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Abstract

Food loss is endemic in agricultural supply chains in developing countries. Reduc-

tions in food loss can be attained through two methods: decreasing the perishability

of crops through investments in storage technologies or decreasing the length of time it

takes farmers to find buyers for their harvest. However, the lack of data and a robust

theoretical framework limit our understanding of how the feedback between storage and

search and matching frictions affects food loss. The goals of this paper are threefold.

First, I conduct a survey and document patterns in crop disposition, storage practices,

and food loss among farmers in Ghana. Second, I develop a model of agricultural

trade that incorporates storage and frictional wholesale markets. Third, I estimate

the model to analyze the counterfactual welfare effects of implementing agricultural

policy at scale. To reduce food loss in Ghana to the level of the United States, storage

technology would need to be improved by 70%.
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1 Introduction

Food loss – the phenomenon of crops perishing before reaching retailers or consumers – is a

global problem but is of particular concern in agricultural supply chains in developing coun-

tries.1 Estimates of crop losses before reaching consumer markets in developing economies

range from 20% to 30%. Of all the loss, half of the crops perish before even leaving the farm

(National Academies of Sciences, 2019). In other words, farmers grow their crops but are

unable to find buyers before the crops go bad. In the case of red peppers in Ghana, which

are key staple in Ghanaian soups and stews, farmers lose on average 10% of their harvest.

The high levels of food loss are a pressing issue for local policymakers. Food loss has

several economic implications: It reduces farmer welfare by decreasing profits and increasing

risk, and it reduces consumer welfare by reducing food access and increasing prices. Fur-

thermore, the fraction of food lost is greater in developing than developed countries. Figure

1 plots the percent of food that perishes before reaching retailers or consumers by country.

Food loss is decreasing in GDP per capita: for every 1% increase in GDP per capita, the

fraction of food loss decreases by 1%.

Why do farmers lose their harvest before selling it? In this paper, I investigate the effects

of the interaction of two properties of agricultural wholesale markets: crops are perishable

and finding a buyer takes time. Consider an end-point scenario where trade is instantaneous:

food loss is no longer a concern because farmers will always sell to traders before their harvest

spoils. Similarly, when crops are durable, food loss is no longer a concern. Regardless of the

time it takes to find a buyer, crops will remain perfectly preserved.

Farmer food loss can therefore be reduced via two methods: decreasing the perishability

of crops or decreasing the time it takes to find a buyer. Farmers can decrease the perishability

of crops by investing in storage technologies. Common methods of storage include storing

crops on the farm, in sacks or bins, or on the floor of one’s house. Crops stored using

these methods are prone to high losses from mold, rot, or pests. Investments in more

sophisticated storage technologies, such as metal silos or cold storage facilities, can mitigate

losses. Losses can also be reduced by improving the process of finding a buyer. One common

method of finding a buyer is bringing crops to the farmgate (the roadside) and flagging down

passing trucks. Another common method involves transporting the crops to local markets

and hoping that enough traders show up to meet local supply. Although cell phones have

improved coordination between farmers and traders, calling a trader is not a guarantee of

a successful sale if they are operating on the opposite side of the country or already have a

1Crops can perish throughout the entire supply chain. Generally, food loss refers to crop that perish before
reaching retail markets, while food waste refers to crops that perish once reaching retailers or consumers.
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Figure 1: Global Food Loss

Notes. Map of the average percent of food loss in 2015 in fruit supply
chains by country. Data is from the United Nations Food and Agricul-
ture Organization. Food loss is imputed from food balance sheets and
includes losses from the farming stage up-to transportation and dis-
tribution, but does not include losses during retail and consumption.
Outliers are dropped.
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full truck. By decreasing the length of time between the harvest and sale of crops, less food

loss occurs.

Despite the availability of better storage and communication technologies, high losses

persist. What are the aggregate welfare losses due to food loss? And how much do we

stand to gain by decreasing the perishability of food or improving the process through which

farmers find buyers?

The challenge of answering these questions is twofold. The first challenge is the lack of

data. Micro-level evidence is necessary to understand the causes and equilibrium mechanisms

that generate food loss. However, most agricultural surveys are ill-equipped to tackle this

question. Traditional agricultural surveys primarily focus on collecting data on inputs, yields,

and on-farm productivity, such as the mechanization of production, and abstract away from

crop disposition beyond asking for sale prices and quantities. The second challenge is the lack

of a theoretical framework through which to evaluate policy. Neoclassical models of trade

assume that goods are perfectly durable and that the exchange of goods is instantaneous.

While, for the most part, these may be innocuous assumptions, neoclassical trade models

are unable to capture the phenomenon of food loss. Understanding food loss thus requires a

departure from models of neoclassical trade.

To overcome the first challenge, I conduct a novel survey of search and matching frictions

in Ghana’s agricultural wholesale markets. I survey 1800 farmers and 500 traders in Ghana’s

fruit and vegetable supply chain on their crop disposition, storage, and purchasing practices.

The survey covers all major agricultural regions of Ghana and all major fruits and vegetables

grown and sold by Ghanaian farmers. Using the survey, I document 6 key features of Ghana’s

agricultural wholesale markets. First, farmers believe that most food loss is caused by events

such as rain or pests that are inherently unpredictable. Second, farmers who struggle to find

buyers experience more food loss. Third, farmers who struggle to find buyers are more likely

to invest in storage technologies. Fourth, farmers who experience more food loss are more

likely to invest in storage technologies that can preserve their crops for longer. Fifth, the

majority of farmers sell their harvest by calling traders directly. Sixth, traders sort through

crops at the point of sale, observe the quality of the harvest, and reject low-quality crops.

Motivated by the facts documented in the survey, I develop a model of agricultural trade

with incomplete asset markets and frictional wholesale markets. In the model, farmers are

born with a fixed amount of crops each season. In each time period, one of four things

occurs: farmers match with a trader and successfully sell their crops, farmers match with

a trader but a trader chooses not to purchase their crops, a farmer’s entire harvest rots,

or none of the previous events occur and the process repeats the following period. Once a

farmer sells their harvest or loses their harvest to rot, the farmer dies and is replaced by an
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identical farmer.

The rate at which farmers match with traders and the rate at which crops depreciate are

endogenous decisions. Risk-averse farmers and risk-neutral traders meet in a directed search

environment. First, traders pay a fixed cost to enter the market. They then post a price at

which they wish to purchase crops and are segmented into sub-markets by their posted price.

Next, farmers observe each posted prices and the measure of traders in each sub-market and

choose which sub-market to search in. Within each sub-market, farmers and traders come

together through a matching technology that is constant returns to scale in the measure of

farmers and traders. Finally, once matched, traders observe the quality of the crops, and

can choose to reject purchasing the harvest if the quality is too low.

Farmers can increase the rate at which they match with traders by choosing to sell their

harvest at a lower price. There is free entry of traders, who earn profits by purchasing crops

from farmers in the wholesale market and re-selling the crops to consumers in the retail

market. When the wholesale price is low, more traders enter the market making it easier for

farmers to find a trader. Fewer traders enter when the wholesale price is high because the

profit margin is smaller, making it harder for farmers to match with a trader. The trade-off

is that farmers can sell at higher prices and earn greater profits, but with a lower chance of

success. Furthermore, when a farmer’s matching rate with traders is low, there is a higher

probability of losing one’s harvest.

Farmers can also slow the rate of depreciation by investing in storage technologies. Stor-

age technologies decrease the perishability of a farmer’s harvest. Not all farmers match with

a trader. And some of the farmers who match with a trader will not be able to sell their

crops because traders will choose not to proceed with the exchange. Farmers who invest in

storage technologies have a higher likelihood of their harvest surviving till the next period.

Investment in storage technology is funded out of current consumption. The trade-off for

farmers is that they can consume more food now but lose crops at a higher rate, or consume

less crops now and lose crops at a lower rate.

In equilibrium, the fraction of food loss depends on the relative rate of depreciation to

the rate of matching. When the fixed cost of entry is higher, fewer traders enter the market

which decreases the rate of matching. Food loss increases, as a result. Similarly, when crops

are more perishable, the rate of depreciation increases, increasing food loss. When farms are

larger, traders earn more profit per trip and enter in greater numbers, increasing the rate of

matching and decreasing food loss. Finally, if farmers are less risk-averse, they wish to sell

at higher prices but with a lower probability of matching, increasing food loss.

I show that the decentralized economy is inefficient. Two features give rise to the inef-

ficiency. First, incomplete asset markets and farmer risk-aversion generate an inefficiency
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in equilibrium. Risk-averse farmers wish to equalize consumption across states, but cannot

transfer consumption through time. They are therefore willing to sell their crops at lower

prices but with higher probability to maximize their chances of a successful sale. In con-

trast, the social planner would have farmers sell at a lower probability but earn more per

sale. Second, traders have limited commitment and can reject purchases with low quality.

When prices are high, traders are more sensitive to quality and reject crops more often.

Farmers must therefore under-price their crops to ensure a successful sale. The equilibrium

is inefficient because even when the total surplus of a purchase is positive, traders reject a

purchase when their private surplus is negative.

A key insight of the theory developed in this work is that welfare and food loss do not

necessarily move one-to-one. To see this most clearly, I compare food loss in the decentral-

ized equilibrium to the social planner problem. In the decentralized equilibrium, food loss

is inefficiently low. This is because the probability of matching is inefficiently high from

farmers trying to smooth consumption across time. The standard tools that a social planner

would introduce to move the economy to the Pareto-frontier – state contingent transfers that

would reproduce insurance markets by taxing farmers who successfully make a sale and sub-

sidizing farmers who lose their crops – would increase welfare and increase food loss. Since

state-contingent transfers would smooth consumption across time, they reduce consumption

risk and decrease the search intensity of the farmer. This in turn decreases the rate at

which farmers match with traders and increases food loss. Importantly, a storage technology

subsidy financed out of taxes on household food consumption acts like a state contingent

transfer. By taxing household agricultural consumption, farmers who successfully sell their

crops earn less profit. This profit gets transferred to farmers who have not yet sold their

crops and seek to smooth their consumption. Welfare increases, but so does food loss.

I estimate the model to match several key moments from my survey data. Using the sim-

ulated method of moments, I target the average food loss in Ghana, the average depreciation

rate, the average rate of a successful match, and the average farmer consumption. The model

replicates each of these moments. I then test the model’s external validity by qualitatively

reproducing patterns in food loss among farmers in Ghana and find that the model can

replicate key dimensions of heterogeneity in the data. I finally quantify the potential welfare

gains from reducing food loss. I find that although contract enforcement increases welfare by

only 2%, the maximum welfare gain in an economy with no search frictions is 300% greater

than in the baseline. However, a government or social planner may not have the tools to

reduce search frictions. Instead, I examine a popular policy tool: improvements in storage

technology. I find that to reduce food loss from Ghana’s average of 10% to the US average of

4%, storage technology would need to be improved by 70% in general equilibrium and 55%
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in partial equilibrium. In partial equilibrium, farmers make consumption and investment

decisions, but no adjustments in the search market. In general equilibrium, farmers reduce

their search intensity when investment in storage is higher, resulting in more food loss. Thus

the improvement in storage needs to be higher in general equilibrium.

This project contributes to several strands of literature. First, it adds to the literature

on food loss and storage. This literature primarily focuses on the partial-equilibrium effects

of storage technologies. Contributions to this literature include Delavallade and Godlonton

(2023) who study grain warrantage in Burkina Faso, Omotilewa et al. (2018) and Aker

et al. (2023) who study the effects of new storage bags on Maize losses in Uganda and Niger

respectively, and Aggarwal et al. (2018) who study a grain savings club intervention in Kenya.

Affognon et al. (2015) and Stathers et al. (2020) provide a meta-analysis of the literature

and document that over 80% of studies focus on the role of tangible technologies and that

studies of storage technologies account for over 40% of all interventions.2 Jensen (2007) is

a notable exception in that it studies the role of information frictions in generating food

loss. This is the first paper, to my knowledge, that studies the aggregate welfare effects of

food loss. In doing so, I focus on a novel food loss-generating channel: coordination frictions

between farmers and traders. By incorporating this channel into a model that allows for

feedback between output market frictions and storage technologies, I can perform a general

equilibrium analysis of popular agricultural interventions.

Second, this project contributes to the literature on agricultural productivity and struc-

tural transformation. Low aggregate agricultural productivity remains a persistent problem

for sub-Saharan Africa (see Caselli, 2005; Restuccia et al., 2008; Gollin et al., 2014; Lagakos

and Waugh, 2013); food loss contributes to the issue by depressing profits throughout the

entire supply chain. This project differs from existing approaches studying the agricultural

productivity gap by endogenizing output market frictions, and advancing a nascent literature

on the structural transformation of the agricultural value chain (e.g., Reardon, 2015; Bar-

rett et al., 2022). Both the misallocation approach (e.g., Adamopoulos and Restuccia, 2014;

Adamopoulos et al., 2022; Gollin and Udry, 2021), which attributes low agricultural pro-

ductivity to input misallocation, or the spatial approach (e.g., Atkin and Donaldson, 2015;

Porteous, 2019; Sotelo, 2020), which attributes low agricultural productivity to domestic

spatial costs, take wedges and trade costs as given. This hampers a nuanced evaluation of

policy. In contrast, coordination frictions depend on agent choices and adjust in response

to agricultural interventions. Closet to this paper are Donovan (2021) and Bergquist et al.

(2022) who study the macroeconomic effects of scaling up agricultural interventions.

2A secondary motive for investing in storage is smoothing price fluctuations across time. See Cardell and
Michelson (2023) and Burke et al. (2019) for recent work on the topic.
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Finally, the project builds on the literature on directed search. Seminal papers in this

literature include Montgomery (1991), Shimer (1996), and Moen (1997) (see Wright et al.

(2021) for an overview). Closest to this paper are Acemoglu and Shimer (1999) and Golosov

et al. (2013), who study a labor market with directed search and risk-averse workers. As

in both papers, incomplete asset markets distort the equilibrium so that it is inefficient.

Farmers prefer to match more often and receive lower prices than in the first-best, because

they wish to smooth consumption over time. Relative to these papers, my innovation is two-

fold. First, I adapt their models to study agricultural goods trade. This is the first model

that studies agricultural markets in a directed search environment3. Second, I introduce a

novel self-insurance mechanism: storage technology. In my model, storage technology plays

a similar role to unemployment insurance in Acemoglu and Shimer (1999); storage lowers the

risk of crop depreciation and thus reduces the inefficiency due to incomplete asset markets.

The paper proceeds as follows: In Section 2, I describe the data. In Section 3, I present

motivating evidence. In Section 4, I lay out the model and discuss the theoretical implica-

tions. In Section 5, I combine the survey and structural model to estimate the model and

discipline model parameters. In Section 6, I quantify the welfare and food loss effects of

introducing agricultural policy at scale.

2 Survey Data

Data on food loss is sparse and its causes are poorly understood. I bridge this gap by

conducting a survey tailored to study how search and matching frictions affect the crop

disposition and marketing practices of farmers and traders in the domestic fruit and vegetable

supply chain in Ghana. The survey covers 1800 farmers and 500 traders and was implemented

nationwide, drawing from 13 districts in four of Ghana’s major agricultural zones.4 To

capture the diversity and variability in farming and trading practices nationwide, districts

with higher agricultural activities and trade volumes were selected for the study in each

region. Stratified sampling ensured comprehensive coverage and proportional representation

from each district. I report additional details of the survey construction, including details

on pre-testing and power calculations, in Appendix B.3.

Participants were included in the survey according to the following criteria. Farmers must

have 1) been adults, 2) farmed fruits or vegetables in the last farming season, 3) participated

in the market (grew crops for sale rather than own-consumption), and 4) farmed less than

3Nyarko and Pellegrina (2022) features agricultural markets with random search and no food loss. Their
focus is on how search frictions affect which markets farmers choose to sell in.

4Although the country is divided into five major zones (North, South, East, West, and Central), the
Central zone was omitted from the study due to not being a major producer of fruits and vegetables.
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50 acres in the last farming season. Similarly, traders must have 1) been adults, 2) bought

directly from farmers or aggregators, and 3) traded fruits or vegetables in the last farming

season. The survey participation criteria are not highly selective. The Food and Agricultural

Organization of the United Nations (FAO) estimates that over 85% of farms in Ghana are

less than 5 acres with an average size of 4 acres. The only farmers excluded based on size are

those with large commercial operations. Importantly, limiting the food loss survey sample

to farmers who sell their crops does not seem like an egregious restriction; as of 2012, almost

80% of farmers participate in the market.5 Farmer participation in the market is likely to

be higher in 2024. Finally, the survey focuses on fruit and vegetable supply chains because

food loss is highest in these markets.

The farmer survey is composed of five modules. The first module covers farmer demo-

graphics and general farming information, including age, family size, crops grown and sold,

plot sizes, and harvest amounts. The second module covers crop disposition practices - where

farmers sell (e.g., farmgate or market), how often farmers sell at each location, the proba-

bility of successfully finding a buyer, the distance from the farm to each location, the price

received per unit of crop, etc. The third module covers uses of storage technology and causes

of loss. This includes properties of the storage technology, such as the maximum amount of

time a farmer can store their crops using the storage technology without losing crops and

the average amount of time the farmer stores their crops. The fourth module covers how

farmers search for buyers - do they call buyers directly or do they bring their crops to the

roadside and flag down passing trucks? Do farmers negotiate with traders over prices or are

prices publicly available? Finally, the fifth module covers coordination between farmers. For

instance, does coordinating with other farmers help find buyers or offset fixed costs? And

what are the barriers to greater cooperation?

The trader survey is composed of six modules. The first module similarly asks about

trader demographics and an overview of their business, such as age, family size, location

of their residence, years in the horticulture trading business, crops traded, etc. The second

module concerns sourcing practices - where do traders buy, what prices they pay per unit, how

many units do they purchase per trip, the number of trips they make, etc. The third module

asks about coordination with other traders - do traders coordinate and if yes, how? The

fourth module covers trader selling practice and includes topics such as the usual location

where traders sell, the price at which traders sell, and the average number of customers

they sell to. The fifth module studies trader storage practices and losses due to storage,

5To determine the representativeness of my survey, I analyze the 2012 round of the Ghana Statistical
Agency’s National Transport Survey. I provide a more detailed analysis of the National Transport Survey
in Appendix Table 9.
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transportation, and other factors. The sixth and final module estimates operational costs,

both fixed and variable.

Data was gathered using computer-assisted personal interviews. A team of 20 enumer-

ators was trained to conduct the survey and sent into the field to meet with farmers and

traders. Enumerators used electronic tablets, pre-loaded with the survey, to administer the

survey and record responses. Survey responses were finally collated across enumerators to

construct the final data set.

3 Motivating Evidence

In this section, I use the survey to document 6 facts about agricultural wholesale markets

in Ghana. The average fruit and vegetable quantity loss among farmers in Ghana is 10%.

However, these averages mask large heterogeneity among farmers: the standard deviation

of quantity loss is 15%. Farmers differ along many dimensions, including which crops they

grow, their locations and distances from wholesale markets, age, education, farm size, etc6.

In the cross-section, it is difficult to know which factors matter and why. I proceed by

studying crops one at a time. Inference across crops is complicated because both storage

and crop disposition practices vary across crops. For instance, tomatoes are more fragile

than peppers and spoil quicker. Moreover, many farmers preserve peppers through drying,

whereas no comparable practice exists for tomatoes. In the main text, I focus exclusively on

pepper farmers and I provide heterogeneity analysis in the appendix. Peppers are a staple

of Ghanaian cuisine, forming the base of many soups and stews. One third of all farmers in

my sample grow peppers.

Fact 1. Farmers believe the causes of food loss are unpredictable. In the survey,

I delineate food loss into 4 reported causes: rain and mold, pests, disease, or other (which

captures losses that don’t occur due to a specific event). For instance, when crops are

stored outside uncovered, rain can causes crops to spoil. Farmers are asked what share

of the food loss they experience is caused by each cause. I plot in Figure 2 the average

share of food loss generated by each of the 4 causes by crop. Chili pepper farmers report

that the majority of food loss is due the rain and mold, pests, or disease. The pattern is

robust to all other farmers, with the exception of mango and onion farmers. Rain, pests,

and disease are inherently unpredictable. Farmers cannot predict whether there will be rain

tomorrow or whether their farms will be affected by pests. Although economists normally

6I plot food loss by farmer characteristics in the appendix. Appendix figure 14 plots food loss by crop
type and figure 15 plots food loss by region.
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Figure 2: Reported Causes of Food Loss by Crop

Notes. Percent of losses farmers attribute to each cause: pests,
rain/mold, disease, and other. Each column is a different crop and
sums to 100.

model depreciation as a gradual and continuous process with respect to time, the results in

Figure 2 motivate me to model food loss as a stochastic process. Modeling loss as a stochastic

process yields a unique expression for food loss as a function of time. This expression has an

empirical counterpart in the data, providing a test of the model’s fit. I find that modeling

food loss as a stochastic process reasonably describes food loss among chili pepper farmers.

Fact 2. Farmers who struggle to find buyers experience more food loss. Do

farmers who struggle to find buyers experience more food loss? In the survey, I ask farmers

whether they“Strongly Agree”, “Agree”, “Neutral”, “Disagree”, or “Strongly Disagree” with

the following statement: “I delay harvesting or selling crops because I can’t find a buyer”.7

Approximately 25% of farmers strongly agree or agree with the statement that they delay

harvest or selling crops because they can’t find a buyer and 30% of farmers believe that their

crops perish while waiting for a buyer.8 I then plot the average food loss for each category of

respondents in Figure 3. Farmers who report having to delay harvesting or selling crops due

to an inability to find a buyer lose on average almost double the share of crops than farmers

7Delaying harvesting often serves as a method of extending a crops shelf life; once crops are picked, the
speed at which they spoil increases.

8I report farmers beliefs about the search market in Appendix Table 8.
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Figure 3: Food Loss by Market Tightness
Notes. Do farmers who struggle to find buyers report higher levels of
food loss? This figure is a bar chart of the percent of food lost by chili
pepper farmers’ reports about whether they delay harvesting or selling
crops because they can’t find buyers. Farmers are asked whether they
strongly agree, agree, are neutral, disagree, or strongly disagree with
the following statement: “I delay harvesting or selling crops because I
can’t find a buyer.” Each bar is the average food loss for each category
of respondents to the previous question.

who don’t.9 I quantify the effects of market tightness more precisely in Figure 4, where I

plot a binscatter of the percent of food loss by chili pepper farmer against the probability of

a successful sale. I show that farmers who report a lower probability of successfully selling

to a buyer have a higher average food loss. The pattern in both plots is robust to other

crops. Motivated by figures 3 and 4, I include search and matching frictions in the model of

agricultural wholesale markets. Farmers search for trades but are not guaranteed to succeed

with each search attempt. Farmers who are unlucky and do not find a buyer experience

more food loss.

Fact 3. Farmers who struggle to find buyers are more likely to invest in storage

technologies. One way to reduce the effect of output market frictions is to invest in

storage.10 Storage technologies allow farmers to store crops for longer. If farmers search

9Similarly, in Figure 17, farmers who believe it is hard or very hard to find a buyer have an average food
loss 0.5 times higher than those who don’t.

10Another possible mechanism to reduce food loss is through cooperation with other farmers. However, I
find in Table 8 that only 20% of farmers cooperate with each other and that cooperation does not help find
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Figure 4: Food Loss vs Probability of Selling Crops

Notes. Binscatter of the percent of chili pepper food loss against the
probability of making a successful sale. Food loss is measured as the
share of peppers that go bad before sale to a buyer. Data is from the
survey of Ghanaian farmers.

for a buyer but cannot find one, storage provides the farmer with additional time to search

again. Farmers are smart and forward-looking - I show in Figure 5 that farmers who are more

likely to successfully find a buyer for their crops invest less in storage technologies on the

extensive margin. In other words, when finding a buyer is easy, farmers store their peppers

directly on the farm using no advanced storage technologies. And when the probability of

finding a buyer is low, farmers invest in storage technologies in order to gain additional time

to search for a buyer. The result is robust to other crops. Motivated by fact 3, I allow

farmers to invest in storage technologies in the model. Storage technologies extend the shelf

life of a crop, allowing farmers more opportunities to find a buyer.

Fact 4. Farmers who lose a larger fraction of crops are more likely to invest

in better storage technologies. There are a few methods to store peppers. Farmers

can store peppers in fridges; they can store peppers by drying them; they can store peppers

in their home; they can store peppers using plastic sacks or bins; or they can store peppers

buyers. The majority of farmers do not cooperate for two reasons. First, farmers are located far apart. And
second, crops on different farms are ready to harvest at different times making it difficult to coordinate in
advance.
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Figure 5: Storage Usage vs Probability of a Sucessful Sale

Notes. Do farmers that are less likely to find a buyer store their crops
using advanced storage technologies? A bin-scatter of the fraction of
farmers using any storage technology against the probability of a suc-
cessful sale to a trader. Data is from the survey of Ghanaian farmers.

directly on the farm in piles using no advanced technology.11 These technologies differ in how

well they preserve crops. I capture these technological differences by asking farmers what is

the maximum amount of time they can store their crops given the technology they use. I

call this a technology’s maximum shelf life. I plot in Figure 6 the percent of food loss (black

line) and the maximum shelf life (red bars) by the storage technology used.12 Surprisingly,

the largest losses of 13%, 11%, and 10% are among farmers who use the most sophisticated

storage technologies (with the highest maximum shelf life), cold storage, drying, and in-house

storage respectively. Why does better storage technology not reduce loss? The most likely

hypothesis is that farmers who invest in storage technologies also store their crops for longer.

This is indeed the case: I plot in Figure 6 (teal bars) the average amount of time that farmers

store their crops by storage technology. I show that farmers using storage technologies with

a higher maximum shelf life also store their crops for longer.13

11Drying entails a multi-day process during which the peppers are placed on plastic tarps and left out in
the sun, exposing the peppers to rain and animals. For a visual example, see Figure 18 in the appendix.

12I specifically look at food loss among pepper farmers, rather than averaging across crops. Not all
storage technologies are used for each crop (e.g. metal/wooden silos aren’t used for storing peppers) and the
effectiveness of a storage technology varies by crop. An average across crops suggests that there is no effect
of storage technology on food loss.

13Another hypothesis that while drying does extend the shelf life, food loss occurs before the peppers
are fully dry. This argument would not apply, however, for cold storage, which is not a time-intensive or
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Figure 6: Effects of Pepper Storage Technology

Notes. The red bars plot the average shelf life (in days) of peppers by
storage technology. The teal bars plot the average duration (in days)
farmers store peppers by storage technology. The black points plot the
percent of quantity pepper food loss by storage technology. Data is
from the Ghanaian survey of farmers.

Table 1: Percent of Farmers by Buyer and Sale Method

Search Method Primary Buyer

Consumer Exporter Food Processor Trader Total
Bring to Farmgate 0.2 0.1 0.0 9.6 9.9
Bring to Market 1.3 0.0 0.0 25.4 26.6
Buyer Calls 0.2 0.00 0.1 3.0 3.2
Call Aggregator 0.0 0.1 0.2 8.4 8.6
Call Buyer 0.1 0.4 1.6 49.6 51.7
Total 1.7 0.6 1.9 95.9 100

Notes. Summary Statistics about the share of farmers by method of searching for a buyer and primary buyer.
Each entry is the percentage of farmers in that category. Numbers may not sum to 100 due to rounding.

Fact 5. The majority of farmers sell their crops by calling traders directly.

Who are farmers’ primary buyers and how do farmers find them? Farmers have four potential

buyers: consumers, exporters, food processors, and traders. Farmers can also choose to

search for buyers through a variety of means: they can call the buyer directly, call an

high-effort process.
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aggregator who will find a buyer for them, bring the crops to the farmgate/road side and

flag down passing trucks, bring the crops to a local market, or wait for a buyer to call them.

I break down the percentage of farmers using each option in Table 1 and show that over 95%

of farmers sell to traders. Furthermore, over 50% of farmers call buyers directly. The second

most popular option of finding buyers utilized by 26% of farmers is bringing crops to the

local market. The results in Table 1 suggest that farmer search practices are more consistent

with a model of directed rather than random search. In a model of random search, there is a

single market in which all farmers and traders search. In a model of directed search, farmers

and traders have multiple markets they can choose to search in. And although not all of

the assumptions of the directed search environment are met (such as perfectly observable

prices), the majority of farmers direct their search efforts toward specific markets.14

Figure 7: Histogram of the Percent of Bruised Crops at the Point of Sale

Notes. A histogram of the percent of bruised chili peppers at the point
of sale for farmers. Data is from the Ghanaian survey of farmers.

Fact 6. Traders sort through the harvest at the point of sale and reject low-

quality crops. The quality of a harvest is unobservable to the trader until they meet with

a farmer. Once a meeting takes place, the trader will sort through the harvest and discard

any crops that show obvious signs of bruising. Why do traders discard crops rather than

re-negotiating on price? Transportation from where traders buy crops to where traders sell

14I further document in Figures 16a and 16b that these markets differ in both market tightness and the
fraction of food lost.
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crops takes time and crops that are already bruised will spoil before reaching downstream

customers. The degree of acceptable bruising may depend on the trader - traders who sell

locally may care less than traders who sell in major cities and must transport their crops

for longer. I plot in Figure 7 a histogram of the share of crops bruised when traders meet

farmers. The average share of bruised of bruised crops is 10%. The lack of information about

crop quality until farmers and trader meet motivates the inclusion of a limited commitment

mechanism in the model, where traders can reject farmers upon observing the harvest quality.

4 Baseline Model

Motivated by the facts documented in the previous section, I exposit a stylized model of

directed search within agricultural wholesale markets. The goal of the model is to 1) decom-

pose food loss as a function of storage and search and matching, and 2) provide a framework

through which welfare gains from policy can be evaluated. The model’s simplicity will be

illustrative of key mechanisms, while still retaining enough flexibility to match key moments

in the data.

4.1 Environment

Time is continuous and indexed by t. The economy is populated by a unit mass of homoge-

neous farmers and an endogenous mass of homogeneous traders. Farmers and traders meet

in frictional output markets, where farmers sell and traders buy crops. Crops depreciate over

time, so farmers who are unable to meet with traders can lose their harvest. Investments in

storage technology can slow the rate of depreciation.

Preferences. Farmers and traders discount the future at rate ρ. Farmers have von Neu-

mann–Morgenstern utility function u(c) over a consumption stream c, where u is twice

continuously differentiable, strictly increasing, and weakly concave. In the baseline model, I

assume that preferences are given by u(c) = log(c − c̄) where c̄ is a subsistence parameter.

Risk-neutral traders maximize profits, π(p), where they purchase quantity x of crops at pur-

chase cost p and sell at retail price pA
15. I assume that traders are price takers in the retail

market and take pA as given16.

15In the baseline model, I assume that that traders are risk-neutral and preferences are linear in profit.
This assumption is not necessary for the model derivations or key results. In practice, traders have small
operations and are likely to be risk-averse. I relax this assumptions in the model appendix.

16Similarly, the assumption that traders are price takers in the retail market is not necessary for the model
derivations or key results.
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Farmer Technology. A farmer’s consumption flow depends on being in one of three states:

harvested and searching for a trader (s), matched to a trader (m), or having lost their

harvest (l). When harvested and searching for a trader, farmers can allocate up to M units

of endowment between consumption and investments in storage technology. Investment in

storage technology decreases the depreciation rate. Unmatched farmers lose their crops at

Poisson rate δ(i), where i is investment in storage, δ′(i) < 0 and δ′′(i) > 0. That is, both the

depreciation rate and the marginal depreciation rate are decreasing in the amount invested.

I assume that δ(i) = δ0(1+ i)−β, which satisfies the above conditions. The first term, δ0, can

be interpreted as a crop’s baseline depreciation rate when investment in storage is zero. For

more perishable crops, such as tomatoes, the baseline perishability is higher than for more

durable crops, such as peppers. Finally, β captures the elasticity of storage to investment.

When matched, farmers sell x quantity of crops at price p and receive a continuation value

from consuming the proceeds of the sale17. Farmers who lose their harvest or match with a

trader will subsequently “die”.

Search Frictions. Unmatched farmers and traders search among segmented sub-markets

indexed by price p. Within each sub-market, farmers and traders come together through

a constant returns to scale matching technology. Let U(p) be the measure of unmatched

farmers, V(p) be the measure of unmatched traders, and market tightness θ(p) := V(p)/U(p)
be the relative measure of traders to farmers in sub-market p. Assume that the matching

technology is given by a Cobb-Douglas matching function with constant returns to scale,

which produces a flow of s(p) = U(p)αV(p)1−α matches and where α is the elasticity of

matches to the unmatched farmers.18 Given market tightness θ(p), farmers’ match rate is

f(θ(p)) = s(p)/U(p) = θ(p)1−α and traders match rate is q(θ(p)) = s(p)/V(p) = θ(p)−α.19

Once farmers and traders match, traders draw a match quality, ξ. The match quality of

a harvest affects trader profits by scaling revenue:

π(p, ξ) = (pAξ − p)x

17Farmers produce crops using a fixed amount of land: x = L. This can be relaxed to include capital and
labor inputs: x = kζℓνL1−ζ−ν where ζ + ν < 1.

18Search and matching frictions exist for multiple reasons including imperfect information about prices,
locations of sellers and buyers, or buyer and seller quality. Rather than modeling these frictions directly,
following Mortensen and Pissarides (1994), I model search frictions in a reduced form way.

19More generally, I only need to assume that the Poisson rate with which a farmer matches to a trader in
sub-market p be given by f(θ(p)), where f : [0,∞) → [0,∞) is continuously differentiable and increasing.
Similarly, let the Poisson rate with which a trader matches to a farmer in sub-market p be given by q(θ(p))
where q : [0,∞) → [0,∞) is continuously differentiable and decreasing. Finally, the following boundary
conditions must hold: f(0) = q(∞) = 0 and f(∞) = q(0) = ∞.
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Assume that the match shock is an i.i.d. draw from a Beta distribution with parameters ϕ and

ω, where ω, ϕ > 0. Given their observation of ξ, traders can choose to either follow through

with the purchase or reject the harvest and keep searching. Let Ω(p) be the probability that

a trader accepts a harvest20.

The search process proceeds in several steps. First, traders observe the market tightness

and probability of accepting a harvest for each sub-market p and choose which sub-market

to search in. To enter a sub-market, they pay fixed cost κ where κ > 0.2122 Next, farmers

similarly observe the market tightness and probability of a trader accepting a harvest in each

sub-market and choose one to search in. Finally, once a trader and a farmer are matched, the

trader observes the match shock and decides whether or not to proceed with the purchase.

Agent Choices. Farmers make two decisions. First, farmers choose which sub-market (p)

to sell in. Second, farmers invest in storage technology, which lowers the crop depreciation

rate. Traders similarly make two decision - they choose which sub-market (p) to buy from

and whether to accept or reject a harvest once they observe the match specific shock.

4.2 Defining an Equilibrium

The directed search environment admits a block recursive equilibrium, allowing us to consider

the problems of the farmers and the trader without keeping track of the aggregate state

variables23.

Farmers. Consider first the farmer. Let V s be the value of a farmer has harvested and is

searching for a trader, V l be the continuation value of a farmer who has lost their harvest,

and let V m(p) be the continuation value of a matched farmer who sells x quantity of crops at

price p. The problem of a farmer who has harvested and searching for a buyer is characterized

20An important question is why don’t farmers and traders re-negotiate once traders observe the match
quality? In practice, re-negotiations are costly and it is often easier to re-search for the trader. Furthermore,
even through buying locations vary, traders usually sell in pre-fixed locations. Some crops, while still edible,
may not be fit for long distance transport and including them will lead to spoilage of the other crops. In
this case, traders will sort through the harvest and discard a portion of the crops rather than re-negotiate
on price.

21The fixed cost captures barriers to entry, such as the cost of buying a vehicle, transportation costs,
language differences, or a ‘market queen’ extracting rents from traders for buying in a particular location.
Although barriers to entry may be high, they are not insurmountable. Over 85% of traders report that they
choose where to buy crops independently of any other trader.

22The fixed cost is constant across sub-markets.
23For a proof, see Menzio and Shi (2011), who show that a model of directed search can be written as

a block recursive equilibrium that does not depend on aggregate state variables such as the distribution of
prices or the measure of farmers in each state.
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by the Hamilton-Jacobi-Bellman (HJB) equation,

ρV s =max
c,i

{
u(c) + δ(i)[V l − V s] + max

p
{f(θ(p))Ω(p)[V m(p)− V s]}

}
s.t c+ pii ≤ M

(1)

with optimal search strategy p∗, optimal consumption strategy c∗, and optimal storage in-

vestment strategy i∗. Farmers’ choose how much to invest in storage, how much to consume,

and which sub-market to sell in. Equation 1 captures that the flow value of an unmatched

farmer is equal to the flow of consumption minus the expected value of losing the harvest

and plus the expected value from matching. The continuation value from matching is given

by V m(p) where V m(·) > 0, V m′(·) < 0 is an increasing and concave function in p. I assume

V m(p) = u(px). Furthermore, I assume the continuation value of a farmer who last their

harvest is zero: V l = 024. Equation 1 fully characterizes the farmer problem.

Traders. Consider now the trader. Let Js(p) be the value of a trader who is searching in

sub-market (p) and let Jm(p, ξ) be the value of a trader who has matched in sub-market (p)

with a farmer with match shock ξ. The problem of a trader who is searching in sub-market

(p) is characterized by the Hamilton-Jacobi-Bellman (HJB) equation,

ρJs(p) = q(θ(p))Eξ[max{Jm(p, ξ)− Js(p), 0}] (2)

where q(θ(p)) is the trader match rate; Jm(p, ξ)−Js(p) is the traders value from a successful

match; the max operator allows a trader to accept or reject a match if the value of a match

is negative; and the expectation is taken over the match quality.

The continuation value of a trader matching at price p and match quality ξ is given by

Jm(p, ξ) = π(p, ξ) + Js(p) (3)

where I assume that traders consume the profits from selling the crops and immediately

begin to search again for the next farmer. Free entry requires that

min{κ− Js(p), θ(p)} = 0 (4)

The condition in equation 4 implies that if a sub-market is open, traders will have zero

24The key assumption is that V l is constant and does not depend on the quantity of crops lost. In practice,
this assumption may be violated if farmers make ex-ante investments out of wealth that they carry across
states. I abstract away from this issue here.
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utility, and if a sub-market is closed, then traders must have non-positive utility.

With the farmer and trader problems in hand, I now turn to defining an equilibrium.

Definition 1. An equilibrium consists of a set of value functions V s, V m, V l, Js, Jm, a

market tightness function θ(p), and the unmatched farmers’ search strategy function p∗,

storage investment strategy function i∗, and consumption strategy c∗, such that:

1) Given V m(p), V l and θ(p), V s solves (1) with optimal storage strategy i∗, optimal

search strategy p∗, and optimal consumption strategy c∗.

2) Js(p) solves (2).

3) Jm(p) solves (3).

4) Given Js(p), market tightness θ(p) satisfies free entry condition (4).

Part (1) of the definition of an equilibrium captures the farmer’s problem. In particular, part

1 requires that farmers make optimal search and investment decisions given the information

available. Parts (2) and (3) of the definition capture the trader problem and require that

the trader make optimal decisions to accept or reject a harvest. Finally, part (4) requires

trader free entry.

4.3 Equilibrium Characterization

In this section, I characterize the properties of equilibrium. I first simplify the trader and

farmers problems.

Lemma 1. For each sub-market (p), there exists a unique cut-off value ξ̄(p) such that

traders accept harvests when ξ ≥ ξ̄(p) and reject harvests when ξ < ξ̄(p). This value is given

by

ξ̄(p) = p/pA.

Furthermore, the probability of a trader accepting a harvest in sub-market (p) is

Ω(p) = 1− F (p/pA;ω, ϕ)

where F (·) is the cdf of a Beta distribution with parameters ω, ϕ. The HJB of a trader

searching in sub-market (p) can be re-written as

ρJs(p) = q(θ(p))︸ ︷︷ ︸
Flow of Matches

Ω(p)︸︷︷︸
Probability of Accepting

(pAE[ξ|ξ ≥ p/pA]− p)︸ ︷︷ ︸
Expected Profit per Match

. (5)
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where

E[ξ|ξ ≥ p/pA] =
ω

ω + ϕ
× 1− F (p/pA;ω + 1, ϕ)

1− F (p/pA;ω, ϕ)

Proof. See appendix A.1.

Intuitively, traders will reject a harvest when the profit is negative. This is more likely

when the purchase price p is close to the sale price pA. When p is small, traders have positive

profits even when ξ is small. This is no longer true when p is large. I can then derive the

probability of accepting or rejecting a harvest using the properties of the Beta distribution.

The trader’s flow value of searching is then given by equation 5, where the first term is

as before the rate of matching; the second term is the probability of accepting a harvest

conditional on matching; and the third term is the expected profit of match conditional on

proceeding with the purchase. The expected profit is equal to the cost times a markup.

I next show that an equilibrium exists and is unique.

Lemma 2. There exists a unique equilibrium.

Proof: See Appendix A.2.

An equilibrium maximizes farmer welfare subject to traders earning zero profits. I now

turn to characterizing the properties of equilibrium.

Lemma 3. An equilibrium has the following properties:

1) Define the joint match surplus as

S(p) = (V m(p)− V s)︸ ︷︷ ︸
Farmer Surplus

+E[max{(Jm(p, ξ)− Js), 0}]︸ ︷︷ ︸
Trader Surplus

(6)

and let the share of the surplus captured by the farmer be given by

η(p) = (V m(p)− V s)/S(p)

2) The competitive crop price, p∗ = argmaxp f(θ(p))Ω(p)(V
m(p) − V s), exists and is

unique. Moreover, it solves

p∗ = argmax
p

{
(V m(p)− V s)α(E[max{(Jm(p, ξ)− Js), 0}])1−αΩ(p)α

}
(7)

= argmax
p

{
η(p)α[1− η(p)]1−αS(p)Ω(p)α

}
, (8)
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and has a unique solution characterized by the following optimality condition:

η′ (p∗)

(
α

η (p∗)
− 1− α

1− η (p∗)

)
︸ ︷︷ ︸

Share Channel

= − S ′ (p∗)

S (p∗)︸ ︷︷ ︸
Risk Aversion

− α
Ω′ (p∗)

Ω (p∗)︸ ︷︷ ︸
Limited Commitment

(9)

3) The equilibrium match finding rate for farmers and the opportunity cost of a match

are:

θ(p∗) =

[
E[max{Jm(p∗, ξ)− Js], 0}

κ

] 1
α

(10)

f (θ (p∗)) =

[
E[max{Jm(p∗, ξ)− Js], 0}

κ

] 1−α
α

(11)

ρV s = u(M − pii)− δ(i)V s + f(θ(p∗))Ω(p∗)(V m(p∗)− V s) (12)

4) Optimal storage strategy i∗ exists and is unique. Moreover, it solves

i∗ = argmax
i

V s(i) (13)

with optimality condition

piu
′(M − pii) = −δ′ (i)V s (14)

Proof: see Appendix A.3.

Lemma 3 has several implications. Part (1) of Lemma 3 is straightforward: the joint

match surplus is the sum of the match value for farmers plus the match value for traders.

The first term captures the farmer surplus while the second term captures the trader surplus.

The second part of Lemma 3 solves for the competitive crop price, p∗. The optimal price

equalizes the value of a worker gaining an additional share of the surplus (the share channel)

against the change in the surplus (the risk aversion channel) and a change in the probability

of traders rejecting the harvest (the limmited commitment channel). The share channel is

composed of two parts. The first term is the share of the surplus received by the worker.

The second term is the probability of matching. The form of the share channel is isomorphic

to a random search model where matched farmers and traders engage in Nash Bargaining

and the farmer’s bargaining weight is α. Farmers trade-off receiving an increase in the share

of the surplus against a lower probability of matching.

Part (3) of Lemma 3 is again straightforward and derives market tightness and the flow

value of a farmer searching for a buyer as a function of the surplus value and the competitive
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crop price. Due to free entry, the market tightness is proportional to the value of the firm.

The remaining equations directly follow through the substitution of terms.

Part (4) of Lemma 3 solves for the optimal investment strategy. The optimal level of

consumption and investment balances the marginal cost of consuming less today against the

marginal value of preserving crops for longer.

Finally, Lemma 3 suggests a straightforward algorithm for computing the equilibrium.

The block recursive structure reduces the problem to a value function, where one does not

need to keep track of the aggregate state variables, such as the measure of farmers or traders.

The problem can then be solved as a fixed point of (p, c), iterating on the choice of c and p.

See appendix A.5 for additional details.

I now define the key variable of interest: food loss.

Lemma 4. Let δ∗ be a farmer’s equilibrium rate of deprecation and f̂(θ∗) = f(θ∗)Ω(p∗) be

a farmer’s equilibrium rate of matching with a trader. Then the expected fraction of food

loss, the expected storage duration, and the expected shelf life are given by:

E[Fraction Food Lost] =
δ∗

δ∗ + f̂(θ∗)
(15)

E[Storage Duration] =
1

δ∗ + f̂(θ∗)
(16)

E[Shelf Life] =
1

δ∗
(17)

Proof. I leave a full proof for Appendix A.4 but provide the intuition here. The key as-

sumption underlying these results is that matches with traders and depreciation events have

Poisson rates of arrival. This implies that the wait time until an event occurs is distributed

exponentially. The results directly follow. The lemma shows that a farmer’s expected food

loss is solely a function of two equilibrium moments: the depreciation rate and the match

rate. Parameters, functional forms, or agent choices affect the equilibrium rates of depreci-

ation and matching, but do not affect the relationship between the fraction of food loss, the

depreciation rate, and the farmer match rate.

Lemma 5. The decentralized equilibrium is bilaterally inefficient.

Proof: The inefficiency result follows directly from part 2 of Lemma 3. The decentral-

ized economy is bilaterally efficient when the relationship between the share of the surplus

captured by farmers and the probability of matching satisfies the Hosios (1990) condition:
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the match probability is equal to the surplus share. The condition can be summarized as

η′ (p∗)

(
α

η (p∗)
− 1− α

1− η (p∗)

)
= 0

and implies that η(p∗) = α. A sufficient condition in my model for efficiency is when

the risk-aversion channel is zero (S ′(p∗) = 0) and the limited commitment channel is zero

(Ω′(p∗) = 0).

The presence of risk-aversion in the model generates an inefficiency. Intuitively, risk-

averse farmers wish to equalize consumption across all states. However, due to incomplete

asset markets, they are unable to do so. They instead minimize risk by choosing sub-markets

with lower prices but higher probabilities of matching with traders. The joint match surplus

would be higher if the price increased and the probability of a farmer matching decreased.

The derivative of the joint match surplus with respect to price is only zero when the marginal

value of an extra dollar to the farmer is equal to the marginal cost of paying an extra dollar

to the trader. When farmers are risk averse, this is not the case.

Note that although decreasing the perishability of crops decreases the inefficiency, it does

not eliminate it. When crops are perfectly durable (δ = 0), the risk of losing one’s crop is

eliminated but the risk of not finding a buyer remains. Risk-averse farmers will still wish to

equalize consumption between states and will search for traders in markets with lower prices

and higher match probabilities relative to the first-best.

Limited commitment - the ability of farmers to reject a harvest - generates an additional

externality. Because traders have the option to reject harvests when the match quality is

low, they reject harvest where the private surplus is negative but the joint surplus is positive.

In other words, society would benefit when traders purchase crops regardless of the match

quality, even if it is not the best interest of the trader themselves. In order to avoid rejection

by traders farmers must under price their goods. This compounds the effects of the risk-

aversion.

4.4 Model Validity

I now validate the model against data.

Estimating Equation. The starting point of my validation strategy is a model-derived

relationship between food loss, the expected storage duration, and the expected shelf life of

a crop. An immediate corollary of Lemma 5, is that we can relate the expected shelf life and

and expected storage duration to the expected fraction of food lost through the following
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equation:

E[Fraction Food Loss] =
E[Storage Duration]

E[Shelf Life]
≡ Relative Storage Duration (18)

In particular, the expected fraction of food loss can be expressed as the ratio of the average

storage duration divided by the average shelf life. Both the average fraction of food loss, the

average storage duration, and the average shelf life of a crop are observed in the survey, so I

can test the model specification by regressing the fraction of food lost on the relative storage

duration. I therefore estimate

Food Lossi = Γ× Relative Storage Durationi + εi (19)

where i indexes the farmer. If the model is correctly specified, the coefficient on the relative

storage duration should be one25. Importantly, this is not a test of whether the model can

correctly predict the expected storage duration or the expected shelf life. Instead, this is a

test of the Poisson process - if the arrival rates of matches and depreciation is Poisson, then

the above relationship will hold.

Identification. There are two concerns with estimating Γ via ordinary least squares. The

first concern is that the regression suffers from simultaneity: farmers’ choice of storage tech-

nology and market affect the fraction of food lost, but farmer expectation of food loss affects

their choice of storage technology and market. This simultaneity confounds estimation. The

second concern is measurement error. In the model, the relationship between food loss and

relative storage duration holds exactly. In practice, relative storage duration may be re-

ported with measurement error. For instance, the estimator will be downward biased given

classical measurement error.

I overcome these identification challenges through an instrumental variables approach.

The choice of instrumental variable is closely linked to the model, which suggests that the

cost to a trader of accessing a market only affects food loss through δ and f(θ). In the

model, the trader fixed cost κ does not in and of itself generate food loss; rather, it affects

trader profits which then affects market tightness and farmer choice of storage technology26.

25An alternative specification would be to estimate

log(Food Loss)i = Γ1 log(Storage Duration)i + Γ2 log(Shelf Life)i + εi

and test whether Γ1 = −Γ2. I instrument for the average storage duration and average shelf life using
distance to the market and harvest size. I fail to reject that Γ̂1 = −Γ̂2.

26In practice, farmers sometimes bring crops directly to the market and traders sometimes commute to
the farmgate. The latter is more prevalent with over 70% farmers selling at the farmgate. Regardless of who
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Furthermore, significant land market frictions prevent the buying and selling or renting of

land. Farm and plot locations are fixed over time, implying that the distance from the farm

to the market is exogenous from the perspective of the farmer. The exclusion restriction

will hold under these assumptions. I proxy for the fixed cost using the distance from the

farmgate to the market.

Estimates of Γ̂. I report the results for pepper farmers in Table 2. For the OLS estimates,

I find that the ordinary least squares estimates of Γ̂ range from 0.1 to 0.3. While they are

all positive and statistically significant from zero, they are also statistically different from 1

at the 1% level. I then instrument the relative storage duration using the distance from the

farmgate to the market and have a strong first stage with an F-statistic of 25. Consistent with

classical measurement error, I find that the IV estimates are higher than the OLS estimates.

For the IV estimates, I find that Γ̂ ranges from 0.5 to 0.9. In my preferred specification

where I control for farmer characteristics such as age, family size, and plot size (column 4),

I cannot reject the null hypothesis that the coefficient is equal to one. This suggests that

modeling pepper depreciation as a Poisson process is a reasonable assumption.

Table 2: Effect of Relative Storage Duration on Food Loss - Peppers

OLS 2SLS

(1) (2) (3) (4)

Relative Storage Duration 0.31∗∗∗ 0.17∗∗∗ 0.50∗∗∗ 0.89∗∗∗

(0.03) (0.03) (0.04) (0.23)

Observations 501 501 439 439
Controls ✓ ✓
R2 0.23 0.31 0.16 −0.30
Adjusted R2 0.23 0.31 0.16 −0.32
Residual Std. Error 0.13 0.13 0.15 0.18
F Statistic 150.64∗∗∗ 55.97∗∗∗

Notes. The dependent variable is the fraction of food lost and the independent variable is
the average storage duration measured in years. Controls include farmer age, the number of
family members, and plot size. Coefficients in columns (1) and (2) are estimated through or-
dinary least squares for pepper farmers. Coefficients in columns (3) and (4) are estimated via
two-stage least squares for pepper farmers, where average storage duration is instrumented by
distance to the market. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

pays the fixed cost of bringing crops to the point of sale, the effect on food loss is the same.
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5 Model Quantification

The goal of this section is to discipline the model parameters and quantify the model, in

order to perform policy counterfactuals and to develop a deeper understanding of model

mechanics.

5.1 Internal Validity

The equilibrium is a function of 10 parameters:

{ρ, δ0, β, pi,M, κ, α, pA, ϕ, ω}.

My estimation strategy consists of three components. First, I take well-known parameters

directly from the literature. Second, I normalize parameters where possible. Third, I estimate

the remaining parameters using the survey data. I discuss each of these in turn. I summarize

the parameter values and estimation strategy in Table 3.

Table 3: Calibrated Parameter Values

Parameter Description Value Source
ρ Discount rate 0.03 Literature
pi Storage price 1 Normalized
δ0 Storage baseline 20 Data
pA Retail price 770 Data
ω Beta Distribution 1.3 GMM
ϕ Beta Distribution 0.2 GMM
α Match elasticity 0.79 SMM
β Storage elasticity 1.8 SMM
M Farmer endowment 3.6 SMM
κ Trader Fixed Cost 47 SMM

External calibration. I take one parameter from the literature: the discount rate (ρ).

It is generally estimated in the context of developed countries, and unfortunately, good

estimates do not exist for developing economies. I assume the discount rate does not vary

much with GDP. I normalize one additional parameter: the price of storage (pi). I normalize

the price of storage because it is jointly identified with farmer endowment, M . Both the

price and the endowment are unobserved in the survey and thus modeled in a reduced form

way.27

27The price of storage is unobserved because farmers generally do not keep track of fixed costs of storage
such as purchasing plastic bins. In many cases, such as storing crops at home or drying, the cost of storage
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Calibration from survey data. I discipline the remaining parameters using the survey

data. I estimate the storage baseline (δ0) as the inverse of the average storage duration for

farmers who use no storage technology. As Lemma 5 shows, 1/δ∗ = E[Equilibrium Shelf Life].

This implies that 1/δ0 = E[Shelf Life When i = 0]. I also estimate the retail price (pA) di-

rectly from the trader survey. In the survey, the average retail price of peppers is p̂A = 770

per unit. Finally, to estimate ω and ϕ, I fit a beta distribution to the distribution of bruised

crops in the wholesale market using the general method of moments. The key assumption is

that the distribution of bruised crops is independent of either storage technology or storage

duration. I find that ω = 1.3 and ϕ = 0.2.

Simulated Method of Moments. I am finally left with four parameters: farmer en-

dowment (M), trader fixed cost (κ), the elasticity of matches to the measure of unmatched

farmers (α), and the elasticity of depreciation to storage investment (β). Disciplining these

parameters is key to evaluating the benefits of policy. In particular, the effectiveness of

storage subsidies will primarily depend on β, whereas the effectiveness of trader subsidies

will primarily depend on α. I calibrate M , κ, α, and β using simulated method of moments.

I target four moments: the average rate of depreciation in the economy, the average match

rate (which together with the depreciation rate implies an average food loss of 10%), the

average own-consumption of harvest, and the average percent of crops rejected by traders.

The depreciation rate and match rate are unobservable, but can be estimated using the

structure of the model. To estimate the depreciation rate, I revisit Lemma 5 and express the

fraction of food loss as a function of the average storage duration and the depreciation rate:

E[Fraction Food Loss] = δ∗ × E[Storage Duration] (20)

I can then estimate δ∗ by regressing average food loss on average storage duration:

Average Food Lossi = δ∗ × Average Storage Durationi + εi

where i indexes the farmer. Estimation using ordinary least squares runs into the same iden-

tification challenges as before: simultaneity and measurement error. I similarly instrument

the average storage duration using the distance to the market.

I can now estimate δ∗, the equilibrium rate of crop depreciation. I report the results

for pepper farmers in Table 4. The first stage of the instrumental variables has strong

predictive power with an F-statistic of 15. Consistent with classical measurement error, the

OLS estimates are an order of magnitude lower than the IV estimates. The OLS estimates

is time and effort rather than monetary.
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are approximately 0.3, whereas the IV estimates are approximately 2. The larger coefficients

are more reasonable than the smaller ones. The interpretation of δ̂ is that 1/δ̂ is the average

shelf life of a crop. A coefficient of 0.3 implies that the average shelf life of a farmer’s harvest

is 40 months, whereas a coefficient of 2 implies that the average shelf life is 6 months, which

is more in line with farmers’ own estimates of their crops’ perishability. Given the percent

of food lost, the depreciation rate maps one-to-one to the match rate. When the arrival rate

of depreciation is 2 and the percent of food loss is 10%, the arrival rate of matches is 18.

This implies that on average it takes a farmer 20 days to find a trader and that the average

storage duration is 18 days. As a robustness check, I extend the analysis to include farmer

characteristics such as age, education, farm size, and location fixed effects. The results are

consistent across all specifications.

Table 4: Effect of Storage Duration on Food Loss - Peppers

OLS 2SLS

(1) (2) (3) (4)

Average Storage Duration 0.3∗∗∗ 0.2∗∗∗ 1.8∗∗∗ 1.8∗∗∗

(0.1) (0.1) (0.2) (0.5)
Implied Shelf Life (Months) 40 60 6 6

Observations 569 569 569 569
Controls ✓ ✓
R2 0.1 0.2 −1.1 −1.1
Adjusted R2 0.1 0.2 −1.1 −1.1
Residual Std. Error 0.2 0.2 0.3 0.3
F Statistic 39.0∗∗∗ 42.1∗∗∗

Notes. The dependent variable is the fraction of food lost and the independent vari-
able is the average storage duration measured in years. The sample includes only pepper
farmers. Controls include farmer age, the number of family members, and plot size. Co-
efficients in columns (1) and (2) are estimated through ordinary least squares for pepper
farmers. Coefficients in columns (3) and (4) are estimated via two stage least squares,
where average storage duration is instrumented by distance from the farmgate to the
market. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Using the regression results as an input, I discipline the remaining model parameters

using simulated method of moments. I target an equilibrium depreciation rate of 2, a match

rate of 18, consumption levels of 1.1 units, and an acceptance rate by traders of 90% (or

equivalently a rejection rate of 10%). I report the results from the simulated method of

moments in Table 5. I find that the match elasticity is α = 0.35, the storage elasticity is

β = 0.7, the farmer endowment is 3.6, and the trader fixed cost is 47. The calibration does

well, hitting each of the target moments. Moreover, the calibration is not sensitive to initial
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guesses of the parameters.

Table 5: Simulated Method of Moments

Parameter Parameter Value Target Moment Data Value Model Value
β 1.8 Depreciation rate δ(i) 2.0 2.1
α 0.79 Match rate f(θ) 22.0 22.1
M 3.6 Consumption c 1.1 1.2
κ 47 Acceptance Rate Ω(p) 0.9 0.9

5.2 External Validity

In the model, there is a single representative farmer and trader. I therefore discipline the

model parameters using averages: average depreciation rate, average match rate, average

trader fixed cost, average price, etc. How well does the model speak to the heterogeneity in

the data? I consider three dimensions of heterogeneity: harvest size (x), baseline perishability

of a crop (δ0), and the trader fixed cost (κ). I compare the model simulations and data along

two dimensions: the fraction of food lost and equilibrium match rate.

I first map the model variables to the data. Of the two outcome variables I only observe

food loss directly. However, while I do not observe f(θ∗) directly, I observe the search

intensity of the farmer - the number of days per month that the farmer attempts to sell their

harvest - and the probability of a successful sale per search. By combining the two, I can

construct an estimate of f(θ∗). Finally, I do not directly observe κ or δ0. As in the previous

section, I proxy for κ using distance from the the farm to the market. And I can impute δ0

by observing the average shelf life of farmers who do not use any storage.

Harvest Size. I show in Figure 8 that in both the model and the data, increasing harvest

size (or equivalently farm size in the model) decreases food loss (Figures 8a and 8b) and

increases the match rate (Figures 8c and 8d). In the model, a larger harvest heightens the

amount of risk to the farmer by increasing the difference in consumption between states.

To reduce that risk, farmers will 1) invest more in storage to lower the rate of depreciation,

and 2) accept lower prices at higher probabilities of matching with a trader. A secondary

mechanism also works in the farmers’ favor: a bigger harvest boosts trader revenue. Since

there is free entry for traders, the measure of traders also increases. This further tightens

the market. The effect of harvest is consistent in both the model and the data.

Although the effect of farm size parallels the results from much of the misallocation

literature, the mechanisms differ. Similar to the findings of Restuccia and Santaeulalia-

Llopis (2017), Foster and Rosenzweig (2022), or Chen et al. (2023), increasing farm size

31



(a) Model: Harvest Size vs Food Loss (b) Data: Harvest Size vs Food Loss

(c) Model: Harvest Size vs Match Rate (d) Data: Harvest Size vs Match Rate

Figure 8: Effect of Harvest Size (x)

Notes. Comparison of the effect of harvest size in the model and the data. Plots (b)
and (d) are binscatters of harvest size against the fraction of food loss (in plot b) and
farmer search intensity (plot d) among pepper farmers. Plots (a) and (c) plot the
effect of harvest size in the model. Farmer search intensity is measured as the number
of days per month a farmer attempts to sell their crops. Harvest size is measured as
the number of bags of peppers farmers grow.

increases input investment and welfare. The mechanism, however, contrasts. In Foster and

Rosenzweig (2022), for instance, larger farms can afford to pay the fixed costs associated with

hiring labor and buying capital and thus reap the benefits from more productive technologies.

In other words, a reduction in land market frictions relaxes the constraints on other inputs.
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In this paper, however, a larger farm size does not relax any constraints. Instead, it increases

the amount of risk born by the farmer, forcing the farmer to increase storage investment and

decrease the price. The result is a decrease in the short-term flow of consumption but an

increase in the long-term.

(a) Model: Baseline Shelf Life vs Food Loss (b) Data: Baseline Shelf Life vs Food Loss

(c) Model: Baseline Shelf Life vs Match Rate (d) Data: Baseline Shelf Life vs Match Rate

Figure 9: Effect of Baseline Shelf Life (δ0)

Notes. Comparison of the effect of the baseline shelf life in the model and the data.
Plots (b) and (d) are binscatters of baseline shelf life against the fraction of food loss (in
plot b) and farmer search intensity (plot d) among pepper farmers. Plots (a) and (c)
plot the effect of baseline shelf life in the model. Baseline shelf life is measured as the
maximum number of days a farmer can store their crops without using storage. Farmer
search intensity is measured as the number of days per month a farmer attempts to
sell their crops.
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Baseline Depreciation. I show in Figure 9 that the qualitative effect of baseline depreci-

ation rate on the fraction of food lost and the match rate is consistent in both the model and

data. In both the model and the data, food loss is higher for a higher baseline depreciation

rate (Figures 9a and 9b) and the match rate is similarly greater a higher baseline deprecia-

tion rate (Figures 9c and 9d). Intuitively, when farmers grow more perishable crops, the risk

of losing one’s harvest before matching with a trader increases. Farmers compensate for this

increase in risk in two ways. First, they invest more in storage. Second, they increase the

match probability. However, holding all other parameters constant, the increase in storage

investment doesn’t fully compensate for the increase in perishability. Food loss increases as

a result.

Trader Fixed Cost. As with the harvest size and the depreciation rate, the effect of a

chance in the fixed cost of entry generates qualitatively similar results in both the model

and the data. I show in figures 10a and 10b that as the fixed cost increases, so does food

loss in the model and the data. I plot the effect of the fixed cost on the match rate in the

model and data in figures 10c and 9d respectively. The match rate is decreasing in the fixed

cost in both plots. When traders have to pay a higher cost to enter a market, fewer traders

enter the market. This lowers market tightness and decreases the farmer match rate. To

compensate for the decrease in market tightness, farmers invest more in storage. However,

the increase in storage investment doesn’t fully offset the decrease in the match probability.

Food loss ultimately increases.

6 Implications for Welfare and Food Loss

Having quantified the model, I now turn to discussing the implications for welfare and food

loss.

6.1 Relaxing Market Frictions

What does Ghana stand to gain by removing search frictions or through better enforcement

of contracts? I consider three counterfactual economies. In the first economy, the government

enforces contracts so that traders cannot reject harvests if the quality is too low.28 In the

second economy, there are no search frictions.29 And in the the third economy, there is both

28Expected quality is then given by the expectation of the Beta distribution with parameters ω and ϕ.
This equal to ω/(ω + ϕ).

29I model the no search friction scenario by letting the flow of matches be equal tom(p) = max{T (p), F (p)}.
When this is the case, θ cannot be determined in equilibrium. I estimate the no search friction scenario by
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(a) Model: Fixed Cost vs Food Loss (b) Data: Fixed Cost vs Food Loss

(c) Model: Fixed Cost vs Match Rate (d) Data: Fixed cost vs Match Rate

Figure 10: Effect of Trader Fixed Cost (κ)

Notes. Comparison of the effect of the trader fixed cost in the model and the data.
Plots (b) and (d) are binscatters of distance to the market against the fraction of food
loss (in plot b) and farmer search intensity (plot d) among pepper farmers. Plots (a)
and (c) plot the effect of trader fixed cost in the model. Farmer search intensity is
measured as the number of days per month a farmer attempts to sell their crops.

contract enforcement and no search frictions.

I report the effects on welfare and food loss in Table 6. In the baseline, the percent of food

lost is 9.2% and I normalize consumption-equivalent welfare to 1. Contract enforcement has

a small positive effect on welfare, increasing welfare by 1.01 times, and a reduces food loss by

taking the limit as α → 0 since T > F .
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0.3%. Why is the effect so small when 10% of matches are rejected in the baseline? Contract

enforcement has opposite effects on farmers and traders. Holding constant the measure of

traders, farmer probability of matching increases. However, contract enforcement lowers

trader expected profits and reduces the number of traders in the market. To compensate

traders for lower profits, farmers decrease the price at which they sell, which lowers welfare.

In contrast, reducing search frictions benefits both farmers and traders because both farmers

and traders match more quickly. The resulting welfare is 3.3 times (or 230%) higher than in

the baseline and food loss is 30 times lower at 0.3%. Finally, in the economy with neither

friction, welfare is 4.3 times (or 315%) higher than in the baseline and only 0.2% of food

is lost. The effect of reducing both search and contract frictions is greater than the sum

of reducing each individually because the frictions build on each other - when the rejection

rate is high, it becomes even harder for the farmer to match successfully with a farmer (and

vice-versa). In other words, the two frictions have the same effect on farmers - increasing

the risk of not matching with a trader.

Table 6: Welfare Gains in Frictionless Economies

Welfare (Relative to baseline) Food Loss (%)
Baseline 1 9.2

No rejection 1.01 8.9
No search 3.3 0.3

No rejection or search 4.3 0.2

Notes. Change in consumption equivalent welfare and the percent of food lost for three counterfactual
economies: no rejection of farmer harvests once traders and farmers match (contract enforcement), no
search frictions, and no rejection and no search frictions. Relative welfare is the ratio of consumption
equivalent welfare in each counterfactual economy relative to the baseline.

6.2 Improvements in Storage Technology

The previous section documents the potential welfare gains from removing search and match-

ing and contracting frictions. However, the government may not have the tools to enforce

contracts or improve the matching process. One of the most popular methods to reduce

food loss is to improve storage technologies. If the Ghanaian government wished to reduce

food loss from 10% to the US average of 4%, by how much would it need to improve storage

technology? And what would be the welfare gains?30 I conduct two experiments. In the first

experiment, I allow the farmer to choose optimal storage and consumption but assume there

30An important caveat is that I can only evaluate the potential welfare gains from a storage subsidy, but
not its cost. In equilibrium, the government budget constraint must balance and the funds for the subsidy
must be raised through taxes. The current set-up is equivalent to receiving a grant from the World Bank
with no expectation of repayment.
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are no adjustments in the search market. That is, I evaluate the effects of an improvement in

storage in partial equilibrium. In the second experiment, I allow search markets to adjust as

well, accounting for a general equilibrium feedback between the choice of storage technology

and the search and matching process. I report the results in Table 7.

To reduce food loss in Ghana to the same average level as in the US, storage technology

would need to be improved by 55% in partial equilibrium and 70% in general equilibrium.

The improvement is greater in general equilibrium because farmers can make adjustments in

the search market. As investment in storage increases, farmers want to match to traders at

higher prices and with lower probabilities. Thus they reduce their search intensity, leading to

greater losses in general than in partial equilibrium. The improvement needs to be greater

in general equilibrium to have the same level of loss as in partial equilibrium. Welfare

is also higher in general equilibrium because farmers have an extra margin of adjustment

through the search market. Welfare in general equilibrium can never be lower than in partial

equilibrium.

Why are welfare gains due to improvements in storage technology so much smaller than

the potential welfare gains from relaxing search frictions? Although relaxing search frictions

and improving storage has the similar effect of reducing food loss, they accomplish this in two

different ways. Storage improvements reduce the probability of a bad event; improvements

in search increase the probability of a good event. Farmer welfare can increase even when

crops are perfectly durable, because they wish to spend less time searching.

Table 7: Gains from Storage Subsidies

Storage Improvement (%) Welfare (Relative to baseline)
Partial Equilibrium 55 1.5
General Equilibrium 70 1.8

Notes. The first column is the percent improvement in the effectiveness of storage technology required to reduce
food loss in Ghana from 10% to the same level as the US average at 4%. The second column is the relative gain
from welfare from the subsidy, where relative welfare is the ratio of consumption-equivalent welfare in each coun-
terfactual economy relative to the baseline.

7 Conclusion

In this paper, I provide the first macroeconomic analysis of food loss. By gathering a

novel survey of search and matching frictions in Ghana’s fruit and vegetable supply chain,

I document a tight link between food loss, storage, and market tightness. I show that food

loss is decreasing in market tightness and increasing in the quality of storage technology. To

explain these results, I develop a model through which I investigate the interaction between
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storage technology and search frictions. I find that food loss can be expressed solely as a

function of the market friction and the rate of depreciation. Finally, I quantify the model

and explore the effects of counterfactual policy. I find that to reduce food loss to US levels,

storage technology in Ghana would need to be improved by 70%.

Further research into the macroeconomics of food loss is essential to perform more nu-

anced policy evaluations. Future work can build on this paper in several direction. First,

additional data is needed on the scope and properties of food loss. Accurately measuring

food loss is costly and challenging methodologically, especially in gauging quality food loss

and tracking crops throughout the entire agricultural value chain. This has resulted in a sig-

nificant gap in data, where food loss estimates are imputed via extrapolations across crops,

time, and space. Furthermore, while the structure of search and matching in agricultural

output markets has recently received increased attention, the area has been historically un-

derstudied, and much remains unknown about the nature of search frictions in these markets

and how they contribute to food loss.

Finally, progress can be made using structural general equilibrium models to understand

the impact of agricultural policy on food loss and agricultural productivity more broadly.

Given the high scale of food loss, incorporating this dimension into models of agricultural

productivity may lead to an increased understanding of the agricultural productivity gap

between developed and developing nations. A particularly promising direction for further

research is the structural transformation of agricultural value chains. The structure of up-

stream markets can have downstream consequences and a more formal treatment and explo-

ration of the cross-market and cross-agent interactions is required.
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A Model

A.1 Lemma 1

Assume that once farmers and traders match, farmers draw a match shock ξ which is drawn

from a Beta distribution with shape parameters ϕ, ω. Let profit be given by:

π(p, x, ξ) = (pAξ − p)x

For every sub-market p, traders will have a cutoff value of ξ̄(p) below which they will reject

any offer. This cutoff will be given by when profit is non-positive:

ξ̄ = p/pA

Then the traders HJB is

Js(p) = q(θ(p))E[max{Jm(ξ, p)− Js, 0}]

= q(θ(p))E[max{(pAξ − p)x, 0}]

= q(θ(p))Ω(p) [(pAE[ξ|ξ ≥ p/pA]− p)x]

where the probability of a trader accepting a harvest in sub-market (p) is

Ω(p) = 1− F (p/pA;ω, ϕ)

where F (·) is the cdf of a Beta distribution with parameters ω, ϕ. Furthermore, using the

properties of the Beta distribution:

E[ξ|ξ ≥ p/pA] =
ω

ω + ϕ
× 1− F (p/pA;ω + 1, ϕ)

1− F (p/pA;ω, ϕ)

A.2 Lemma 2

The block recursive equilibrium is the solution to the following constrained optimization

problem: If {p, θ, c, i} are an equilibrium then they solve:

ρV s =max
c,i

{
u(c) + δ(i)[V l − V s] + max

p
{f(θ(p))Ω(p)[V m(p)− V s]}

}
(21)

s.t c+ pii = M (22)

q(θ)Js(p)− κ = 0 (23)
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The solution exists and is unique if the dynamic programming problem is well-defined

and satisfies the sufficient conditions in Stokey, Lucas, and Prescott (1989). Specifically,

• The state space of i is [0,M/pi] which is convex subsets of R. The state space of p is

[0, pA] which is convex subsets of R.

• The feasible set for it+1 is non-empty and compact and is again given by [0,M/pi].

The feasible set of pt+1 is non-empty and compact and is again given by [0, pA].

• The period return function u(i) is continuous and bounded on the feasible set.

• The discount factor is between 0 and 1.

Blackwell’s theorem then implies existence and uniqueness.

A.3 Lemma 3

Proof:

1) Part 1 follows directly from the definition of the surplus and the surplus share.

2) The first step relies on the free entry condition of traders. When free entry is satisfied:

θ = q

(
κ

Js(p)

)−1

To see the existence and uniqueness of the solution we can use the following transfor-

mation:

p∗ = argmax
p

{
(V m(p)− V s)α(Jm(p)− Js)1−α

}
= argmax

p
{α log(V m(p)− V s) + (1− α) log(Jm(p)− Js))}

with optimality condition

α

1− α

V m′(p∗)

V m(p∗)− V s
=

Jm′(p∗)

Jm(p)− Js

Since u′(·) > 0, the right-hand side is increasing in p. Furthermore, the left hand side

is decreasing in p when p < pA. Thus for pA large enough, a solution exists and is

unique.

3) This follows directly from the definitions of θ, f(θ) and ĥ.
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4) Take FOC and re-arrange:

piu
′(M − pii) = δ′ (i)V s

The left hand side is decreasing in c and the right hand side is increasing in c, so a

solution exists and is unique.

A.4 Lemma 4

Proof: For part 1 of the lemma, since farmers lose their entire harvest, the aggregate fraction

of food lost is equal to the fraction of farmers whose goods depreciate before they are matched

with a trader. Since farmers are homogeneous, this in turn is equal to the probability of a

single farmer losing their entire harvest. Let A be the event that the crops depreciate and

let B be the event that a farmer sells to a trader. The two events are independent and

distributed exponentially with parameters δ, f(θ) respectively. Then the probability that A

occurs before B is

P (A < B) =

∫ ∞

0

∫ b

0

p(a, b)dadb

=

∫ ∞

0

f(θ)e−f(θ)b

∫ b

0

δe−δadadb

=

∫ ∞

0

f(θ)e−f(θ)b
(
1− e−δb

)
db

=
δ

δ + f(θ)

To derive the expected storage duration and expected shelf life, I again rely on the

properties of the exponential distribution. Note the arrival time of storage is distributed

exponentially with parameter δ and the arrival rate of matches is distributed exponentially

with parameter f(θ). The expected storage time is equal to the time it takes until either

the crops depreciate or the crops are sold. The arrival rate of either storage or crop loss is

distributed exponentially with parameter δ+ f(θ) since the two events are independent and

the expected storage duration is 1/(δ + f(θ)). Similarly, the average shelf life is 1/δ.

For the second half of the lemma, the first equation directly follows from the definition

of expected food loss and expected storage duration. The second equation can be derived as
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follows:

Fraction Food Loss =
δ∗

δ∗ + f(θ∗)
=

1
δ∗+f(θ∗)

1
δ∗

=
E[Storage Duration]

E[Shelf Life]

=
Average Storage Duration

Average Shelf Life

≡ Relative Storage Duration

A.5 Algorithm

Since I can write the model as block recursive equilibria, the model can be solved without

keeping track of the aggregate distribution. The equilibrium is the solution to the represen-

tative agent problem with the appropriate constraints. I therefore solve for the equilibrium

using a fixed point strategy akin to value function iteration:

1) Guess V s.

2) Given V s,solve for p∗:

p∗ = argmax
p

{
(V m(p)− V s)α(Jm(p)− Js)1−α

}
by taking the maximum over a discrete grid of prices p ∈ (0, pA).

3) Given p∗, update c′:

c∗ =argmax
c

ĥ(c)

by taking the maximum over a discrete grid of storage investment strategies c ∈ (0,M).

3) Update V s′.

4) If D(V s, V s′) < ϵ for some ϵ > 0 terminate the algorithm, otherwise repeat steps 2-.4

A.6 Normative Implications

Can the social planner improve welfare by subsidizing storage? I next turn to the problem

of the constrained social planner.
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Lemma. Assume the social planner takes the search technology, contracting frictions, and

the incomplete markets as given. If the social planner cannot make transfers across farmer

states, the decentralized equilibrium is constrained efficient.

Proof. See appendix A.4. The intuition for this result stems from the missing asset market.

Farmers wish to equalize consumption across states, which within-state taxes and transfers

can’t accomplish. In other words, to improve welfare, storage subsidies need to be financed

through state-contingent transfers. If the social planner cannot observe farmer states, is

it possible to make state-contingent transfers? Surprisingly, yes. This result relies on two

observations. First, farmers only need storage when they are searching for a buyer. And sec-

ond, when a trader sells to consumers, they must have purchased crops from a farmer. The

social planner can therefore implement state-contingent transfers by taxing trader revenue

and subsidizing storage. This will reduce farmer consumption once they have matched and

will increase consumption while they are searching.

Proof: Assume the social planner can subsidize storage by 1−τ which is financed through

a lump sum transfer T out of endowment M such that T = τpii. The first order condition

of the farmer with respect to investment is

(1− τ)piu
′(M − pii) = δ′ (i)V s

where

c+ (1− τ)pii ≤ M − T

The social planner problem is then:

max
i,p,τ

V s =
1

ρ+ δ(i) + f(p)
(u(M − pii) + f(p)u(px))

s.t (1− τ)piu
′(M − pii) = δ′ (i)V s

f(p) =

(
(pA − p)x

κ

) 1−α
α

(ρ+ δ(i))[f ′(p)u(px)] + (ρ+ δ(i) + f(p))xu′(px)f(p) = 0
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The first order conditions are:

[i] :
−(ρ+ δ(i) + f(p))piu

′(M − pii)− (u(M − pii) + f(p)u(px))δ′(i)

(ρ+ δ(i) + f(p))2

+ λ[−piu
′′(M − pii) + δ′′(i)pi(1− τ)V s]

+ µ[δ′(i)f ′(p)u(px) + δ′(i)xu′(px)f(p)] = 0

[λ] : pi(1− τ)u′(M − pii) = −δ′(i)V s

[τ ] : − λpiu
′(M − pii) = 0

[p] :
(ρ+ δ(i) + f(p))[f ′(p)u(px) + xu′(px)f(p)]− f ′(p)(f(p)u(px)

(ρ+ δ(i) + f(θ(p)))2

+ µ((ρ+ δ(i))[f ′′(p)u(px) + f ′(p)u′(px)x] + f ′(p)xu′(px)f(p)

+ (ρ+ δ(i) + f(p))x[u′′(px)xf(p) + u′(px)f ′(p)]) = 0

[µ] : (ρ+ δ(i))[f ′(p)u(px)] + (ρ+ δ(i) + f(p))xu′(px)f(p) = 0

The FOC for [τ ] implies that λ = 0. Further substituting the FOC for [µ] into [p] we have:

[i] :
−(ρ+ δ(i) + f(p))piu

′(M − pii)− (u(M − pii) + f(p)u(px))δ′(i)

(ρ+ δ(i) + f(p))2

+ µ[δ′(i)f ′(p)u(px) + δ′(i)xu′(px)f(p)] = 0

[λ] : pi(1− τ)u′(M − pii) = −δ′(i)V s

[p] : µ((ρ+ δ(i))[f ′′(p)u(px) + f ′(p)u′(px)x] + f ′(p)xu′(px)f(p)

+ (ρ+ δ(i) + f(p))x[u′′(px)xf(p) + u′(px)f ′(p)]) = 0

which implies µ = 0. Then social planner FOC collapse to the same FOC as the farmer.

A.7 Model Extensions.

While the simplicity of the model is illustrative of the role of key mechanisms, the model

can be extended along several dimensions.

Search process. The search process can be extended along several dimensions. First, the

baseline model does not model quality loss. Although quality loss is hard to measure, one

way to measure it is through the fraction of crops that are bruised at the point of sale.

Second, the matching function has constant returns to scale. The model can be extended to

include matching functions that encompass both decreasing and increasing returns to scale.
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Traders. In the model, traders make only two decisions: which sub-market p to enter and

whether to accept or reject a harvest. But in practice, traders make ex-ante investments into

the type and quality of vehicles and choose the quantity of goods to purchase. Furthermore,

traders are often individual enterprises and are thus also risk-averse.

Farmers. In the model, farmers make two choices: storage investment and which market

to search in. The model can be extended to include the choice of capital and labor inputs.

Endogenizing the quantity produced will generate feedback between the quantity produced,

the storage investment, and the coordination frictions. This will act as a source of misal-

location because risk-averse farmers will reduce output to minimize their market exposure.

Moreover, the model’s treatment of farmer consumption, home production, and investment

endowment is superficial. Farmers often consume a portion of the crops they grow and sell

the rest.

Price Dynamics. One motive for storage not considered in this paper is the incentive to

wait for higher prices. Harvest times are often correlated across farmers, generating large

shocks to supply with no shocks to demand. This results in price fluctuations - when many

farmers harvest prices are low, and when few farmers harvest prices are high. Farmers who

invest in better storage can wait to sell until prices increase.

B Data

B.1 Aggregate data

Cross-country food loss data is available annually from 2011 to 2021 through the Food and

Agriculture Organization of the United Nations (FAO), which constructs food balance sheets

tracking food supply and utilization by crop and country. The food balance sheets include

measures of agricultural yields (tonnes per hectare of area cultivated), food availability for

consumption (grams per person per day), food supply variability (the standard deviation in

annual per capita food supply), and food loss (percent of domestic supply lost from harvest

up to retail).

Cross-country food loss estimates should be interpreted with caution. Yearly measure-

ments of food loss by country, crop, and stage of the value chain are generally not available,

so losses are often imputed via a small number of case studies extrapolated across time and

space. Moreover, food loss encompasses the degradation in both quantity and quality of

food. But due to the difficulty in measuring quality, cross-country estimates primarily incor-
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porate changes in quantity. A series of follow-up surveys from the International Food Policy

Research Institute (IFPRI) attempts to overcome both the extrapolation and measurement

issue by surveying a small subset of countries and crops31. They conclude that FAO statistics

overestimate physical loss and underestimate quality loss.

I incorporate additional data on country-level agricultural productivity from the World

Bank and the International Labour Organization.

B.2 Cross Country Patterns

I first document cross-country patterns in food loss in the FAO data. Food loss is a worldwide

phenomenon (see Figure 1 for a map of food loss by country). However, food loss is of

particular concern for developing economies, since the share of food loss is decreasing with

GDP32. Figure 11 documents a strong negative relationship between the share of food lost

in the fruit supply chain and GDP - for every 1% increase in GDP per capita, the fraction of

food loss decreases by 1%33. Yet with cross-country evidence alone, it is difficult to attribute

food loss to a specific set of mechanisms. Variation in GDP is correlated with multiple

factors that may affect food loss, such as farm size34 and road density35. To make progress, I

document specific features in Ghana’s fruit and vegetable wholesale markets that affect food

loss.

B.3 Survey Construction

The sample size was determined to achieve a 95% confidence level with a 5% margin of

error, accounting for the total population sizes of farmers and traders. The formula used to

31IFPRI’s survey studies food loss in the potato, maize, beans, teff, and wheat value chains of Ecuador,
Peru, Guatemala, Honduras, Ethiopia, and China.

32Food loss is doubly a concern because agriculture accounts for a larger share of GDP in developing
economics. In Figure 12, I reproduce a well-known result: lower-income countries also have a higher share
of employment in agriculture, which amplifies the welfare consequences of food loss

33Food loss has two first-order economic effects. First, food loss decreases farmer welfare. Farmers who
lose crops miss out on potential income. Figure 13a shows that food loss is negatively correlated with per-
capita value added in agriculture, suggesting that food loss may contribute to the agricultural productivity
gap. Second, food loss decreases consumer welfare. Food loss decreases the availability of perishable crops
necessary for a healthy diet. Figure 13b shows that food loss is positively correlated with food insecurity.
The cross-country food loss patterns suggest that understanding the sources of food loss and potential
policy remedies may be crucial to improving welfare in developing economies and resolving the agricultural
productivity gap.

34A negative effect of farm size on food loss is consistent with a misallocation story. Foster and Rosenzweig
(2022) argue that small farm size contributes to the low levels of mechanization in developing countries.

35See figures 13c and 13d respectively in the appendix.
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Figure 11: Food Loss vs GDP Per Capita

Notes. Binscatter of the percent of food lost in fruit supply chains in
2015 by log of GDP per capita. Each observation is the percent of
food loss by country. Data is from the FAO. Food loss is imputed from
food balance sheets and includes losses from the farming stage up-to
transportation and distribution. Outliers are dropped.

Figure 12: Food Loss vs Agricultural Employment Share

Notes. Binscatter of the agricultural employment share by log of GDP
per capita in 2015. Each observation is the employment share by coun-
try. Data is from the FAO. Outliers are dropped.
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(a) Agricultural Value Added vs Food Loss (b) Food Insecurity vs Food Loss

(c) GDP vs Road Density (d) GDP vs Farm Size

Figure 13: Cross Country Food Loss Patterns

Notes. Binscatters of agricultural value added, food insecurity, road
density, and percentage of small scale farming plotted against GDP
per capita and the percent of food loss. Each observation is a country
in 2015. Data is from the FAO.

estimate the population size is

n =
z2ρ(1− ρ)

E2

where n is the sample size, z is the desired confidence level, E is the margin of error, and

ρ is the estimated proportion of the population that is a farmer or trader respectively. For

farmers, we let ρ = 0.32, which is the fraction of the population in Ghana engaged in

agriculture according to recent estimates from the Ghana Statistical Service. This yields a

sample size of n = 352 per region. The fraction of the population engaged in trading is not

reported, but trading and storage account for approximately 5% of Ghana’s GDP, so we let
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ρ = 0.05, which yields a sample size of n = 76 per region.

I increased the sample size to 450 farmers and 100 traders per region for several reasons.

First, increased precision: a larger sample size reduces the margin of error and increases the

precision of survey results. Second, sub-group analysis: a large sample size enables detailed

analysis within sub-groups, such as analysis of food loss within different districts or across

crop types and farm sizes. Third, diversity and variability: a larger sample size captures

a wider diversity and variability in farming and trading practices. Fourth, non-response

and attrition: a larger sample size accounts for potential non-response and attrition rates.

Finally, policy relevance: a larger sample size provides more robust data to inform decision-

making processes.

B.4 Food Loss in Ghana

Figure 14: Percentage Food Loss by Crop

Notes. Average food loss and standard deviation by crop among farm-
ers. Data is from the Ghana farmer survey. Outliers are dropped.

B.5 National Transportation Survey

In Table 9, I show summary statistics from the 2007 and 2012 National Transport survey

from the Ghana Statistical Agency. In both surveys, the majority of farmers sell at either
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Figure 15: Map of Food Loss in Ghana

Notes. Average food loss by region in Ghana. Data is from the Ghana
farmer survey. Longitude and latitude from interviews with farmers
are mapped to regions and then averaged.

the farm gate or at the local market, have a market within 3km, and have a road that is not

accessible during the rain. Similarly, in both surveys, approximately one-third of respondents

report difficulty in selling their crops. Importantly, limiting the food loss survey sample to

farmers who sell their crops does not seem like an egregious restriction; in the 2012 round of

the National Transport Survey, almost 80% of farmers participated in the market.

B.6 Model Consistent Estimation

I extend the analysis by estimating δ∗ for all crops, only tomatoes, and only okra. I report

the results in appendix tables 10, 11, and 12, respectively. As with the pepper farmers, the

OLS estimates are a magnitude lower than the IV estimates. The IV estimates of δ∗ for all

crops farmers are higher than the full sample and imply an average shelf life of 4 months as

opposed to 6 months. When I subset to only tomato or okra farmers, I lack the power to

estimate δ∗ when I control for farmer characteristics. However, in the baseline specification,

I find an implied equilibrium shelf life of 0.25 months for tomatoes and 1.5 months for okra.

As a robustness check, I extend the regression of food loss on relative storage duration

to all crops, tomatoes, and okra. I report the results in appendix Tables 13, 14, and 15,

respectively. Although the coefficients are statistically different than 0 and the regressions

have a large R2, I reject the hypothesis that estimates are equivalent to one. The lack of an

exact fit is likely the result of two factors. First, measurement error. Farmers are asked to

estimate the average amount of time they store their crops. However, this is not a statistic
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Table 9: Summary Statistics of Farmer Transportation and Marketing Practices

2007 Survey 2012 Survey
# Observations 3232 3913
Frac Farmers Selling Crops 0.77 0.69
Frac Selling in Local Mkt 0.62 0.37
Fraction Selling in Distant Mkt 0.25 0.44
Fraction Selling at Farmgate 0.11 0.17
Fraction with market < 3km 0.65 0.59
Fraction difficulty marketing 0.33 0.23
Fraction with road < 3km 0.73 0.75
Fraction with road that is unmotorable during rainy season 0.76 0.82
Fraction with road that is unmotorable during dry season 0.52 0.65
Fraction with daily transport during harvest 0.32 0.3
Fraction with weekly transport during harvest 0.54 0.57
Fraction with daily transport during lean season 0.21 0.25
Fraction with weekly transport during lean season 0.53 0.49

Notes. Data is from the 2007 and 2012 National Transport Survey run by the Ghana Statistical Agency.

Table 10: Effect of Storage Duration on Food Loss - All Crops

OLS 2SLS

(1) (2) (3) (4)

Average Storage Duration 0.39∗∗∗ 0.15∗∗∗ 4.21∗∗∗ 2.90∗∗∗

(0.05) (0.04) (0.42) (0.72)
Implied Shelf Life (Months) 30 80 3 4

Observations 1,813 1,813 1,813 1,813
Controls ✓ ✓
R2 0.03 0.28 −3.34 −1.34
Adjusted R2 0.03 0.28 −3.34 −1.34
Residual Std. Error 0.18 0.15 0.38 0.28
F Statistic 65.68∗∗∗ 177.03∗∗∗

Notes. The dependent variable is the fraction of food lost and the independent variable is the
average storage duration measured in years. The sample includes all farmers. Controls include
farmer age, the number of family members, and plot size. Coefficients in columns (1) and (2) are
estimated through ordinary least squares for all crops. Coefficients in columns (3) and (4) are es-
timated via two-stage least squares for all crops, where average storage duration is instrumented
by distance to the market. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 11: Effect of Storage Duration on Food Loss - Tomatoes

OLS 2SLS

(1) (2) (3) (4)

Average Storage Duration 3.9∗∗∗ 1.2 48.6∗∗∗ 26.4
(1.1) (0.9) (12.7) (21.6)

Implied Shelf Life (Months) 3 10 0.25 0.5

Observations 321 321 321 321
Controls ✓ ✓
R2 0.04 0.4 −5.0 −1.1
Adjusted R2 0.04 0.4 −5.1 −1.2
Residual Std. Error 0.2 0.2 0.5 0.3
F Statistic 13.2∗∗∗ 52.0∗∗∗

Notes. The dependent variable is the fraction of food lost and the independent variable is
the average storage duration measured in years. The sample includes only tomato farmers.
Controls include farmer age, the number of family members, and plot size. Coefficients in
columns (1) and (2) are estimated through ordinary least squares for all crops. Coefficients
in columns (3) and (4) are estimated via two-stage least squares, where average storage du-
ration is instrumented by distance to the market. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 12: Effect of Storage Duration on Food Loss - Okra

OLS 2SLS

(1) (2) (3) (4)

Average Storage Duration 0.7∗∗ 0.1 7.7∗∗∗ −2.1
(0.3) (0.3) (2.3) (5.2)

Implied Shelf Life (Months) 17 120 1.5

Observations 213 213 213 213
Controls ✓ ✓
R2 0.02 0.3 −1.9 0.1
Adjusted R2 0.02 0.3 −2.0 0.1
Residual Std. Error 0.1 0.1 0.3 0.1
F Statistic 4.9∗∗ 20.3∗∗∗

Notes. The dependent variable is the fraction of food lost and the independent vari-
able is the average storage duration measured in years. The sample includes only
Okra farmers. Controls include farmer age, the number of family members, and plot
size. Coefficients in columns (1) and (2) are estimated through ordinary least squares
for all crops. Coefficients in columns (3) and (4) are estimated via two-stage least
squares, where average storage duration is instrumented by distance to the market.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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(a) Food Loss by Primary Customer

(b) Food Loss by Search Method

Figure 16: Food Loss by Market

Notes. Average fraction of food loss, fraction of farmers who report
difficulty in finding a buyer, and the relative storage duration (average
duration divided by maximum shelf life) by primary buyer and search
method. Data is from the Ghana farmer survey.

they generally track. Furthermore, if they can sell their crops, they do not observe their

crops’ full shelf life. The reported value is their best guess at how long their crops could

last. Second, model misspecification. The Poisson process used to model the depreciation

process is memoryless; this may not be the case in practice and the depreciation rate can
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Figure 17: Food loss by ease of finding a buyer

depend on the contemporaneous quality of the crop. Crops also depreciate gradually, which

the model abstracts away from.

Table 13: Effect of Relative Storage Duration on Food Loss - All Crops

OLS 2SLS

(1) (2) (3) (4)

Relative Storage Duration 0.35∗∗∗ 0.11∗∗∗ 0.60∗∗∗ 0.51∗∗∗

(0.02) (0.02) (0.03) (0.15)

Observations 1,637 1,637 1,272 1,272
Controls ✓ ✓
R2 0.17 0.31 0.11 0.19
Adjusted R2 0.17 0.31 0.10 0.18
Residual Std. Error 0.15 0.14 0.16 0.15
F Statistic 337.97∗∗∗ 185.35∗∗∗

Notes. The dependent variable is the fraction of food lost and the independent variable is the
average storage duration measured in years. The sample includes all farmers. Controls include
farmer age, the number of family members, and plot size. Coefficients in columns (1) and (2)
are estimated through ordinary least squares for all crops. Coefficients in columns (3) and (4)
are estimated via two-stage least squares for all crops, where average storage duration is instru-
mented by distance to the market. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 14: Effect of Relative Storage Duration on Food Loss - Tomatoes

OLS 2SLS

(1) (2) (3) (4)

Relative Storage Duration 0.46∗∗∗ 0.02 0.68∗∗∗ −0.31
(0.07) (0.07) (0.10) (0.45)

Observations 303 303 219 219
Controls ✓ ✓
R2 0.14 0.39 0.19 0.26
Adjusted R2 0.14 0.39 0.18 0.25
Residual Std. Error 0.19 0.16 0.17 0.16
F Statistic 50.30∗∗∗ 48.68∗∗∗

Notes. The dependent variable is the fraction of food lost and the independent variable is
the average storage duration measured in years. The sample only includes Tomato farmers.
Controls include farmer age, the number of family members, and plot size. Coefficients in
columns (1) and (2) are estimated through ordinary least squares for all crops. Coefficients
in columns (3) and (4) are estimated via two-stage least squares, where average storage du-
ration is instrumented by distance to the market. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 15: Effect of Relative Storage Duration on Food Loss - Okra

OLS 2SLS

(1) (2) (3) (4)

Relative Storage Duration 0.29∗∗∗ 0.13∗∗ 0.37∗∗∗ 0.13
(0.04) (0.05) (0.06) (0.27)

Observations 179 179 161 161
Controls ✓ ✓
R2 0.21 0.30 0.25 0.34
Adjusted R2 0.21 0.28 0.24 0.32
Residual Std. Error 0.13 0.12 0.12 0.11
F Statistic 48.25∗∗∗ 18.48∗∗∗

Notes. The dependent variable is the fraction of food lost and the independent variable is
the average storage duration measured in years. The sample only includes Okra farmers.
Controls include farmer age, the number of family members, and plot size. Coefficients in
columns (1) and (2) are estimated through ordinary least squares for all crops. Coefficients
in columns (3) and (4) are estimated via two-stage least squares, where average storage du-
ration is instrumented by distance to the market. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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B.7 Example of Pepper Drying

Figure 18: Pepper Drying Operation

Notes. A photo of pepper drying in Ghana’s Volta region near Ayitepa.
Peppers are placed on plastic tarps and exposed to the sun for multiple
days. Rain or pests can cause large losses. Once dried, the peppers
are then often boiled and ground into a powder.
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