though it still

significantly underperforms relative to the neural network.

Overall, the neural network model consistently outperforms the VAR model in predicting

macroeconomic conditions across all variables. The VAR model, while traditionally used

for macroeconomic forecasting, struggles to capture the complex non-linear relationships

inherent in these time series data, especially during periods of economic volatility. The

neural network, with its ability to process both current and historical growth rates and
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handle collinear variables, demonstrates a clear advantage in forecasting macroeconomic

variables, particularly non-financial leverage.
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