
Financial and Total Wealth Inequality

with Declining Interest Rates*

Daniel L. Greenwald
NYU Stern

Matteo Leombroni
Boston College

Hanno Lustig
Stanford GSB, NBER

Stijn Van Nieuwerburgh
Columbia Business School, NBER, CEPR, ABFER

September 2, 2023

Abstract

Financial wealth inequality and long-term real interest rates track each other closely over the

post-war period. We investigate how much of the increase in measured financial wealth in-

equality can be accounted for by the decline in rates, and study the implications for inequal-

ity in total wealth (lifetime consumption). To do so, we measure the exposure of household-

level financial portfolios to interest rates. We find enough heterogeneity in household portfolio

revaluations to explain the entire rise in financial wealth inequality since the 1980s. A stan-

dard incomplete markets model calibrated to these data implies that the low-wealth young

lose when rates decline, while the high-wealth old gain.
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Over the post-war period, interest rates and financial wealth inequality have displayed a re-

markable negative correlation. This time series relationship is displayed in Figure 1, which com-

pares the share of financial wealth held by the top-10% of the financial wealth distribution, against

the implied price of a 10-year inflation-adjusted zero coupon bond. As can be seen, the top-10%

wealth share falls as the real 10-year bond price falls (yield increases) from the 1960s to the 1980s,

and rises as real bond prices rise (yield falls) from the 1980s through the end of our sample in 2019.

In terms of magnitudes, real yields rose from an average of 0.17% in the 1950s to an average of

4.94% in the 1980s, before falling to an average of 0.63% in the 2010s. Over the same period, the

top-10% share of financial wealth fell from 70.4% in 1947 to 62.4% in 1983, before rising to 70.8%

in 2019. We find evidence of broad-based declines in expected real returns across asset classes, not

only on bonds but also on stocks and housing.

Figure 1: Top-10% Wealth Share vs. 10-Year Real Bond Prices
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Note: The red solid line displays the top-10% financial wealth share for the United States, obtained annually from 1947
until 2019 from the World Inequality Database. The black dash-dot line displays an estimate of the 10-year real bond
price, obtained from a dynamic affine term structure model, estimated on quarterly data from 1947.Q1–2019.Q4 (see
Section 2 and Appendix A for details).

Since discount rates have a direct link to the valuation of financial assets, a natural hypothesis

is that falling rates cause rising financial wealth inequality. Characterizing this channel, how-

ever, requires overcoming two obstacles. First, the ultimate impact on financial wealth inequality

depends not on the average effect of discount rates on the value of financial wealth, but on the het-

erogeneity of these revaluations across the population, and how this heterogeneity covaries with

initial levels of wealth. Second, to the extent that discount rates influence financial wealth inequal-

ity, whether the resulting gains and losses occur only “on paper” (revaluing the same consumption

stream) or actually influence future consumption and welfare is far from clear (Moll, 2020).

In this paper, we study the link between real interest rates and wealth inequality to answer

two research questions: one positive, one normative. On the positive side, what share of the
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observed rise in financial wealth inequality can be accounted for by falling interest rates? On

the normative side, what are the implications for inequality in the consumption possibilities that

actually determine welfare?

We begin by developing intuition using theoretical insights. Our analysis centers on cash flow

duration, which summarizes the sensitivity of an asset’s value to changes in long-term interest

rates. A fall in rates will increase financial wealth inequality if household portfolio durations are

increasing in wealth, for which a sufficient condition is that aggregate (value-weighted) duration

in the economy exceeds average (equal-weighted) duration. We find that this condition is satisfied

in U.S. data. We provide a simple formula mapping durations and changes in rates into top wealth

shares, and find that it predicts a rise in inequality close to that observed in the data.

Building on work by Auclert (2019), we also show that a household’s consumption is unaf-

fected by a small change in interest rates if and only if the duration of its lifetime excess consump-

tion plan is equal to the duration of its financial wealth portfolio. This result allows us to measure

in a simple and robust way whether and how much a change in rates influences household life-

time consumption. Households with too little duration in their financial portfolio are worse off

when rates decline, while households with sufficiently high financial duration gain.

To develop these insights into quantitative results, we combine a set of novel empirical es-

timates with a structural model. Our main empirical contribution is to measure households’ fi-

nancial wealth duration. We use microdata from the Survey of Consumer Finances to characterize

households’ portfolio allocations across asset classes. We then use asset pricing data to assign each

asset class a cash flow duration at every point in time. For private business wealth, a key portfolio

component for the wealthiest households, we use data on corporate status to separate small and

potentially stagnant private businesses from larger and faster-growing ones. By combining ob-

served household portfolio shares with durations for each asset and liability class, we obtain the

duration of financial wealth portfolios at each point in time.

Examining the cross-section, we observe substantial heterogeneity in financial wealth dura-

tions by wealth level and age. Low-wealth households have low financial durations, due to higher

portfolio shares in deposit-like assets, vehicles, and housing. High-wealth households have high

financial durations, driven by higher portfolio shares in public equity and private business wealth.

Conditional on wealth, financial durations are declining in age. Our paper is the first to document

this heterogeneity in financial duration, a crucial ingredient in the transmission of long-term real

rate shocks to wealth inequality.

We pair these empirical estimates with a calibrated life-cycle model, which serves two key

functions. First, the model accounts for savings behavior, which influences how a change in rates

at one point in time dynamically affects the wealth distribution in the future. Second, the model

maps observed changes in wealth and interest rates into changes in the household’s consumption

plan, allowing us to speak to inequality in total wealth (the present value of lifetime consumption)
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and consumption opportunities.

The model features a bequest motive, rich idiosyncratic income risk calibrated to the Panel Sur-

vey of Income Dynamics, and a superstar income state that enables it to exactly match the top-10%

financial wealth share in 1983. To capture our key empirical findings, we calibrate heterogeneity

in the duration of financial wealth to match our empirical estimates by wealth bin and age.

We first answer the positive question: how has the secular decline in real rates between 1983

and 2019 affected financial wealth inequality? We initialize the model at a long-term interest rate

of 4.94%, which we estimate to have prevailed in 1983, then feed in a sequence of unexpected

permanent interest rate changes matching the actual 1983–2019 time path. We revalue all assets

after each year’s rate change using the actual distribution of household portfolios and estimates

of asset durations obtained from the data.

The resulting path of the wealth distribution, which we denote the repriced distribution, dis-

plays a rise in the top-10% financial wealth share of 7.9pp between 1983 and 2019, explaining

95% of the observed 8.3pp rise in the data. The model similarly explains 57% of the rise in the

top-1% share, and 113% of the rise in the Gini coefficient. These results are the net effect of an

even larger rise in inequality caused by revaluations around interest rate changes, partially off-

set by household consumption and savings responses between rate changes that gradually pull

inequality toward a new steady state level lower than observed in the 1980s.

Beyond financial wealth, we also quantify how these interest rate changes affect total wealth,

equal to the sum of financial and human wealth. We find a lower initial level and a smaller rise

in total wealth inequality than in financial wealth inequality. This occurs because young house-

holds, while typically lacking in financial wealth, are rich in long-duration human wealth, which

increases sharply in value when rates fall. However, the same qualitative patterns for the repriced

distribution of financial wealth also hold for total wealth.

We next evaluate the robustness of our results for the repriced distribution. Alternative as-

sumptions regarding the duration of housing and private business wealth deliver a the rise in the

top-10% financial wealth share that ranges from 6.8pp to 12.3pp. Excluding the primary home

from the duration calculation results in a rise in the top-10% wealth share of 8.7pp, while includ-

ing the observed rise in income inequality results in an increase of 12.5pp. Time variation in asset

durations contributes a meaningful 1.4pp of the overall increase, while time variation in portfolio

shares contributes only 0.3pp.

Turning to our normative question, we measure how the observed path of rates has affected

household total wealth and consumption. To do this, we compute the compensated financial wealth

distribution: the level of financial wealth that each household would require to keep its consump-

tion plan unchanged following each movement in rates. Our theoretical results imply that house-

hold consumption is unaffected by rates if and only if the compensated and repriced distributions

are identical. Instead, we find large deviations between the two, implying major effects on con-
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sumption and total wealth inequality. In fact, to ensure that all households could afford their

pre-shock consumption plans, we would have needed to see financial wealth inequality decline

over our sample, with the top-10% share falling by 1.5pp.

This large mismatch between the compensated and repriced distribution implies that falling

interest rates have not merely adjusted financial wealth “on paper.” Instead, there are winners and

losers from falling rates, with life-cycle dynamics playing a key role. The young plan to save in

middle age and dissave in retirement, giving them a high duration of excess consumption. How-

ever, young agents on average have little financial wealth accumulated and not enough financial

wealth duration to fully hedge this excess consumption plan. As a result, these households see

consumption possibilities contract when rates fall. Intuitively, they find it more challenging to

accumulate wealth for retirement in the absence of high returns. In contrast, older households

who have already accumulated wealth benefit when rates fall, earning large capital gains on their

assets that more than offset lost investment income going forward.

This heterogeneity in the effect of rate changes across the age distribution implies that the total

impact of falling rates on an individual household’s consumption and welfare depends not only

on how much rates fall during its lifetime, but also on exactly when in its life cycle these falls

occur. We use the model to study which cohorts gained and lost from the fall in rates between the

1980s and 2010s. We find that households born in the 1920s through the 1940s gained substantially

from falling rates, as these households had largely accumulated their peak financial wealth by the

time rates fell in the 1980s. In contrast, households born in the 1960s or later generally lost from

declining rates. This drop in consumption is severe for recent cohorts, with households born in

the 2000s losing more than 8% of lifetime consumption at birth due to the decline in rates.

Related Literature. Our paper joins a large body of work on the evolution of financial wealth in-

equality. Empirical evidence suggests that financial wealth inequality has increased in many coun-

tries over the past several decades.1 To account for these facts, the literature has often adopted a

backward-looking approach that explores the connection between past returns and current wealth,

identifying heterogeneity in past rates of return as a key driver of the increase in financial wealth

inequality.2 However, financial wealth is also a forward-looking valuation metric (the present

discounted value of future consumption minus income) so that discount rates could matter quan-

titatively for wealth inequality. Our paper explores the relation between discount rates, wealth

inequality and welfare. In doing so, we bring a novel asset pricing perspective to the discussion

on wealth inequality, as well as a new mechanism — differences in duration across households —

explaining variation in past realized returns across households.

1See e.g., Piketty and Saez (2003); Piketty (2015); Alvaredo, Chancel, Piketty, Saez, and Zucman (2018).
2See e.g., Piketty and Zucman (2015); Benhabib, Bisin, and Luo (2017); Cox (2020); Fagereng, Guiso, Malacrino, and

Pistaferri (2020); Bach, Calvet, and Sodini (2020); Hubmer, Krusell, and Smith (2020).
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Our paper is closely related to Catherine, Miller, and Sarin (2020), who show that accounting

for the revaluation of Social Security benefits — an implicitly held asset with very long duration

— can dramatically influence measured changes in financial wealth inequality over time. In this

paper, we take a broader view, measuring both financial and total wealth inequality, the latter of

which incorporates all forms of income, including Social Security benefits. Further, our results on

consumption and the compensated distribution allow us to speak to what measured inequality

should be to keep consumption opportunities constant, beyond this measurement.

We also build on Auclert (2019), who derives the effect of transitory shocks to interest rates

on consumer welfare and consumption, and similarly finds that it depends on the structure of

household portfolios. For this transitory shock, the sufficient statistic is unhedged interest rate

exposure (URE) — the net difference between assets and liabilities that pay in the future rather

than today — which does not distinguish between future cash flows arriving at different times

(e.g., two-year vs. five-year zero coupon bonds). In contrast, we consider the impact of a permanent

shock to interest rates on consumption and wealth inequality, for which the exact timing of the

cash flows is critical. In our context, the sufficient statistics are the duration of financial wealth

and excess consumption, which for a permanent shock can drive variation among households

with the same URE.3 We see these works, studying distinct objects following interest rate shocks

of different persistence, as highly complementary.

For an alternative to our duration measure, recent work by Fagereng, Gomez, Gouin-Bonenfant,

Holm, Moll, and Natvik (2022) proposes using future net asset purchases to gauge the welfare ef-

fects of real rate declines. They apply this measure to Norwegian household-level data, where

housing is the dominant form of wealth, and show that their flow-based approach is equivalent to

our duration approach following a permanent shock to interest rates. While this flow-based ap-

proach is ideal to study the effects of total asset price changes, our work considers the contribution

of a single factor driving asset prices — falling interest rates — on inequality over time. This allows

us to use duration as a sufficient statistic, making our measurement exercise possible in a US con-

text that lacks the detailed transaction data used by Fagereng et al. (2022). Last, our model allows

us to study the dynamic effects of changes in valuations over time, as they propagate through

consumption and savings behavior, rather than on impact. We again view these differing research

questions and methodologies as highly complementary.

In additional work, Gomez and Gouin-Bonenfant (2020) also study the effects of lower inter-

est rates on inequality, through their impact on the cost of raising new capital for entrepreneurs.

This investment-based channel operates through growth in real assets and cash flows, comple-

menting our duration-based mechanism operating through financial revaluation of cash flows.

3The working paper version of Auclert (2019) features numerical exercises showing that the impact of persistent
monetary policy shocks on aggregate consumption depends on asset durations. We complement this work by formal-
izing and estimating sufficient statistics for the response of consumption and wealth inequality to permanent shocks.
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Kuhn, Schularick, and Steins (2020) use novel microdata to document that heterogeneity in the

shares of equity and housing in household portfolios drove much of the rise in inequality since

the 1970s. We build on this work by constructing new and detailed statistics on the duration of fi-

nancial wealth for US households, which summarize how declining interest rates over this period

translated into changes in the prices of these assets. Our approach is also closely linked to that

of Doepke and Schneider (2006), who focus on the distributional consequences of inflation. We

follow these authors in using household-level portfolio data to measure the exposure to the shock

of interest, but focus on the effects of changes in long-term real rates rather than inflation.

Additional recent work analyzes the measurement challenges for private business income and

wealth.4 In our empirical work, we advance this agenda by producing several new measures of

private business wealth that combine microdata from the Survey of Consumer Finances with asset

pricing data from a range of data sources. We perform various exercises to establish the robustness

of the results to the specifics of the private business wealth duration estimation.

Last, our paper links to the rich literature on the mechanisms behind the decline in interest

rates over our sample.5 Our conclusions regarding the consequences of low interest rates for wealth

inequality stemming from asset revaluations should not depend on this fundamental source, as a

change in discount rates will affect the valuation of a fixed stream of cash flows in the same way

regardless of its ultimate cause. We thus view our work as complementary to, but distinct from,

this important literature.

Overview. The rest of the paper is organized as follows. Section 1 derives the link between

cash flow duration and financial wealth inequality. Section 2 presents our key empirical facts

on expected returns and household portfolio durations. Sections 3 constructs the model, while

Section 4 calibrates it and analyzes its stationary distribution. Sections 5 and 6 discuss the main

quantitative results for the repriced and compensated wealth distributions, respectively. Section 7

computes the impact of rates on total wealth by birth cohort. Section 8 concludes.

The paper also includes a comprehensive appendix. Appendix A provides an auxiliary asset

pricing model used to infer real interest rates and expected returns on the components of financial

wealth. Appendices B, C, and D contain details on the data, construction of the financial wealth

portfolio, and the duration of household assets and liabilities. Appendix E discusses income data

and estimation. Appendix F contains proofs of our propositions in the main text. Appendix

G presents a general equilibrium model with aggregate risk and endogenous interest rates that

generalizes our baseline model. Appendix H displays supplementary model results.

4See e.g., Kopczuk (2017); Saez and Zucman (2016); Piketty, Saez, and Zucman (2018); Smith, Yagan, Zidar, and
Zwick (2022.); Kopczuk and Zwick (2020).

5See e.g., Bernanke (2005); Caballero, Farhi, and Gourinchas (2008); Summers (2014); Eggertsson and Mehrotra
(2014); Eichengreen (2015); Gutiérrez and Philippon (2017); Mian, Straub, and Sufi (2020).
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1 Duration and Inequality

In this section we define cash flow duration, display its basic properties, and derive our first

key theoretical result linking variation in duration across the wealth distribution to the effects of

declining interest rates on inequality. We consider the response to an unexpected and permanent

change in the interest rate from R to R̃ = R exp(ε) for some shock ε, where ε < 0 corresponds to a

fall in rates. Throughout the paper we will use tildes (e.g., R̃) to indicate updated values following

an interest rate shock, while equivalent variables without tildes indicate pre-shock values. Proofs

of all propositions can be found in Appendix F.

Definition 1. Assume that the annualized discount rate is equal to r at all maturities, and let

R = 1 + r. Given a sequence of cash flows {xt}, define its present value at t = 0 by

P0 =
∞

∑
t=0

R−txt (1)

The cash flow duration (or simply, duration) of this stream of cash flows is defined by

D ≡ ∑∞
t=0 t × R−txt

P0
. (2)

In words, cash flow duration is the weighted average of the time remaining to receive each cash

flow, weighted by the share of the asset’s value attributable to that cash flow. Given this definition,

we now present the key properties of this statistic.

Proposition 1. Consider a sequence of cash flows {xt} with present value P0. Then

∂ log P0

∂ log R
= −D

where D satisfies (2). For a small shock ε → 0, this implies the approximate revaluation

P̃0 ≃ P0 exp(−D × ε) ≃ P0(1 − D × ε). (3)

For a portfolio of assets indexed by k, equation (3) holds using the value-weighted duration

DVW ≡ ∑
k

ω(k)D(k) (4)

where ω(k) is the share of the portfolio’s value in asset k, and D(k) is the duration of asset k.

This proposition derives the well-known property that for a small, permanent shock to interest

rates, duration is a sufficient statistic for the resulting change in present value. We now use this

property to derive our main theoretical result linking interest rates and financial wealth inequality.
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Proposition 2. For a small negative change in rates (ε < 0):

(a) Household wealth growth due to revaluation (θ̃/θ) has a positive covariance with wealth if

and only if financial wealth duration (Dθ) has a positive covariance with financial wealth (θ).

A sufficient condition for this positive covariance is that aggregate (value-weighted) finan-

cial wealth duration in the pre-shock economy exceeds average (equal-weighted) duration.

(b) The top-α share of wealth Sα increases if and only if Dtop, the value-weighted duration for

the top-α wealthiest share of households exceeds Dbottom, the value-weighted duration for

the bottom 1 − α share of the wealth distribution (or equivalently, exceeds the overall value-

weighted duration D). The change in the top-α wealth share is approximated by

dSα ≃ −Sα(1 − Sα)(Dtop − Dbottom)ε. (5)

This proposition conveys an important intuition: while a decline in discount rates pushes up the

value of all assets, whether or not it increases wealth inequality depends on whether the financial

wealth portfolios of the rich grow by more than those of the poor. This is in turn determined by

the relative exposures of these portfolios to interest rates, summarized by cash flow duration.

The proposition also allows us to use simple summary statistics to approximate the effects of

a decline in interest rates on inequality. To do so, however, requires that we are able to measure

the distribution of duration in the data, motivating our empirical exercise in the next section.

2 Wealth Inequality and Real Rates: Empirical Evidence

In this section we document three key empirical facts. First, we show evidence for a large decline

in long-term real rates and expected returns on risky assets more broadly. Second, we provide

additional support for a strong time-series correlation between long-term real interest rates and

wealth inequality, not only in the U.S. but also in the United Kingdom and France. Third, we

present our main empirical finding of the paper: household financial wealth portfolios have highly

heterogeneous durations that correlate positively with the level of financial wealth.

2.1 Decline in Real Rates

We begin by documenting a broad-based decline in expected returns across all major asset classes.

To do so, we estimate an auxiliary no-arbitrage asset pricing model, detailed in Appendix A. This

statistical model prices bonds of various maturities, both nominal and real, the aggregate stock

market, several cross-sectional stock market factors including small, growth, value, and infras-

tructure stocks, and households’ housing wealth. According to this model, the ten-year real bond
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Table 1: Expected Real Returns Decade Averages

Asset 1980s 2010s Decline

Ten-year real bond yield 4.94% 0.63% 4.31%
Aggregate stock market 7.98% 2.00% 5.98%
Housing wealth 8.24% 4.89% 3.35%
Growth stocks 5.21% 3.53% 1.68%
Value stocks 18.50% 7.19% 11.31%
Infrastructure stocks 11.75% 2.35% 9.40%
Small stocks 3.57% 3.18% 0.39%

Note: The table reports model-implied real expected real returns and average them over the 40 quarters in the 1980s
and the 40 quarters of the 2010s. The model that generates these statistics is detailed in Appendix A.

yield averaged 4.94% over the 1980s decade and 0.63% over the 2010s decade.6 Table 1 displays

the average expected real returns over these decades for a broader set of assets, showing similarly

large declines for the aggregate stock market and housing wealth. This pattern displays some

variation, with returns on value and infrastructure stocks showing larger declines, and returns

on growth and small stocks showing smaller declines. Overall, however, the decline in expected

returns is substantial and broad-based.

2.2 Increased Wealth Inequality

We next supplement Figure 1 with additional evidence showing that the strong negative comove-

ment between financial wealth inequality and long-term real interest rates is robust across wealth

measures, interest rate measures, and countries. To this end, Figure 2 compares top wealth shares

and the prices of 30-year real annuities across the U.S., U.K., and France over the period 1947–

2019.7 For the U.S., we augment our series with wealth shares constructed from the Survey of

Consumer Finances (SCF), augmented by the SCF+ data of Kuhn, Schularick, and Steins (2020).

We construct the annuity price using either real discount rates from our auxiliary asset pricing

model, or by combining nominal yields with inflation forecasts (see Appendix B for details). Since

annuity prices move inversely with long-term real rates, we predict a positive comovement be-

tween annuity prices and inequality.

For both inequality measures, we observe a strong positive correlation between top wealth

shares and the price of a long-term real annuity (equivalently, a negative correlation with long-

term real rates). Between 1947 and 1983, the top-10% (top-1%) wealth share falls by 8.0pp (5.2pp)

in the U.S. as the annuity becomes cheaper. From 1983 until 2019, the top-10% (top-1%) wealth

6The asset pricing model matches the available data on Treasury Inflation-Indexed Securities over the period for
which they are available. The model-implied yield changes are similar for real bonds of different maturities.

7For France we start our sample in 1950 since inflation was very high coming out of WW-II, resulting in implausible
real bond yield estimates.

9



Figure 2: Top Financial Wealth Inequality and Cost of Real Annuity
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(b) U.K., Top 10%
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(c) France, Top 10%
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(d) U.S., Top 1%
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(e) U.K., Top 1%
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(f) France, Top 1%
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Note: Each panel plots a financial wealth inequality measure against a measure of the cost of a 30-year real annuity.
The inequality measure in the left panels is the share of financial wealth going to the top-10% of the population. The
right panels plot the share of the top-1% of the population. The wealth shares are from the World Inequality Database
(and the SCF+ for the U.S.). Details on annuities and wealth shares in Appendix B.

share rises by 8.3pp (11.3pp) as the cost of the annuity more than doubles. Computing U.S. top

wealth shares using the SCF and SCF+ (displayed as pink diamonds) yields a nearly identical

pattern. In the U.K. and in France we observe the same general pattern, although the top-10%

share falls by more than in the U.S. in the period before 1983, and rises by less in the period after

1983. The top-10% wealth share increases by 4.3pp in the U.K. and by 6.5pp in France from 1984
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until 2021.8 These results show that the strong negative correlation between inequality and real

rates displayed in Figure 1 holds across countries and across definitions of top wealth shares.

2.3 Household Heterogeneity in Financial Duration

While declines in real rates increase asset prices, this only matters for wealth inequality if house-

hold exposures to real rates vary systematically with wealth. In this section, we measure portfolio

exposures at the household level, and document how they vary across the wealth distribution.

Proposition 1 above shows that a household’s exposure to exposure to a permanent change in

real discount rates is summarized by the cash flow duration of its portfolio. From equation (4), we

can compute the duration of household i’s financial wealth portfolio at time t, denoted Dθ
i,t, as

Dθ
i,t = ∑

k
ωi,t(k)Dt(k). (6)

where ωi,t(k) is the share of household i’s portfolio in asset k at time t (negative for liabilities), and

Dt(k) is the duration of asset k at time t. Thus, to measure a household’s duration, we combine

measures of that household’s portfolio shares with measures of duration for each asset.

Measuring Portfolio Shares. For data on portfolio shares, we use the Survey of Consumer Fi-

nances (SCF), a detailed survey of household wealth conducted every three years. Since these

data do not distinguish holdings at the individual asset level, we consider portfolios constructed

across asset classes, for which the SCF provides detailed holdings, allowing us to directly measure

ωi,t(k) for each household in each SCF wave (see Appendix C for details). These asset classes

include public equities (held both directly and indirectly in mutual funds and pension accounts),

real estate, corporate and non-corporate private business wealth (PBW), vehicles, fixed income

assets (held both directly and indirectly), and cash, deposits, and money market instruments. On

the liabilities side, we also include mortgages, vehicle debt, student debt, and other debt. Since

the SCF begins in 1989, after interest rates have already been falling for some time, we supplement

our data with the 1983 wave of the SCF+.

The resulting portfolio shares, averaged across all survey waves, can be seen in Table 2. The

four right columns display wealth-weighted average portfolio shares for the full sample, bottom-

90%, middle 90%-99%, and top-1% of the wealth distribution. The table shows substantial hetero-

geneity in portfolio composition across the wealth distribution. In particular, the share of financial

wealth in real estate is sharply decreasing in wealth, as are the shares of vehicles, and cash and

deposits. In contrast, the shares held in equities and private business wealth, particularly the

8Rachel and Smith (2017) show that the decline in the real rate occurred across a broad set of developed and emerging
market countries. While many other factors certainly differ across countries, this shared trend suggests a global link
between falling interest rates and rising financial wealth inequality.
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Table 2: Duration of the Household Financial Wealth Portfolio

Duration Portfolio Shares

All Bottom 90 P90-P99 Top 1

Assets
Equities 49.78 0.21 0.15 0.24 0.23
Real Estate 12.28 0.47 0.79 0.40 0.23
Corporate PBW 55.93 0.09 0.01 0.07 0.19
Non-Corporate PBW 16.33 0.12 0.05 0.11 0.20
Vehicles 3.41 0.04 0.09 0.02 0.01
Fixed Income 5.28 0.15 0.15 0.16 0.14
Cash and Deposits 0.25 0.08 0.10 0.08 0.05

Liabilities
Mortgage Debt 4.81 0.13 0.29 0.08 0.02
Vehicle Debt 1.45 0.01 0.03 0.00 0.00
Student Debt 4.50 0.00 0.01 0.00 0.00
Other Debt 1.00 0.01 0.02 0.01 0.01

Average (EW) Duration 19.50
Aggregate (VW) Duration 25.42
Bottom 90 (VW) Duration 19.88
P90-P99 (VW) Duration 25.61
Top 10 (VW) Duration 28.01
Top 1 (VW) Duration 30.74

Note: The column “Duration” reports the duration of each asset, averaged across all years from 1983 to 2019. The
columns “Portfolio Shares” report the value-weighted (aggregate) portfolio weights from the Survey of Consumer Fi-
nances (SCF) and SCF+, averaged across all survey waves from 1983 through 2019. Liabilities receive negative portfolio
weights. We report portfolio shares for the aggregate household sector (All), for households in the bottom 90 percentiles
(Bottom 90), in the 90th to 99th percentile (P90-P99), and the top-1 percentile (Top 1). Portfolio shares for each group
are computed as value-weighted averages, using the product of wealth and the SCF sampling weights as weights. The
bottom panel reports all households’ average or equally weighted (EW) duration and the aggregate or value-weighted
(VW) duration. We also report the value-weighted duration for the Bottom 90, P90-P99, Top-10%, and Top-1%. Dura-
tions are first computed for each survey wave and then averaged across all survey waves.

corporate type (Corporate PBW), are strongly increasing in wealth.

Measuring Asset Durations. With each household’s portfolio shares in hand, we now measure

the durations of each asset class at each point in time. For most risky assets, we compute durations

using a simple yet robust method: the Gordon Growth Model (GGM). Specifically, we assume

that the asset’s cash flows follow a growing perpetuity structure, so that cash flows or dividends,

denoted Divt, satisfy Divt+1 = (1+ g)Divt for all t, and that these cash flows are discounted using
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a constant discount rate r. These assumptions generate a simple closed-form formula for duration

DGGM
t = 1 +

Pt

Divt
. (7)

This allows us to compute an asset’s duration at each point in time using only its contemporaneous

price-dividend ratio (Pt/Divt).9

With this general approach in mind, we now describe details of our duration measurement for

each asset class, with full details available in Appendix D. The resulting durations, averaged over

our 1980 - 2019 sample period, can be found in the first column of Table 2.

We measure the duration of equities using (7), obtaining the price-dividend ratio from the

value-weighted CRSP stock market index. This yields an average duration of 50 years for equi-

ties.10 We similarly measure the duration of real estate from (7), using rents as the asset’s cash

flows. For the price-rent ratio we use Zillow data from 2015 onwards. Prior to 2015, we compute

the price-rent ratio by scaling its 2015 value using the proportional changes in the Federal Hous-

ing Financing Agency’s price index and the CPI shelter index. This yields an average duration of

12 years for real estate.11

The most challenging duration measurement is that of private business wealth, since it is not

publicly traded. Moreover, this category contains both fast-growing companies with high dura-

tion, as well as more stagnant businesses whose existence is tied to the human capital of the owner

(Smith, Yagan, Zidar, and Zwick, 2019). To address this, we use detailed data in the SCF on the

legal structure of the private business to divide private business into those with a corporate struc-

ture (Corporate PBW), and those with a non-corporate structure (Non-Corporate PBW), which

proxy for the fast-growing and slow-growing types described above (see Section C.1.1 for details).

For non-corporate private businesses (Non-Corporate PBW), we again use (7), obtaining price-

payout ratios from the Non-Corporate Business sector in the FAUS.12 This yields an average du-

9Appendix A.2.4 shows that this approach delivers durations similar to those implied by our more sophisticated
auxiliary asset pricing model.

10We consider a set of alternative measures for the duration of equity, detailed in Appendix D.2. The first one uses the
S&P 500 cyclically-adjusted price-earnings ratio, combined with a earnings-dividend ratio of 0.5, yielding a duration of
45 years. The second one uses the price/dividend ratio computed from the JST macro-database (Jordà, Schularick, and
Taylor, 2017), yielding a duration of 48 years. The third one uses the valuation for the entire non-financial corporate
sector from the Financial Accounts of the United States (FAUS), yielding a lower duration of 34 years. The FAUS
includes privately-held companies and imputes a valuation to private companies, which is adjusted downward by 25%
to account for lower liquidity. Thus, we obtain similar duration numbers for all the measures except for the FAUS
measure, which is not a pure equity duration measure.

11Appendix D.3 shows a higher housing duration of 21 years using data from Jordà, Schularick, and Taylor (2017),
and an intermediate value of 16 using FAUS data and the VAR model.

12The corresponding cash-flow series includes both remuneration for labor and capital. To isolate the capital remu-
neration, we follow the approach used by PSID and split business income equally into labor and capital remuneration.
This 50% labor income share is conservative compared to the literature. For example, Quadrini and Rıos-Rull (1997)
and Krueger and Perri (2006) use a 86% labor share, or a 14% capital share, which would lead to a much higher valua-
tion ratio and duration estimate of 57 years, as shown in Table D2 of Appendix D.4. A second alternative measurement
based on the SCF, and detailed in Appendix D.6, also results in a higher duration of 70 years. Our baseline estimate is
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ration of 16 years. For the corporate type of private business wealth (Corporate PBW), we adapt

this approach. These businesses include fast-growing start-ups early in their corporate life cycle,

which often have cash flows growing at a much faster rate than they will when the firm reaches

its mature state. As a result, our assumption that cash flows grow at a constant rate, underlying

the Gordon Growth Model, is likely inappropriate. To address this, we use a two-stage Gordon

Growth Model that allows for an initial 20-year phase of higher cash flow growth, followed by a

second absorbing stage with a lower growth rate. This two-stage model also has a closed-form

solution for duration, presented in Appendix D.1.1.

To fit this model, we use data on publicly-listed stocks from CRSP. We assume that these pri-

vate businesses begin similar to small public companies, then transition to behave like average

public companies. Correspondingly, we obtain the initial price-dividend ratio from the smallest

decile of public companies. We obtain cash flow growth rates for the initial high-growth stage and

second lower-growth stage using 10-year real realized dividend growth for the smallest decile and

aggregate (value-weighted) portfolios, respectively. This procedure yields an average duration for

Corporate PBW of 56 years — slightly higher than our measure for public equities due to the ini-

tial high-growth phase. This measure is our most conservative (lowest duration) compared to the

six alternative methods we consider, detailed in Appendix D.5.13 We perform sensitivity analysis

of our main results to alternative values for the duration of PBW in Section 5.3.

Computing the durations of our remaining asset classes is more straightforward, as they have

simpler or fixed cash flow structures. For vehicles, we compute an asset duration based on a

depreciation rate from the Fixed Asset Tables of the Bureau of Economic Analysis and the average

age of vehicles in use from the Bureau of Transportation Statistics (see Appendix D.8 for details).

For fixed income assets, we use the effective duration of the ICE government and corporate bond

index. This series starts in 1996, prior to which we use the duration of the Treasury portfolio to

impute the duration of Treasuries and corporate bonds (see Appendix D.9 for details). For cash

and deposits, we assume a constant duration of 0.25 years.

We next compute the durations of household liabilities. While 30-year fixed-rate mortgages

are dominant in the U.S., the average outstanding mortgage has duration far below 30 years due

to the time elapsed since origination, amortization, coupon payments, and prepayment. Instead,

we obtain durations for mortgage debt from a representative portfolio of all outstanding U.S.

the most conservative in that it results in the lowest Non-Corporate PBW duration.
13The first two alternatives use the same conceptual approach for Corporate PBW as the benchmark measure, but use

an alternative to small stocks for the first, high-growth stage in the GGM. The first alternative uses high-growth private
businesses that receive venture capital funding using data from Pitchbook, yielding a duration of 59 years. The second
alternative uses stocks that just went through an initial public offering (IPO) using data from (see Ritter, 2022), yielding
a duration of 56 years. The third alternative uses small stocks for the measurement of long-duration PBW, but uses a
single-stage GGM, which generates a duration of 96 years. A fourth alternative measure, based on SCF data as detailed
in Appendix D.6, generates a Corporate PBW duration of 64 years. All four alternatives result in a higher duration
for Corporate PBW than our benchmark measure. Our approach is also robust to using micro data on the transitions
between size deciles for publicly-listed firms, as explained in Appendix D.7.
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pass-through mortgage-backed securities from the Bloomberg-Barclays Aggregate MBS Index (see

Appendix D.10 for details). These durations are estimated by the data provider using a model to

account for prepayment. For vehicle debt, we observe the periodic loan payment, the remaining

number of periods, and the loan rate in the SCF, allowing us to directly compute the duration of

each loan (see Appendix D.11 for details). For student debt, we assume a constant duration of 4.5

years.14 For other debt, we assume a constant duration of 1 year as a compromise between its two

main subtypes: revolving debt and amortizing 24-month personal loans.

Combining our time-varying durations with the portfolio shares for each household, equation

(6) delivers a financial wealth duration for each household in each wave of the SCF. The bottom

panel of Table 2 displays summary statistics from this distribution, averaged over all waves of the

SCF. We compute an aggregate (value-weighted) duration of 25.42, which is substantially higher

than the average (equal-weighted) duration of 19.50. Similarly, value-weighted average durations

at the top of the wealth distribution (either the top-10% or top-1% groups) exceed those lower

in the wealth distribution (the bottom-90% or middle 90%-99% groups). These statistics reflect a

positive association between wealth and financial durations, as wealthier households hold larger

shares of long-duration assets such as public equity and corporate private business wealth (Cor-

porate PBW), and smaller shares of short-duration assets such as vehicles and cash.

Implied Links Between Interest Rates and Inequality. To interpret implications of these find-

ings for links between interest rates and inequality, we can return to Proposition 2. Since value-

weighted durations exceed equal-weighted durations, part (a) of this proposition implies that

measured financial wealth inequality should increase when interest rates fall. To quantify these

effects, we can turn to part (b) of the theorem. Using equation (5), we can approximate the impact

on the top-10% wealth share of our measured fall in long-term real rates of 4.31pp between 1983

and 2019. For Sα, we use 67.6%, which is the average of the top-10% wealth share over our sam-

ple, while Dtop and Dbottom are obtained as 28.01 and 19.88 from Table 2. Substituting these values

into (5), we find that the top-10% financial wealth share should have increased by approximately

−0.676 × (1.0 − 0.676) × (28.01 − 19.88) × (−0.0431) = 7.7pp, very close to the actual increase

of 8.3pp in the data. These results show the simple and robust intuition behind our finding that

declining real rates explain most of the rise in financial wealth inequality over this period.

Despite the excellent fit of the data, several caveats are worth noting. First, equation (5) should

be applied repeatedly each time rates change, using the Sα
t , Dtop

t , and Dbottom
t prevailing at that

time, with the resulting effects chained together, instead of all at once as in this example. This

more correct computation allows the covariances of the terms to matter beyond their average

values. For example, if rates fall more when the gap in durations between the top and bottom

14Student loans are typically 10-year annuities. At the average rate on outstanding student loans in 2017 of 5.8%, the
duration is 4.56. At the higher interest rates prevailing in the 1980s the duration would be slightly smaller.
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Figure 3: Financial Duration by Net Wealth Percentiles and by Age

(a) By Net Wealth Bin
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Note: This left panel displays average duration by financial wealth bin in the model and data (source: SCF). The x-
axis is measured in percentiles, which each tick representing the right edge of the bin, so that e.g., “5” corresponds to
households with financial wealth percentile in the interval [0, 5]. Red crosses display model equivalents (see Section 4).
This right panel displays a binscatter of average duration by age in the data, after controlling for the financial wealth
bins displayed in Figure 3a, while the red line represents the least squares fit (source: SCF), using a regression that
pools over households in all SCF waves of our sample (1983–2019) with each wave weighted equally.

of the wealth distribution is particularly high, then this comovement will amplify the impact on

inequality. Moreover, equation (5) measures the response to an instantaneous change, while the

actual change in inequality we measure in the data occurred over decades. To the extent that

households’ consumption and savings behavior is influenced by the wealth changes, this formula

will fail to capture these impacts on the dynamic evolution of the wealth distribution. We address

both of these issues in a more comprehensive quantitative experiment in Section 5.

Cross-Sectional Patterns of Duration. To close our empirical section, we analyze how our mea-

sures of household-level duration vary with characteristics in the cross-section.

To begin, Panel (a) of Figure 3 plots the average duration by wealth bin in the SCF (blue dots,

squares, and diamonds). Red crosses display equivalents in our structural model, discussed in

Section 4. Since higher-wealth households are more influential for aggregate wealth outcomes, the

figure displays 5% wealth bins up to the 90th percentile, then 1% bins up to the 99th percentile,

and 0.2% bins for the top 1%. The figure shows that duration is generally increasing in wealth.

The sole exception is due to a hump shape around the 25th percentile of wealth. This pattern is

driven by home ownership, since the most levered homeowners have relatively little wealth but

very high portfolio durations. Beyond this segment, however, we find that duration is consistently

increasing in wealth up to the very top of the wealth distribution.

The second key characteristic that drives variation in financial duration is age. Panel (b) of

Figure 3 displays a binscatter of measured duration in our SCF data by age, after controlling for

16



net wealth using dummies for each of the bins constructed in Panel (a). This figure shows a strong

and highly linear negative relationship between age and duration.

Combining these patterns, the duration of household financial wealth is well approximated by

Dθ
i = α + βAgei + ∑

j
γjNetWealthBini,j + ei (8)

where NetWealthBini,j is an indicator for whether household i falls in financial wealth bin j. We

show in Appendix D.12 that adding other covariates yields little additional power to explain varia-

tion in financial duration across households. We estimate this regression, and use the fitted values

to impute household durations in our calibrated model in Section 4.

To summarize, our main empirical finding is that financial wealth duration is increasing in

financial wealth. Combined with our theoretical results in Section 1, this implies that revalua-

tion effects from a decline in interest rates since the 1980s should have increased financial wealth

inequality, with a quantitative increase in top wealth shares on the order observed in the data.

3 Incomplete Markets Model with Household Heterogeneity

To develop theoretical and quantitative insights on how changes in interest rates affect the dis-

tribution of wealth, we develop a simple life-cycle model with idiosyncratic labor income risk

that connects interest rates, duration, and wealth inequality in a transparent fashion. In order to

straightforwardly apply the exact path of rates that occurred in the data, we use a partial equi-

librium model (alternatively, a small open economy) where interest rates are taken as given, and

abstract from the structural mechanisms or shocks that caused the interest rate to fall. Instead, we

analyze the relationship between wealth, interest rates, and consumption as an accounting iden-

tity. Regardless of the underlying cause, the duration measures we use accurately describe the

change in financial wealth and consumption possibilities due to the observed decline in interest

rates relative to a counterfactual world where interest rates had not fallen but all other variables

had evolved identically. Our work thus provides a robust quantitative measure that complements

work on the underlying forces driving changes in interest rates over this period.

Appendix G generalizes our environment to a general equilibrium setting in which interest

rates are determined endogenously, and the aggregate endowment grows at a stochastic rate. We

show that changes in the equilibrium interest rates reflect changes in any or all of (i) the subjective

time discount rate, (ii) the mean rate of growth, or (iii) the variance of that growth rate. Follow-

ing Krueger and Lustig (2010), we show how to map the stochastically growing economy into

a stationary economy in the style of Bewley (1986) without growth and aggregate risk using a

change of measure. Thus, while the exact cause of the decline in interest rates since the 1980s is an

important research question, we believe our findings should be robust to the ultimate answer.

17



3.1 Model Structure

Demographics. The economy is populated by a continuum of households. Households transi-

tion through a life cycle, where age j varies from 0 to J. Households survive from age j to age j + 1

with probability ϕj, with ϕJ = 0. When a household dies, it is replaced by a newborn household

(j = 0), which inherits its remaining assets as a bequest.

Endowments. Each household i of age j receives exogenous labor income given by yj(z), where

z is a household-specific (idiosyncratic) stochastic process.

Asset Technology. Households trade a complete set of bonds offering fixed cash flows at fu-

ture dates.15 Without loss of generality, we restrict attention to zero coupon bonds, where a zero

coupon bond with maturity m promises one unit of the numeraire in m periods. We denote hold-

ings of each bond as xm, and its price as qm. Markets are incomplete in that households cannot

contract on their idiosyncratic income realizations.

We consider an economy in steady state, so that prices {qm} are expected to hold in all fu-

ture periods. We further assume that the one-period bond is traded on a global market in which

our model economy is a price taker, so that its interest rate takes the exogenous value R. If we

normalize q0 = 1, the absence of arbitrage opportunities requires qm = R−m, ∀m in steady state.

Household Problem. Given start-of-period bond holdings x, labor income y, and bond prices q,

a household of age j chooses consumption c and bond holdings x′ to solve the recursive problem

Vj(x; z) = max
c,x′

c1−γ

1 − γ︸ ︷︷ ︸
flow utility

+ ϕjβE
[
Vj+1(x′; z′)

∣∣∣ z
]

︸ ︷︷ ︸
continuation value

+ (1 − ϕj)χ

(
∑M

m=1 qm−1x′m
)1−γ

1 − γ︸ ︷︷ ︸
bequest utility

(9)

subject to the budget constraint,

c ≤ yj(z)−
M

∑
m=1

(
qmx′m − qm−1xm

)
︸ ︷︷ ︸

net saving

and the borrowing constraint ∑m qmx′m ≥ 0, which rules out negative bequests. While past

work has shown empirical benefits from using non-homothetic bequest functions (De Nardi, 2004;

Straub, 2019), our use of a homothetic bequest function offers large gains in tractibility for our the-

oretical and quantitative analysis. We note that because these non-homothetic bequest functions

15The model with aggregate shocks in Appendix G allows for asset payoffs that depend on the aggregate state.

18



imply greater savings by the rich following wealth gains, and hence greater amplification and

persistence of wealth inequality, our results can be seen as, if anything, conservative.

Household Optimality. Each of the m optimality conditions for bond holdings x′m collapses to

the same Euler equation modified to include bequest utility:

c−γ = R

{
ϕjβE

[
(c′)−γ

∣∣∣ z
]
+ (1 − ϕj)

(
M

∑
m=1

qm−1x′m

)−γ}
. (10)

These optimality conditions do not uniquely identify the portfolio holdings, since households ex-

pect to receive the same holding period return R on all bond maturities. Instead, only the house-

hold’s total financial wealth θ ≡ ∑M
m=1 qm−1xm and total savings s ≡ ∑M

m=1 qmx′m matter for the

household’s problem in a steady state where interest rates do not change. Given this indifference,

we assign each household a unique portfolio {x̂m} that matches its empirically predicted duration

given its and position in the wealth distribution from (8).

Financial Wealth. Using the results above, we can simplify the household’s problem using total

financial wealth θ as a single state variable. Since next period financial wealth θ′ is given by

θ′ =
M

∑
m=1

qm−1x′m = R−1
M

∑
m=1

qmx′m

we can rewrite (9) as the optimization problem

Vj(θ; z) = max
c,θ′

c1−γ

1 − γ
+ ϕjβE

[
Vj+1(θ

′; z′)
∣∣∣ z
]
+ (1 − ϕj)χ

(θ′)1−γ

1 − γ

subject to the budget constraint

c ≤ yj(z) + θ − R−1θ′. (11)

and the no borrowing condition θ′ ≥ 0, yielding the single optimality condition

c−γ = R
{

ϕjβE
[
(c′)−γ

∣∣∣ z
]
+ (1 − ϕj)(θ

′)−γ
}

. (12)

Although households believe the economy will remain in steady state forever, we apply unantic-

ipated shocks to interest rates that will revalue financial assets. In this case, although households

believed (11) would hold, the actual next period financial wealth is updated according to

θ̃′ =
M

∑
m=1

q̃m−1x′m
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where {q̃m} is the updated set of bond prices conditional on the new realized interest rate.

3.2 Consumption Effects of Interest Rate Changes.

While the previous exercises clarify the impact of interest rates on financial wealth inequality, it

is by no means obvious whether these changes in measured financial wealth inequality reflect

changes in consumption possibilities (welfare), or simply represent revaluations of the same con-

sumption plans (paper gains and losses). To distinguish the two, we iterate forward (11) to obtain

θ0 = E0

{
T−1

∑
t=0

R−t(ct − yt) + R−TθT

}
(13)

where T is the (stochastic) death date, measured in number of periods from the present (t = 0), and

θT is the final bequest of this household, which depends on the histories of ct and yt, as well as the

realization of T. Financial wealth is thus equal to the present value of future excess consumption,

defined as consumption minus income ct − yt, plus the present value of the bequest θT.

For this section, we consider the infinite-horizon limit with vanishing mortality risk, so that

θ0 = E0

{
∞

∑
t=0

R−t(ct − yt)

}
. (14)

With this identity in hand, we turn to our main theoretical insight regarding the link between

interest rates and consumption possibilities.

Proposition 3. Assume that the interest rate R and discount factor β both unexpectedly and per-

manently change to R̃ = R exp(ε) and β̃ = β exp(−ε). Define the duration of financial wealth by

Dθ , and the duration of future excess consumption Dc−y by

Dθ ≡ ∑M
m=1 m × qmxm

∑M
m=1 qmxm

, Dc−y ≡
E0

{
∑∞

t=0 t × R−t(ct − yt)
}

E0

{
∑∞

t=0 R−t(ct − yt)
} .

Let c̃t denote the household’s consumption plan following the change in rates. Then for a decline

in rates (ε < 0):

(a) The set of consumption allocations the household can afford expands if Dθ > Dc−y, contracts

if Dθ < Dc−y, and is unchanged if Dθ = Dc−y.

(b) If, following the shock, a household has exactly enough financial wealth θ̃0 to afford its pre-

shock consumption plan {ct}, then this consumption plan remains optimal.

(c) Household consumption is unchanged following a shock to interest rates (ct = c̃t, ∀t) if and

only if Dθ = Dc−y.
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The proof can be found in Section F.3. Part (a), building on Auclert (2019), shows that whether

changes in interest rates expand or contract a household’s consumption possibilities depends not

on the absolute level of its financial wealth duration, but on how it compares to the duration of

that household’s lifetime excess consumption.16 While financial wealth is always equal to present

value of future excess consumption by the budget identity (14), the two may be differentially

exposed to the same interest rate shock, much like a bank with a maturity mismatch of assets and

liabilities. As a result, even if a household gains financial wealth from a decline in rates, it can still

see its consumption possibilities contract if the present value of its pre-shock excess consumption

plan rises by more than its financial wealth.

Part (b) shows that, as long as a household can exactly afford its pre-shock consumption plan,

it will still find this plan optimal, and choose it at equilibrium. This follows directly from (12)

in the absence of bequests, and the fact that βR = β̃R̃. We will exploit this result to construct a

counterfactual wealth distribution that leaves consumption approximately unchanged following

a shock in Section 6. Part (c) follows immediately, since the pre-shock consumption plan is optimal

if and only if it is exactly affordable after the shock, which occurs if and only if Dθ = Dc−y.

Proposition 3 assumes zero mortality risk. Although part (a) would hold absent this assump-

tion, parts (b) and (c) would not. This is because we follow the convention of measuring a house-

hold’s bequest in current value (i.e., dollars). Thus, even if a household’s consumption plan is

fixed, falling rates that increase the present value of future cash flows will mechanically increase

the value of financial wealth the household maintains along its consumption path, thus increasing

the “size” of bequests. This issue highlights a potential downside of typical bequest parameteriza-

tions, since households receive more utility from a more “valuable” bequest when rates fall, even

though the heirs receiving it will not be able to afford larger consumption allocations. Regardless,

although parts (b) and (c) hold only approximately, the quantitative discrepancy should be small,

particularly for young households whose bequests are far in the future on average.

Proposition 10 in the Appendix generalizes Proposition 3 to a world with stochastic growth

and endogenous interest rates. Our proposition goes through irrespective of the combination of

discount factor, growth rate, and growth uncertainty changes driving the movement in rates.

16Auclert (2019) shows that for perfectly transitory change in the real rate, the consumption response depends on
unhedged interest rate exposure (URE). Mapped into the language of this section, this result states that the response
depends on whether the present value of future excess consumption or future net cash flows from the household’s
financial portfolio is greater. This is a sufficient statistic because a perfectly transitory change in the short-term discount
rate changes the cumulative discounting of all future cash flows by a constant proportional amount. In our setting with
permanent shocks, the exact timing of the cash flows matters, as cash flows further in the future are more affected by
a permanent change in rates than cash flows closer to the present. As a result, URE is no longer a sufficient statistic.
For example, a household with a portfolio of five-year bonds has the same URE as an otherwise identical household
holding two-year bonds, but will experience much larger gains following a decline in rates. Our sufficient statistic of
duration accounts for these timing effects, allowing us to extend these results to a setting with permanent shocks.
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3.3 Implications: Perfectly Hedged Economy.

Proposition 3 implies that households whose financial wealth and excess consumption durations

are perfectly aligned (Dθ = Dc−y) do not change their consumption plans following a decline in

rates. In such a “perfectly hedged” economy, all changes in financial wealth inequality would

therefore reflect only “paper” gains, while keeping consumption inequality unchanged. Com-

bined with Proposition 2, this result implies that, in a perfectly-hedged economy, we should see

financial wealth inequality rise following a decline in rates if and only if the duration of excess

consumption Dc−y is higher for wealthy households than poor households. While this condition

depends on the parametrization of the model, and there are two offsetting forces at work, we

observe here that it is highly dependent on the model’s life cycle.

We first consider Bewley models without a life cycle, where households are ex-ante identical.

In these models, wealthy households are those who experienced favorable income shocks. These

households tend to have high labor income today, which is expected to mean revert over time. Due

to consumption smoothing, excess consumption for these households (ct − yt) tends to be negative

in the short run, and positive in the long run, generating a longer duration of excess consumption.

Since the wealthy therefore tend to have a higher value for Dc−y than the poor, perfect hedging

in these economies features a positive covariance between financial wealth and the duration of

financial wealth. Such an economy would therefore see financial wealth inequality rise following

a decline in interest rates, making the rise in measured financial wealth inequality documented

in Section 2 potentially consistent with perfect hedging. In this case, wealthier households would

need larger gains in wealth following a fall in rates to finance their future consumption.

This result changes dramatically in the presence of a life cycle. In life cycle economies, the

young are typically the least wealthy. At the same time, life-cycle savings motives imply that most

households have negative excess consumption in middle age, as they save for retirement, followed

by positive excess consumption in retirement. Thus, Dc−y is highest for young households, and

decreasing in age. This force pushes down the cross-sectional covariance of financial wealth and

the duration of excess consumption, potentially making it negative. In a perfectly-hedged life-

cycle economy, we may see financial wealth inequality fall following a decline in interest rates,

which would make the large rise in financial wealth inequality since the 1980s inconsistent with

perfect hedging. Such a discrepancy would imply that there are real consumption effects from

interest rate changes, and that these effects are unequally distributed across households.

The two opposing forces highlighted above — the history of stochastic income realizations and

the life-cycle effect of saving for retirement — will appear in virtually any model of household in-

equality. The question of which will dominate, and the ultimate implications for wealth inequality

under perfect hedging, is a quantitative one. In the following sections, we answer it (and others)

using a standard calibration of a workhorse life-cycle incomplete markets model.
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4 Model Quantification

To measure the effect of changing interest rates on wealth inequality, our model must produce

quantitatively realistic responses. In this section, we parameterize our model, calibrate it to match

data on both household financial wealth durations, income risk, and wealth shares, and present

the properties of the model’s stationary economy.

4.1 Calibration

Preferences and Mortality Risk. We calibrate the model’s mortality risk via the survival prob-

abilities ϕj to match Social Security Actuarial tables. Since we model households, we take the

average of the male and female mortality rates, weighted by the proportion alive at each age.

We set γ, the risk aversion of the households and the curvature of the bequest function, to a

standard value of 2. We set the time discount factor to β = 0.949 to target a ratio of net wealth to

disposable labor income in 1983 of 6.79.17 We set the bequest utility parameter χ = 7.894 to match

a ratio of bequests to GDP of 8.8%, following Auclert, Malmberg, Martenet, and Rognlie (2021).

Interest Rates We set the steady-state interest rate R to match the 10-year real rate in 1983. The

interest rate in the data comes from an economy with growth. As shown in Appendix G.3.2, the

mapping between the interest rate in our stationary economy and that in the growing economy is:

R =
Rg

G
, β = G × βg (15)

where Rg and βg are the gross interest rate and time discount factor in the growing economy, R and

β are the corresponding values in our stationary economy, and G is the gross growth rate (adjusted

for a Jensen effect and a risk premium). Given average log growth of 1.91%, the observed rate in

1983 of Rg = 4.94% implies R = 3.04%.

Financial Duration As households in the model go through their life cycle and experience changes

in financial wealth, their financial duration is updated according to

D̂θ
i = α̂ + β̂Agei + ∑

j
γ̂jNetWealthBini,j (16)

equal to the fitted value from regression (8). The model’s equal-weighted and value-weighted

durations are 19.87 and 25.96, respectively, close to their empirical counterparts in Table 2.18 The
17Net wealth is measured as the net worth of households and nonprofits in the FAUS (Table B.101). Disposable labor

income is household income net of personal taxes, rental, interest, and dividend income, and one half of proprietor’s
income in the National Income and Product Accounts.

18Since the model feeds in the (time-varying) portfolio shares in the SCF data, it matches observed portfolio choices
by construction. Endogenizing portfolio choice is an interesting extension, but cannot improve the model’s implications
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model’s durations by wealth bin can be seen as the red crosses in Panel (a) of Figure 3, showing

that the model achieves a close fit of the data.19

Regular Income Parameters. The labor income process consists of a regular component and a

superstar component. The regular income process for household i of age a at time t that is not

currently in the superstar state takes the form, standard in the literature, given by:

log
(

yi
t,a

)
= mt + χ′Xi

t + zi
t, (17)

zi
t+1 = αi + ηi

t+1 + νi
t+1, (18)

ηi
t+1 = ρηi

t + ui
t+1, (19)

where mt is a year-fixed effect and Xi
t is a vector of household characteristics that includes a cubic

function of age.20 We normalize the mean of the age profile to unity during working life.

The stochastic income component zi
t contains a household-fixed effect αi, a persistent com-

ponent ηi
t+1, and an i.i.d. component νi

t+1. We set E[νi] = E[ui] = E[αi] = E[ηi
0] = 0, while

Var[νi] = σ2
ν , Var[ui] = σ2

u , Var[αi] = σ2
α , and Var[ηi

0] = σ2
η,0. To allow for lower income risk dur-

ing retirement, we re-estimate (17) – (19) separately for households above and below age 65, and

assume that model households face income risk that switches when they turn 65. The parameters

are estimated by GMM using PSID data from 1970 until 2017, as detailed in Appendix E. Figure

E1 plots the deterministic life-cycle income profile.

The literature typically estimates (17) – (19) on labor income for males between ages 25 and

55. We deviate from this practice by: (i) considering a broader income concept, (ii) modeling the

entire life-cycle from age 18 to 80, and (iii) focusing on households rather than individuals.

First, from the model’s perspective, the relevant notion of income used for measuring excess

consumption is broad and includes transfers. This approach extends that of Catherine, Miller, and

Sarin (2020), who incorporate Social Security benefits as a component of income, to include all

sources of labor income and transfers available in our data. To that end, we measure income in

the data as income from wages and salaries, the labor income component of proprietor’s income,

government transfers (unemployment benefits, Social Security, other government transfers), and

private defined-benefit pension income. To obtain consistent data series, we reconcile differences

in variable definitions among the various waves of the PSID (a non-trivial task, see Appendix E).

Second, we are interested in the entire life-cycle. To this end, we estimate the income distribu-

for portfolio choice, financial duration, and wealth inequality.
19Since we are using fitted values, the main reason why the model durations by wealth bin would deviate from their

data equivalents is if the joint distribution of age and net wealth bin differs between model and data. This close fit rules
out an important discrepancy of this kind.

20Our results are similar if we estimate the year fixed effect and the age profile separately for groups of households
that depend on education (college completion or not), race (white or non-white), and gender of head of household (8
groups total). Since it makes little difference for our main results, we assume ex-ante identical households for simplicity.
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tion for a wide range of ages from 18 to 80.21 Because our income concept includes transfers such

as unemployment benefits and retirement income from public or private defined-benefit pension

plans, we do not need to assume that households are working full-time. Instead, our estimation

takes into account the full cross-section of sample households, including retirees, receipients of

unemployment benefits, part-time employees, and so on.

Third, we focus on households, aggregating income across its adult members. This avoids

the obligation to model demographic changes such as becoming married, divorced, or widowed.

Instead, we simply follow households identified by the head of household in the data.

Superstar Income Parameters. To help the model match the level of wealth inequality in the

high-interest rate regime (1980s), we follow Castaneda, Diaz-Gimenez, and Rios-Rull (2003) in

enriching the income process in (17) – (19) with a superstar income state, which has a high income

level ηi
t = ηsup. Households enter this state with probability psup

12 when they are in the regular

income state, and return to a regular income state with probability psup
21 when they are in the

superstar income state. The transition probability parameters psup
12 = 0.0002 and psup

21 = 0.975

are taken from Boar and Midrigan (2020), and imply a roughly 1% probability of entering in the

superstar income state over one’s lifetime. Conditional on entering, the state has an expected

duration of 40 years. The income level ηsup is then chosen to match the top-10% wealth share in

1983 exactly, which requires a value equal to 32.46 times average income.

Income Process Discretization. For the persistent component of the income process η, we use a

nested structure, so that a household first draws whether it transitions into or out of the superstar

state using the probabilities stated above. Conditional on ending out of the superstar state, the

household then draws a new value of η from the non-superstar distribution. For households

beginning and ending in the non-superstar state, we approximate (18) with a discrete Markov

chain Pη using the method of Rouwenhorst (1995). Households transitioning from the superstar

to non-superstar states draw a random non-superstar η state from the ergodic distribution of Pη .

Conditional on η, we draw i.i.d. values for ν using nodes and weights from Gaussian quadrature.

4.2 Stationary Economy: High Interest-Rate Regime

With the model calibrated, we now explore the quantitative properties of its stationary distribu-

tion under the initial high interest rate regime. Figure 4 displays the life cycle profiles of several

key variables. The first two columns show income, consumption, financial wealth, and human

wealth, with the axes are normalized such that 1 represents the median income during working

21Since model households can survive to age 100, we assume that the age profile embedded in χ′Xi
t remains constant

from age 80 onward.
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Figure 4: Life Cycle Profiles
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Note: This figure plots the life cycle profiles by age for the all agents of all groups combined. The axes are normalized
so that the average income across all agents of all ages is equal to unity. The center line displays the median, while the
dark and light bands represent 66.7% and 95% percentile bands.

life. Income displays the traditional hump-shape over the life cycle. Income inequality is increas-

ing over the first half of the life cycle as income shocks accumulate. After retirement, households

switch to our estimated over-65 income process which has lower dispersion. While this com-

presses income inequality beyond this point, we note that it remains non-negligible since agents

have heterogeneous retirement income and still face some income risk after age 65.

The bottom right panel shows that both the level and dispersion of consumption are rising over

the working part of the life cycle, with dispersion falling in retirement when income risk declines.

This is consistent with the data, which show that consumption inherits the hump-shaped profile

from income (e.g., Krueger and Perri, 2006).

The top middle panel shows financial wealth, which increases in preparation for retirement,

and is subsequently run down during retirement. Financial wealth inequality rises and falls over

the life cycle. The first few years are influenced by bequests, which households receive at age 18.

On average, households spend these down before beginning to save for retirement closer to age

30, while the large dispersion in the size of bequests generates the initial peak in financial wealth
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dispersion at the start of the life cycle.22

The bottom middle panel shows human wealth, defined as the present value of income. Hu-

man wealth is generally declining in age as there are fewer remaining periods of income remain-

ing. However, human wealth rises in the early years of the life cycle as the households’ highest-

earning periods are brought closer to the present. Total wealth for young households consists

almost exclusively of human wealth, except for a small share of households who received large

bequests. As households age and prepare for retirement, a larger share of total wealth becomes

financial wealth. However, human wealth remains the largest component of total wealth for most

households until the typical retirement age.

Appendix Figure H1 displays the Lorenz curves for consumption and wealth for all house-

holds (in all groups), and reports the Gini coefficients. The model generates a Gini coefficient for

(after-transfer) household income of 0.489. Consistent with the data, consumption inequality is

somewhat lower than income inequality, and has a Gini coefficient of 0.406. Financial wealth is

much more unequally distributed than human wealth or total wealth, with a Gini coefficient of

0.710 compared to 0.405 and 0.417, respectively. This much lower inequality in total wealth arises

from a combination of (i) the importance of human wealth in total wealth, and (ii) the negative

cross-sectional correlation between financial wealth, dominated by the middle aged and old, and

human wealth, which is highest for the young.

The right panels of Figure 4 display the duration of human and total wealth by age. Human

wealth represents a claim on lifetime income whereas total wealth represents a claim on lifetime

consumption. Both of these durations are similar because of the importance of human wealth in

total wealth. These durations are high when young, around 25, and drop rapidly as age increases,

as there are fewer years of income remaining.

5 Results: Repricing Under Falling Interest Rates

In this section, we apply unexpected and permanent interest rate shocks to our economy and study

the quantitative effect on financial wealth inequality. We do this in two steps. First, we consider a

one-shot experiment, in which we apply a single unanticipated and permanent decline in the real

interest rate, which captures the entire decline in interest rates between 1983 and 2019. This simple

one-shot experiment allows for clear exposition of the mechanism behind our results but lacks

realism, since the actual decline in rates occurred gradually over several decades. To generate

more quantitatively realistic results, the main analysis considers a gradual transition experiment in

which we feed in the sequence of annual interest rate changes.

22To the extent that actual households receive bequests later in life, this would increase financial inequality between
young and old, strengthening our effects.
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Figure 5: Histograms, Repriced Financial Wealth Distribution
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Note: The left panel plots the original wealth distribution in the steady state with high interest rates in blue and the
repriced wealth distribution after the decline in interest rates in green. The right panel is a binscatter plot, where each
dot represents 5% of the population, that maps the financial wealth in the high interest rate steady state, reported on
the x-axis, to the repriced financial wealth after the rate change on the y-axis.

5.1 Repricing: One-Shot Experiment

To build intuition, we begin with the one-shot experiment. The interest rate in the growing econ-

omy declines from 4.94% to 0.63%, which corresponds to a decline from 3.04% to -1.19% in our

model’s stationary economy. Following this change, we update the value of financial wealth for

each household in the economy using

θ̃i,t = θi,t exp(−Dθ
i,t × ∆ log R). (20)

where financial wealth duration for household i, Dθ
i,t is obtained as the the fitted value of (8),

averaged over all SCF waves, applied to each household in the model. We refer to the resulting

wealth distribution θ̃i,t as the repriced wealth distribution.

Figure 5 Panel (a) shows the repriced distribution in green, alongside the initial wealth dis-

tribution in blue. The decline in rates pushes the distribution to the right, as financial wealth

increases in value under falling discount rates. Overall, this decline in rates increases the value of

financial wealth by 208.4%. Panel (b) presents a binscatter showing how these gains are allocated

across the wealth distribution, showing that all but the poorest agents see large asset valuation

gains, with larger gains for the wealthier households due to their higher financial wealth dura-

tions. Since the model reproduces the fact that the value-weighted average financial duration

exceeds the equally-weighted average, falling rates increase financial wealth inequality in our

model, consistent with our theoretical results in Section 1.
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5.2 Repricing: Transition Experiment

We now turn to our gradual transition experiment, which provides our main quantitative results.

For each year between 1983 and 2019, we obtain the real 10-year rate Rg,t implied by our auxiliary

asset pricing model in Appendix A. We detrend these rates with equation (15) using a constant

gross growth rate G = 1.0193 to obtain the time series of Rt to use in our stationary economy.

We assume that each of these annual changes is permanent and unexpected. We note that, if the

real rate declines had instead been anticipated by investors in 1983, the entire effect on valua-

tions would have been front-loaded, and the term structure would have been steeply downward

sloping. Both of these predictions are counterfactual.

At the start of each period, we revalue financial wealth with (20) using that year’s change in

rates ∆ log Rt. To compute household portfolio durations for each year, we re-estimate equation

(8) for each SCF wave (typically every three years), then interpolate the coefficients for the years

between SCF waves.23 Applying these coefficients to (16), we assign each model household a

financial duration based on its age and position in the wealth distribution.

Importantly, the economy does not jump to the new steady state following each interest rate

shock. Instead, following each year’s change in rate, financial wealth is revalued, households

update their optimal consumption-savings plans, and the economy begins a long transition to the

new steady state. However, the following year this transition is interrupted by a new unexpected

interest rate shock, and the process repeats. The financial wealth distributions we compute in each

year thus reflect the entire history of both rates and household consumption-savings decisions.

Effects on Financial Wealth Inequality. The results of our gradual transition experiment are

displayed in Panel (a) of Figure 6. The black line displays the actual top-10% share in the data

(WID), while the red line displays its implied path in our model’s transition experiment. The fig-

ure shows that our model-implied series provides a close fit for the data, ultimately explaining

95% of the increase in the top-10% share observed over the sample. Thus, we find that hetero-

geneity in financial wealth durations, with wealthier households more exposed to interest rate

changes, is sufficient to generate effectively all of the rise in inequality since the 1980s.

This overall rise in inequality is the combination of two forces: (i) revaluations of financial

wealth according to measured household financial durations, and (ii) households’ optimal re-

sponse to these revaluations in their consumption-savings plans. We now decompose their sepa-

rate contributions. Define S10
t to be to the top-10% share of financial wealth at the start of time

t, prior to any revaluation. Once the new interest rate Rt is realized, each household’s pre-

revaluation wealth θi,t is updated to θ̃i,t, leading the top-10% share of wealth to be updated from

S10
t to S̃10

t . We define the instantaneous revaluation effect in each period, corresponding to force (i)

23Since the first wave of the SCF is 1989, we use the fitted values from 1989 for all years between 1983 and 1989.
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Figure 6: Top-10% Share, Gradual Transition Exercise
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Note: The left panel plots the top-10% financial wealth share in the data (black dash-dotted line) and in the model
with repricing (red solid line). It decomposes the evolution in the top-10% financial wealth share into a component
solely due to instantaneous repricing (blue line, Ŝ10,REV

t ) and component due to optimal consumption-savings decisions
(green line, Ŝ10,MR

t ). The right panel provides the same information as the left panel except for the compensated wealth
distribution.

above, to be dŜ10,REV
t = S̃10

t − S10
t . We cumulate these revaluation effects to obtain the series

Ŝ10,REV
t = S10

0 +
t

∑
τ=1

dŜ10,REV
τ (21)

where t = 0 represents the base period 1983. To obtain an additive decomposition, we can define

the mean reversion effect, corresponding to force (ii) above, to be equal to Ŝ10,MR
t = S10

t − Ŝ10,REV
t .

The resulting series for Ŝ10,REV
t and Ŝ10,MR

t are displayed as the blue and green lines in Panel (a),

respectively. The cumulative effect of instantaneous revaluations along the transition path (blue

line) exceeds the overall path (red line), and explains more than 100% of the increase in inequality.

The effect of revaluations is offset by households’ endogenous consumption-savings responses

(the mean reversion effect), which push wealth inequality down.

To understand this pattern we note that, despite the large increase in financial wealth inequal-

ity along the transition to low interest rates, the level of financial inequality in the low interest

rate steady state is not higher than in the high interest rate steady state. In fact, it is somewhat

lower. Intuitively, this lower steady state inequality results from fewer opportunities for house-

holds to build large wealth positions by compounding returns when rates are low. The large rise

in inequality observed in Figure 6 is a temporary—albeit highly persistent—effect of a sequence

of capital gains stemming from the fall in interest rates, rather than the low level of rates them-

selves. Thus, in the absence of future interest rate shocks, the model’s endogenous transitions

would see inequality decline after 2019 as it gradually transitions to the low-rate steady state. The
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Table 3: Change in Inequality, Gradual Transition Experiment

Data (WID) Repriced Compensated

Top-10% FW +8.3pp +7.9pp -1.5pp
Top-1% FW +11.3pp +6.4pp +0.6pp
Gini FW +0.054 +0.061 -0.020

Top-10% HW – +1.1pp +1.1pp
Top-1% HW – -2.2pp -2.2pp
Gini HW – +0.066 +0.066

Top-10% TW – +0.6pp -1.6pp
Top-1% TW – -1.9pp -2.7pp
Gini TW – +0.059 +0.039

Note: The table reports the change in the Top-10% share, Top-1% share, and Gini Coefficient of financial wealth (FW,
top panel), human wealth (HW, middle panel), and total wealth (TW, bottom panel). The change is measured between
1983 and 2019 in the model (Repriced and Compensated columns) as well as in the Data (WID) column.

very strong effects of revaluation are partially offset by this mean reversion effect, yielding our

overall result that the decline in rates explains most of the rise in financial wealth inequality.

The resulting changes in financial wealth (FW) inequality are summarized in the top panel

of Table 3. Table H1 in the appendix reports the levels rather than the changes for these same

inequality moments. The column “Data (WID)” reports the change between 1983 and 2019 mea-

sured in the World Inequality Database, while the column “Repriced” displays the change over

the same period in our model economy’s gradual transition experiment (red line in Panel (a) of

Figure 6). The increase in the top-10% share of financial wealth is virtually identical to that of

the data. The increases in the FW top-1% share and FW Gini coefficient are also large and of the

order as the actual increase in the data, although model understates the former and overstates the

latter. In summary, our results indicate that the revaluation of assets following a decline in interest

rates has been a powerful driver of inequality, and accounts for most, if not all, of the increase in

financial wealth inequality since the 1980s.

Effects on Human and Total Wealth Inequality. Beyond financial wealth, we can also consider

the effects of repricing on human wealth (the present value of lifetime income) and total wealth

(the present value of lifetime consumption, the sum of financial and human wealth). In this section

we continue our positive exercise measuring changes in the valuations of these streams. However,

we note that a change in valuation does not necessarily reflect a change in welfare. For instance,

a household with a fixed consumption stream will see its total wealth rise following a decline in

rates even though its consumption is unchanged. We return to evaluate the normative implications

for consumption opportunities in Section 6.
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The Repriced column of the bottom two panels of Table 3 display the corresponding impacts

of falling rates on human and total wealth inequality. The results are generally similar for human

and total wealth, but vary substantially by the exact statistic used, with the Ginis rising by around

as much as for financial wealth, the top-10% share rising, but by less, and the top-1% share actually

falling. We explain these in turn.

To understand the change in the Gini and top-10% share, recall from Figure 4 that both human

wealth and human wealth duration peak early in the life cycle and steadily decrease thereafter.

As a result, the younger households with the most human wealth also experience the largest gains

in human wealth, increasing human wealth inequality. At the same time, the distribution of hu-

man wealth duration is not as skewed as that of financial wealth, since human wealth durations

are strictly limited by finite working lives and lifespans. As a result, we observe a broad-based

increase in inequality that increases the Gini more than the top-10% share.

Turning to the total wealth response, recall that total wealth is the sum of financial and human

wealth. Because human wealth makes up the larger share, the response of total wealth inequality

is closer to that of human wealth inequality. However, because the gains from repricing to financial

wealth (increasing in age) and human wealth (decreasing in age) are negatively correlated, the

increases in the top-10% share and Gini for total wealth are smaller than for either component.

At the very top of the total wealth distribution, the response to the rate change is more subtle.

The top-1% of the total wealth distribution is made up of two types of households. The first group

consists of older households who hold most of their wealth in financial assets. These households

have typically saved for a long time, and likely entered the superstar state sometime in the past but

have since transitioned out of it. The wealth dynamics of this group are governed by the dynamics

of the top-1% financial wealth share, which increases sharply when rates fall. The second group

are households who currently are in the superstar income state. They are younger on average

and have much higher ratios of human to total wealth. Since the superstar labor income state has

a lower duration than the regular income state, due to a substantial exit probability of 2.5%, the

value-weighted duration for the top-1% wealthiest share of households by human wealth is below

the value-weighted duration for bottom-99% (generally, non-superstar) households. A decrease

in rates thus leads to a decrease in top-1% human wealth share. Table 3 shows that this second

group dominates the total response, causing the top-1% total wealth share to decline as rates fall.

5.3 Repricing: Robustness

Having established our main results on repricing, we now test their robustness to alternative as-

sumptions on the duration of different asset classes and the evolution of income inequality.
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Table 4: Transition Experiment, Alternative Specifications

Specification Top-10% FW Top-1% FW Gini FW

Data (WID) +8.3pp +11.3pp +0.054
Baseline +7.9pp +6.4pp +0.061

Panel A. Robustness to Private Business Wealth

1. Corporate PBW from IPO data +8.0pp +6.6pp +0.061
2. Corporate PBW from Pitchbook +8.0pp +6.7pp +0.062
3. Corporate PBW from SCF +7.9pp +6.4pp +0.060
4. All PBW from SCF +12.3pp +10.8pp +0.093
5. All PBW from equities +10.1pp +8.9pp +0.078

Panel B. Robustness to Housing Wealth

6. Housing from JST +6.8pp +5.4pp +0.050
7. Excluding primary home +8.7pp +7.5pp +0.069

Panel C. Time-Varying Income Risk

8. Matching TV income inequality +12.5pp +12.7pp +0.095

Panel D. Sources of Time Variation in Duration

9. Assets have average duration +6.5pp +5.2pp +0.050
10. Households have average portfolios +7.6pp +5.7pp +0.059
11. Average duration and portfolios +6.6pp +4.5pp +0.051

Private Business Wealth Duration. As noted above, the most challenging component of house-

hold wealth to measure is private business wealth. In Appendices D.4 - D.7, we discuss several

alternative measures for the durations of Corporate and Non-Corporate PBW. Panel A of Table 4

displays the implied changes in financial wealth inequality under the same gradual transition ex-

periment using one of these alternative measures. In rows 1 and 2, we use IPO and Pitchbook data

in place of CRSP data on small stocks to measure the high-growth stage of the two-stage GGM. In

row 3, we use SCF data to measure the duration of Corporate PBW, while in row 4 we use SCF data

to also measure the duration of Non-Corporate PBW. Row 5 uses the duration of the overall eq-

uity market as an alternative proxy for the durations of both Corporate and Non-Corporate PBW.

The first three alternatives result in similar increases in FW inequality, while the last two result in

larger increases. Hence, we believe our baseline specification represents, if anything, conservative

estimates for the impact of falling rates on wealth inequality.

Housing Duration. Panel B of Table 4 shows that our results are robust to the duration measure-

ment of housing. First, row 6 repeats our measurement exercise obtaining prices and rents from

the JST data, which results in similar but slightly lower increases in financial wealth inequality.
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Next, we recompute our results excluding housing from the household portfolio altogether.

Our baseline treatment of the primary home and the associated mortgage debt parallels that of

other household assets. An alternative view is that households do not use their primary home as

a transactable asset, but instead simply remain in it permanently, consuming the housing services.

In this case, a change in the discount rate would increase the value of the house and the value of

the lifetime consumption of housing services by the same amount, with no effect on consumption.

While this view is a extreme, requiring that households never sell their property or extract equity

from their home, we test robustness to it by excluding the primary home from the household’s

financial wealth portfolio, setting the duration of housing assets and mortgages to zero.24 We

find that our results strengthen relative to the baseline, with a rise in the top-10% financial wealth

share of 8.7pp. The reason for this larger rise is that housing wealth is a relatively long duration

asset held broadly across the top three quintiles of the wealth distribution, compared to equities

and corporate private business wealth which are more concentrated toward the top. As a result,

removing housing results in a larger gap between the average durations at the top and bottom of

the wealth distribution, increasing the effect of repricing on financial wealth inequality.

Time-Varying Top Income Inequality While our main experiments apply a decline in interest

rates holding income risk fixed, income inequality also rose over this period. Figure 7 Panel (a)

plots the top-10% share from the WID data, showing an increase from 34% in 1983 to 46% in 2019.

This increase could also contribute to rising wealth inequality.25

In this section, we extend our main experiment to match observed changes in top-income

inequality alongside the decline in interest rates. Specifically, we re-estimate our regular income

process (18) each year on rolling samples to generate distinct income risk parameters for each year

of our transition experiment, as detailed in Appendix E.2. Given those time-varying income risk

parameters, we then calibrate the superstar income state ηsup to exactly match the level of top-10%

income inequality observed in the WID data in each year.

Figure 7 Panel (b) displays the resulting paths for financial wealth inequality in the gradual

transition exercise, normalized to zero in 1983.26 Combining declining interest rates and rising

top income inequality generates an increase in the top-10% wealth share of 12.5pp, as shown in

Panel C of Table 4. Our model-implied top-10% share fits the actual share well until 2000, before

overstating the rise in inequality over the last 20 years of the sample. Notably, this version of the

24Sodini, Van Nieuwerburgh, Vestman, and von Lilienfeld-Toal (2023) provides evidence that households can and do
borrow against rising collateral values to increase consumption opportunities.

25Hubmer, Krusell, and Smith (2020) show that this is not necessarily the case, using a model in which rising earnings
risk actually lowers wealth inequality as it strengthens precautionary savings motives meaningfully for all but the
richest households.

26Since we are no longer calibrating the superstar income state to match the 1983 top-10% wealth share in model
and data, the initial levels of inequality differ in this exercise versus the benchmark model. For easier comparison, we
normalize the plot by subtracting the level in 1983, so that each series is equal to zero in that year.
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Figure 7: Top-10% Share, Gradual Transition + Time Varying Income Inequality Exercise

(a) Top-10% Income Share (WID)
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Note: The left panel shows the top-10% income share form the World Inequality database. The right panel plots the
top-10% financial wealth share in the data (black line) and in the model that feeds in both gradual interest rate changes
and gradual changes in the income process (red line).

model fully explains for the rise in the top-1% share of financial wealth, whereas the benchmark

model accounted for less than 60% of it.

Contribution from Time-Varying Asset Durations vs. Portfolio Shares. Our benchmark results

allow the duration of each asset and liability class, as well as household portfolio shares across

asset classes, to vary over time. Panel D of Table 4 now isolates the importance of each source

of time variation. Row 9 keeps the durations of all assets and liabilities constant over time, at

their full-sample values, but maintains time variation in portfolio shares. This exercise generates a

somewhat smaller increase in the top-10% income share of 6.5pp. This implies that asset durations

in our baseline experiment were higher on average in periods when interest rates fell by more,

increasing the overall impact. The opposite exercise, which holds households’ portfolios constant

over time but allows asset durations to fluctuate, also dampens the rise in inequality, implying

that households held portfolios tilted toward higher duration assets when rates fell. However,

the difference is much smaller, implying that time variation in portfolios is less important for our

results. Last, row 11 holds both duration and portfolios constant, finding results close to those of

row 9. These results show that the dynamics of asset durations contribute positively to the rise in

inequality, while time variation in portfolio shares had much less impact.
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6 Results: The Compensated Wealth Distribution

Having answered our first question on the quantitative role of interest rates in driving financial

wealth inequality, we now turn to our second question: what are the implications of this change

for consumption and total wealth inequality?

To measure the effects of interest rate changes on consumption opportunities, we compare the

evolution of the financial wealth distribution in our baseline economy compared to a counterfac-

tual compensated wealth distribution in which, following each shock, households receive exactly

enough wealth to be able afford their previous consumption plans. We compute this as

θ̃comp = E0

{
T−1

∑
t=0

R̃−t(ct − yt) + R̃−TθT

}
(22)

where {ct} and θT (bequest) make up the pre-shock consumption plan, and R̃ is the post-shock in-

terest rate. From Proposition 3, we know that if a household ends up with this amount of wealth,

it will exactly keep its pre-shock consumption plan in the zero-mortality limit, meaning that un-

der the compensated wealth distribution household consumption is approximately unaffected by

interest rate shocks. Thus, we can use deviations between the repriced and compensated wealth

distribution to measure the real consumption effects of a change in rates, as distinct from paper

gains and losses. Because this measurement depends only on the budget constraint, and not on

the household utility function, we view it as robust compared to welfare calculations that could

depend heavily on household preferences.

6.1 The Compensated Distribution: One-Shot Experiment

We begin our analysis of the compensated distribution in our one-shot experiment. Figure 8

presents the distribution of financial wealth following our one-time decline in interest rates, along-

side the original (pre-shock) distribution, showing two major differences between the two.27 First,

the compensated distribution is shifted substantially to the right from the original wealth distri-

bution as the present values of households’ excess consumption plans increase under low rates.

As a result, the aggregate amount of financial wealth in the compensated distribution exceeds the

pre-shock total by 196.7%. As can be seen from the plot, this rightward shift extends up to the very

top, implying that even the wealthiest individuals must be compensated with additional financial

assets to attain their old consumption plans. Indeed, nearly one third (29.0%) of new financial

wealth accrues to top-1% financial wealth holders under the compensated distribution.

Second, although all households including the wealthiest see financial wealth increase un-

der the compensated distribution, the less wealthy gain proportionally more, reducing financial

27To ensure that the full distribution is visible, we display transformed variables log(1 + x) on the x-axis.
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Figure 8: Histogram, Compensated vs. Original Financial Wealth Distribution
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Note: This plot displays the distribution of financial wealth under the stationary distribution and under the com-
pensated distribution drawn from the stationary distribution of the economy. The x-axis displays a transformation
log(1 + x) of the original data. Each distribution is top coded at the top 0.1% of the pre-shock wealth distribution.

wealth inequality. Visually, while the original high interest-rate distribution of financial wealth is

heavily right-skewed, the compensated distribution with low rates is actually left-skewed. Quan-

titatively, the share of financial wealth held by the top-10% decreases from 62.3% in the baseline

economy to 52.3% in the compensated economy.

To see why inequality falls in the compensated distribution, we turn to Figure 9. Panel (a) com-

pares medians by age under the original (horizontal axis) and compensated (vertical axis) financial

wealth distributions by age. The youngest agents (light/yellow) have a low or intermediate level

of wealth in the original distribution, but require the largest increase in financial wealth (vertical

distance above the 45-degree line) in the compensated distribution. Households approaching re-

tirement have more initial financial wealth, and require less compensation following the shock.

Finally, the oldest households (dark/purple) have low wealth and require the least compensation.

This result may be surprising, since the young have the majority of their portfolio “invested”

in human wealth, which has a long duration (bottom right panel of Figure 4), and thus provides a

natural hedge against interest rate changes. However, the young plan to save during middle age

(ct < yt), then dissave during retirement (ct > yt). This gives the young a very long duration of

excess consumption Dc−y, making their original excess consumption plan much more expensive

under low rates. In practical terms, the young will struggle to build retirement wealth and earn

income on that wealth in retirement under low rates, making their pre-shock consumption plans

unattainable without large infusions of financial wealth today. In contrast, older agents have lower

values of Dc−y as retirement spending is brought closer to the present, and require less compen-

sation. These households have already benefited from the higher rate of return in accumulating

their retirement assets, while the oldest are already dissaving, consuming principal rather than
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Figure 9: Scatterplots, Compensated vs. Original Financial Wealth Distribution

(a) Medians by Age
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Note: Panel (a) plots the distribution of original financial wealth against the distribution of compensated financial
wealth by age. Each dot represents the population mean for one year of age, with the lightest (yellow) dots representing
the youngest agents and the darkest (purple) dots representing the oldest agents. Both variables are plotted using the
transform log(1 + x). The dashed line represents equality between the original and compensated distributions. Panel
(b) plots the same distribution by bins of original financial wealth in place of age.

interest, making them less affected by the loss of high-return investment opportunities.

Panel (b) of Figure 9 aggregates over ages to present the total compensation required for var-

ious levels of pre-shock financial wealth. The lowest levels of financial wealth mix young agents

who have not begun saving with old agents who are spending down assets late in life. As a result,

the low wealth group mixes over agents requiring the largest and smallest amounts of compensa-

tion. Quantitatively, the young make up a larger share of this group and dominate the aggregate

result, so that the least wealthy agents in this economy require the most compensation. Higher

wealth levels contain an increasing share of middle-aged individuals, who require non-zero levels

of compensation, but less than those at the bottom of the wealth distribution.

To separate the influence of age and wealth, Panel (a) of Appendix Figure H3 reproduces Panel

(b) controlling for age fixed effects. It shows that wealthier households also require less compen-

sation even after controlling for age.

To summarize, we observe a negative relationship between initial wealth and required com-

pensation, due both to the life-cycle pattern of wealth, and to the links between wealth and re-

quired compensation independent of age. This negative relationship means that wealthier house-

holds need to gain the least under the compensated distribution, leading to a decrease in inequal-

ity in this counterfactual environment.
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Comparison: Compensated vs. Repriced Distributions Having computed the compensated

financial wealth distribution required to keep consumption plans constant, we can compare it to

the repriced financial wealth distributions actually observed under low interest rates. Panel (b) of

Figure 8 contrasts repriced and compensated distributions from our one-shot experiments. Since

lower interest rates increase aggregate financial wealth by 208.4% by slightly more than the 196.7%

increase in aggregate financial wealth required under the compensated distribution, there is more

than enough wealth gain from repricing in aggregate to compensate all households. However,

the compensated and repriced distributions display strikingly different shapes, with many more

agents at low wealth levels in the repriced distribution compared to the compensated distribution.

To zoom in on the winners and losers from lower rates, Figure 10 compares changes in the

repriced vs. compensated distributions by age in Panel (a) and by wealth in Panel (b). Panel (a)

shows that while repricing delivers some gains to the young, it does not satisfy their large need

for compensating transfers, leaving them well below the 45-degree line. In contrast, the middle-

aged and old are over-hedged, receiving more wealth under repricing than needed to afford their

former consumption plan, as shown by their position above the 45-degree line. Thus, the young

will see their consumption possibilities contract, while older households will see them expand.

Panel (b) of Figure 10 displays the net gain from repricing, defined as the change in repriced

wealth net of the change in compensated wealth. The figure reinforces our previous finding,

showing that wealthier households gain on net from repricing, while the least wealthy experience

a large net loss from the interest rate change, as repricing fails to appropriately compensate these

households. Panel (b) of Appendix Figure H3 shows that the same pattern holds to a lesser degree

across the wealth distribution after controlling for age fixed effects.

6.2 The Compensated Distribution: Transition Experiment

Our main quantitative experiment feeds in a gradual sequence of interest rate changes. The red

line in Panel (b) of Figure 6 shows how the top-10% wealth share would have evolved under the

compensated wealth distribution — the path of inequality that would have been required to keep

consumption plans constant. The last column of Table 3 summarizes these changes. The compen-

sated wealth distribution sees a substantial reduction in financial wealth inequality. The top-10%

financial wealth share falls by -1.5pp between 1983 and 2019 and the Gini falls by -0.020 , while

the top-1% share rises modestly by +0.6pp. The effect is largely captured by the instantaneous

compensation following each interest rate change (blue line in Panel (b) of Figure 6), somewhat

offset by the effect coming from consumption-savings choices (green line).

In sum, the starkly diverging paths for financial wealth inequality in the repriced and compen-

sated distributions imply that changing interest rates do not merely result in paper gains but result

in important changes in consumption possibilities. The young and poor see substantial deterio-
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Figure 10: Scatterplots, Repriced Financial Wealth Distribution

(a) Compensated vs. Repriced: Age Medians
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(b) Scatter: Repriced Gain
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Note: This plot displays the distribution of financial wealth under the repriced distribution, compared to the com-
pensated distribution. Panel (a) displays the change in financial wealth relative to the original distribution for the
compensated (x-axis) and repriced (y-axis) distributions. Both axes display a transformation log(1 + x) of the original
data. Each dot represents one year of age, with the lightest (yellow) dots representing the youngest agents and the
darkest (purple) dots representing the oldest agents. Panel (b) displays original financial wealth on the x-axis and the
net financial gain (repriced minus compensated wealth) on the y-axis. The x-axis displays the transform log(1 + x),
while the y-axis displays the difference in transformed values. Each dot represents 5% of households from the original
wealth distribution. All distributions are drawn from the stationary distribution of the economy.

ration in their consumption because the duration of their financial wealth is below the duration

of their excess consumption. The opposite is true for the old and the rich, whose consumption

opportunities expand from declining rates.

Last, we can evaluate changes under the compensated distribution in total wealth inequality,

which summarizes household lifetime consumption. Table 3 shows that total wealth inequality

increases by less (or decreases by more) under the compensated distribution compared to the

repriced distribution. Thus, our conclusions regarding the real effects of falling rates on inequal-

ity carry over from financial wealth to total wealth. Quantitatively, however, the gaps between

repriced and compensated inequality measures are substantially smaller for total than for finan-

cial wealth. This reflects the influence of human wealth, which represents the majority of total

wealth, and undergoes identical changes in the compensated and repriced distributions.

7 Cohort-Level Analysis

For our final set of results, we use the model to shed light on how different cohorts have gained

and lost over our sample period. Recall that a decline in rates generally harms households when

they are younger (Dθ < Dc−y) and benefits them when they are older (Dθ > Dc−y). Thus, to
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Figure 11: Cohort Total Wealth Outcomes, Transition Experiment
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Note: The graph plots total wealth, the present discounted value of consumption, along the observed interest rate
path for the median member of a birth cohort, indicated by the various colored lines, in percent deviation of what that
wealth path would have been in the steady state with high (1983) interest rates. Each cohort is labeled with the first
year of the relevant birth decade, for example “1900” represents households born between 1900 and 1909.

determine the total impact of falling rates on a given household, it matters not only how much

rates fell during its lifetime, but also exactly when during its life cycle this occurred.

To address this, Figure 11 plots total wealth (present value of lifetime consumption) for the

median member of each birth-decade cohort at each age in their lives. We normalize the series as

percent deviations in median total wealth compared to households of the same age in the initial

1983 stationary distribution. These series thus represent the effect of the fall in rates on the lifetime

consumption value of each cohort compared to a world in which rates remained unchanged. Each

line represents a cohort of ten birth years, with the oldest cohort (born 1900–1909) well into retire-

ment at the start of our sample, and the youngest cohort (born 2000–2009) entering the workforce

only in the sample’s final year.

The graph shows that the older cohorts gain while the younger cohorts lose. Households

born before 1920 observe only modest gains since they have mostly run down their wealth by

the time the interest rate declines begin. Households born in the 1920s through 1940s are the

biggest winners, experiencing peak total wealth gains in excess of 5%. The youngest cohorts (Gen

X, Millennials, and Gen Z) strictly lose, experiencing peak total wealth losses approaching 8%

compared to households of the same age in the stationary economy.
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8 Conclusion

A persistent decline in real interest rates, like the one experienced in much of the world between

the 1980s and the 2010s, leads to a rise in financial wealth inequality when there is a positive co-

variance between financial wealth levels and the duration of financial wealth across households.

Using detailed portfolio data, we show that this condition is met in the U.S. data, and that the du-

ration heterogeneity is large enough to account for the entire rise in the top-10% share of financial

wealth. With the help of a standard consumption-savings model, we show that the reduction in

interest rates not only leads to “paper valuation gains” but affects consumption possibilities. In

particular, young and less wealthy households are forced to save at lower rates for their retirement

by purchasing more expensive assets in the future. They see their consumption possibilities con-

tract when rates fall. Older and wealthier households have more than enough duration in their

portfolio to allow them to afford the old consumption plan under the new, lower interest rates,

thanks to large capital gains. We show how these effects played out in the data by studying how

different cohorts’ consumption possibilities were affected by the observed path of interest rates.

Recently, long-term real rates have begun to rise after a 40-year decline. Between March 2022

and August 2023, the 10-year real bond yield increased 2.65% points. Our paper predicts that

this sharp rise in real rates will lower financial wealth inequality and benefit the consumption

opportunities of the young and the poor in the years to come.
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Online Appendix

A Affine Asset Pricing Model

This appendix develops a reduced-form asset pricing model. The asset pricing model is used

for two main purposes. First, to compute long-term real bonds yields, the cost of a 30-year real

annuity, and expected returns on stocks and housing wealth. Second, to compute the McCauley

duration of the aggregate stock market, small stocks, and housing wealth in a manner that is

consistent with the history of bond and stock prices.

The asset pricing model in the class of exponentially-affine SDF models. A virtue of the

reduced-form model is that it can accommodate a substantial number of aggregate risk factors.

We argue that it is important to go beyond the aggregate stock and bond markets to capture the

risk embedded in households’ financial asset portfolios as well as the aggregate risk in consump-

tion and labor income claims. Similar models are estimated in Lustig, Van Nieuwerburgh, and

Verdelhan (2013); Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019); Gupta and Van Nieuwer-

burgh (2021).

A.1 Setup

A.1.1 State Variable Dynamics

Time is denoted in quarters. We assume that the N × 1 vector of state variables follows a Gaussian

first-order VAR:

zt = Ψzt−1 + Σ
1
2 εt, (23)

with shocks εt ∼ i.i.d.N (0, I) whose variance is the identity matrix. The companion matrix Ψ is

a N × N matrix. The vector z is demeaned. The covariance matrix of the innovations to the state

variables is Σ; the model is homoscedastic. We use a Cholesky decomposition of the covariance

matrix, Σ = Σ
1
2 Σ

1
2 ′, which has non-zero elements only on and below the diagonal. The Cholesky

decomposition of the residual covariance matrix allows us to interpret the shock to each state

variable as the shock that is orthogonal to the shocks of all state variables that precede it in the

VAR. We discuss the elements of the state vector and their ordering below. The (demeaned) one-

quarter bond nominal yield is one of the elements of the state vector: y$
t,1 = y$

0,1 + e′ynzt, where

y$
0,1 is the unconditional average 1-quarter nominal bond yield and eyn is a vector that selects

the element of the state vector corresponding to the one-quarter yield. Similarly, the (demeaned)

inflation rate is part of the state vector: πt = π0 + e′πzt is the (log) inflation rate between t − 1 and

t. Lowercase letters denote logs.
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A.1.2 Stochastic Discount Factor

The nominal SDF M$
t+1 = exp(m$

t+1) is conditionally log-normal:

m$
t+1 = −y$

t,1 −
1
2

Λ′
tΛt − Λ′

tεt+1. (24)

Note that y$
t,1 = −Et[m$

t+1]− 0.5Vart[m$
t+1]. The real log SDF mt+1 = m$

t+1 + πt+1 is also condi-

tionally Gaussian. The innovations in the vector εt+1 are associated with a N × 1 market price of

risk vector Λt of the affine form:

Λt = Λ0 + Λ1zt. (25)

The N × 1 vector Λ0 collects the average prices of risk while the N × N matrix Λ1 governs the time

variation in risk premia. Asset pricing amounts to estimating the market prices of risk (Λ0, Λ1).

We specify the moment conditions used to identify the market prices of risk below.

A.1.3 State Vector Elements

The state vector contains the following N = 22 variables, in order of appearance: (1) real GDP

growth, (2) GDP price inflation, (3) the nominal short rate (3-month nominal Treasury bill rate),

(4) the spread between the yield on a five-year Treasury note and a three-month Treasury bill, (5)

the log price-dividend ratio on the CRSP value-weighted stock market, (6) the log real dividend

growth rate on the CRSP stock market. Elements 7, 9, 11, and 13 are the log price-dividend ratios

on the first size quintile of stocks (small), the first book-to-market quintile of stocks (growth), the

fifth book-to-market quintile of stocks (value), and a listed infrastructure index (infra). Elements

8, 10, 12, and 14 are the corresponding log real dividend growth rates. Element 15 is the log price-

dividend ratio on housing wealth, element 16 is log real dividend growth on housing wealth.

Finally, the state vector contains the log change in the consumption/GDP ratio ∆cx in 17th, the

log change in the log labor income/GDP ratio ∆lx in 18th, the log level of the consumption/GDP

ratio cx in 19th, and the log level of the labor income/GDP ratio lx in 20th position.

zt =
[
πt, xt, y$

t,1, y$
t,20 − y$

t,1, pdm
t , ∆dm

t , pdsmall
t , ∆dsmall

t , (26)

pdgrowth
t , ∆dgrowth

t , pdvalue
t , ∆dvalue

t , pdin f ra
t , ∆din f ra

t

pdhw
t , ∆dhw

t , ∆cxt+1, ∆lxt+1, cxt+1, lxt+1

]′
.

This state vector is observed at quarterly frequency from 1947.Q1 until 2019.Q4 (292 observa-

tions). This is the longest available time series for which all variables are available. Inflation is

the log change in the GDP price deflator. For the yields, we use the average of daily Constant
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Maturity Treasury yields within the quarter. All dividend series are deseasonalized by summing

dividends across the current month and past 11 months. Small stocks are the bottom 20% of the

market capitalization distribution, growth stocks the bottom 20% of the book-to-market distribu-

tion, and value stocks the top 20% of the book-to-market distribution. The infrastructure stock

index is measured as the value-weighted average of the eight relevant Fama-French industries

(Aero, Ships, Mines, Coal, Oil, Util, Telcm, Trans). We subtract inflation from all nominal divi-

dend growth rates to obtain real dividend growth rates.

Dividend growth on housing wealth is measured as housing services consumption growth

from the Bureau of Economic analysis Table 2.3.5. The price-dividend ratio is the ratio of owner-

occupied housing wealth from the Financial Accounts of the United States Table B.101.h divided

by housing services consumption. The resulting price-dividend ratio on housing wealth aver-

ages 16.1 (for annualized dividends) between 1947 and 2019. We subtract inflation from dividend

growth on housing wealth and we also subtract 0.6% per quarter to reflect the fact that the size of

the housing stock is growing and we are only interested in the rental price change, not the change

in the quantity of housing. The resulting real rental growth rate is 1.82% per year, which is in line

with (and still on the higher end of the numbers reported in) the literature.

Aggregate consumption is measured as non-durables plus services plus durable services con-

sumption. Durable services consumption is constructed as the depreciation rate (20%) multiplied

by the stock of durables. The stock of durables itself is computed using the perpetual inventory

method. This series is divided by nominal GDP and logs are taken.

Aggregate labor income is measured as wages and salaries plus business income (proprietors’

income with inventory valuation and capital consumption adjustments) plus transfer income (per-

sonal current transfer receipts) minus taxes (Personal current taxes and Contributions for govern-

ment social insurance, domestic). This series is divided by nominal GDP and logs are taken. Real

consumption growth can then be written as the sum of real GDP growth plus the change in the

consumption/GDP ratio:

∆ca
t+1 = xt+1 + ∆cxt+1

and similar for labor income growth.

All state variables are demeaned with the observed full-sample mean. The first 18 equations

of the VAR are estimated by OLS equation by equation. We recursively zero out all elements of

the companion matrix Ψ whose t-statistic is below 2.2. The resulting point estimates for Ψ and Σ
1
2

are reported below.

The dynamics of cx are pinned down by the dynamics of ∆cx:

cxt+1 = cxt + ∆cxt+1 =
(
ecx + ecxgrΨ

)′ zt + ecxgrγ
1
2 εt+1

Therefore the 19st row of Ψ is identical to the 17th row, except that Ψ(19, 19) = Ψ(17, 19) + 1.
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Similarly, the 20th row of Ψ is identical to the 18th row, except that Ψ(20, 20) = Ψ(18, 20) + 1.

The innovations to the 19th and 20th row are not independent innovations but determined by the

innovations that precede it. The level variables cx and lx are only added to the VAR to enforce

cointegration between consumption and GDP and between labor income and GDP. As a result

of this cointegration, the aggregate consumption and labor income claims will have the same

aggregate risk as the GDP claim.

A.2 Estimation

A.2.1 Bond Pricing

In this setting, nominal bond yields of maturity τ are affine in the state variables:

y$
t,τ = − 1

τ
A$

τ −
1
τ

(
B$

τ

)′
zt.

The scalar A$(τ) and the vector B$
τ follow ordinary difference equations (ODE) that depend on

the properties of the state vector and on the market prices of risk. Real bond yield are also ex-

ponentially affine with coefficients that follow their own ODEs. We will price the cross-section of

nominal and real bond yields (price levels), putting more weight on matching the time series of

one- and twenty-quarter nominal bond yields since those yields are part of the state vector zt. We

also fit the dynamics of 20-quarter nominal bond risk premia (price changes).

Figure A1 plots the nominal bond yields on bonds of maturities 1 quarter, 1-, 2-, 3-, 5-, 7-,

10-, 20-, and 30-years. These are all available bond yields in the data. The 20-, and 3-year bond

yields are not available in parts of the sample, but the estimation minimizes the distance between

observed and model-implied yields for every period where data is available. The model matches

the time series of bond yields in the data closely. It matches nearly perfectly the 1-quarter and

5-year bond yield which are part of the state space.

Figure A2 shows that the model also does a good job matching real bond yields. These yields

are available over a much shorter sample in the data, and we only plot the relevant subsample for

the model-implied yields as well.

The top panels of Figure A3 show the model’s implications for the average nominal (left panel)

and real (right panel) yield curves at longer maturities. These long-term yields are well behaved.

The bottom left panel shows that the model matches the dynamics of the nominal bond risk pre-

mium, defined as the expected excess return on five-year nominal bonds. The compensation for

interest rate risk varies substantially over time, both in data and in the model. The bottom right

panel shows a decomposition of the yield on a five-year nominal bond into the five-year real bond

yield, annual expected inflation over the next five years, and the five-year inflation risk premium.

The importance of these components fluctuates over time. This graph shows the secular rise and
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fall of real bond yields, with a peak in the early 1980s.

Figure A1: Dynamics of the Nominal Term Structure of Interest Rates
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Note: The figure plots the observed and model-implied nominal bond yields. Data are from FRED: constant-maturity
Treasury yields, daily averages within the quarter.

A.2.2 Equity Factors and Housing Wealth Pricing

The VAR contains both the log price-dividend ratio and log dividend growth for five equity risk

factors (the aggregate stock market, small stocks, growth stocks, value stocks, and infrastructure

stocks), and residential real estate wealth. Together these two time-series imply a time-series for

log returns through the definition of a log stock return. Hence, the VAR implies linear dynamics

for the expected excess stock return, or equity risk premium, for each of these seven assets. We

estimate market prices of risk to match the VAR-implied risk premium levels and dynamics.

The price of a stock equals the present-discounted value of its future cash-flows. By value-

additivity, the price of the aggregate stock index, Pm
t , is the sum of the prices to each of its future

cash-flows Dm
t . These future cash-flow claims are the so-called market dividend strips or zero-

coupon equity. Dividing by the current dividend Dm
t :

Pm
t

Dm
t

=
∞

∑
τ=1

Pd
t,τ (27)

exp
(

pd + e′pdm zt

)
=

∞

∑
τ=0

exp
(

Am
τ + Bm′

τ zt
)

, (28)
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Figure A2: Dynamics of the Real Term Structure of Interest Rates
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Note: The figure plots the observed and model-implied real bond yields. Data are from FRED: constant-maturity
Treasury inflation-indexed bond yields, daily averages within the quarter.

where Pd
t,τ denotes the price of a τ-period dividend strip divided by the current dividend. The

log price-dividend ratio on each dividend strip, pd
t,τ = log

(
Pd

t,τ
)
, is affine in the state vector and

the coefficients (Am
τ , Bm

τ ) follow an ODE. Since the log price-dividend ratio on the stock market is

an element of the state vector, it is affine in the state vector by assumption. Equation (28) restates

the present-value relationship from equation (27). It articulates a non-linear restriction on the

coefficients {(Am
τ , Bm

τ )}∞
τ=1 at each date (for each state zt), which we impose in the estimation.

Analogous present value restrictions are imposed for each of the other four equity factors, and for

housing wealth.

If dividend growth were unpredictable and its innovations carried a zero risk price, then divi-

dend strips would be priced like real zero-coupon bonds. The strips’ dividend-price ratios would

equal yields on real bonds with the coupon adjusted for deterministic dividend growth. All vari-

ation in the price-dividend ratio would reflect variation in the real yield curve. In reality, the dy-

namics of real bond yields only account for a small fraction of the variation in the price-dividend

ratio, implying large prices of risk associated with shocks to dividend growth that are orthogonal

to shocks to bond yields. Hence, matching price-dividend ratios (price levels) and expected re-

turns (price changes) allow us to pin down the market prices of risk associated with orthogonal

dividend growth shocks (shocks to the state variables in rows 6, 8, 10, 12, 14, 16, and 18 of the
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Figure A3: Long-term Yields and Bond Risk Premia
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Note: The top panels plot the average bond yield on nominal (left panel) and real (right panel) bonds for maturities
ranging from 1 quarter to 400 quarters. The bottom left panel plots the nominal bond risk premium in model and data.
The bottom right panel decomposes the model’s five-year nominal bond yield into the five-year real bond yield, the
five-year inflation risk premium and the five-year real risk premium.

VAR).

Figures A4 and A5 show the equity risk premium, the expected excess return, in the left panels

and the price-dividend ratio in the right panels. The various rows cover the five equity indices

and the housing wealth series we price. The dynamics of the risk premia in the data are dictated

by the VAR. The model chooses the market prices of risk to fit these risk premium dynamics as

closely as possible alongside with the price-dividend ratio levels. The price-dividend ratios in the

model are formed from the price-dividend ratios on the strips of maturities ranging from 1 to 3600

quarters, as explained above. The figure shows an excellent fit for price-dividend levels and a

good fit for risk premium dynamics. Some of the VAR-implied risk premia have outliers which

the model does not fully capture. This is in part because the good deal bounds restrict the SDF

from becoming too volatile and extreme. We note large level differences in valuation ratios across

the various stock factors, as well as big differences in the dynamics of both risk premia and price

levels, which the model is able to capture well.
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Figure A4: Equity Risk Premia and Price-Dividend Ratios (1/2)
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Note: The figure plots the observed and model-implied equity risk premium on the overall stock market, small stocks,
and growth stocks in the left panels, as well as the corresponding price-dividend ratio in the right panels. The model is
the blue line, the data are the red line.

A.2.3 Pricing Claims to Aggregate Consumption and Labor Income

Shocks to the growth rate in consumption/GDP (labor income/GDP) ratio are priced only to the

extent that they are correlated with other priced sources of risk. The innovation to the change

in the consumption/GDP (labor income/GDP) ratio that is orthogonal to all prior shocks is not

priced. Since consumption/GDP growth and labor income/GDP growth appear last in the VAR

and the model includes many sources of priced aggregate risk, those innovations are as small as

possible.

Figure A6 plots the annual price-dividend ratios on the claims to GDP, aggregate consumption,

and aggregate labor income. It contrasts these valuation ratios to those for the aggregate stock

market, and housing wealth. The valuation ratios of GDP, aggregate consumption, and aggregate

labor income claims are all highly correlated. They are high at the start of the sample, low in

the early 1980s, and high at the end of the sample. Since total wealth is a claim to aggregate

consumption, this suggests that expected returns on total wealth were highest in the early 1980s

and have been falling ever since.
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Figure A5: Equity Risk Premia and Price-Dividend Ratios (2/2)
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Note: The figure plots the observed and model-implied equity risk premium on value stocks, infrastructure stocks, and
housing wealth in the left panels, as well as the corresponding price-dividend ratio in the right panels. The model is
the blue line, the data are the red line.

A.2.4 Cash-flow Duration

The (McCauley) duration is the weighted average time for an investor to receive cash flows. For

the aggregate stock market, this measure is computed as follows:

DCF,m
t =

∞

∑
τ=1

wt,ττ, wt,h =
Pd

t,τ
Pm

t
Dm

t

=
exp (Am

τ + Bm′
τ zt)

exp
(

pd + e′pdm zt

)
where Pd

t,τ is the price-dividend ratio of a τ-period dividend strip. Since durations are usually

expressed in years while time runs in quarters in our model, we divide by 4. Duration is defined

analogously for the other four equity indices, housing wealth, and for the GDP, consumption, and

labor income claims. Note that for a nominal or real zero-coupon bond of maturity τ, DCF
t = τ.

Figure A7 The figure plots the model-implied time series of cash-flow durations on the overall

stock market, small stocks, growth stocks, value stocks, infrastructure stocks, housing wealth, the

GDP claim, the aggregate consumption claim, and the aggregate labor income claim. Durations

tend to be positively correlated with the price-dividend ratios: high at the start of the sample,

54



Figure A6: Valuation Ratios
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Note: The figure plots the annual price-dividend ratios on the aggregate stock market, housing wealth, and on claims
to GDP, aggregate consumption, and aggregate labor income.

lowest in the early 1980s, and high at the end of the sample. The duration of housing wealth is

highest during the housing boom in 2003–2007 when the valuation ratio of housing peaks. It then

falls sharply in the housing bust before rising again in the housing boom that starts in 2013.

A.2.5 Market Price of Risk Estimates

The market prices of risk are pinned down by the moments discussed in the main text. Here we

report and discuss the point estimates. Note that the prices of risk are associated with the orthog-

onal VAR innovations ε ∼ N (0, I). Therefore, their magnitudes can be interpreted as (quarterly)

Sharpe ratios. The constant in the market price of risk estimate Λ̂0 is:

0.11 0.00 -0.36 0.06 0.00 0.43 0.00 -0.01 0.00 0.12 0.00 0.25 0.00 0.26 0.00 2.76 0.00 0.00 0.00 0.00

The matrix that governs the time variation in the market price of risk is estimated to be Λ̂1 =:
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Figure A7: Cash-Flow Duration
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Note: The figure plots the model-implied time series of cash-flow durations on the overall stock market, small stocks,
growth stocks, value stocks, infrastructure stocks, housing wealth, the GDP claim, the aggregate consumption claim,
and the aggregate labor income claim. The duration is expressed in years.
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B Inequality and Interest Rate Data

B.1 Wealth Inequality

Our primary source of data for the top wealth shares presented in Figure 2 is the World Inequality

Database maintained by WID team. For the US, we also report survey estimates of top wealth

shares from the Survey of Consumer Finances (SCF) and the SCF+, the database developed by

Kuhn, Schularick, and Steins (2020). We use data from the SCF+ from 1950 to 1983. We use SCF

data from 1989 to 2019. Appendix C provides detailed information on SCF and SCF+. Figure

B1 plots the net wealth shares held by the top-10% and top-1% as well as the gini coefficient for

financial wealth. Our definition of net wealth calculated from the SCF and SCF+, used in Figure

B1 and detailed in Appendix C, excludes the variable “Other non-financial assets”.

B.2 Interest Rates

We construct the price of a real 30 year annuity by estimating the historical real yield curve for

each country. Letting yr
t(h) denote the real yield at maturity h at time t the cost of the annuity is

calculated as:

30

∑
h=1

1
(1 + yr

t(h))h .

Due to varying availability of data and for robustness, we use three different approaches to esti-

mate the real yield curve that lead to broadly consistent estimates.

First, for the UK post 1985 we use historical time series of real yields of various maturities

available from the Bank of England. We fit a spline through these points and construct the real

yield curve directly.

Second, for the U.S. and France we use the time series of historical nominal yields and infla-

tion provided by Global Financial Data, augmented with data from the Macrohistory database

constructed by Jordà, Schularick, and Taylor (2017), to estimate real yields at different maturities

and then fit a spline through the estimated real yields to construct the real yield curve. We con-

struct real yields for each year by estimating an AR(1) process for inflation on a rolling sample of

50 years of past data, and then subtracting forecasted inflation from nominal yields at all available

maturities. Those are 3-month treasury yields and 10-year government bond yields for all periods,

as well as 30-year government bond yields for later years.

Third, for the U.K. and U.S. we also use model estimates of the real yield curve. The U.S.

estimates are from the model in Section A. The U.K. estimates are from a similar model estimated

for the U.K. in Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2021).
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Figure B1: US Wealth Inequality
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(b) Top 1% Share
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(c) Gini Coefficients
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Note: Data are based on WID, SCF as well as the SCF+ database developed by Kuhn, Schularick, and Steins (2020).
Figure B1a plots the shares of net wealth held by households in the top 10% net wealth percentile. Figure B1b plots the
shares of net wealth held by households in the top 1% net wealth percentile. Figure B1c plots the Gini coefficients for
net wealth.

C Household Wealth and Portfolio Shares

In this section, we detail the variables used in calculating household net wealth and portfolio

shares. Our data encompasses the 1950-2019 time range, based on Survey of Consumer Finance

(SCF) waves from 1989 through 2019 and data from the SCF+ database, compiled by Kuhn, Schu-

larick, and Steins (2020), for the period from 1950 through 1983. In sections C.1 and C.2, we discuss

the specific variables used in our analysis for these two sources.
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C.1 Survey of Consumer Finances (SCF)

The SCF is a statistical survey of the balance sheet, pension, income and other demographic char-

acteristics of households in the United States. We use data from the Summary Extract Data—that

is, the extract data set of summary variables used in the Federal Reserve Bulletin28—as well as

granular information from the SCF original surveys. We construct the following variables for our

analysis.

Total Financial Assets. SCF variable FIN. This includes: All types of transaction accounts (liquid

assets), Certificates of deposit, Directly held pooled investment funds (excl. money market

funds), Savings bonds, Directly held stocks, Directly held bonds (excl. bond funds savings

bonds), Cash value of whole life insurance, Other managed assets, Quasi-liquid retirement

accounts, Other misc. financial assets.

Equities (direct and indirect). SCF variables EQUITY. Total value of financial assets held by

household that are invested in stock. That includes: directly-held stock, Stock mutual funds,

RAs/Keoghs invested in stock, Other managed assets with equity interest, Thrift-type retirement

accounts invested in stock.

Real Estate. SCF variables HOUSES + ORESRE + NNRESRE. The real estate variable includes:

Primary residence; Residential property excluding primary residence (e.g., vacation homes); Net

equity in non-residential real estate.

Private Business Wealth. SCF variable BUS. Businesses with either an active or passive interest.

Vehicles. SCF variable VEHIC. Value of all vehicles.

Cash & Deposits. SCF variables LIQ + CDS. This includes all types of transaction account

(Money market accounts, Checking accounts, Savings accounts, Call accounts, Prepaid cards)

and certificated of deposits.

Fixed Income. SCF variable FIN minus Cash & Deposits and Equities. Fixed income is calculated

as the residual of total financial assets minus Cash & Deposits and Equity (direct and indirect).

Mortgage Debt. SCF variables MRTHEL + RESDBT. This includes: Debt secured by primary

residence (mortgages, home equity loans, HELOCs); Debt secured by other residential property.

Student Debt. SCF variable EDN INST. Total value of education loans held by household. This

includes education loans that are currently in deferment and loans in scheduled repayment

period.

Vehicles Debt. SCF variable VEH INST. Total value of vehicle loans held by household.

Other Debt. SCF variable DEBT minus Mortgage Debt, Student Debt, and Vehicles Debt. This

includes: Other lines of credit (not secured by resid. real estate); Credit card balances after last

payment; Other installments other than vehicles debt and student debt.
28The SCF Flow Chart provides information on how variables are constructed https://www.federalreserve.gov/

econres/files/networth%20flowchart.pdf. The code on how different variables in the Summary Extract Data are
constructed can be found here: https://www.federalreserve.gov/econres/files/bulletin.macro.txt

59

https://www.federalreserve.gov/econres/files/networth%20flowchart.pdf
https://www.federalreserve.gov/econres/files/networth%20flowchart.pdf
https://www.federalreserve.gov/econres/files/bulletin.macro.txt


C.1.1 Private Business Wealth Corporate and Non-Corporate

The SCF presents a wealth of granular information on individual businesses that collectively con-

stitute Private Business Wealth (PBW). We use this information to split the total value of Private

Business Wealth into the Corporate component and the Non-Corporate component.

Private Business Wealth Corporate. It includes the value of all businesses reported as Subchapter-

S corporations or all other types of corporations (both actively and passively managed). These

categories are reported as Corporate Business in the Financial Accounts of the United States. Fig-

ure C1a plots the shares of Corporate PBW as a percentage of total Private Business Wealth in

1989, the first SCF survey wave we use in our sample. Figure C1b plots the shares in 2019, the last

available SCF survey wave.

Private Business Wealth Non-Corporate. It includes all businesses which are not corporations

(both actively and passively-managed), namely limited partnership, other partnership, LLCs, Co-

operative, sole-proprietorships , and other types. These categories are reported as Non-Corporate

Business in the Financial Accounts of the United States.

We use the following methodology to construct the value of Private Business Wealth Corporate

and Non-Corporate. For each actively-managed business, we follow the methodology used by

the SCF to measure the overall total value of private business wealth. From 1989 to 2010, the SCF

provides information on the three largest active businesses, while from 2010 onward it provides

information on the two largest active businesses. We now provide further details on the data

construction. We label the counter of the SCF variable used for each of the business where the

information is available: #1 for the first business, #2 for the second business, #3 for the third

business. For each active business, we measure its value as: the net worth of the share of the

business (#1 X3229, #2 X3229, #3 X3329), plus the amount the business owes the households (#1

X3124, #2 X3224, #3 X3324), minus the amount the household owes the business (# 1 X3126, #2

X3226, #3 X3326), plus the amount of loans that are collateralized/guaranteed (#1 X3121, #2 X3221,

#3 X3321). After having computed the value of each business, we then use information on the

types of business entities and legal structure (#1 X3119, #2 X3219, #3 X3319) to split business wealth

into a Corporate and a Non-Corporate component.

For passively-held businesses, we directly observe the value of: limited partnership (X3408),

other partnership (X3412), S-Corporations (X3416), other corporations (X3420), sole-proprietorships

(X3424), LLCs (X3452), other types (X3428). We use this information on the value of the business

and the legal structure to split passively-held businesses into the Corporate and Non-Corporate.

C.2 SCF+

We use the SCF+ database developed by Kuhn, Schularick, and Steins (2020) from 1950 through

1983. In this section, we outline the list of variables utilized from the SCF+ database to calculate
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Figure C1: Ratio of Corporate PBW to Private Business Wealth by Net Wealth percentile groups

(a) 1989

P0-P50 P50-P90 P90-P99 P99-P100
Net-Wealth Percentiles

0

10

20

30

40

50

Sh
ar

e 
of

 C
or

po
ra

te
 P

B
W

 (%
)

(b) 2019
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Note: The Figure plots the ratio of Corporate PBW to total Private Business Wealth for different net wealth percentile
groups in 1989 and 2019. Initially, we determine the division between Corporate PBW and Non-Corporate PBW for each
individual household. Subsequently, we categorize households into four groups based on their net wealth ranges (P0-
P50, P50-P90, P90-P99, P99-P100). Finally, we calculate the total dollar amount of Corporate PBW and Private Business
Wealth for all households within each net wealth percentile group and derive the corresponding ratios. Figure C1a
plots the shares in 1989, the first SCF survey wave we use in our sample. Figure C1b plots the shares in 2019, the last
available SCF survey wave.

households’ net wealth and portfolio shares.

Equities. SCF+ variable ffaequ. This includes equity and other managed assets. We also add

indirect holdings of equities through mutual funds and pension funds (see Appendix C.2.1).

Real Estate. This includes: SCF+ variable house, asset value of house; SCF+ variable oest, other

real estate (net position); SCF+ variable hoestdebt, other real estate debt (note: we add back the

debt to the other real estate net position).

Private Business Wealth. SCF+ variable ffabus, business wealth.

Vehicles. SCF+ variable vehi.

Cash and Deposits. SCF+ variable liqcer, liquid assets and certificates of deposit.

Fixed Income. SCF+ variable ffafin, financial assets minus Cash and Deposits and Equities.

Mortgage Debt. This includes: SCF+ variable hdebt, housing debt on owner-occupied real estate;

SCF+ variable oestdebt, other real estate debt.

Vehicle Debt. Information on vehicle debt is not available from SCF+. We infer vehicle debt

using the procedure described in Section C.2.1.

Student Debt. Information on student debt is not available from SCF+. We infer student debt

using the procedure described in Section C.2.1.

Total Other Debt. pdebt, personal debt.
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C.2.1 Adjustments to SCF+ data

Indirect Equity holdings The SCF+ database does not provide information on indirect holdings

of equities. We follow the methodology of Leombroni, Piazzesi, Schneider, and Rogers (2020) to

compute indirect holdings exploiting aggregate data from the US Financial Accounts of the United

States. Households hold indirect exposure to equities through mutual funds shares and pension

accounts.

We assume that the indirect exposure to equities through mutual fund shares reflects the allo-

cation to equities within the aggregate mutual fund sector. To calculate this equity exposure, we

use data from the Financial Accounts of the united States. We compute the ratio of mutual funds’

holdings of Corporate Equities (FAUS LM653064100) divided by the total amount of mutual fund

assets (FAUS LM654090000). This ratio allows us to allocate a portion of households’ holdings

of mutual fund shares to equities. For instance, Corporate Equities accounted for 70% of mutual

funds’ assets in 1983 and hence we attribute 70% of households’ mutual fund holdings to equities.

We perform a similar procedure to determine the indirect exposures to equities through house-

holds’ pension accounts. Initially, we calculate the portion of assets allocated to equities by the DC

pension funds sector using data from the Financial Accounts of the United States. A significant

part of DC pension funds’ assets is allocated to mutual fund shares (FAUS LM573064255). Hence,

for the pension funds sector, we consider both this indirect exposure to equities (using the afore-

mentioned procedure for the mutual fund sector) and the direct exposure of DC pension funds to

Corporate Equities (FAUS LM573064133).

Subsequently, we compute the percentage of equities holdings relative to the total assets of DC

pension funds (FAUS FL574090055). Utilizing this ratio, we allocate a portion of households’ pen-

sion accounts to equities. For instance, in 1983, equities holdings represented 40% of DC pension

funds’ assets. Accordingly, we allocate 40% of households’ pension accounts to equities.

Private Business Wealth Corporate and Non-Corporate. The SCF+ database provides only

the total households’ holdings of private business wealth, without distinguishing between the

Corporate and Non-Corporate. To estimate this split, we rely on data from the 1989 SCF survey.

We use the calculated ratio of Corporate PBW to total Private Business Wealth for different net

wealth percentile groups in the 1989 SCF survey (see Figure C1a) to allocate Private Business

Wealth into a Corporate and Non-Corporate components in the SCF+ data.

Student Debt and Vehicle Debt. We encounter a lack of data for the variables Student Debt

and Vehicle Debt within the SCF+ database. To overcome this limitation, we apply a methodology

similar to the one used for inferring Private Business Wealth. By leveraging data from the 1989

SCF survey, we calculate the ratio of Student Debt and Vehicle Debt to the Total Other Debt, repre-

sented as the sum of Student Debt, Vehicle Debt, and all other types of debt. This ratio is computed

for different percentile groups (P0-P50, P50-P90, P90-P99, P99-P100) in 1989. As we only have ac-
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cess to a composite variable called Total Other Debt in the SCF+ dataset, which includes Student

Debt, Vehicle Debt, and other forms of debt, we utilize the shares obtained from the 1989 survey

to allocate the components of Student Debt and Vehicle Debt from the overall category of Other

Debt.

C.3 Portfolio Shares by Net Wealth Percentile

To compute the household’s portfolio share in each asset, we divide the dollar holdings in the asset

(or liability) by the household’s net wealth. Households hold significantly different portfolios,

depending on their net wealth. Figure C2 plots wealth-weighted portfolio shares for households

of different net wealth percentiles. We compute the wealth-weighted shares for each survey and

the average across all years from 1983 to 2019. Finally, we re-scale the weights to sum to one.

Figure C2a plots the portfolio shares in Equities, Non-Corporate PBW, and Corporate PBW. Figure

C2b plots the portfolio shares in Real Estate and Vehicles. Figure C2c plots the portfolio shares in

Fixed Income and Cash and Deposits. Figure C2d plots the portfolio shares in Mortgage Debt,

Vehicle Debt, Student Debt and Other Debt. Liabilities are reported as a negative number.

Figure C3 shows the median portfolio shares within each net wealth percentile bin. It then

averages across all waves and re-scales to make portfolio weights sum to one.
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Figure C2: Wealth-Weighted Portfolio Shares by Net Wealth Percentiles

(a) Equities and Private Business Wealth
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(b) Real Estate and Vehicles
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(c) Fixed Income and Cash/Deposits
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(d) Debts and Liabilities
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Note: Figure C2 plots wealth-weighted portfolio shares for households of different net wealth percentiles. We compute
the wealth-weighted shares for each survey and the average across all years from 1983 to 2019. Finally, we re-scale the
weights to sum to one. The sample runs from 1983 to 2019.
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Figure C3: Median Portfolio Shares by Net Wealth Percentiles
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(b) Real Estate and Vehicles

10 20 30 40 50 60 70 80 90 93 96 99 10
0

Net Wealth Percentiles

0

20

40

60

80

100

Sh
ar

e 
(%

)

Real Estate
Vehicles

(c) Fixed Income and Cash/Deposits
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(d) Debts and Liabilities
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Note: Figure C3 shows the median portfolio shares within each net wealth percentile bin. It then averages across all
years and re-scale to make portfolio weights summing to one. The sample runs from 1983 to 2019.

C.4 Portfolio Shares by Age

Figure C4 displays portfolio shares by age, using survey data from 1983 until 2019. Households

are categorized into different age groups: 25-35, 35-45, 45-55, 55-65, 65-75, and 75-85 years old.

Figure C4a plots value-weighted portfolio shares, while Figure C4b plots median portfolio shares.

The shares are computed for each survey wave and demographic group, averaged across years,

and subsequently rescaled to ensure they sum to 100%.
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Figure C4: Portfolio Shares by Cohorts

(a) Wealth-Weighted Portfolio Shares
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(b) Median Portfolio Shares
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Note: Portfolio shares by age group, averaged across years. Households are categorized into different cohort groups:
25-35, 35-45, 45-55, 55-65, 65-75, and 75-85. Figure C4a utilizes value-weighted portfolio shares. Figure C4b plots the
median portfolio share in each asset category. The shares are computed for each survey wave and demographic group,
averaged across years, and subsequently rescaled to ensure they sum to 100%.
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D Duration Measurement

D.1 Duration Formula

For risky assets, we use Gordon’s growth model to estimate the duration. The formula for the

duration is defined in equation (7). The derivation of this formula is as follows. Define k =

(1 + g)/(1 + r) where r denotes the expected return and g the expected cash-flows growth rate.

The present value of cash flows is:

P0 =Div0
(1 + g)
(1 + r)

+ Div0
(1 + g)2

(1 + r)2 + ... = Div0 k + Div0 k2 + ... = Div0

(
∞

∑
t=1

kt

)

= Div0
k

1 − k
= Div0

(1 + g)
r − g

, (29)

while time-weighted present value of cash flows is:

PVT0 = Div0(k + 2k2 + 3k3 + ...) = Div0 k(1 + 2k + 3k2...) = Div0 k

(
∞

∑
j=0

∞

∑
t=j

kt

)

= Div0 k

(
∞

∑
j=0

kj
∞

∑
t=j

kt−j

)
= Div0 k

(
∞

∑
j=0

kj
∞

∑
t=0

kt

)
= Div0

k
1 − k

(
∞

∑
j=0

kj

)

= Div0
k

(1 − k)2 .

The duration is therefore:

DGGM =
PVT0

P0
=

1
1 − k

=
1 + r
r − g

. (30)

Using (29), we also find that:
1

r − g
=

P0

Div0(1 + g)
(31)

which implies
P0

Div0
=

1 + g
r − g

. (32)

Manipulating (32), we obtain

1 +
P0

Div0
=

1 + r
r − g

= DGGM. (33)

We use the observed price-dividend ratio at each point in time t, Pt/Divt to compute a time series

for duration.
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D.1.1 Two-Stage GGM

We use a two-stage Gordon’s growth model for the duration of Corporate Private Business Wealth.

Denote the first stage’s dividend growth rate and required return by g and r, respectively. In the

second stage, the firm’s cash flows grow at a rate of g̃ and the required return is r̃. Let n be the

length of the first stage (in years). Define k = (1 + g)/(1 + r) and k̃ = (1 + g̃)/(1 + k̃). The

duration of the firm’s cash flows in the two-stage GGM is given by the formula:

D2SGGM =

k
(1−k)2

(
1 − (n + 1)kn + nkn+1)+ kn k̃

(1−k̃)2

(
n(1 − k̃) + 1

)
k 1−kn

1−k + kn k̃
1−k̃

. (34)

The derivation of equation (34) is as follows. The present value of the firm’s cash flows is:

P0 =
Div0(1 + g)

(1 + r)
+

Div0(1 + g)2

(1 + r)2 + ... +
Div0(1 + g)(n)

(1 + r)n

+
Div0(1 + g)n

(1 + r)n
(1 + g̃)
(1 + r̃)

+
Div0(1 + g)n

(1 + r)n
(1 + g̃)2

(1 + r̃)2 + ...

= Div0
[
(k + k2 + ... + kn) + kn(k̃ + k̃2 + ...)

]
= Div0

[
k

1 − kn

1 − k
+ kn k̃

1 − k̃

]
. (35)

while the time-weighted present value of cash flow is:

PVT = Div0 k + 2Div0 k2 + 3Div0 k3 + ... + nDiv0 kn+

+ (n + 1)Div0 kn k̃ + (n + 2)Div0 kn k̃2 + ...

We split PVT into the first stage PVT1st and second stage PVT2nd:

PVT1st = Div0 k + 2Div0 k2 + 3Div0 k3 + ... + nDiv0 kn

= Div0 k

(
n−1

∑
j=0

n−1

∑
t=j

kt

)

= Div0 k

(
n−1

∑
j=0

kj
n−1

∑
t=j

kt−j

)

= Div0 k

(
n−1

∑
j=0

kj
n−j−1

∑
t=0

kt

)

= Div0 k

(
n−1

∑
j=0

kj 1 − kn−j

1 − k

)
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=
Div0 k
1 − k

(
1 − kn

1 − k
− nkn

)
=

Div0 k
(1 − k)2

(
1 − (n + 1)kn + nkn+1

)

PVT2nd = (n + 1)Div0 kn k̃ + (n + 2)Div0 kn k̃2 + ...

= nDiv0 kn k̃
(
1 + k̃ + k̃2 + ...

)
+ Div0 kn k̃

(
1 + 2k̃ + 3k̃2...

)
= nDiv0 kn k̃

1 − k̃
+ Div0 kn k̃

(1 − k̃)2

= Div0 kn k̃
(1 − k̃)2

(
n(1 − k̃) + 1

)
.

Finally, the duration is calculated as:

D2SGGM =
PVT0

P0
=

k
(1−k)2

(
1 − (n + 1)kn + nkn+1)+ kn k̃

(1−k̃)2

(
n(1 − k̃) + 1

)
k 1−kn

1−k + kn k̃
1−k̃

.

D.2 Duration of Equities

We use data on the value-weighted market portfolio of publicly listed companies from CRSP for

the duration of the equity market. Using annual dividends (Diveq
t ) and end-of-year prices (Peq

t ) we

determine the duration based on equation (7). Figure D2a plots the time series of these duration

estimates.

For robustness, we consider four alternative ways of measuring equity duration. The first

three alternatives use the same approach, but different data. As a first alternative, we estimate

the duration using Shiller’s S&P500 historical data. We obtain the price-dividend ratio from the

CAPE price-earnings ratio by assuming a dividend-earnings ratio of 0.5, which equals the histor-

ical average. The result is shown in Column (2) of Table D1. As a second alternative, we use, the

equity price and dividend series from the Jordà-Schularick-Taylor Macrohistory Database (JST).

The results are again similar and displayed in Column (3) of Table D1. As a third alternative, we

compute the duration using Financial Accounts of the United States data. For the price, we sum

up Corporate Equities of Non-Financial Corporate Business (LM103164103) and Foreign Direct

Investment in U.S. Non-financial Corporate Business (LM103192105). To measure the dividend

series, we utilize Dividends Paid by Non-Financial Corporate Business (FA106121001). The re-

sults are displayed in Column (4) of Table D1. These numbers are somewhat lower than the other

three series. As a fourth alternative, we can compute the duration based on the affine model from
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Appendix A. That model does not use the GGM but rather has growth rates and valuation ratios

that depend on the state variables in the VAR. The VAR-SDF model generates an average equity

duration of 34.2, and follows a similar pattern as the baseline series over time.

Table D1: Duration of Equities and Housing

Equities Real Estate

Baseline S&P 500 JST FAUS Corporate Baseline JST

(1) (2) (3) (4) (5) (6)

1980-2019 49.78 45.25 48.08 33.64 12.28 21.46

1980-1989 26.59 24.03 26.55 22.37 11.51 19.97
1990-1999 52.20 43.42 50.18 36.47 11.31 19.93
2000-2009 65.90 62.98 61.50 37.23 13.68 23.77
2010-2019 54.43 50.57 54.08 38.51 12.63 22.17

Note: The table reports the duration for equities and real estate. Column (1) to (4) show the duration for equities
calculated using data from (1) CRSP, (2) S&P 500, (3) Jordà-Schularick-Taylor Macrohistory Database (JST) and (4)
FAUS. Column (5) to (6) report the duration for real estate using data from (5) Zillow and (6) Jordà-Schularick-Taylor
Macrohistory Database (JST).

D.3 Duration of Real Estate

Our baseline measure of real estate duration is based on Zillow data. The main advantage of using

Zillow data to compute the price-to-rent ratio is that Zillow compares similar homes when it con-

structs rental rates and home prices, and adjusts transactions data for variation in characteristics

(hedonics). As a measure of house prices Pre
t , we use the Zillow Home Value Index (ZHVI) for all

houses in the U.S. This index measures the typical home value and market changes across regions

and housing types. It reflects the typical value for homes in the 35th to 65th percentile range.

As a measure of dividends (i.e., rents), Divre
t , we use the Zillow Observed Rent Index (ZORI). This

index is a smoothed measure of the typical observed market rate rent across a region. ZORI is a

repeat-rent index that is weighted to the rental housing stock to ensure representativeness across

the entire market, not just those homes currently listed for rent. We use Zillow data starting in

March 2015 since the Zillow ZORI index is only available since then. Prior to March 2015, we iter-

ate the price/rent ratio backward using alternative data sources. We calculate the growth rate in

prices Pre
t /Pre

t−1 from January 1980 to March 2015 using the growth rate in the House Price Index

from the U.S. Federal Housing Finance Agency. We compute the growth rate in dividends (rents),

Divre
t /Divre

t−1 using the growth rate in the Shelter Consumer Price Index for All Urban Consumers

from the U.S. Bureau of Labor Statistics. Using the level of prices and dividends in March 2015,

we use the growth rate from 1980 to 2015 to reconstruct the full time series of Pre
t and Divre

t . We
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then compute the duration of Real Estate assets using equation (30). The results are in Column (5)

of Table D1. Figure D2b plots the time series of these duration estimates.

As an alternative measure, we also consider the prices and rents (dividends) from the Jordà-

Schularick-Taylor Macrohistory Database (JST), with results reported in Table D1, column (6). As

a second alternative, we compute real estate duration from the affine SDF-VAR model, which

does not rely on the GGM assumptions. It delivers an average duration for 1980–2019 of 16.0, in

between the baseline and the JST measure.

D.4 Duration of Private Business Wealth Non-Corporate

In Appendix C.1.1, we elaborated on our approach to splitting Private Business Wealth (PBW) into

two components: Corporate and Non-Corporate PBW.

To estimate the duration of Non-Corporate PBW, we utilize data on Non-Corporate Busi-

ness wealth from the Financial Accounts of the United States. Our measure of Ppbwnc is de-

rived by summing Proprietors’ Equity in Non-corporate Business (LM112090205) with Foreign

Direct Investment in U.S. Non-Financial Non-Corporate Business (LM115114103). For the divi-

dend series Divpbwnc
t , we use Withdrawals from Income of Non-Financial Non-Corporate Business

(FA116122001). This cash flow measure includes both labor and capital remuneration. Since we

want to capture only the capital remuneration component, we split business income equally into

labor and capital remuneration. Consequently, we multiply the series Withdrawals from Income

of Non-Financial Non-Corporate Business by 0.5. Figure D2c illustrates the duration time series

for the Non-Corporate component of Private Business Wealth.

Table D2: Duration of Non-Corporate PBW

Non-Corporate PBW

Baseline 0.86 Labor Share SCF

(1) (2) (3)

1980-2019 16.33 57.36 69.51

1980-1989 22.08 78.48 75.17
1990-1999 15.43 54.04 65.55
2000-2009 14.71 51.40 71.26
2010-2019 13.11 45.51 66.06

Note: In this table we provide the duration estimates for PBW Short using different approaches. Column (1) displays
the baseline estimates for PBW Short. In Column (2), we apply the 0.86 adjustment of labor share, as estimated by
Quadrini and Rıos-Rull (1997). Additionally, Column (3) presents the duration estimated using the SCF, as described
in Appendix D.6.

Quadrini and Rıos-Rull (1997) and Krueger and Perri (2006) adopt a labor income to business
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income ratio of approximately 0.86, implying that only 14% of business income is capital income.

This naturally leads to a lower dividend on Non-Corporate PBW and a higher price-dividend

ratio. Column (2) of Table D2 displays the duration estimates using this alternative labor income-

to-business income ratio of 0.86. As a second robustness check, column (3) of Table D2 shows

the duration calculated using data series from the SCF. Appendix D.6 explains the methodology

based on SCF data in more detail. Both alternative measures result in higher estimates for Non-

Corporate PBW, so that our benchmark measure in column (1) is conservative.

D.5 Duration of Private Business Wealth Corporate

The estimation of the duration for the Corporate component of PBW is conducted using the 2-stage

Gordon Growth model in Appendix D.1.1. Private businesses in this category go through an initial

stage of high growth, followed by a second, mature stage. Working backwards, in the second stage

of the GGM, we assume that the growth rate (g̃) and the required rate of return (r̃) equal those of

the value-weighted public equity market. We assume high-growth private businesses transition

into this second stage after a period of twenty years in the first stage (i.e., n = 20).29

To establish the values of g and r for the first stage, our benchmark approach computes gt

based on dividends from small stocks, defined as the subset of companies within the first market

capitalization decile of publicly-traded companies on NYSE-Amex-NASDAQ. The data are ob-

tained from CRSP. Subsequently, we derive the implied required rate of return (rt) by using the

price-dividend ratio of small stocks. Specifically, we identify the rt value at each point in time as

the value that minimizes the difference between the implied price-dividend ratio from equation

(35) and the observed price-dividend ratio of small stocks. Finally, with the set of parameters

(gt, rt, g̃t, r̃t, n) in hand, we use equation (34) to calculate the duration of Corporate PBW. Figure

D2d shows our baseline duration time series for Corporate PBW. Column (1) of Table D3 shows

the full-sample and decade-by-decade averages.

We also compute a set of six alternative duration measures for Corporate PBW. The first two

alternatives use the same two-stage GGM approach but with alternative empirical price-dividend

targets. The first alternative uses Pitchbook data on price-revenue ratios for private equity port-

folio companies with positive revenues. The Pitchbook data only start in 2003. We average this

ratio in several ways: equally-weighted, revenue-weighted, or valuation-weighted, with either

1-5% trimming or winsorization when calculating these averages. The revenue-weighted average

with 5% winsorization delivers the most conservative valuation ratios. Averaged from 2003-2019,

we get a price/revenue ratio of 8.3. As with the IPO data, we use the same average revenue-

earnings ratio of 7.7 for the first decile of publicly listed companies, and the earnings-dividend

ratio of 2.0 for all public companies to translate the price-revenue ratio into a price-dividend ratio

29Using n = 10 or n = 30 for the length of the first stage does not materially change the final duration estimate.
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( P
Div = P

S × S
E × E

Div ). Column (3) of Table D3 shows the duration computed using Pitchbook data.

This value is much higher than the benchmark measure, making the latter conservative.

The second alternative uses the median price-revenue ratio reported by Ritter for companies

that do an IPO (1980-2021). We use the average revenue-earnings ratio of 7.7 for the first decile of

publicly listed companies, and the earnings-dividend ratio of 2.0 for all public companies to trans-

late the price-revenue ratio into a price-dividend ratio ( P
Div = P

S × S
E × E

Div ). These calculations are

conservative since they use sales-earnings and earnings-dividend ratios from more mature com-

panies, which are lower than for companies that IPO. Column (3) of Table D3 shows the duration

using IPO data, which is higher than our benchmark measure.

The third alternative uses a different method, namely a one-stage GGM applied to small stocks.

It results in a much higher duration estimate. Average durations obtained from the one-stage

Gordon Growth model for small stocks are listed in Column (4) of Table D3.

The fourth alternative calculates valuation ratios and durations using detailed information

from the SCF dataset. Appendix D.6 explains the methodology. Column (5) of Table D3 shows a

measure that is substantially higher than our baseline measure.

Table D3: Duration of Corporate PBW

Corporate PBW

Baseline Pitchbook IPO 1-stage GGM SCF

(1) (2) (3) (4) (5)

1980-2019 55.93 58.92 56.08 95.67 64.13

1980-1989 33.12 41.82 32.42 73.43 64.24
1990-1999 59.00 61.23 58.59 116.19 65.60
2000-2009 72.17 70.38 72.35 107.54 65.33
2010-2019 59.42 62.27 60.94 85.51 61.37

Note: In this table we present the duration for Corporate PBW across various estimation methods. Column (1) dis-
plays the baseline estimates for Corporate PBW. In Column (2), we utilize the two-stage Gordon Growth model with
Pitchbook data to estimate the duration. In Column (3), we use the two-stage Gordon Growth model with IPO data for
duration estimation. Moving to Column (4), we present the duration estimated through a one-stage Gordon Growth
model on CRSP Small stocks data. Additionally, in Column (5), the duration is estimated using the SCF, as elaborated
in Appendix D.6.

A fifth alternative is to compute the Corporate PBW duration based on the affine model from

Appendix A, using small stocks as our proxy for high-growth private businesses. That model

does not use the GGM but rather has growth rates and valuation ratios that depend on the state

variables in the VAR. The VAR-SDF model generates an average Corporate PBW duration of 68.0,

again higher than our baseline estimate.

The final alternative is to compute the Corporate PBW duration based on small stocks, like in
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our benchmark approach, but instead of using the two-stage GGM, we use the observed evolution

along the size distribution and the associated payout ratios, computed from the CRSP-Compustat

micro data. This approach is detailed in Section D.7, and delivers a similar average duration of

Corporate PBW between 52 and 62 depending on whether we use the smallest quintile or decile

of stocks.

In conclusion, while the measurement of Corporate PBW duration is certainly not easy, the

various approaches we have pursued result in similar estimates. Our benchmark estimate is at

the low end of the empirical estimates, and hence conservative.

D.6 Alternative Calculations of Duration for Non-Corporate PBW and Corporate PBW
Using SCF

As noted in Appendix Sections D.4 and D.5, one alternative measure of the duration of Non-

Corporate PBW and Corporate PBW was based on SCF data. This appendix details those calcula-

tions.

D.6.1 Payout

We utilize data from the SCF to calculate the payout of each private business. For passively-held

businesses, the reported net income (series X3410, X3414, X3418, X3422, X3426, X3430, X3454)

serves as the measure of payout. For actively-managed businesses, we calculate the payout for

each business (denoted by b) at a given time t using the following formula:

Payoutactive
b,t = Adjustment ∗ (1 − NIPA Tax Ratet) ∗ (Net Incomeb,t − Labor Incomeb,t). (36)

We calculate the Net Incomeb,t by considering the reported income from the business (X3132,

X3232, X3332) and multiplying it by the shares held by the household (X3128, X3228, X3328).

Since the SCF provides net income before taxes, we apply a tax rate calculated using aggregate in-

formation from NIPA. We use an Adjustment coefficient of 0.5, the ratio of dividends (or payouts)

to earnings.

Labor Income. To account for labor compensation, we subtract the Labor Incomeb,t. This value

is determined by summing the wages of the head and spouse (if they work in the business). We

extract information from the SCF on whether the head is self-employed (X4106) and whether their

second job is in their own business (X4504). The same information is collected for the spouse

(X4706, X5104, respectively). If the head/spouse reports their wage, we use their reported wage;

otherwise, we use an estimated shadow labor income.

To estimate the shadow labor income for actively managed businesses, we follow an approach
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similar tos Catherine, Miller, Paron, and Sarin (2022). First, we determine the shadow labor income

for households. This involves calculating the wage income for both the head and spouse from

their first and second jobs. We use data on the wage (head: X4112, X4509; spouse: X4712, X5108)

and weeks of work (head: X4111, X4508, spouse: X4711, X5108) to compute the annual wage

income for all households in the survey. The wage income is adjusted from weekly wages to

annual wages using the frequency variables (head: X4113, X4508, spouse: X4713, X5108). Next, we

perform regression analysis to estimate the shadow labor income. The wage income is regressed

on a year fixed-effect, a fixed-effect of race, education, and sex, as well as a cubic function of age.

Separate regression models are estimated for the head’s first job, head’s second job, spouse’s first

job, and spouse’s second job. If households have multiple businesses, we imputed a pro-quota

labor income, where the quota is based on the share of the business as percentage of total private

business wealth.

D.6.2 Valuation Ratios and Duration

By employing this methodology, we can determine the payout for each private business. We also

extract information on the market value of each actively-managed business (X3129, X3229, X3329)

and the passively-held businesses (X3408, X3412, X3416, X3420, X3424, X3428, X3452). Combining

information on the market value and the payout, we compute valuation ratios for each individual

business. To ensure accurate calculations, we exclude private businesses with payouts equal to or

less than 0, as this would result in negative or undefined ratios. We then compute dollar-weighted

averages for each year. The weighting mechanism involves multiplying survey-weights with the

corresponding market value of each business. This approach guarantees that businesses with

higher market values carry more influence in the final valuation ratios, appropriately reflecting

their significance in the overall assessment. We separately estimate valuation ratios for Corporate

Businesses and Non-Corporate Businesses. To derive the duration from valuation ratios, we em-

ploy equation (7). To ensure completeness, we assume that the duration for the 1983 survey is

equal to the average of 1989 and 1992, and we perform linear interpolations for the missing years.

The summary statistics for the Non-Corporate Businesses are reported in Table D2 while those for

Corporate Businesses are shown in Table D3.

D.7 Alternative Calculations of Duration of Corporate PBW Using CRSP-Computstat

Our benchmark Corporate PBW duration measurement uses the two-stage GGM assuming that

private businesses behave like small stocks in the first phase of live and transition to become like

the average publicly-listed company in the second stage. This approach may be understating

the duration of Corporate PBW, to the extent that firms in the first decile of publicly-listed firms

already experienced a lot of (cash flow) growth leading up to their inclusion in the publicly-listed
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universe. Including the cash-flow growth leading up to the IPO would result in a higher duration.

The approach may also be overstating duration in that it measures the duration of small pub-

lic firms, holding fixed inclusion in this group for the duration of the first stage, set to 20 years.

In reality, firms in the bottom decile of publicly-listed firms may grow faster and transition more

quickly into higher deciles of the market capitalization distribution. Since larger firms may have

lower cash flow pay-out ratios, assuming slower transitions than observed may lead us to over-

state the duration of Corporate PBW. In this appendix, we address this potential overstatement

issue, by computing the duration of firms that are currently in the bottom decile (or quintile) of the

market cap distribution , but may not remain there in the future.

D.7.1 Measuring Duration with Firm Life-Cycles

The duration of a firm is the weighted average time to its cash flows:

D =
∞

∑
t=1

t
PVt

∑∞
t=1 PVt

Let s indicate the current-year size group of a firm, where size is measured by market capitaliza-

tion. Let there be S groups. We assume that PVt = CFt(1+ R)−t for some constant discount rate R,

calibrated as discussed below. We model the cash flow of the median firm in size group st, which

came from size group st−1 in the previous period, as the product of the payout-asset ratio of the

median firm in that size group and the assets of the median firm in that size group:

CFt(st|st−1) = (CFt/At) (st|st−1) · At(st|st−1) (37)

The state (market capitalization group) transition matrix is denoted by P(st|st−1). Conditional on

starting out in the smallest decile at time zero, the cash flow of a typical firm t periods later is:

Divt|s0 =
S

∑
st=1

P t−1 · (P · (Divt/At) · At) (38)

D.7.2 Implementation

We use CRSP-Compustat data on the universe of publicly-listed firms for the standard sample

from 1967–2020. Market capitalization is measured as price per share times shares outstanding,

properly adjusted for stock splits. We also make an adjustment for mergers & acquisitions. As is

commonly done, we delete stocks whose price is below $1 per share and whose market capitaliza-

tion is less than $10 million at the first time of observation (and only then).

Cash flow CF is either computed as cash dividends or as cash dividends plus net share re-

purchases, with the latter bounded from below at zero. Cash flows and assets are deflated by the

76



consumer price index. To compute assets and the cash flow-to-asset ratio in each size group, we

first compute book assets and CF/asset ratios for each firm, then winsorize at the 1% level, then

compute the median across the firms that are in size group st in the current year and were in size

group st−1 in the prior year. This delivers a time series for the S × S matrices (CFt/At) (st|st−1)

and At(st|st−1). We then average these objects across years.

Our groups are either market capitalization deciles (S = 10) or quintiles (S = 5). When com-

puting the size transition probability matrix P , we collapse set all transition probabilities that are

more than three notches up (down) to zero and add the empirical weight of those transitions to the

state that is exactly three notches up (down). We take the time-series average of the state transition

probability matrices in each year.

Finally, we calibrate the discount rate R, needed in the duration calculation, in order to obtain a

duration of 28 for the value-weighted market portfolio of all stocks. This is the duration of the ag-

gregate stock market we estimate in the auxiliary asset pricing model. This enables comparability

across approaches.

D.7.3 Results

Size Deciles. Using deciles for size groups, the transition probability matrix is P(s′|s) =

75.1% 19.5% 3.6% 1.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

20.3% 49.8% 22.2% 5.8% 2.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3.7% 20.9% 43.9% 22.8% 6.9% 1.8% 0.0% 0.0% 0.0% 0.0%

0.8% 5.3% 20.7% 42.2% 23.8% 5.9% 1.2% 0.0% 0.0% 0.0%

0.0% 1.6% 5.2% 19.8% 43.3% 24.5% 4.9% 0.6% 0.0% 0.0%

0.0% 0.0% 1.7% 4.2% 18.8% 47.2% 24.3% 3.6% 0.2% 0.0%

0.0% 0.0% 0.0% 1.4% 3.5% 17.6% 52.2% 23.7% 1.5% 0.0%

0.0% 0.0% 0.0% 0.0% 1.4% 2.5% 15.4% 61.0% 19.5% 0.2%

0.0% 0.0% 0.0% 0.0% 0.0% 1.2% 1.3% 12.1% 72.9% 12.5%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.8% 0.9% 8.6% 88.6%


Table D4 shows, for each of the size groups, the dividend/asset ratio, the payout/asset ratio

(which includes net share repurchases in the numerator), log assets, and the duration using ei-

ther dividends or payouts. For the smallest decile of listed firms, which is our proxy for private

businesses, we obtain a duration of 62.5 using cash dividends and 62.3 using the broader pay-

out measure. We conclude that this number is quite similar to the 61.25 number we use in our

benchmark results.

77



Table D4: Duration by Size Decile

Deciles D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
Log asset 4.09 4.82 5.18 5.53 6.04 6.43 6.94 7.48 8.32 9.58
CF / asset (div, %) 0.10 0.21 0.30 0.37 0.51 0.56 0.77 1.03 1.36 1.93
CF / asset (payout, %) 0.13 0.34 0.42 0.49 0.68 0.81 1.06 1.36 1.70 2.35
Duration (div) 62.5 59.8 56.7 53.4 49.6 45.4 40.8 35.6 29.7 23.2
Duration (payout) 62.3 59.6 56.5 53.3 49.5 45.3 40.7 35.6 29.7 23.3

Note: The first row reports the log of book assets of the median firm in each decile of market capitalization. The second
and third rows report the ratio of cash flows to book assets for the median firm in each decile of market capitalization,
where cash flows are measured as cash dividends (div) in the first instance and dividends plus the max of net share
repurchases and zero in the second instance. Assets and CF/assets depend on both the current size decile and the prior
year’s size decile, but are integrated across the prior year’s size deciles for presentation purposes. The last two rows
report the durations, using either dividends or dividends plus net share repurchases as the measure of cash flow.

Size Quintiles. As a further robustness check, we also compute durations for quintiles, assum-

ing that private businesses resemble firms in the bottom-20% of the size distribution of listed firms.

Using quintiles for size groups, the transition probability matrix is P(s′|s) =

81.8% 17.0% 1.2% 0.1% 0.0%

15.2% 64.9% 19.1% 0.7% 0.0%

1.0% 15.1% 66.9% 16.8% 0.1%

0.2% 1.0% 12.1% 76.1% 10.7%

0.0% 0.5% 0.7% 7.7% 91.0%


Table D5 shows, for each of the size groups, the dividend/asset ratio, the payout/asset ratio

(which includes net share repurchases in the numerator), log assets, and the duration using ei-

ther dividends or payouts. For the smallest decile of listed firms, which is our proxy for private

businesses, we obtain a duration of 52.0 using cash dividends and 51.9 using the broader payout

measure.

Combining the results for deciles and quintiles suggests a value between 51.9–62.5 for the

duration of Corporate PBW.

D.8 Duration of Vehicles

To determine the average duration of vehicles in the US for each year, we adopt a model that

assumes a constant depreciation rate (δ) for the car’s value. If t = 0 is when the car is new, then

we calculate the future cash flow at time t using the formula:

CFt = (1 − δ)tδ, (39)
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Table D5: Duration by Size Quintile

Quintiles Q1 Q2 Q3 Q4 Q5
Log asset 4.44 5.34 6.19 7.20 8.88
CF / asset (div, %) 0.12 0.32 0.50 0.89 1.63
CF / asset (payout, %) 0.20 0.42 0.70 1.18 1.99
Duration (div) 52.0 47.7 41.8 34.3 25.2
Duration (payout) 51.9 47.6 41.7 34.2 25.3

Note: The first row reports the log of book assets of the median firm in each quintile of market capitalization. The
second and third rows report the ratio of cash flows to book assets for the median firm in each quintile of market
capitalization, where cash flows are measured as cash dividends (div) in the first instance and dividends plus the max
of net share repurchases and zero in the second instance. Assets and CF/assets depend on both the current-year and
the prior year’s size quintiles, but are integrated across the prior-year’s size quintiles for presentation purposes. The
last two rows report the durations, using either dividends or dividends plus net share repurchases as the measure of
cash flow.

where (1 − δ)t represents the value after depreciation. The duration for a car that is j years old is

then computed as follows:

Dv
j =

∑T
t=j(t − j) CFt

(1+r)t−j

∑T
t=j

CFt
(1+r)t−j

, (40)

where r denotes the 1-year real Treasury rate in each year.

We determine the value for j as the average age of vehicles in use in the U.S., based on data

from the Bureau of Transportation Statistics.30 Additionally, we set the maximum vehicle age,

T, equal to double the average age of vehicles: T = 2j. To calculate the depreciation rate of

vehicles, we utilize data from the U.S. Bureau of Economic Analysis (BEA). The depreciation rate

is computed as the current-cost depreciation of autos (BEA Table 2.4) divided by the current-cost

net stock of autos in the previous year (BEA Table 2.1). For the years 1980 to 2019, the average

depreciation rate (δ) is found to be 22%. Figure D2e plots the duration time series for Vehicles.

D.9 Duration of Fixed Income Assets

For fixed-income assets, we utilize the duration of ICE-BofA US Corporate & Government bonds,

which is available starting in 1996. To estimate the duration for the period 1980 through 1995, we

employ the following imputation approach. First, we establish a linear regression model using the

1996-2020 sample of ICE-BofA duration data and the duration from CRSP government bond data

(available since 1946), along with a constant. Second, we apply the parameters obtained from this

regression model to estimate the ICE-BofA duration values for the sample period of 1980-1995.

Figure D2f plots the time-varying duration series.

30The data is available at: https://www.bts.gov/content/average-age-automobiles-and-trucks-operation-united-states#:
~:text=2018%2D19%3A%20IHS%20Markit%20Co,%2Dmarkit%2D%20as%20of%20Sep. Data has been available since 1995,
and we iterate it backward using a constant growth rate estimated from the period 1995 to 2022.

79

https://www.bts.gov/content/average-age-automobiles-and-trucks-operation-united-states#:~:text=2018%2D19%3A%20IHS%20Markit%20Co,%2Dmarkit%2D%20as%20of%20Sep
https://www.bts.gov/content/average-age-automobiles-and-trucks-operation-united-states#:~:text=2018%2D19%3A%20IHS%20Markit%20Co,%2Dmarkit%2D%20as%20of%20Sep


D.10 Mortgage Duration

For mortgage debt analysis, we obtain data from the Bloomberg-Barclays Aggregate MBS Index,

which provides a comprehensive representation of all outstanding U.S. pass-through mortgage-

backed securities. In the United States, the most prevalent mortgage product is the 30-year fixed-

rate mortgage. However, it is essential to note that the average outstanding mortgage has a sig-

nificantly lower duration due to factors such as loan aging, amortization, coupon payments, and

prepayment. These factors contribute to variations in mortgage duration over time and are critical

considerations when studying mortgage debt dynamics. See Figure D2g.

D.11 Vehicle Debt Duration

We compute the vehicle debt duration using the SCF. The SCF provide detailed information on up

to four vehicles loans (the information is limited to three vehicles loans for the survey 1989 and

1992). We use information on all the available vehicles loans. First, we calculate the number of

residual monthly payments. We then subtract the number of payments already made from the

total number of payments to determine the residual number of payments T. Second, we calculate

the monthly payment Ct of each loan. Third, we calculate the monthly interest rate rt charged

on the loan. With this information, we calculate the monthly duration of the vehicle debt j of

household i:

Dvd
i,j =

∑
Ti,j
t=1

t∗Ci,j
(1+ri,j)t

∑
Ti,j
t=1

Ci,j
(1+ri,j)t

 /12.

We calculate the duration of vehicle debt for each household i by taking the weighted average

of the duration of its individual vehicle debts. To determine the weights, we use the outstanding

balance of each debt j. The vehicle debt duration measure Dvd is computed as the median duration

of households’ vehicle debts in each survey year. Our first estimate is available in 1989, based on

the initial SCF survey. For the years from 1980 until 1988, we perform extrapolation using the

trend growth rate observed in the sample from 1989 to 2019. Additionally, we linearly interpolate

for the years between surveys. Finally, for the 1992 survey we use the interpolated value between

1989 and 1995 as the duration estimate is anomalously low compared to all other observations.

Figure D1 shows the distribution of information on each individual vehicle debt in 2019. The

figure provides information on the cross-section of: (i) the length of vehicle debts measured in

number of years at inception or residual, (ii) the duration estimates (Dvd
i,j ), (iii) the annual interest

rates of the loan, and (iv) the monthly payment. Figure D2h shows the time series of Vehicle Debt

duration.
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Figure D1: Vehicle Debt
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Note: The figures plot the distribution of vehicle debts in 2019. Figure D1a plots the distribution of number of years
left and number of years at inception. Figure D1b plots the distribution of duration estimates. Figure D1c plots the
distribution of annualized interest rates on loans. Figure D1d plots the distribution of monthly payments. Source: SCF
2019.
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Figure D2: Duration Estimates
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Note: The figures plot the time varying duration estimates for the set of assets and liabilities.
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D.12 Portfolio Duration

We calculate the portfolio duration of each household by multiplying the duration of each asset

(or liability) by its corresponding portfolio share and summing over all assets (liabilities) in the

portfolio. In each year, we winsorize the top/bottom 2.5% of households ranked by the duration

of their portfolio.

In Section 2.3 we discussed the heterogeneity in portfolio duration by net wealth and age. Fig-

ure D3a shows the heterogeneity in portfolio duration by income percentile. We rank households

by their income and compute the median duration in for each income percentile bucket, year by

year. We then average across all surveys from 1983 to 2019. In Figure D3b we use the same pro-

cedure but instead use wealth-weighted net wealth percentile. Each wealth-weighted percentile

bin is designed such that the share of total wealth held by the households in each bin is the same

across different bins.

Figure D3: Distribution of Durations

(a) Duration by Income
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(b) Duration by Wealth-Weighted Net Wealth
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Note: Figure D3a shows the heterogeneity by income percentile. We rank households by their income and compute
the median duration for each income percentile bucket, year by year. We then average across all surveys from 1983 to
2019. In Figure D3b we use the same procedure but instead use wealth-weighted net wealth percentile. Each wealth-
weighted percentile bin is designed such that the share of total wealth held by the households in each bin is the same
across different bins.

Households’ portfolio duration notably differs by age. However, there is also dispersion

within age group. Figure D4 provides further information on the within age group dispersion

of duration. For each age group, we rank households by the duration of their portfolio. The figure

includes the 5%, 25%, 50%, 75% and 95% percentile, as well as the median (blue line) and mean

(orange triangle). We pool households across all surveys from 1983 to 2019.

We also evaluate more formally the correlation between financial duration and some covariates
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Figure D4: Distribution of Durations
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Note: Figure D4 provides further information on the within age group dispersion of duration. For each age group, we
rank households by the duration of their portfolio. The figure includes the 5%, 25%, 50%, 75% and 95% percentile, as
well as the median (blue line) and mean (orange triangle). We pool households across all surveys from 1983 to 2019.

of interest. Table D6 reports the estimation results. Data are based on all SCF survey from 1983

to 2019. All regression models include year fixed effects. In column (1), we regress household

financial duration on household age. In column (2), we regress financial durations household

position in the Lorenz Curve. To calculate households’ positions, we rank households by their net

wealth, then calculate the cumulative sum of net wealth and divide by the aggregate net wealth.

In column (3), we regress financial durations on both age and Lorenz Curve position. In column

(4), we add a quadratic function of age. In column (5), we add the log of household income. In

column (6), we add the logarithm of households net wealth.

D.12.1 Financial Duration Over Time

Figure D2a-D2h highlighted the degree of time variation in the duration estimates of each compo-

nent of the household portfolio. In this section, we study the time-varying properties of the dura-

tion of the overall household portfolios. Figure D5a displays the duration estimates for all house-

holds included in the sample. The graph shows both wealth-weighted and equally-weighted

averages; they show similar dynamics. The population of households is further broken down into

the bottom-90% in Figure D5c, the top-10% in Figure D5e, and the top-1% in Figure D5g. All series
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Table D6: Determinants of Household-level Financial Duration

(1) (2) (3) (4) (5) (6)
Age -0.20∗∗∗ -0.24∗∗∗ 0.022 -0.10∗∗∗ -0.14∗∗∗

(0.0024) (0.0023) (0.016) (0.015) (0.015)

Lorenz Curve 0.14∗∗∗ 0.20∗∗∗ 0.19∗∗∗ -0.045∗∗∗ -0.10∗∗∗

(0.0021) (0.0019) (0.0020) (0.0031) (0.0029)

Age Squared -0.0023∗∗∗ -0.00028∗∗ -0.00020
(0.00014) (0.00013) (0.00013)

Log-Income 5.72∗∗∗ 4.89∗∗∗

(0.050) (0.055)

Log-Net-Wealth 0.82∗∗∗

(0.019)

Constant 20.7∗∗∗ 9.31∗∗∗ 20.3∗∗∗ 14.0∗∗∗ -44.3∗∗∗ -42.2∗∗∗

(0.13) (0.060) (0.13) (0.43) (0.66) (0.66)

Year effects Yes Yes Yes Yes Yes Yes
Observations 256361 256361 256361 256361 256361 256361
R2 0.109 0.090 0.137 0.138 0.197 0.204

Note: The table reports the estimation results of regressing households’ portfolio duration on a set of covariates. Data
are based on all SCF survey from 1983 to 2019. All regression models include year fixed effects. In column (1), we regress
household financial duration on household age. In column (2), we regress financial durations household position in
the Lorenz Curve. To calculate households’ positions, we rank households by their net wealth, then calculate the
cumulative sum of net wealth and divide by the aggregate net wealth. In column (3), we regress financial durations on
both age and Lorenz Curve position. In column (4), we add a quadratic function of age. In column (5), we add the log
of household income. In column (6), we add the logarithm of households net wealth. Standard Errors in parentheses (∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01).

peak around the year 2000 when the duration of equity and PBW peak, and the portfolio shares

of these wealth categories are large, especially for the wealthiest households.

To better understand the impact of portfolio weights, we conduct a separate analysis that fixes

the duration of assets and liabilities at the sample average (measured over the period from 1980 to

2019). This approach isolates the role of time-varying portfolio shares. The results are presented

in the right panels: Figures D5b, D5d, D5f, and D5h are for all households, bottom-90%, top-10%,

and top-1%, respectively. They show much more muted dynamics, suggesting that most of the

time variation in household portfolio duration arises from time variation in the duration of the

underlying asset durations.
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Figure D5: Financial Duration Over Time
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(b) All Households with Fixed Duration
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(c) Bottom 90
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(d) Bottom 90 with Fixed Duration
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(e) Top 10
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(f) Top 10 with Fixed Duration
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(g) Top 1
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(h) Top 1 with Fixed Duration
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Note: Figure D5 shows the time varying duration of households’ portfolios. We use information from each SCF survey
from 1983 till 2019 to measure the equally-weighted and wealth-weighted duration over time. Figure D5a plots the
duration for all households in our sample. Figure D5c, Figure D5e and Figure D5g plot the duration for the Bottom
90%, the top 10% and the top 1%. In Figure D5b, D5d, D5f and D5h we estimate households’ portfolios duration when
the duration of assets and liabilities is fixed to their sample averages.
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E Income Process

E.1 Data Source: PSID

The Panel Study of Income Dynamics (PSID) is a household panel survey that began in 1968.

The PSID was originally designed to study the dynamics of income and poverty. Thus, the origi-

nal 1968 PSID sample was drawn from two independent samples: a sample of 1,872 low income

households from the Survey of Economic Opportunity (the “SEO sample”) and a nationally rep-

resentative sample of 2,930 households designed by the Survey Research Center at the University

of Michigan (the “SRC sample”). In this paper, we use the “SRC sample” for the time period from

1970 until 2017.

E.1.1 PSID Income variables

We now describe the construction of the relevant income variables used in the paper. We construct

the following variables: labinc2f is labor income excluding transfers but including the labor part of

business and farm income for both head and eventual spouse; transf which are total households

transfer (including Social Security Income and other transfers); labinc3f, which is our measure of

total household income for both head and eventual spouse, is the sum of labinc2f and transf.

We provide further details on how we build these three variables. As the variables included

in the PSID are subject to change, the variable construction vary with different sample period. For

this reason, below we provide details on the variables used in different time periods. Moreover,

the ticker for each variable changed in each survey. We therefore define the ticker used in a specific

year as (YYYY:Ticker).31

labinc2f In the 1970 - 1993 sample, this variable is defined as the sum of Total labor income of

head, including wages and salaries, labor part of business income and farm income (1993:V23323),

and Spouse’s total labor income, including labor part of business income and farm income (1993:V23324).

In the 1993 - 2017 sample, this variable is defined as the sum of Reference Person’s total la-

bor (including wages and other labor) excluding Farm and Unincorporated Business Income,

(2017:ER71293), Labor Part of Business Income from Unincorporated Businesses (2017:ER71274),

Reference Person’s and Spouse’s/Partner’s Income from Farming (2017:ER71272), Wife’s Labor

Income, Excluding Farm and Unincorporated Business Income (2017:ER71321), Wife’s Labor Part

of Business Income from Unincorporated Businesses (2017:ER71302). Note that farm’s income

includes both labor and asset portions of income.

31The PSID website provides information on how to harmonize tickers across different surveys.
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transf In the 1970-1993 sample, this variable is defined as Total Transfer Income of Head and

Wife/”Wife” (1993:V22366) and Total Transfer Income of Others (1993:V22397). In the 1994-2003

sample, this variable is defined as Head’s and Wife’s Total Transfer Income, Except Social Security

(2017:ER71391), Other Total Transfer Income, Except Social Security (2017:ER71419), Total Fam-

ily Income from Social Security (1994:ER4152). In the 2004-2017 sample, this variable is defined

as: Head’s and Wife’s Total Transfer Income, Except Social Security (2017:ER71391), Other Total

Transfer Income, Except Social Security (2017:ER71419), Reference Person’s Income from Social

Security (2017:ER71420), Spouse’s/Partner’s Income from Social Security (2017:ER71422), Others

Income from Social Security (2017:ER71424).

labinc3f We then construct labinc3f by summing total family labor income (labinc2f ) and total

family transfers (transf ).32

E.2 Estimating the Income Process

Age Profile We estimate the age profile of income following Deaton and Paxson (1994). First,

we estimate the average income for each cohort in each year, using PSID data. yc,t is the average

income of cohort c at time t, based on our labinc3f definition of income. Then, we estimate the

following regression model:

log yc,t = β + γa + γc + γt + εc,t, (41)

where the subscript c, t, a refers to cohort, time and age, respectively. We define as c the age

at time t = 0 (i.e. 1970). Due to the linear relationship between age, cohort and time, we cannot

separately identify the different fixed effects. We hence resort to the method used by Deaton and

Paxson (1994): we attribute growth to age and cohort effects, while we use the year effects to

capture cyclical fluctuations or business-cycle effects that average to zero over the long run. We

hence constraint the year fixed effects to be orthogonal to a time trend and to sum to zero. We then

estimate Equation 41 using constrained OLS.

Figure E1 plots the estimates for the age dummies. The dots are based on the estimated dum-

mies. The dashed lines apply a Savitzky–Golay filter to smooth the estimates and characterize our

deterministic age-profile.

Income Risk In the second stage, we estimate income risk. We estimate (17) year by year and

include cubic function of age as well as a set of fixed-effects: education, race, gender, state. We

then extract the residuals zit. Finally we estimate the risk parameters by GMM as detailed below.

32We have verified that aggregating the PSID results in a series that is close to the NIPA series.
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Figure E1: Income Profile
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Note: This figure displays the expected income profile evaluated at the 2016 year-fixed effects. The graph plots the
expected income profile for the average person who is 21 years old in 2016, expressed in thousands of 2016 dollars. The
model is estimated according to Equation (41) on PSID data from 1970 to 2017.

Using Equation (17)-(19), and define j as equal to the age of the households minus the mini-

mum age (21), we find that:

E[zi
j, zi

j+h] = σ2
α + E[εi

j
2
] + σ2

ν if h = 0,

E[zi
j, zi

j+h] = σ2
α + ρhE[ηi

j
2
] if h > 0,

E[ηi
j
2
] = ρ2jσ2

η0
+

j

∑
k=1

ρ2(j−k)σ2
u .

We allow the variance to differ in working age (w) and retirement age (r), where the retirement

age starts at 65. We fixed the variance of initial persistent shocks σ2
η0

= 0, then use a GMM

estimation to estimate θ = (ρ, σν,w, σu,r, σν,r, σu,r, σα). We use a Minimum Distance Estimator, where

the weighting matrix is the identity matrix. We only include sample moments estimated on 100 or

more observations.

Sample Selection. We use PSID data from 1970 to 2017. As discussed in Heathcote, Perri,

and Violante (2010), after survey year 1997, the data frequency goes from annual to biannual. To

make the estimation consistent, in the first part of the sample 1970-1997 we also sample data at

biannual frequency. We only include households whose head is 21 to 80 years old. We only include

households which were in the survey for three or more periods. We exclude households with zero

or negative income. In each year, we trim the top 2.5% of households by their income.

The point estimates are displayed in Table E1. These are the parameters used in the main text.

89



Table E1: Idiosyncratic Risk Parameter Estimates

σ2
α σ2

ν,w σ2
u,w σ2

ν,r σ2
u,r ρ

Estimated Parameters 0.0762 0.1605 0.0413 0.0906 0.0255 0.9152

Note: θ = (ρ, σν,w, σu,r, σν,r, σu,r, σα), are estimated using Equation (17)-(19); σ2
ε0

is fixed equal to 0. Data are based on
PSID and runs from 1970 to 2017.

E.2.1 Time Varying Income Risk

We also estimate the risk parameters using rolling sample of the PSID from 1983 till 2016. We use

sample of 15 years (apart from 1983 and 1984 where we include data from 1970 to 1983 and 1984,

respectively). We fix the autocorrelation ρ of persistent shocks to the full sample value estimated

in Table E1. Figure E2 plots time varying estimates of σ2
u,w, σ2

ν,w, σ2
u,r, σ2

ν,r and σ2
α .
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Figure E2: Time Varying Income Risk
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(b) Persistent Shocks - Working Age
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(c) Transitory Shocks - Retirement
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Note: This figure displays the the risk parameters using rolling sample of the PSID. We use sample of 15 years (apart
from 1983 and 1984 where we include data from 1970 to 1983 and 1984, respectively). We fix the autocorrelation ρ of
persistent shocks to the full sample value estimated in Table E1. Panel E2a plots time varying estimates of σ2

u,w, Panel
E2b plots time varying estimates of σ2

ν,w, Panel E2c plots time varying estimates of σ2
u,r, E2d plots time varying estimates

of σ2
ν,r and E2e plots time varying estimates of σ2

α . The model is estimated according to Equation (17)-(19) on PSID data
from 1970 to 2017. 91



F Proofs

F.1 Proof of Proposition 1

Rewriting (1) yields

log P0 = log

{
∞

∑
t=0

exp(−t × log R)zt

}
.

Taking the derivative, we now obtain

∂ log P0

∂ log R
=

{
∞

∑
t=0

exp(−t × log R)zt

}−1 ∞

∑
t=0

(−t) exp(−t × log R)zt

= P−1
0

∞

∑
t=0

(−t)R−tzt = −∑∞
t=0 R−tzt × t

P0
= −D.

A first order approximation now immediately yields

log P̃0 ≃ log P0 − D × ε

which implies

P̃0 ≃ P0 exp(−D × ε).

Applying the approximation x ≃ log(1 + x) as x → 0 yields the final approximation

P̃0 ≃ P0 × (1 − D × ε).

We now relate these results to a portfolio of assets, indexed by k. Let v(k) be the value of asset k in

the portfolio, and let V = ∑k v(k) be the total value of the portfolio. Then following a small shock

ε we have

Ṽ = ∑
k

ṽ(k) = ∑
k

v(k)(1 − D(k)ε) = V × ∑
k

ω(k)(1 − D(k)ε)

= V ×
[
∑

k
ω(k)−

(
∑

k
ω(k)D(k)

)
ε

]
= V(1 − DVWε)

where DVW = ∑k ω(k)D(k), and where ω(k) = v(k)/V, which implies ∑k ω(k) = 1.
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F.2 Proof of Proposition 2

From Proposition 1, we have

θ̃i = θi(1 − Dθ
i ε)

where θi and Dθ
i are the pre-shock financial wealth for household i and its duration, and θ̃i is

post-shock wealth after revaluation. Rearranging, we obtain

θ̃i

θi
= 1 − Dθ

i ε.

Taking the covariance with respect to θi, we obtain

Cov
(

θ̃i

θi

)
= −Cov

(
Dθ

i , θi

)
ε.

For ε < 0 this is positive if and only if Cov
(

Dθ
i , θi

)
> 0.

For the sufficient condition, note that

Dθ,VW =
∫

θi

Θ
Dθ

i di

where Θ is aggregate wealth. Manipulating this expression, we obtain

Dθ,VW = Θ−1
∫

θiDθ
i di

= Θ−1
{∫

θi di
∫

Dθ
i di +

∫ (
θi −

∫
j
θj dj

)(
Dθ

i −
∫

j
Dθ

j dj
)

di
}

= Θ−1
{

ΘDθ,EW +
∫

(θi − Θ)
(

Dθ
i − Dθ,EW di

)}
= Dθ,EW + Θ−1Cov(θi, Dθ

i ).

It follows immediately that Dθ,VW > Dθ,EW if and only if Cov(Dθ
i , θi) > 0.

Turning to part (b), let ΘA denote the wealth of the top-α share of the wealth distribution, and

let ΘB denote the wealth of the bottom 1 − α share of the wealth distribution. Then the top-α

wealth share is given by

Sα =
ΘA

ΘA + ΘB =
1

1 + ΘB/ΘA =
1

1 + exp(log ΘB − log ΘA)
. (42)
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Taking the derivative with respect to ε, we obtain

∂Sα

∂ε
= − 1

(1 + exp(log ΘB − log ΘA))
2 × exp(log ΘB − log ΘA)×

(
∂ log ΘB

∂ε
− ∂ log ΘA

∂ε

)
. (43)

The first term is equal to −(Sα)2, while is straightforward to verify from (42) that the second term

satisfies

exp(log ΘB − log ΘA) =
1 − Sα

Sα
.

Substituting, we obtain

∂Sα

∂ε
= −Sα(1 − Sα)

(
∂ log ΘB

∂ε
− ∂ log ΘA

∂ε

)
.

Applying a first-order approximation, and substituting the first approximation in (3), yields (5). It

follows immediately that Sα increases for ε < 0 if and only if DA > DB.

F.3 Proof of Proposition 3

We begin by proving (a). First, consider any consumption plan {ct} that exactly satisfies the life-

time budget constraint (14), which is without loss of generality due to local non-satiation. Simi-

larly, let {c̃t} be a consumption plan that exactly satisfies the post-shock lifetime budget constraint

θ0 = E0

{
∞

∑
t=0

R̃−t(c̃t − yt)

}
(44)

Approximating the left hand side of (14) following a change in rates using (3) delivers

log θ̃0 ≃ log θ0 − Dθ × ε

which can be rearranged to yield

log θ0 ≃ log θ̃0 + Dθ × ε. (45)

Similarly, we can approximate the right hand side of (14) to obtain

log E0

{
∞

∑
t=0

R̃−t(ct − yt)

}
≃ log E0

{
∞

∑
t=0

R−t(ct − yt)

}
− Dc−y × ε
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which can be rearranged to yield

log E0

{
∞

∑
t=0

R−t(ct − yt)

}
≃ log E0

{
∞

∑
t=0

R̃−t(ct − yt)

}
+ Dc−y × ε. (46)

Substituting (45) and (46) into (14) and rearranging, we obtain

log θ̃0 = log E0

{
∞

∑
t=0

R̃−t(ct − yt)

}
+ (Dc−y − Dθ)× ε.

Finally, applying (44) to the left hand side delivers

log E0

{
∞

∑
t=0

R̃−t(c̃t − yt)

}
≃ log E0

{
∞

∑
t=0

R̃−t(ct − yt)

}
+ (Dc−y − Dθ)× ε (47)

Assume that ε < 0. Examining (44) shows that the pre-shock consumption plan {ct} is affordable

under the post-shock budget constraint if and only if

E0

{
∞

∑
t=0

R̃−t(ct − yt)

}
≤ E0

{
∞

∑
t=0

R̃−t(c̃t − yt)

}
. (48)

From equation (47), we know this is true if and only if Dθ ≥ Dc−y. If Dθ > Dc−y, then we have

that (48) holds strictly. In this case, the household is able to afford a new consumption plan {c̃t}
that is at least as large as ({ct}, bT) in histories, and is strictly larger after some histories. As a

result, this household’s consumption possibilities expand. A symmetric argument shows that if

Dθ < Dc−y, then the household can no longer afford its pre-shock consumption plan following

the fall in rates, implying that its consumption opportunities contract. Last, if Dθ = Dc−y the

household’s consumption opportunities are unchanged, meaning that a post-shock consumption

plan is affordable under (44) if and only if it was also affordable prior to the shock under (14). We

note that a symmetric proof using (13) in place of (14) would prove part (a) of the proposition even

in the case where mortality risk is nonzero.

Part (b) follows directly from the optimality condition (12), which as mortality risk goes to zero

takes the familiar form

c−γ = βRE
[
(c′)−γ

∣∣∣ z
]

. (49)

Since βR = β̃R̃, any consumption plan that satisfied (12) will still satisfy (49) under R̃ and β̃. Since

the budget constraint (44) is satisfied by assumption, this completes the proof of part (b).

Part (c) follows directly from parts (a) and (b). From part (a) we know that if Dθ = Dc−y

then the household will have exactly enough financial wealth post-shock to afford its pre-shock
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consumption plan, while part (b) implies that it will still find this plan optimal.

Alternatively, assume that Dθ ̸= Dc−y. If Dθ < Dc−y we know from part (a) that the original

consumption plan is no longer affordable, and cannot be an equilibrium selection of the house-

hold. If Dθ > Dc−y then the household’s consumption opportunity set has strictly expanded. In

this case, the household should pick a sequence with c̃t > ct in some states due to local non-

satiation. Thus, if Dθ ̸= Dc−y the pre-shock consumption plan is either infeasible or suboptimal.

Combined, we have shown that a household’s consumption plan is unchanged following the

shock if and only if Dθ = Dc−y.
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G Incomplete Markets Model with Aggregate Risk

This appendix sets up an infinite-horizon model where ex-ante identical households face both

idiosyncratic and aggregate income risk. Interest rates are determined in equilibrium. It first

shows how to map the model with stochastic growth into a stationary model without aggregate

risk in the spirit of Bewley (1986). We define an equilibrium under high interest rates. We show

how to compute the value of human wealth in a matter consistent with the aggregate resource

constraint. The main results are in Section G.5. They characterize how a decline in rates affects

wealth inequality.

G.1 Model Setup

G.1.1 Endowments

Time is discrete, infinite, and indexed by t ∈ [0, 1, 2, ...). The aggregate endowment e follows the

stochastic process:

et(zt) = et−1(zt−1)λt(zt)

where λ(zt) denotes the stochastic growth rate of the aggregate endowment and zt the aggregate

state. The history of aggregate shocks is denoted by zt = {zt, zt−1, · · · }. A share αt(zt) of the

aggregate endowment is financial income (dividends), the remaining 1 − αt(zt) share represents

aggregate labor income.

Households are subject to idiosyncratic income shocks, whose history is denoted by ηh =

{ηh, ηh−1, · · · }. The ηh shocks are i.i.d. across households and persistent over time. The idiosyn-

cratic shock process is assumed to be independent from the aggregate shock process. Labor in-

come y follows the following stochastic process:

yt(zt, ηh) = ŷt(zt, ηh)(1 − αt(zt))et(zt),

The ratio of individual to aggregate labor income, which we refer to as the labor income share, is

given by ŷt(zt, ηh). We use (zt, ηh) to summarize the history of aggregate and idiosyncratic shocks,

and π(zt, ηh) to denote the unconditional probability that state st will be realized. If the aggregate

and idiosyncratic states are independently distributed, then we can decompose state transition

probabilities into an aggregate and idiosyncratic component:

π(zt+1, ηh+1|zt, ηh) = ϕ(zt+1|zt)φ(ηh+1|ηh),

We make this assumption of independence between aggregate and idiosyncratic labor income risk

in what follows.
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G.1.2 Preferences

A household maximizes discounted expected utility:

U(c) =
∞

∑
j=1

βj ∑
(zt+j,η j)

ϕ(zt+j)φ(η j)
c(zt+j, η j)1−γ

1 − γ
,

where the coefficient of relative risk aversion γ > 1, and the subjective time discount factor 0 <

β < 1.

G.1.3 Technology

Households choose a portfolio of state-contingent bonds at(zt, ηh; zt+1) for each state zt+1, which

trade at prices qt(zt, zt+1), and shares in the Lucas tree (stocks) σt(zt, ηh), which trade at price νt(zt)

satisfying the budget constraint:

ct(zt, ηh) + ∑
zt+1

at(ztηh; zt+1)qt(zt, zt+1) + σt(zt, ηh)νt(zt) ≤ Wt(zt, ηh).

Household cash on hand W evolves according to:

Wt+1(zt+1, ηh+1) = at(ztηh; zt+1) + ŷt+1(zt+1, ηh+1)(1 − α(zt+1))et+1(zt+1)

+
(

α(zt+1)et+1(zt+1) + νt+1(zt+1)
)

σt(zt, ηh).

Households are subject to state-uncontingent and state-contingent borrowing constraints:

∑
zt+1

at(ztηh; zt+1)qt(zt, zt+1) + σt(st)νt(zt) ≥ Kt(st)

at(ztηh; zt+1) +
(

α(zt+1)et+1(zt+1) + νt+1(zt+1)
)

σt(st) ≥ Mt(st, zt+1)

where K and M denote generic borrowing limits. Incomplete risk sharing arises from two sources:

the lack of an asset whose payoff depends on the idiosyncratic income shock ηt and the borrowing

constraints.

G.2 Transformation into Stationary Economy

We can transform the stochastically growing economy into a stationary economy with a constant

aggregate endowment following Alvarez and Jermann (2001); Krueger and Lustig (2010). To that

end, define the stationary consumption allocations:

ĉt(zt, ηh) =
ct(zt, ηh)

et(zt, ηh)
, ∀(zt, ηh),
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the stationary transition probabilities and the stationary subjective time discount factor:

ϕ̂(zt+1|zt) =
ϕ(zt+1|zt)λt+1(zt+1)

1−γ

∑zt+1
ϕ(zt+1|zt)λt+1(zt+1)1−γ

,

β̂(zt) = β ∑
zt+1

ϕ(zt+1|zt)λt+1(zt+1)
1−γ.

Agents in the stationary economy with these preferences:

U(ĉ)(zt, ηh) =
ĉ(zt, ηh)1−γ

1 − γ
+ ∑

zt+1

β̂(zt+1, zt)ϕ̂(zt+1|zt) ∑
ηh+1

φ(ηh+1|ηh)U(ĉ)(zt+1, ηh+1) (50)

rank consumption plans identically as in the original economy.

When there is predictability in aggregate consumption growth, shocks to expected growth

manifest themselves as time discount rate shocks in the stationary economy. If aggregate growth

shocks are i.i.d. over time, then the stationary time discount factor is constant and given by:

β̂ = β ∑
zt+1

ϕ(zt+1)λt+1(zt+1)
1−γ. (51)

This i.i.d. assumption on aggregate growth shocks is the assumption we will make, noting that it

can easily be relaxed. In what follows, we also assume that aggregate factor shares are constant:

αt(zt) = α, ∀t. By definition, labor income shares average to one across households:

∑
t0≥1

∑
ηh

φ(ηh|η0)ŷt(η
h) = 1, ∀t.

G.3 Equilibrium in the Stationary Economy

In the stationary economy, agents trade a single risk-free bond and a stock. Both securities have the

same returns in the absence of aggregate risk. The stock yields a dividend α in each period. Given

initial financial wealth θ0, interest rates R̂t and stock prices ν̂t, households choose consumption

{ĉt(θ0, ηh)}, bond positions {ât(θ0, ηh)}, and stock positions {σ̂t(θ0, ηh)} to maximize expected

utility (50) subject to the budget constraint:

ĉt(η
h) +

ât(θ0, ηh)

R̂t
+ σ̂t(θ0, ηh)ν̂t = (1 − α)ŷt(η

h) + ât−1(θ0, ηh−1) + σ̂t−1(θ0, ηh−1)(ν̂t + α),

and subject to borrowing constraints:

ât(θ0, ηh)

R̂t
+ σ̂t(θ0, ηh)ν̂t ≥ K̂t(η

h), ∀ηh
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ât(θ0, ηh) + σ̂t(θ0, ηh)(ν̂t+1 + α) ≥ M̂t(η
h), ∀ηh.

Definition 2. For a given initial distribution of wealth Θ0, a Bewley equilibrium is a list of con-

sumption choices {ĉt(θ0, ηh)}, bond positions {ât(θ0, ηh)}, and stock positions {σ̂t(θ0, ηh)} as well

as stock prices ν̂t, and interest rates R̂t such that each household maximizes its expected utility,

and asset markets and goods markets clear.

∑
t0≥1

∫
∑
ηh

φ(ηh|ηt0)ât(θ0, ηh)dΘ0 = 0,

∑
t0≥1

∫
∑
ηh

φ(ηh|ηt0)σ̂t(θ0, ηh)dΘ0 = 1.

∑
t0≥1

∫
∑
ηh

φ(ηh|ηt0)ĉt(θ0, ηh)dΘ0 = 1.

In the stationary economy, the return on the aggregate stock equals the risk-free rate:

R̂t =
ν̂t+1 + α

ν̂t
. (52)

The equilibrium stock price equals the present discounted value of the dividends:

ν̂t =
∞

∑
τ=0

R̂−1
t→t+τα,

discounted at the cumulative gross risk-free rate, defined as: R̂t→t+T = ΠT
k=0R̂t+k. Note that

R̂t→t = R̂t and define R̂t→t−1 = 1. Since both assets, the stock and the risk-free bond, earn

the same risk-free rate of return in the stationary economy, households are indifferent between

them. This indifference extends to any other assets with different durations since interest rates are

deterministic in the stationary economy.

G.3.1 Connection with the Equilibrium in the Growing Economy

We can map the equilibrium in the stationary economy into an equilibrium in the stochastically

growing economy.

Proposition 4. If {ĉt(θ0, ηh), ât(θ0, ηh), σ̂t(θ0, ηh)} and {ν̂t, R̂t} are a Bewley equilibrium, then

{ct(θ0, zt, ηh), at(θ0, zt, ηh, zt+1), σt(θ0, zt, ηh)} as well as asset prices {νt(zt), qt(zt, zt+1)} are an equi-
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librium of the stochastically growing economy with:

ct(θ0, zt, ηh) = ĉt(θ0, ηh)et(zt)

at(θ0, zt, ηh; zt+1) = ât(θ0, ηh; zt+1)et(zt)

σt(θ0, zt, ηh) = σ̂t(θ0, ηh)

νt(zt) = ν̂tet(zt)

qt(zt, zt+1) =
ϕ̂(zt+1)

λ(zt+1)

1
R̂t

.

The proof is provided in Krueger and Lustig (2010).

The last equation in the proposition above implies the following relationship between the in-

terest rate in the growing economy (Rt) and the stationary economy (R̂t):

Rt =

(
∑
zt+1

qt(zt, zt+1)

)−1

=

(
∑
zt+1

ϕ̂(zt+1)

λ(zt+1)

)−1

R̂t. (53)

or, plugging in for ϕ̂(zt+1|zt):

R̂t =
Et

[
λ
−γ
t+1

]
Et

[
λ

1−γ
t+1

]Rt

G.3.2 Log-normal Growth

Consider a special case where the aggregate endowment growth rate λt is i.i.d. log-normally

distributed:

log(λt) ∼ N (g, σ2
λ)

Then:

Et[λ
−γ
t+1] = Et[exp(−γ log(λt+1))] = exp(−γg + 0.5γ2σ2

λ)

and

Et[λ
1−γ
t+1 ] = Et[exp((1 − γ) log(λt+1))] = exp((1 − γ)g + 0.5(1 − γ)2σ2

λ)

We obtain

R̂ =
exp(−γg + 0.5γ2σ2

λ)

exp((1 − γ)g + 0.5(1 − γ)2σ2
λ)

Rt =
R
G

,

where

G = exp(g + 0.5σ2
λ − γσ2

λ)

which recovers equation (15) in the main text. (Recall that the main text refers to the interest rate

in the growing economy as Rg and to the interest rate in the stationary economy as R.)
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Using lowercase letters to denote logs:

r̂ = r − g − 0.5σ2
λ + γσ2

λ

Changes in Interest Rates Now consider the relationship between the time-series change in the

interest rate in the growing economy and the time-series change in the interest rate in the station-

ary economy. Denote the initial and new steady states by the subscripts 0 and T. Assume that

the growth rate uncertainty does not change between steady states, but only the subjective time

discount factor and/or the expected growth rate of the economy:

r̂T − r̂0 = (rT − r0)− (gT − g0)

The interest rate in the growing economy can be written, from the first-order condition, as:

rt = − log(β) + γg − 0.5γ2σ2
λ.

Under the maintained assumption of no change in growth uncertainty, the change in interest rates

in the growing economy is:

rT − r0 = − log(βT) + log(β0) + γ(gT − g0)

.

The change in rates in the stationary economy is lower by the change in the growth rate in the

actual economy. We can also write this as:

r̂T − r̂0 = −(log(βT)− log(β0)) + (γ − 1)(gT − g0)

The change in the equilibrium interest rate in the stationary economy reflects either a change in

the subjective time discount factor in the growing economy or a change in the expected growth

rate of the economy or a combination of the two. The effect of a change in the expected growth

rate on the interest rate depends on the inter-temporal elasticity of substitution (IES) γ−1. If the

IES is smaller than 1 (γ > 1), then a decrease in the expected growth rate results in a decrease in

the interest rate; the income effect dominates the substitution effect.

Last, we can compute the impact on β̂. Since

β̂ = βEt[λ
1−γ
t+1 ] = β exp

{
(1 − γ)g + 0.5(1 − γ)2σ2

λ

}
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In logs:

log β̂ = log β + (1 − γ)g +
1
2
(1 − γ)2σ2

λ

Under the maintained assumption that σ2
λ does not change between 0 and T, we have that:

log β̂T − log β̂0 = log βT − log β0 + (1 − γ)(gT − g0)

implying that

log(R̂T β̂T)− log(R̂0 β̂0) = 0.

The change in log β̂ is of the same magnitude and opposite sign as the change in r̂.

In the calibrated model, we envision the decline in interest rates in the data is driven by an

increase in β so that:

r̂T − r̂0 = rT − r0 = −(log(βT)− log(β0)) = −(log β̂T − log β̂0) = 4.48%.

G.4 Wealth Accounting

What is the right discount rate to use when measuring household wealth? If we want a wealth

measure that can be aggregated, we have to use the same discount rate R̂ for all claims.

Proposition 5. At time 0, the financial wealth of each household equals the present discounted

value of future consumption minus future labor income.

θ0 =
∞

∑
τ=0

∑
ητ

φ(ητ)

R̂0→τ−1
(ĉτ(η

τ)− (1 − α)ŷτ(η
τ))

The proposition follows directly from iterating forward on the one-period budget constraint.

In this iteration, we take expectations over financial wealth in all future states using the objec-

tive probabilities of the idiosyncratic events φ(ητ), and discount by the cumulative risk-free rate

R̂0→τ−1. Aggregate financial wealth in the economy in period 0 is given by:∫
θ0dΘ0 =

∫
(â−1(θ0) + σ̂−1(θ0)ν̂0)dΘ0 = 0 + 1ν̂0,

where we have used market clearing in the bond and stock markets at time 0.

Aggregating the cost of the excess consumption plan across all households, using the fact that
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labor income shares average to 1, and imposing goods market clearing at time 0, we get:

∫ ∞

∑
τ=0

R̂−1
0→τ−1 ∑

ητ

φ(ητ) (ĉτ(η
τ)− (1 − α)ŷτ(η

τ))dΘ0 =
∞

∑
τ=0

R̂−1
0→τ−1α = ν̂0.

The aggregate cost of households’ excess consumption plan, or households’ aggregate financial

wealth, exactly equals the stock market value ν̂0, the only source of net financial wealth in the

economy. This result relies on market clearing:∫
∑
ητ

φ(ητ) (ĉτ(η
τ)− (1 − α)ŷτ(η

τ))dΘ0 = α,

at each time t, because
∫

∑ητ φ(ητ)ĉτ(ητ)dΘ0 = 1 from market clearing, and the labor income

shares sum to one as well.

The choice of the actual probability measure φ(·) and rate R̂ to compute an individual’s human

capital, the expected present discounted value of her labor income stream, may seem arbitrary. Af-

ter all, claims to labor income are not traded in this model and markets are incomplete. The key

insight is that, using any other pricing kernel to discount individual labor income and consump-

tion streams may result in a value of aggregate financial wealth different from the value of the

Lucas tree. To see this, consider using a distorted measure ψ(ητ)φ(ητ) different from the actual

measure φ(ητ), where the household-specific wedges satisfy E0[ψt] = 1, ∀t. Under this differ-

ent measure, the goods markets do not clear and the labor shares do not sum to one, unless the

household-specific wedges do not covary with consumption and income shares:

Proposition 6. Wealth measures aggregate if and only if the following orthogonality conditions

holds for the househehold-specific wedges and household consumption and income:

Cov0 (ψt, ĉt) = 0, Cov0 (ψt, ŷt) = 0.

For all other wedge processes ψt(ητ), the resource constraint is violated:∫
∑
ητ

ψ(ητ)φ(ητ) (ĉτ(η
τ)− (1 − α)ŷτ(η

τ))dΘ0 ̸= α,

It is common in the literature to use the household’s own IMRS to compute human capital.

The household’s IMRS is a natural choice because it ties the valuation of human wealth directly to

welfare. However, this approach does not lend itself to aggregation. The wedges

ψ(ηt+1) =
u′(ĉ(ηt+1, ηt))

u′(ĉt(η0))
,
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do not satisfy the zero covariance restrictions of the proposition. Imperfect consumption insurance

implies that:

Cov0(ψt, ĉt) ≤ 0, Cov0(ψt, ŷt) ≤ 0.

Proposition 7. If the cross-sectional covariance between the household-specific wedges and con-

sumption is negative (Cov0(ψt, ĉt) ≤ 0), then the aggregate valuation of individual wealth is less

than the market’s valuation of total wealth.

When aggregating, this pricing functional undervalues human wealth and therefore also total

wealth.33 In sum, while pricing claims to consumption and labor income using the household’s

IMRS is sensible from a welfare perspective, this approach does not lend itself to wealth account-

ing and aggregation.

G.5 Interest Rate Decline

We now analyze the main exercise of the paper, which is to let the economy undergo an unex-

pected and permanent decrease in the interest rate (“MIT shock”). We study the implications for

inequality in financial wealth.

Since interest rates are endogenously determined, we generate the decline in the equilibrium

real rate in the stationary model, R̂, through increase in the deflated subjective time discount

factor, β̂. As discussed in Section G.3.2, the latter arises either from an increase in the subjective

time discount factor in the economy with growth, β, a decline in the expected rate of growth of the

aggregate endowment, E[λ] (or equivalently G), or some combination of the two. We focus on the

case of an increase in the subjective time discount factor, but the theoretical results go through if

all or some of the change in interest rates comes from a decline in expected growth. We denote the

equilibrium of the stationary economy under high interest rates with a hat (x̂) and the equilibrium

of the stationary economy under low interest rates with a tilde (x̃).

It is natural to ask whether the equilibrium consumption allocation {ĉt(θ0, ηt)} that prevailed

in the economy with high rates is still an equilibrium after the change in interest rates. Given that

the time discount factor of all agents increased by the same amount, there should be no motive to

trade away from these allocations: β̃R̃ = β̂R̂ = 1. The following proposition shows that the old

consumption allocation is indeed still an equilibrium in the low interest rate economy, provided

that initial financial wealth is scaled up for every household.

Proposition 8. If the allocations and asset market positions {ĉt(θ0, ηt), ât(θ0, ηt), σ̂t(θ0, ηt)} and

asset prices {ν̂t, R̂t} are a Bewley equilibrium in the economy with β̂ and natural borrowing limits

33Since the factor shares are constant, the consumption claim is in the span of traded assets. Financial wealth is the
value of the Lucas tree, which equals α times the value of a claim to total consumption.
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{K̂t(ηt)},

K̂t(η
t) =

∞

∑
τ=t

R̂−1
t→τ−1 ∑

ητ |ηt

φ(ητ|ηt)(1 − α)ŷτ(η
τ),

then the allocations and asset market positions {ĉt(θ̃0, ηt), ât(θ̃0, ηt), σ̂t(θ̃0, ηt)} and asset prices

{ν̃t, R̃t} will be an equilibrium of the economy with β̃ and natural borrowing limits {K̃t(ηt)},

K̃t(η
t) =

∞

∑
τ=t

R̃−1
t→τ−1 ∑

ητ |ηt

φ(ητ|ηt)(1 − α)ŷτ(η
τ),

asset prices are given by

β̃R̃t = β̂R̂t, and ν̃t =
∞

∑
τ=0

R̃−1
t→t+τα,

and every household’s initial wealth is adjusted as follows:

θ̃0 = θ0
∑∞

τ=0 R̃−1
0→τ ∑ητ φ(ητ) (ĉτ(ητ)− (1 − α)ŷτ(ητ)

∑∞
τ=0 R̂−1

0→τ ∑ητ φ(ητ) (ĉτ(ητ)− (1 − α)ŷτ(ητ)
.

The proof is below.

Aggregate financial wealth undergoes an adjustment equal to the ratio of the price of two

perpetuities:
∑∞

τ=0 R̃−1
0→τ

∑∞
τ=0 R̂−1

0→τ

=
ṽ0

v̂0
.

Intuitively, with lower interest rates, all asset prices are higher than in the high-rate economy. The

Lucas tree becomes more valuable. A fraction 1 − α of this tree reflects aggregate human wealth,

the remaining fraction is aggregate financial wealth.

Each individual’s financial wealth adjustment differs, and depends on the expected discounted

value of the same future excess consumption plan discounted at different rates. The higher one’s

expected future excess consumption, the larger the initial financial wealth adjustment needed to

implement the old equilibrium allocation.

Characterizing Interest Rate Sensitivity Using Duration of Excess Consumption To a first-

order approximation, i.e., for a small change in the interest rate, the adjustment in initial financial

wealth needed for agents to keep their initial consumption plan is given by the duration of their

planned consumption in excess of labor income. This is the duration households will need in their

net financial assets in order to be fully hedged against interest rate risk.

Define the duration of a household’s excess consumption plan at time 0, following the realiza-
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tion of the idiosyncratic labor income shock η0, as follows:

Dc−y(θ0, η0) =
∑∞

τ=0 ∑ητ |η0
τR̂−1

0→τ φ(ηt|η0) (ĉτ(ητ|η0)− (1 − α)ŷ(ητ|η0))

∑∞
τ=0 ∑ητ |η0

φ(ηt|η0)R̂−1
0→τ (ĉτ(ητ|η0)− (1 − α)ŷ(ητ|η0))

The duration measures the sensitivity of the cost of its excess consumption plan to a change in the

interest rate. In our endowment economy, aggregate consumption is fixed. We are interested in

the valuation effects of interest rate changes.

The duration of the excess consumption claim equals the value-weighted difference of the

duration of the consumption claim and that of the labor income claim:

Dc−y =
Pc

0

Pc−y
0

Dc −
Py

0

Pc−y
0

Dy.

where Pc−y
0 = θ0 is household financial wealth, Py

0 is human wealth, and Pc
0 is total household

wealth, the sum of financial and human wealth. Households with a high positive duration of

excess consumption face a large increase in the cost of their consumption plan when interest rates

go down, insofar that this increased cost is not offset fully by the increase in their human wealth.

The duration of the aggregate excess consumption claim, the aggregate duration for short,

equals:

Da =
∑∞

τ=0 τR̂−1
0→τ

∑∞
τ=0 R̂−1

0→τ

This is the duration of a claim to aggregate consumption minus aggregate labor income, or equiv-

alently to aggregate financial income. It is the duration of a perpetuity in the stationary economy.

Recall that ν̂0 = ν0 = α ∑∞
τ=0 R̂−1

0→τ denotes aggregate financial wealth.

Proposition 9. The aggregate duration equals the wealth-weighted average duration of house-

holds’ excess consumption claims:

Da =
∫

Dc−y(θ0, η0)
θ0

ν0
dΘ0.

The proof follows directly from the definition of the household specific duration measure and

market clearing.

The next proposition is the main result. It shows that, when households that are richer than

average tend to have excess consumption plans of higher duration, then the (equally-weighted)

average household’s excess consumption plan duration is smaller than the aggregate duration.

Proposition 10. If cov(θ0, Dc−y(θ0)) > 0 then
∫

Dc−y(θ0, η0)dΘ0 ≤ Da and lower interest rates

increase financial wealth inequality when households are fully hedged.
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The proof follows from recognizing the following relationship between (cross-sectional) ex-

pectations and covariances:

Da = E

[
θ0

νa
0

Dc−y(θ0, η0)

]
= E

[
Dc−y(θ0, η0)

]
+ cov

[
θ0

ν0
, Dc−y(θ0, η0)

]
.

The proposition says that under the covariance condition, if all households are perfectly hedged

in their portfolio, then wealth inequality should increase when rates decline.

Ex-Ante Identical Households In this class of Bewley models, if agents are ex-ante identical,

agents with low financial wealth have encountered a bad history of labor income shocks. If labor

income is highly persistent, their labor income is low today and in the near future relative to labor

income in the distant future (because of mean-reversion). This pattern makes the duration of their

labor income stream high. But since the household is smoothing consumption inter-temporally,

Dc < Dy. As a result, low-wealth agents tend to have low duration of their excess consumption

plan. Conversely, rich agents have high labor income and high excess consumption duration.

Consumption smoothing is the force that makes the assumption of a positive covariance between

the level of financial wealth and the duration of excess consumption satisfied in a Bewley model

where the only source of heterogeneity is income shock realizations. It follows immediately from

Proposition 10 that the decline in rates (i) increases the cost of the excess consumption plan for the

aggregate (per capita) value-weighted household by more than the cost for the equally-weighted

average household, and (ii) increases financial wealth inequality. Put differently, in a model where

all households are exactly equally well off after the change in rates by construction, i.e., they are

perfectly hedged, financial wealth inequality should increase when rates go down.

Low-financial wealth households in a Bewley model have high-duration human wealth, which

provides a natural interest rate hedge. High financial-wealth households have low-duration hu-

man wealth and need to increase financial wealth by more when rates decline to be able to afford

the old consumption plan.

Ex-Ante Heterogeneous Households The insights of this normative proposition apply more

broadly to a richer model with ex-ante heterogeneity across households, for example because

agents go through a life cycle and differ by age.

Proposition 11. If cov(θt, Dc−y
t (θt0)) > 0 then the average duration is lower than the aggregate

duration, ∑t0

∫
Dc−y

t (θ0, η0)dΘt0 ≤ Da
t and lower interest rates increase financial wealth inequality

when households are fully hedged.

We check this condition in the calibrated version of the model.

Real-world households may not be fully hedged, unlike the households in the Bewley model.

The actual duration of the household’s financial assets in the data, denoted Dθ , can differ from the
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duration of the excess consumption claim Dc−y in the model where households are fully hedged.

Section 4 of the paper considers a calibrated life-cycle version of the Bewley model with overlap-

ping generations to assess how well households are hedged against interest rate risk.

G.6 Proofs of Propositions in this Appendix

G.6.1 Proof of proposition 5

Proof. The one-period budget constraint:

ĉt(η
t) +

ât(ηt)

R̂t
+ σ̂t(η

t)ν̂t = (1 − α)ŷt(η
t) + ât−1(η

t−1) + σ̂t−1(η
t−1)(ν̂t + α),

can be restated, using equation (52), as:

ĉt(η
t)− (1 − α)ŷt(η

t) +
ât(ηt) + σ̂t(ηt)(ν̂t+1 + α)

R̂t
= ât−1(η

t−1) + σ̂t−1(η
t−1)(ν̂t + α). (54)

Rewriting (54) one period later:

ĉt+1(η
t+1)− (1 − α)ŷt+1(η

t+1) +
ât+1(η

t+1) + σ̂t(ηt+1)(ν̂t+2 + α)

R̂t+1
= ât(η

t) + σ̂t(η
t)(ν̂t+1 + α).

Multiply this equation by φ(ηt+1|ηt) and sum across all states ηt+1 to obtain:

∑
ηt+1

φ(ηt+1|ηt)

(
ĉt+1(η

t+1)− (1 − α)ŷt+1(η
t+1) +

ât+1(η
t+1) + σ̂t(ηt+1)(ν̂t+2 + α)

R̂t+1

)
= ât(η

t) + σ̂t(η
t)(ν̂t+1 + α),

where we used the fact that ∑ηt+1
φ(ηt+1|ηt) = 1 on the right-hand side. Next, substitute this

expression back into (54) to obtain:

ĉt(η
t)− (1 − α)ŷt(η

t) + R̂−1
t ∑

ηt+1

φ(ηt+1|ηt)
(

ĉt+1(η
t+1)− (1 − α)ŷt+1(η

t+1)
)

+R̂−1
t→t+1 ∑

ηt+1

φ(ηt+1|ηt)
(

ât+1(η
t+1) + σ̂t(η

t+1)(ν̂t+2 + α)
)
= ât−1(η

t−1) + σ̂t−1(η
t−1)(ν̂t + α).

Define financial wealth, scaled by the aggregate endowment, as:

θ̂t = ât−1(η
t−1) + σ̂t−1(η

t−1)(ν̂t + α).
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Continuing the forward substitution, we end up with the following expression:

θ̂t =
∞

∑
τ=t

R̂−1
t→τ−1 ∑

ητ |ηt

φ(ητ|ηt) (ĉτ(η
τ)− (1 − α)ŷτ(η

τ)).

where φ(ηt|ηt) = 1. Financial wealth must equal the cost of the household’s excess consumption

plan, where excess refers to the part not paid for with labor income. Noting that e0 = 1 so that

θ̂0 = θ0, writing this expression at time zero:

θ0 =
∞

∑
τ=0

R̂−1
0→τ−1 ∑

ητ

φ(ητ) (ĉτ(η
τ)− (1 − α)ŷτ(η

τ))

recovers the statement of the proposition.

G.6.2 Proof of Proposition 6

Proof. We note that the cross-sectional expectation of the product can be decomposed in the stan-

dard way: ∫
∑
ητ

φ(ητ)ψ(ητ) (ĉτ(η
τ)) dΘ0 = E0[ψτcτ] = Cov0[ψτ, cτ] + E0 [ψτ]E0 [cτ] .

If the orthogonality condition is satisfied, then the following result obtains:∫
∑
ητ

φ(ητ)ψ(ητ) (ĉτ(η
τ)) dΘ0 = E0[ψτcτ] = E0[ψτ]E0[cτ] = E0[cτ] = 1,

because E0[ψt] = 1.

G.6.3 Proof of Proposition 7

Proof. This inequality 0 ≥ Cov(ψt, ĉt) directly implies that the following inequalities obtain:

∫ ∞

∑
τ=0

R̂−1
0→τ−1 ∑

ητ

φ(ητ)ψ(ητ)ĉτ(η
τ)dΘ0 ≤

∫ ∞

∑
τ=0

R̂−1
0→τ−1 ∑

ητ

φ(ητ)ĉτ(η
τ)dΘ0 =

∞

∑
τ=0

R̂−1
0→τ−1,

∫ ∞

∑
τ=0

R̂−1
0→τ−1 ∑

ητ

φ(ητ)ψ(ητ)ŷτ(η
τ)dΘ0 ≤

∫ ∞

∑
τ=0

R̂−1
0→τ−1 ∑

ητ

φ(ητ)ŷτ(η
τ)dΘ0 =

∞

∑
τ=0

R̂−1
0→τ−1.

As a result, this new measure implies an aggregate value of individual wealth that falls short of

total wealth, ∑∞
τ=0 R̂−1

0→τ−1. Note that even though this claim to total consumption is itself not

traded, the Lucas tree is a claim to α of the same cash flow stream. The market value of the Lucas

tree is α ∑∞
τ=0 R̂−1

0→τ−1, and hence the value of total wealth has to be ∑∞
τ=0 R̂−1

0→τ−1.

110



G.6.4 Proof of proposition 8

Proof. An unconstrained household’s Euler equation in the high-growth economy is given by:

1 = β̂R̂t ∑
ηt+1

φ(ηt+1|ηt)
u′(ĉ(ηt+1, ηt))

u′(ĉt(ηt))
.

This Euler equation is satisfied because the allocations and prices constitute a Bewley equilibrium

in the high-growth economy. This household’s Euler equation in the new economy with lower

interest rates is still satisfied at the old consumption allocation. This can be seen by plugging in

the new equilibrium interest rates:

R̃t β̃ = β̂R̂t,

to recover the unconstrained household’s Euler equation in the low-growth economy:

1 = β̃R̃t ∑
ηt+1

ϕ(ηt+1|ηt)
u′(ĉ(ηt, ηt+1)

u′(ĉt(ηt))
.

We allocate the following amount of financial wealth at time 0 to ensure the household can afford

the same consumption plan:

θ̃0(θ0, η0) =
∞

∑
τ=0

R̃−1
0→τ−1 ∑

ητ

φ(ηt) (ĉτ(η
τ)− (1 − α)ŷτ(η

τ)).

Aggregating this initial financial wealth across households:

∫
θ̃0dΘ0 = α

∞

∑
τ=0

R̃−1
0→τ = ν̃0,

where we have used the goods market clearing condition and the definition of labor income

shares. The last equation shows that the new allocation of initial financial wealth uses up all

aggregate financial wealth in the economy. Finally, note that the natural borrowing constraints

are not binding in the high-growth economy. They remain non-binding in the low-growth econ-

omy because consumption is nonnegative. Hence, the allocations are feasible, and they satisfy the

sufficient conditions for optimality.
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H Additional Model Results

Table H1: Change in Inequality, Transition Experiment (Levels)

Data Model

Initial After Initial Repriced Comp.

Top-10% share FW 62.4% 70.8% 62.3% 70.2% 60.8%
Top-1% share FW 23.8% 35.1% 35.3% 41.7% 35.9%
Gini FW 0.772 0.826 0.710 0.770 0.690

Top-10% share HW – – 30.0% 31.1% 31.1%
Top-1% share HW – – 15.5% 13.3% 13.3%
Gini HW – – 0.405 0.470 0.470

Top-10% share TW – – 35.5% 36.0% 33.9%
Top-1% share TW – – 19.6% 17.7% 16.9%
Gini TW – – 0.405 0.476 0.456

Note: Top-10% share, Top-1% share and Gini coefficient of financial wealth are measured in the WID data. For the Initial
period we use the value in 1983. For the After period we use the value in 2019. More details on the data computations
are provided in Appendix B.1. For model results, the columns represent the pre-shock wealth distribution (“Initial”),
the repriced distribution (“Repriced”), and the compensated distribution (“Comp”).
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Figure H1: Lorenz Curves
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Note: This figure plots the Lorenz curve for each variable, obtained from a long simulation of the model.
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Figure H2: Scatterplots by Age: Medians

(a) Compensated vs. Original
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(b) Compensated vs. Repriced
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Note: Panel (a) plots the distribution of original financial wealth against the distribution of compensated financial
wealth by age. Each dot represents the median value for one year of age, with the lightest (yellow) dots representing
the youngest agents and the darkest (purple) dots representing the oldest agents. Both variables are plotted using
the transform log(1 + x). Panel (b) similarly plots medians for one-year bins of the change in financial wealth under
repricing, compared to the change in financial wealth under the compensated distribution, both using the transform
log(1 + x) before differencing. The dashed line represents equality between the x and y axes.

Figure H3: Binscatters by Wealth, Controlling for Age
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(b) Compensated vs. Repriced
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Note: Panel (a) plots the distribution of original financial wealth against the distribution of compensated financial
wealth by age. Each dot represents 5% of the original financial wealth distribution. Both variables are plotted using the
transform log(1 + x). Panel (b) similarly plots medians for 5% bins of the change in financial wealth under repricing,
compared to the change in financial wealth under the compensated distribution, both using the transform log(1 + x)
before differencing. The dashed line represents equality between the x and y axes.
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