Corporate Finance Predictive Environment

Corporate Decision-Making

Discussion 000

AlphaManager: A Data-Driven-Robust-Control Approach to Corporate Finance

Murillo Campello¹ Lin William Cong² Luofeng Zhou³

¹UF Warrington ²Cornell Johnson ³NYU Stern

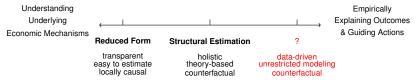
ABFER Corporate Finance, May 19, 2025

Slide 1 / 20 — Campello, Cong, and Zhou (2025) — AlphaManager: A DDRC Approach to Corporate Finance

Corporate Finance Predictive Environment

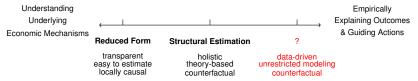
Corporate Decision-Making

Discussion 000

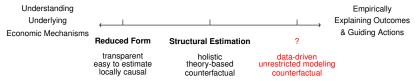

- Graham (2022, AFA Presi-Address): Corporate finance and reality
 - CF models limited ability for explaining/predicting outcomes
 - ▶ around 10% of R² in-sample, worse out-of-sample
 - call for models closer to the reality

- Graham (2022, AFA Presi-Address): Corporate finance and reality
 - CF models limited ability for explaining/predicting outcomes
 - around 10% of R^2 in-sample, worse out-of-sample
 - call for models closer to the reality
- Mitton (2022, RFS): Methodological Variation in Empirical CF
 - p-hacking and theory-fitting in empirical CF
 - call for unified definition and framework for universal analysis

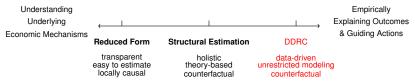
- Graham (2022, AFA Presi-Address): Corporate finance and reality
 - CF models limited ability for explaining/predicting outcomes
 - around 10% of R^2 in-sample, worse out-of-sample
 - call for models closer to the reality
- Mitton (2022, RFS): Methodological Variation in Empirical CF
 - p-hacking and theory-fitting in empirical CF
 - call for unified definition and framework for universal analysis
- Spiegel (2023, Financial Review): For corporate finance to truly advance we need more genuinely testable models
 - CF models are often static
 - lack of interplay between firms and financial markets
 - call for more dynamic and testable models


- Graham (2022, AFA Presi-Address): Corporate finance and reality
- Mitton (2022, RFS): Methodological Variation in Empirical CF
- Spiegel (2023, Financial Review): For corporate finance to truly advance we need more genuinely testable models
- Challenge: many states and controls with endogeneous and nonlinear interactions

- Graham (2022, AFA Presi-Address): Corporate finance and reality
- Mitton (2022, RFS): Methodological Variation in Empirical CF
- Spiegel (2023, Financial Review): For corporate finance to truly advance we need more genuinely testable models
- Challenge: many states and controls with endogeneous and nonlinear interactions
- AI to the rescue?
 - big data for firms and financial markets
 - more flexible and efficient algorithms
 - more powerful computation
 - advancement of large models applied to finance


$$\max_{\{u_{t_0},...,u_{t_0+T}\}} \mathbb{E}_{t_0} \sum_{t=t_0}^{t_0+T} r(X_t, u_t) \qquad s.t. \ \Delta X_{t+1} = f(X_t, u_t) + \varepsilon_{t+1}$$

- e.g., a manager as an economic agent trying to maximize shareholder's equity by making managerial decisions
- ► X_t: state
- ► ut: control
- f: mean law of motion function
- r: reward function (instantaneous utility function)


$$\max_{\{u_{t_0}, \dots, u_{t_0+T}\}} \mathbb{E}_{t_0} \sum_{t=t_0}^{t_0+T} r(X_t, u_t) \qquad s.t. \ \Delta X_{t+1} = f(X_t, u_t) + \varepsilon_{t+1}$$

- · Reduced-form approaches: need not spell out explicitly
 - ► identify local causality ⇒ counterfactuals
 - fragmented knowledge
 - internal validity

$$\max_{\{u_{t_0}, \dots, u_{t_0+T}\}} \mathbb{E}_{t_0} \sum_{t=t_0}^{t_0+T} r(X_t, u_t) \qquad s.t. \ \Delta X_{t+1} = f(X_t, u_t) + \varepsilon_{t+1}$$

- · Reduced-form approaches: need not spell out explicitly
- · Structural approaches: specify a simplified version
 - limited state variables of interest (for tractability)
 - dynamics of these variables exogenously given
 - micro-founded parameters within the framework
 - balance between internal and external validity

$$\max_{\{u_{t_0},...,u_{t_0+T}\}} \mathbb{E}_{t_0} \sum_{t=t_0}^{t_0+T} r(X_t, u_t) \qquad s.t. \ \Delta X_{t+1} = f(X_t, u_t) + \varepsilon_{t+1}$$

- · Reduced-form approaches: need not spell out explicitly
- Structural approaches: specify a simplified version
- Our approach: specify and solve the whole problem
 - more to the external validity
 - predictive environment module (PEM): supervised learning to estimate the law-of-motions of states and the model uncertainty
 - decision-making module (DMM): reinforcement learning (RL) for high-dimensional stochastic control approximation
 - supplement the internal validity concern using transfer learning

Introduction	
000000	

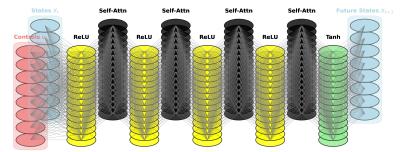
Literature and Contribution

- Corporate Finance:
 - New DDRC overcoming limitations and unifying framework
 - Machine learning in Corporate Finance
 (i) Textual analysis, e.g., Bellstam, Bhagat, & Cookson, 2021, Li et al., 2021, Hanley and Hoberg, 2019, Cong, Liang, & Zhang, 2019, etc.;
 (ii) Supervised learning, e.g., Erel et al., 2021, Lyonnet and Stern, 2022)
 - Non-text-based "large" model tailored for CF
- Robust Control:
 - Mostly theory, focus on macro time series rather than utilizing cross-sectional info (e.g., Hansen and Sargent, 2001; Ju and Miao, 2012)
 - Application in corporate finance
 - Use ambiguity to assess the importance of causality/theory
- Artificial Intelligence:
 - ► Goal-oriented search (Cong et al., 2020, 2022, 2023)
 - Model-based offline RL (empirical)
 - Incorporate theory/reduced-form/structural into DDRC (transfer learning)

Introduction	
000000	

Data and Variables

- Data: Compustat (firm fundamentals), CRSP (market return and volatility), and Chicago Fed (macro state variables)
- From 1976 to 2023, quarterly; 20,485 different firms ranging from 1976:Q1 to 2023:Q2, with 784,460 firm-quarter observations
- State variables (built from 10 fundamental + 4 market + 4 macro)
 - Total asset, current asset, gross revenue, accounts payable, cogs, interest paid net, inventories, book current liabilities, receivables, revenue
 - Market cap, enterprise value, quarterly equity return, quarterly volatility
 - Chicago Fed indices: risk, credit, leverage, and non-financial leverage
 - Plus their History (last 4 observations) and their growth rate version
- Decision variables (9 dimensions of actions in the current quarter)
 - Leverage, acquisitions, investment, cash savings, dividend, debt issuance, equity issuance, R&D expenses, repurchases
- Total over 3M parameters; trained using A100 GPU (RedCloud)/P100 (Azure)/T4 (RedCloud) with training time $\sim 3-7$ days per set


Introduction	
000000	

Corporate Finance Predictive Environment

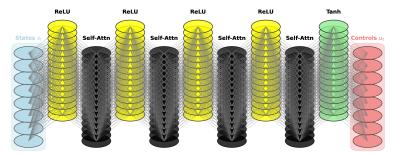
Corporate Decision-Making

Discussion 000

AlphaManager (AM) Architecture

Panel A: Predictive Environment Module (PEM)

• Predictive Environment module


$$\max_{\{u_{t_0},\ldots,u_{t_0+T}\}} \mathbb{E}_{t_0} \sum_{t=t_0}^{t_0+T} r(X_t, u_t) \qquad s.t. \ \Delta X_{t+1} = f(X_t, u_t) + \varepsilon_{t+1}$$

Corporate Finance Predictive Environment

Corporate Decision-Making

Discussion 000

AlphaManager (AM) Architecture

Panel B: Decision-making Module (DMM)

AlphaManager Policy Module

$$\max_{g(\cdot)} \mathbb{E}_{t_0} \sum_{t=t_0}^{t_0+T} r(X_t, g(X_t)) \qquad s.t. \ \Delta X_{t+1} = f(X_t, g(X_t)) + \varepsilon_{t+1}$$

Introduction	
000000	

Robust Control and Ambiguity

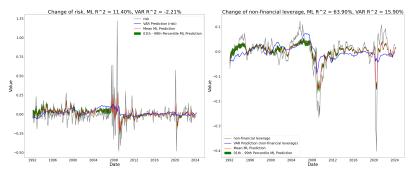
- Imperfection of a model: overfitting, data shifts \Rightarrow model uncertainty
- Three sources of uncertainty (Hansen and Sargent, 2024):
 - Risk in-model stochastic innovation
 - Misspecification limited power of the model class
 - Ambiguity uncertainty about model choice
- Inspiration from climate finance (Barnett, Brock, and Hansen, 2020): max-min + relative-entropy punishment with probability adjustment
- A bag of PEMs, indexed by i = 1, 2, ..., I, and ambiguity aversion
- Ambiguity aversion: maximize the minimum of reward (max-min)

$$r^{i}(X_{t},g(X_{t})) \Rightarrow \min_{i=1,2,\ldots,l}r^{i}(X_{t},g(X_{t}))$$

Boosting error: the greatest dispersion among model predictions

BoostingError(
$$X_t, u_t$$
) = $\frac{1}{D} \sum_{d=1}^{D} \left(\max_{i=1,2,...,l} \hat{X}_{t+1,d}^i - \min_{i=1,2,...,l} \hat{X}_{t+1,d}^i \right)^2$

• Threshold punishment as a function of BoostingError


Corporate Finance Predictive Environment

Corporate Decision-Making

Discussion 000

Empirical Results: Prediction and Ambiguity for Macroeconomic States

- · Individual firms hard to influence the aggregate economy
- · We train 20k NNs with past macro states as only inputs
- Prediction spread as a proxy for ambiguity
- VAR as benchmark

Corporate Finance Predictive Environment

Corporate Decision-Making

Discussion 000

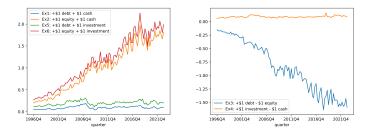
Empirical Results: PEM's Predictions of Firm Outcomes

• High-dimensional, high-fidelity OOS, reduce costly experiments.

	Ignoring (Control	With Control			
State Variable	Training R ²	Test R ²	Training R ²	Test R ²		
Book Asset Growth	-4.09%	-8.15%	55.44%	62.56%		
Current Asset Growth	-3.58%	-7.10%	44.49%	51.21%		
Gross Revenue Growth	29.54%	28.68%	31.33%	30.88%		
Accounts Payable Growth	21.46%	24.43%	24.40%	27.64%		
COGS Growth	25.68%	26.76%	27.00%	28.56%		
Net Interest Paid Growth	73.26%	77.17%	73.36%	77.28%		
Inventory Growth	12.78%	13.71%	17.04%	18.92%		
Current Liability Growth	8.88%	7.72%	21.89%	22.69%		
Receivables Growth	17.52%	18.77%	21.59%	23.20%		
Net Income Growth	29.51%	28.59%	31.31%	30.80%		
Trading Volume Growth	12.81%	16.53%	15.77%	20.75%		
Log Gross Return Growth	47.90%	45.27%	50.04%	48.19%		
Market Cap Growth	1.32%	-3.33%	9.32%	7.07%		
Enterprise Value Growth	-0.97%	-5.73%	14.61%	13.14%		

- · Controls more important for some state evolution
- Consistent with known local (causal) patterns from the literature

Corporate Finance Predictive Environment


Corporate Decision-Making

Discussion 000

PEM Application: Recapitalization Analysis

How does enterprise value change if a firm:

- 1. raises \$1 more debt and put that \$1 into its cash savings
- 2. raises \$1 more equity and put that \$1 into its cash savings
- 3. raises \$1 more debt and \$1 less equity
- 4. puts \$1 cash into investment
- 5. raises \$1 more debt and put that \$1 into investment
- 6. raises \$1 more equity and put that \$1 into investment

Slide 10 / 20 — Campello, Cong, and Zhou (2025) — AlphaManager: A DDRC Approach to Corporate Finance

Heterogeneous PEM Performance (MSE) for System States

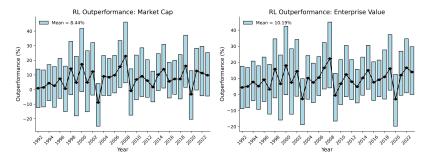
		full sa	ample	pre-dotcom		dotcom-GFC		post-GFC	
variable		mean	std	mean	std	mean	std	mean	std
Total Assets	high	2.16%	8.53%	2.57%	9.42%	2.23%	8.48%	1.76%	7.68%
Iolal Assels	low	4.40%	13.33%	4.84%	13.77%	4.30%	12.80%	4.08%	13.26%
COGS	high	2.84%	11.01%	3.30%	12.32%	2.74%	10.64%	2.50%	9.95%
COGS	low	4.49%	13.75%	4.94%	14.67%	4.32%	13.33%	4.20%	13.15%
Current ishility	high	5.48%	13.98%	6.12%	14.75%	5.59%	14.20%	4.84%	13.09%
CurrentLiability	low	6.69%	15.66%	6.83%	15.42%	6.58%	15.47%	6.64%	15.98%
MarketCan	high	7.49%	15.51%	9.77%	18.45%	7.79%	15.74%	5.30%	11.83%
MarketCap	low	12.42%	21.40%	12.88%	21.69%	13.42%	22.53%	11.40%	20.34%
Enternaise)/elue	high	6.11%	13.87%	8.60%	17.90%	5.99%	12.75%	4.02%	9.47%
EnterpriseValue	low	10.37%	19.01%	11.55%	20.73%	11.34%	19.67%	8.73%	16.75%
MacroRisk	high	4.81%	5.51%	6.90%	7.23%	6.24%	6.75%	5.23%	6.26%
Macronisk	low	5.74%	6.57%	5.25%	5.93%	5.11%	5.92%	5.43%	6.62%

- Subsample episodes: pre-dot com, dot com to GFC, post-GFC
- Book asset: small firms has higher prediction error and std, pre-dotcom has the highest mean and std
- COGS: both higher and lower halves have declining average MSE
- Market cap and enterprise value: lower half has higher MSE
- Macro 1 (risk): lower half is doing better in general, but not for the post-GFC period

PEM: Heterogeneous Ambiguity for System States

		full sample		pre-dotcom		dotcom-GFC		post-GFC	
variable		mean	std	mean	std	mean	std	mean	std
Total Assets	high	6.93%	3.72%	7.18%	3.74%	7.02%	3.65%	6.64%	3.72%
IUIAI ASSEIS	low	6.82%	3.79%	6.90%	3.84%	6.84%	3.69%	6.72%	3.82%
COGS	high	5.50%	2.70%	5.46%	2.40%	5.68%	2.68%	5.42%	2.93%
0003	low	5.21%	2.67%	4.97%	2.33%	5.42%	2.70%	5.30%	2.89%
Current inhibitu	high	7.30%	3.67%	7.21%	3.52%	7.44%	3.66%	7.29%	3.79%
CurrentLiability	low	6.84%	3.55%	6.57%	3.49%	6.91%	3.46%	7.02%	3.63%
MarketCan	high	4.68%	2.78%	4.51%	2.40%	5.54%	3.59%	4.28%	2.35%
MarketCap	low	5.27%	3.20%	4.49%	2.31%	6.03%	3.83%	5.47%	3.29%
EnterpriseValue	high	5.85%	2.67%	5.70%	2.50%	6.57%	2.98%	5.54%	2.53%
Enterprise value	low	6.11%	2.91%	5.45%	2.52%	6.78%	3.15%	6.27%	2.94%
MaaraDiak	high	5.63%	1.82%	5.98%	1.91%	6.33%	1.86%	5.93%	1.92%
MacroRisk	low	5.91%	1.94%	5.42%	1.84%	5.87%	1.87%	5.94%	2.04%

- Book asset: lower half has lower ambiguity, pre-dot com episode has the lowest mean and std
- · COGS: both higher and lower halves have increasing average ambiguity
- Market cap, and enterprise value: highest ambiguity during dot com to GFC
- Macro1 (risk): lower half is doing better in general, but not for the post-GFC period

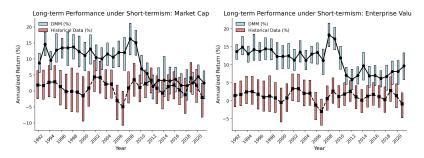

Corporate Finance Predictive Environment

Corporate Decision-Making

Discussion 000

Out-Performance of AlphaManager (DMM)

- Objectives: next Q and next 8Q market cap and enterprise value.
- Next Q market cap increase (short-termist)
- Overall short-horizon outperformance: 8.44% and 10.19%.
- Long-horizon objective: 8.73% and 4.43%



Corporate Finance Predictive Environment

Corporate Decision-Making ○●○○○ Discussion 000

Long-term DMM Performance Under Short-Termism

- Objective: 1QTR market cap (left) or enterprise value (right) growth
- Evaluation period: 8QTRs (blue bars)
- Benchmark: firm performance in the real data (red bars)

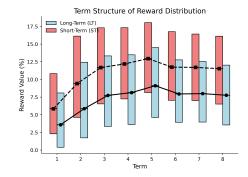
Corporate Finance Predictive Environment

Corporate Decision-Making

Discussion 000

Term Structure of AM Performance Under Ambiguity

- Is long-term performance for short-term RL possibly better than that for long-term RL?
 - Intuition: LT RL is optimal under LT objective


Corporate Finance Predictive Environment

Corporate Decision-Making

Discussion 000

Term Structure of AM Performance Under Ambiguity

 Is long-term performance for short-term RL possibly better than that for long-term RL?

ST RL does a better job along the term structure. Why?

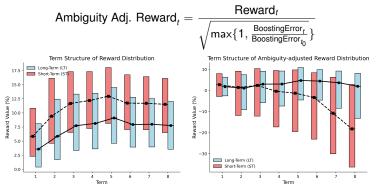
Corporate Finance Predictive Environment

Corporate Decision-Making

Discussion 000

Term Structure of AM Performance Under Ambiguity

- Is long-term performance for short-term RL possibly better than that for long-term RL?
- ST RL does a better job along the term structure. Why?
- ST and LT RLs have different ambiguity constraints
 - ► ST RL doesn't care about LT ambiguity ⇒ looser constraint
 - Constrained instead of unconstrained optimization


Corporate Finance Predictive Environment

Corporate Decision-Making

Discussion 000

Term Structure of AM Performance Under Ambiguity

- Is long-term performance for short-term RL possibly better than that for long-term RL?
- ST RL does a better job along the term structure. Why?
- ST and LT RLs have different ambiguity constraints
- · Use ambiguity-adjusted reward to test

Heterogeneous Performance of AlphaManager by Value Decile

	full sample		pre-dotcom		dotcom-GFC		post-GFC	
book-to-market decile	mean	std	mean	std	mean	std	mean	std
1	3.98%	19.72%	4.22%	15.90%	-3.89%	23.80%	9.99%	17.76%
2	5.37%	17.42%	5.63%	13.74%	-1.00%	20.94%	10.27%	16.36%
3	5.87%	16.05%	6.28%	11.79%	-0.26%	19.94%	10.42%	15.07%
4	6.53%	15.47%	7.28%	11.31%	0.43%	18.94%	10.67%	14.83%
5	7.17%	15.04%	7.81%	10.90%	1.73%	18.68%	10.90%	14.42%
6	7.72%	14.69%	8.40%	10.81%	2.54%	18.10%	11.32%	14.05%
7	8.10%	14.91%	8.67%	10.72%	3.46%	18.16%	11.48%	14.84%
8	8.15%	15.10%	8.56%	10.63%	3.36%	18.55%	11.50%	15.24%
9	8.05%	15.54%	9.06%	10.18%	2.88%	19.60%	10.67%	15.73%
10	7.88%	15.38%	8.88%	10.72%	2.20%	17.65%	10.51%	16.63%

- Objective: enterprise value growth in the next 2 years
- AlphaManager performance mainly driven by value firms

Introduction 000000

Corporate Finance Predictive Environment

Corporate Decision-Making

Discussion 000

Optimal Actions Versus Historical Actions

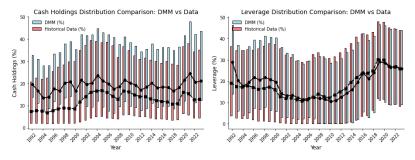


Figure: Optimal decisions (blue lines) vs real decisions (red lines): cash holdings (left) and leverage (right)

Maximizing **next Q enterprise value**: more acquisitions, increasing cash holdings more, keeping the same leverage, paying out more dividend, and increasing investment, especially in R&D, allowing more variations in investments, and more repurchases during bad times.

Corporate Finance Predictive Environment

Corporate Decision-Making

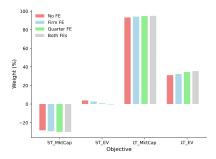
Discussion •00

Three Perspectives on Out-performance of AlphaManager

- Explanation #1: managers are not skilled enough to realize their goals
 - Intuition: managerial decisions are not aligned with their preferences
 - Example: bad execution or limited information
 - ► Out-performance ⇔ how irrational the manager is
- Explanation #2: the objective is mis-specified
 - Intuition: if managers are rational and the preference is correctly specified, then the expected out-performance of AM should be 0
 - Example: ESG, lobbying threat, personal achievement
 - ► Out-performance ⇔ how mis-specified the preference is
- Explanataion #3: firms face unobservable constaints
 - Intuition: managers wanted to but are not able to do so
 - Example: financial constraints in borrowing, lack of investment opportunities
 - ► Out-performance ⇔ shadow prices of binded constraints

Corporate Finance Predictive Environment

Corporate Decision-Making


Discussion OOO

Revealed Managerial Preferences

- · Exogeneously-specified objectives are too ideal
- Real managers may care about a linear combination of them
- A projection exercise:

$$\min_{\beta_k} \left(\sum_{k=1}^4 \beta_k \cdot u_{j,t,k} - u_{j,t}^* \right)^2 \quad \text{s.t.} \sum_{k=1}^4 \beta_k = 1$$

*R*²s are around 10% ⇒ the rest 90% variation because of either nonlinearity or mis-specification

Corporate Finance Predictive Environment

Corporate Decision-Making

Discussion 000

Further Discussion and Takeaways

Piecing Together Corporate Finance Research

- Ambiguity and the need for theory/reduced-form/structural models
 - Boundary of data-driven approach
- Ambiguity-guided transfer learning
 - Combining insights and predictions from other approaches to improve internal validity

Corporate Finance Predictive Environment

Corporate Decision-Making

Discussion 000

Further Discussion and Takeaways

Piecing Together Corporate Finance Research

- Ambiguity and the need for theory/reduced-form/structural models
 - Boundary of data-driven approach
- Ambiguity-guided transfer learning
 - Combining insights and predictions from other approaches to improve internal validity

Takeaways:

- DL and robust control for building "world model" of corporate finance
- Deep reinforcement learning as heuristic search for optimizing arbitrary managerial goals/objectives
- A data-driven-robust-control approach to corporate finance