Beyond the Aggregate: Heterogeneous Effects of Monetary Policy on Credit Allocation

Sui-Jade Ho^{1,2} Özer Karagedikli^{1,3} Samantha Ong²

¹Asia School of Business ²Bank Negara Malaysia ³Centre for Applied Macroeconomic Analysis

> ABFER Annual Conference May 2025

⁰Disclaimer: The views expressed are those of the authors and do not necessarily reflect those of Bank Negara Malaysia.

Motivation: Studying the Transmission Mechanism

- Monetary policy makers always interested on the monetary policy transmission to the economy.
- Traditionally, we look at the overall effects.
- Since the Global Financial Crisis, more demand for assessments on the distributional consequences of policy. (Bonifacio et al., 2021; BIS, 2021)
- Recent (largely US-based) evidence from monetary stimulus (McKay & Wolf, 2023):
 - Low income: benefit via labor market
 - Middle income: benefit via lower mortgage rates
 - High income: benefit from capital gains on assets
- These channels are conditional on financial structures: fixed vs floating rates, access to credit, contract design.

▶ Literature

How does monetary policy affect mortgage allocation across the income distribution?

- Mortgages are the largest household liability in many countries—and a central conduit for monetary policy transmission.
- Heterogeneous agents differ in liquidity constraints, leverage, and borrowing intent.
- Floating-rate mortgages expose borrowers immediately to policy shocks, affecting incentives and search

What We Do & Contribution

- Data: Malaysian credit registry (2017–2023) with exact application, approval and origination dates.
- Identification Strategy: Event study (+/- 14 days window) over 42 monetary policy meetings
- Five outcome margins Demand (application value) Approval probability Origination size Maturity Search probability
- Distribution: Heterogeneity by income decile

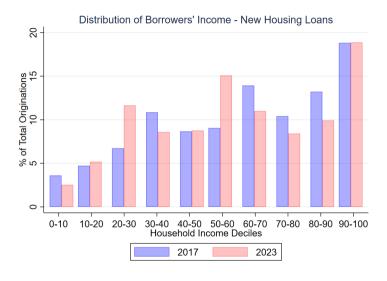
Our contribution

- Transmission mechanism in credit market across income distribution using high frequency analysis.
- Better identification of impact on credit due to the exact dates of applications, approvals and originations.
- Potential role for search channel.

Literature Review

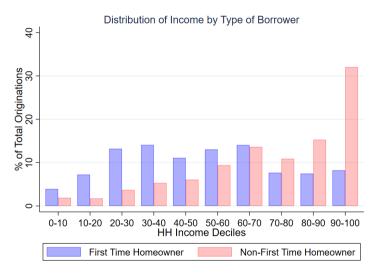
- Distributional macro effects: Coibion et al., 2017; Amberg et al., 2022; Leahy & Thapar, 2022; Samarina & Nguyen, 2024; Bartscher et al., 2022; Andersen et al., 2023; McKay & Wolf, 2023; BIS, 2021; Bonifacio et al., 2021
- Credit-registry evidence: Jiménez et al., 2012; Jiménez et al., 2014; Abuka et al., 2019; Ligonniere & Ouerk, 2024; Jasova et al., 2021; Elliott et al., 2019
- Housing / mortgage channels: Di Maggio et al., 2017; Cloyne et al., 2020; Ringo, 2023; Campbell & Cocco, 2003; Fuster et al., 2021; Calza et al., 2013; Greenwald, 2016; Carozzi et al., 2024
- Borrower search and credit allocation: Agarwal et al., 2024; Hortaçsu & Syverson, 2004
- Shock identification: Kuttner, 2001; Miranda-Agrippino & Ricco, 2021; Gürkaynak et al., 2005; Ho & Karagedikli, 2021

Preview of Main Findings


- Average impact: Decline in application value, and origination value.
- **Distributional impact:** Top 40% income deciles absorb ≈all the contraction; bottom 60% largely inelastic.
- **Approval rate:** Falls slightly only for middle deciles (-3–4pp)
- Loan maturities: Stay flat (contract standardisation).
- **Search probability**: Some evidence of an increase in the probability of search, particularly among higher-income applicants.


Data

- Credit-registry universe: mortgage applications, approvals, rejections and originations.
 - \sim 3.4 million mortgage applications. \sim 1.4 million originations (2017–23)
 - ~99 % *floating-rate* mortgages
 - Borrower characteristics include income decile, repeat-borrower flag, age, location, sector of employment etc.
 - Loan terms include amount, maturity and LTV.
 - Monthly reports with specific dates of loan applications, status updates (approval) and originations
- Monetary policy indicators: High-frequency (daily) surprises: Ho & Karagedikli (2021) a la Kuttner (2001)
 - Adjusted for central bank information effect (Miranda-Agrippino & Ricco (2021))
- Household income deciles: Mapped to official national thresholds



ASIASchool of Business

Empirical Strategy

(1) Baseline:

$$Y_{imst} = \alpha + \beta_1 \operatorname{MP}_t \times \operatorname{D}_t + \sum_{k=1}^{10} \beta_{2k} \operatorname{IQ}_{ik} + \gamma X_{it} + \nu_{m,t} + \psi_{s,t} + \varepsilon_{imst}$$

- *Y_{imst}* Loan outcome: log real application value, approval dummy, log origination value, or loan maturity.
- MP_t One-day Monetary Policy surprise.
- D_t Indicator = 1 for days [0, +14]; 0 for days [-14, -1].
- IQ_{ik} Borrower in income decile k.
- X_{it} Borrower covariates.
- $\nu_{m,t}$ Bank \times time fixed effects: *absorbs bank-window specific factors.*
- $\psi_{s,t}$ State \times time fixed effects: *absorbs state-window specific factors.*

Empirical Strategy

(1) Baseline:

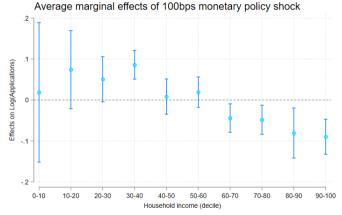
$$Y_{imst} = \alpha + \beta_1 \operatorname{MP}_t \times \operatorname{D}_t + \sum_{k=1}^{10} \beta_{2k} \operatorname{IQ}_{ik} + \gamma X_{it} + \nu_{m,t} + \psi_{s,t} + \varepsilon_{imst}$$

(2) With Income Interaction:

$$Y_{imst} = \alpha + \beta_1 \operatorname{MP}_t \times \operatorname{D}_t + \sum_{k=1}^{10} \beta_{2k} \operatorname{IQ}_{ik} \times \operatorname{MP}_t \times \operatorname{D}_t + \gamma X_{it} + \nu_{m,t} + \psi_{s,t} + \varepsilon_{imst}$$

- Y_{imst} Loan outcome: log real application value, approval dummy, log origination value, or loan maturity.
- MP_t One-day Monetary Policy surprise.
- D_t Indicator = 1 for days [0, +14]; 0 for days [-14, -1].
- IQ_{ik} Borrower in income decile k.
- X_{it} Borrower covariates.
- $\nu_{m,t}$ Bank × time fixed effects: *absorbs bank-window specific factors*.
- $\psi_{s,t}$ State \times time fixed effects: *absorbs state-window specific factors*.

Baseline


Table 1: Summary of Baseline Regressions

	Application	Probability of Approval	New Mortgage Originations	Maturity
Monetary Policy Surprise \times D	$egin{array}{c} -0.0145^{*} \ (0.0079) \end{array}$	-0.0287 (0.0177)	-0.0850*** (0.0272)	-0.127 (0.221)
$\begin{array}{l} \textit{Fixed effects} \\ \text{Bank} \times \text{Time} \\ \text{State} \times \text{Time} \end{array}$	Yes	Yes	Yes	Yes
	Yes	Yes	Yes	Yes
Observations R^2	1,448,448	1,409,506	582,119	580,247
	0.353	0.113	0.282	0.378

Notes: Standard errors (in parentheses) are clustered at the bank level. All specifications include borrower–level controls (income deciles, age, gender, employment-sector dummies, civil-servant indicator, first-loan and first-housing-loan flags) and income-decile dummies. ***p < 0.01, **p < 0.05, *p < 0.1.

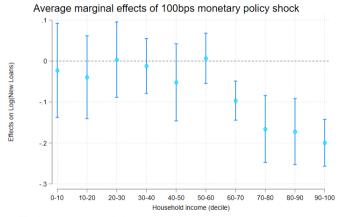
Application Values



Note: 95% confidence intervals are included in this plot.

Figure 1: Values of Applications for New Mortgages

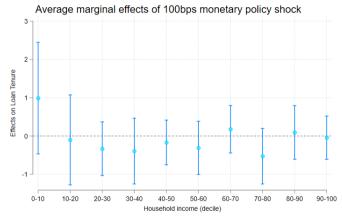
Probability of Approval



Note: 95% confidence intervals are included in this plot.

Figure 2: Probability of loan approvals

New Mortgage Originations



Note: 95% confidence intervals are included in this plot.

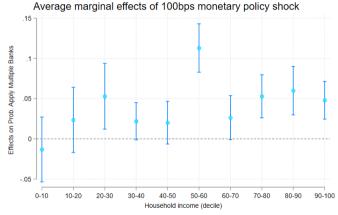
Figure 3: New mortgage loan

Maturity

Note: 95% confidence intervals are included in this plot.

Figure 4: Loan tenure

Borrower Search


• Why search? \rightarrow Some borrowers may search for better terms and conditions from other banks.

$$\mathbf{Y}_{it} = \alpha + \beta_1 M P_t \times D_{it} + \sum_{k=1}^{K} \beta_{2k} I Q_{ik} \times M P_t \times D_{it} + \gamma \mathbf{X} i t + \psi_{s,t} + \varepsilon_{it}$$
(1)

- Key difference in specification:
 - Dependent variable: Binary variable (Applying to more than one bank (1) vs Applying to only one bank (0))
 - No bank fixed effects as search involves multiple banks.

Search

Note: 95% confidence intervals are included in this plot.

Figure 5: Probability of applying to more than one bank

Robustness

- 1. Alternative Size of Event Windows: \pm 21 days
- 2. Alternative Measures of Household Income and Income Cutoffs
 - Easterly (2001), Middle class as households with incomes between the 20th and 80th percentiles of the income distribution.
 - Krueger (2012): Middle class as households with incomes between 50 percent and 150 percent of the median income.
 - Local definitions in Malaysia: B40, M40, T20
- 3. Alternative Measure of Monetary Policy : Change in the policy rate
- 4. Bank controls (capital, liquidity etc)

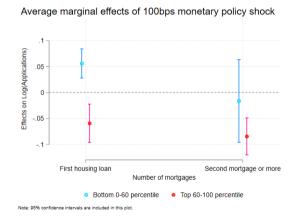
ASIASchool of Business

Mechanism Hypothesis: Repeat Borrowers as Marginal Adjusters

- **Repeat buyers / Investors:** Engage in discretionary purchases (e.g., upgrades, investment properties) ⇒ more sensitive to borrowing costs.
- Higher-income borrowers: More likely to be repeat buyers
- Hypothesis: Monetary tightening should reduce borrowing more among high-income repeat borrowers due to the discretionary nature of their purchases and increased sensitivity to interest rates.

Empirical Strategy for Mechanism Test

 $Y_{i,t} = \beta_0 + \beta_1 M P_t \times D_t + \beta_2 HighIncome_i + \beta_3 NonFirst_i + \beta_4 (MP_t \times D_t \times HighIncome_i)$ $+ \beta_5 (MP_t \times D_t \times NonFirst_i) + \beta_6 (HighIncome_i \times NonFirst_i)$


 $+ \beta_7 (MP_t \times D_t \times HighIncome_i \times NonFirst_i) + X_{i,t} \Gamma + \nu_{m,t} + \psi_{s,t} + \varepsilon_{i,t}$ (2)

Interaction model:

- High-income dummy (Top 40 percent of income)
- Repeat borrower dummy (Non first-time buyer)
- Outcomes tested: Loan applications, approval probability, loan origination value.

Mechanism: First-Time vs. Repeat Borrowers and Income Groups

Figure 6: Loan Applications

Mechanism: First-Time vs. Repeat Borrowers and Income Groups

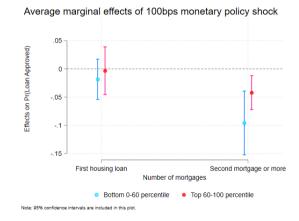


Figure 7: Probability of Loan Approved

Mechanism: First-Time vs. Repeat Borrowers and Income Groups

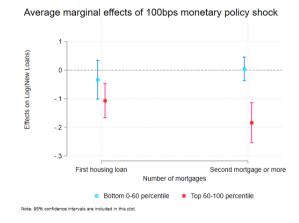


Figure 8: New Loans Originated

Conclusion

In the mortgage market, monetary policy transmits through discretionary margins at the top, with limited aggregate credit effects for the lower-income population.

- **Top 40% of income distribution**: contraction on intensive margin—driven by repeat / investment borrowers.
- Bottom 60%: minimal response; appears inelastic, likely due to necessity and support from housing policy.
- Search activity: increases post-monetary policy surprise more prominent among higher income borrowers.

Appendix

Institutional Setting

Policy instrument & cadence

- Overnight Policy Rate (OPR) set by the Monetary Policy Committee of Bank Negara Malaysia (BNM)
- Fixed calendar: 6 MPC meetings / year ⇒ 42 monetary policy statements in 2017–23 (≈ every 8 weeks)
- Statement released 3 pm local time on Day 2 of each meeting

Transmission features

• ~99 % floating-rate mortgages \rightarrow quick pass-through to reference rate

Literature Review

- Distributional macro effects: Coibion et al., 2017; Amberg et al., 2022; Leahy & Thapar, 2022; Samarina & Nguyen, 2024; Bartscher et al., 2022; Andersen et al., 2023; McKay & Wolf, 2023; BIS, 2021; Bonifacio et al., 2021
- Credit-registry evidence: Jiménez et al., 2012; Jiménez et al., 2014; Abuka et al., 2019; Ligonniere & Ouerk, 2024; Jasova et al., 2021; Elliott et al., 2019
- Housing / mortgage channels: Di Maggio et al., 2017; Cloyne et al., 2020; Ringo, 2023; Campbell & Cocco, 2003; Fuster et al., 2021; Calza et al., 2013; Greenwald, 2016; Carozzi et al., 2024
- Borrower search and credit allocation: Agrawal2024SearchingApproval; Hortaçsu & Syverson, 2004
- Shock identification and communication: Kuttner, 2001; Miranda-Agrippino & Ricco, 2021; Gürkaynak et al., 2005; Ho & Karagedikli, 2021

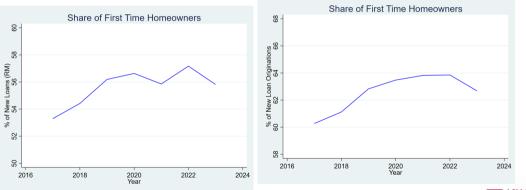


Figure 9: Share of First Time Homeowners

1. Credit Registry Data (CCRIS)

- Every loan application/loan in every FI with no threshold 2017-2023
- The first source: "Mortgage Origination Data," 1.4+ million
- The second: source "Mortgage Application Data," 3.4 + million mortgage applications - Only Spain (Jiménez et al. (2012) and Jiménez et al., 2014) and Uganda (Abuka et al., 2019)
- Borrower characteristics (age, gender, income, sector of employment etc), loan features (amount, term), property details (location, type, value) and FI characteristics
- "Number" and "date" of applications/decisions/settlement made by each applicant across all financial institutions, a feature that allows us to analyze search behavior.

2. Monetary Policy Indicator(s)

- High-frequency (daily) surprises: Ho & Karagedikli (2021) a la Kuttner (2001) and Gürkaynak et al. (2005)
 - Adjusted for central bank information effect Miranda-Agrippino & Ricco (2021)
- Regress the Kuttner surprise on lagged and central bank forecasts of GDP growth and inflation.
- The residuals: monetary policy shocks, purged of anticipatory effects and the central bank's 'private information'.

Back

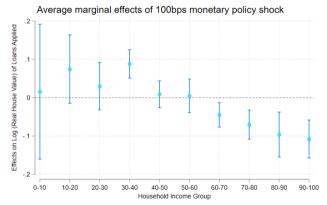
3. Household Incomes

- Official income thresholds not the Credit Registry Incomes.
- "Joint income" from the credit registry as a proxy for household income where available.
- Assumption that joint applicants for mortgages typically represent a household unit.
- For individual mortgage applications, use the "individual income" data as a proxy for household income.
- Deciles: Household Income and Expenditure Survey twice within any period of 5 years.

🕩 Back

Household Income Groups

Table 2: Thresholds of monthly (net) household income across years in Malaysian Ringgit


	Year	Bottom 20	20 - 40	40 - 60	60 - 80	Top 20
	2016	<2917	2917 - 4360	4360 - 6223	6223 - 9620	>9620
	2019	<3090	3090 - 4748	4748 - 6970	6970 - 10670	> 10670
	2022	<3359	3359 - 5150	5150 - 7544	7544 - 11539	> 11539
-	Growth	15%	15% - 18%	18% - 21%	21% - 20%	>20%

Source: Department of Statistics, Malaysia, Authors' calculations

Applying to buy less expensive houses

Note: 95% confidence intervals are included in this plot.

Figure 10: House Prices associated with Loan Applied

Loan Demand: Application I

Dependent variable	Log(Real Loan Value Applied)						
	(1)	(2)	(3)	(4)	(5)	(6)	
Monetary Policy Surprise X Post	-0.0284**	-0.0122	-0.00949	-0.0218**	-0.0166**	-0.0145*	
	(0.0119)	(0.0096)	(0.0097)	(0.0081)	(0.0080)	(0.0079)	
Deciles	No	No	No	Yes	Yes	Yes	
Other controls	No	No	No	Yes	Yes	Yes	
<i>Fixed effects</i> Time Bank-Time State-Time	Yes No No	No Yes No	No Yes Yes	Yes No No	No Yes No	No Yes Yes	
N	1,481,069	1,481,024	1,481,024	1,448,493	1,448,448	1,448,448	
R-squared	0.007	0.099	0.166	0.280	0.319	0.353	

Table 3: Effect on Log Real Loan Value Applied

Note: Standard errors are clustered at the bank level in parentheses.

*** p<0.01, ** p<0.05, * p<0.1

Probability of Approval I

Dependent variable	Loan Approved						
	(1)	(2)	(3)	(4)	(5)	(6)	
Monetary Policy Surprise X Post	-0.0242	-0.0294	-0.0297	-0.0224	-0.0284	-0.0287	
	(0.0188)	(0.0186)	(0.0183)	(0.0180)	(0.0180)	(0.0177)	
Deciles	No	No	No	Yes	Yes	Yes	
Other controls	No	No	No	Yes	Yes	Yes	
<i>Fixed effects</i> Time Bank-Time State-Time	Yes No No	No Yes No	No Yes Yes	Yes No No	No Yes No	No Yes Yes	
Observations	1,440,954	1,440,911	1,440,911	1,409,549	1,409,506	1,409,50	
R-squared	0.002	0.099	0.102	0.016	0.111	0.113	

Table 4: Effect on Loan Approval Probability

Note: Standard errors are clustered at the bank level in parentheses.

*** p<0.01, ** p<0.05, * p<0.1

New Mortgage Originations I

Dependent variable	Log (Real value of new loans)						
	(1)	(2)	(3)	(4)	(5)	(6)	
Monetary Policy Surprise X Post	-0.112**	-0.109**	-0.0968**	-0.0892**	-0.0955***	-0.0850***	
	(0.0459)	(0.0416)	(0.0407)	(0.0339)	(0.0284)	(0.0272)	
Deciles	No	No	No	Yes	Yes	Yes	
Other controls	No	No	No	Yes	Yes	Yes	
<i>Fixed effects</i> Time Bank-Time State-Time	Yes No No	No Yes No	No Yes Yes	Yes No No	No Yes No	No Yes Yes	
Observations	622,767	622,719	622,713	582,174	582,125	582,119	
R-squared	0.006	0.104	0.146	0.195	0.258	0.282	

Table 5: Impact on Log(Real value of new loans)

Note: Standard errors are clustered at the bank level in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Maturity I

Dependent variable	Maturity							
	(1)	(2)	(3)	(4)	(5)	(6)		
Monetary Policy Surprise X Post	-0.293	-0.490	-0.297	-0.135	-0.322	-0.127		
	(0.289)	(0.359)	(0.288)	(0.228)	(0.281)	(0.221)		
Deciles	No	No	No	Yes	Yes	Yes		
Other controls	No	No	No	Yes	Yes	Yes		
<i>Fixed effects</i> Time Bank-Time State-Time	Yes No No	No Yes No	No Yes Yes	Yes No No	No Yes No	No Yes Yes		
Observations	620,338	620,386	620,332	580,253	580,302	580,24 ⁻		
R-squared	0.103	0.009	0.110	0.374	0.325	0.378		

Table 6: Effect on Loan Maturity

Note: Standard errors are clustered at the bank level in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Purchase less expensive houses

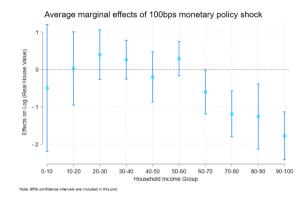


Figure 11: House Prices associated with New Loan Originated

References I

- Abuka, C. & R. K. Alinda & C. Minoiu & J. L. Peydró & A. F. Presbitero (2019).
 "Monetary policy and bank lending in developing countries: Loan applications, rates, and real effects". In: *Journal of Development Economics* 139. ISSN: 03043878. DOI: 10.1016/j.jdeveco.2019.03.004.
- Agarwal, S. & J. Grigsby & A. Hortaçsu & G. Matvos & A. Seru & V. Yao (2024).
 "Searching for Approval". In: *Econometrica* 92.4, pp. 1195–1231. ISSN: 0012-9682.
 DOI: 10.3982/ECTA18554.
- Amberg, N. & T. Jansson & M. Klein & A. R. Picco (2022). "Five Facts about the Distributional Income Effects of Monetary Policy Shocks". In: *American Economic Review: Insights* 4.3. ISSN: 2640-205X. DOI: 10.1257/aeri.20210262.
- Andersen, A. L. & N. Johannesen & M. Jørgensen & J. L. Peydró (Oct. 2023).
 "Monetary Policy and Inequality". In: *Journal of Finance* 78.5, pp. 2945–2989.
 ISSN: 15406261. DOI: 10.1111/jofi.13262.

References II

- Bartscher, A. K. & M. Schularick & M. Kuhn & P. Wachtel (2022). "Monetary Policy and Racial Inequality". In: Brookings Papers on Economic Activity 2022-Spring. ISSN: 15334465. DOI: 10.1353/eca.2022.0018.
- BIS (2021). "The distributional footprint of monetary policy". In: *BIS Annual Economic Report 2021* June.
- Bonifacio, V. & L. Brandão-Marques & B. Csonto & C. Fratto & P. Engler & D. Furceri & D. Igan & R. Mano & M. Narita & M. Omoev & G. Pasricha & H. Poirson (2021). *Distributional Effects of Monetary Policy*. Tech. rep. 2021/201. International Monetary Fund. URL:

https://EconPapers.repec.org/RePEc:imf:imfwpa:2021/201.

Calza, A. & T. Monacelli & L. Stracca (2013). "Housing finance and monetary policy". In: Journal of the European Economic Association 11.SUPPL. 1. ISSN: 15424766. DOI: 10.1111/j.1542-4774.2012.01095.x.

References III

- Campbell, J. Y. & J. F. Cocco (2003). "Household risk management and optimal mortgage choice". In: *Quarterly Journal of Economics* 118.4. ISSN: 00335533. DOI: 10.1162/003355303322552847.
- Carozzi, F. & C. A. Hilber & X. Yu (2024). "On the economic impacts of mortgage credit expansion policies: Evidence from help to buy". In: *Journal of Urban Economics* 139. ISSN: 00941190. DOI: 10.1016/j.jue.2023.103611.
- Cloyne, J. & C. Ferreira & P. Surico (2020). "Monetary policy when households have debt: New evidence on the transmission mechanism". In: *Review of Economic Studies* 87.1. ISSN: 1467937X. DOI: 10.1093/RESTUD/RDY074.
- Coibion, O. & Y. Gorodnichenko & L. Kueng & J. Silvia (2017). "Innocent Bystanders? Monetary policy and inequality". In: Journal of Monetary Economics 88. ISSN: 03043932. DOI: 10.1016/j.jmoneco.2017.05.005.

References IV

Di Maggio, M. & A. Kermani & B. J. Keys & T. Piskorski & R. Ramcharan & A. Seru & V. Yao (Nov. 2017). "Interest Rate Pass-Through: Mortgage Rates, Household Consumption, and Voluntary Deleveraging". In: American Economic Review 107.11, pp. 3550–3588. ISSN: 0002-8282. DOI: 10.1257/aer.20141313.
 Easterly, W. (2001). "The middle class consensus and economic development". In: Journal of Economic Growth 6.4. ISSN: 13814338. DOI:

10.1023/A:1012786330095.

- Elliott, D. & R. R. Meisenzahl & J.-L. Peydro & B. C. Turner (2019). "Nonbanks, Banks, and Monetary Policy: U.S. Loan-Level Evidence since the 1990s". In: SSRN Electronic Journal. ISSN: 1556-5068. DOI: 10.2139/ssrn.3475427.
- Fuster, A. & A. Hizmo & L. Lambie-Hanson & J. Vickery & P. Willen (2021).
 "How Resilient Is Mortgage Credit Supply? Evidence from the COVID-19 Pandemic". In: *Finance and Economics Discussion Series* 2021.044. ISSN: 19362854. DOI: 10.17016/feds.2021.048.

References V

- Greenwald, D. L. (2016). "The Mortgage Credit Channel of Macroeconomic Transmission". In: SSRN Electronic Journal. DOI: 10.2139/ssrn.2735491.
- Gürkaynak, R. S. & B. Sack & E. Swanson (May 2005). "Do Actions Speak Louder Than Words? The Response of Asset Prices to Monetary Policy Actions and Statements". In: International Journal of Central Banking 1.1. URL:

https://ideas.repec.org/a/ijc/ijcjou/y2005q2a2.html.

- Ho, S.-J. & Ö. Karagedikli (2021). "Effects of Monetary Policy Communication in Emerging Market Economies: Evidence from Malaysia". In: Centre for Applied Macroeconomic Analysis Working Paper, Australian National University. ISSN: 1556-5068. DOI: 10.2139/ssrn.3896110.
- Hortaçsu, A. & C. Syverson (2004). "Product differentiation, search costs, and competition in the mutual fund industry: A case study of S&P 500 index funds". In: *Quarterly Journal of Economics* 119.2. ISSN: 00335533. DOI: 10.1162/0033553041382184.

References VI

- Jasova, M. & C. Mendicino & E. Panetti & J.-L. Peydro & D. Supera (2021).
 "Monetary Policy, Labor Income Redistribution and the Credit Channel: Evidence from Matched Employer-Employee and Credit Registers". In: SSRN Electronic Journal. ISSN: 1556-5068. DOI: 10.2139/ssrn.3930286.
- Jiménez, G. & S. Ongena & J.-L. Peydró & J. Saurina (Aug. 2012). "Credit Supply and Monetary Policy: Identifying the Bank Balance-Sheet Channel with Loan Applications". In: American Economic Review 102.5, pp. 2301–2326. ISSN: 0002-8282. DOI: 10.1257/aer.102.5.2301.
- (2014). "Hazardous Times for Monetary Policy: What Do Twenty-Three Million Bank Loans Say About the Effects of Monetary Policy on Credit Risk-Taking?" In: *Econometrica* 82.2, pp. 463–505. DOI: https://doi.org/10.3982/ECTA10104.
 URL: https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10104.
 Krueger, A. (2012). "The Rise and Consequences of Inequality in the United _______

States". In: The Center for American Progress.

References VII

- Kuttner, K. N. (2001). "Monetary policy surprises and interest rates: Evidence from the Fed funds futures market". In: Journal of Monetary Economics 47.3. ISSN: 03043932. DOI: 10.1016/S0304-3932(01)00055-1.
- Leahy, J. V. & A. Thapar (2022). "Age Structure and the Impact of Monetary Policy". In: American Economic Journal: Macroeconomics 14.4. ISSN: 19457715. DOI: 10.1257/mac.20190337.
- Ligonniere, S. & S. Ouerk (2024). "The unequal distribution of credit: Is there any role for monetary policy?"
- McKay, A. & C. K. Wolf (2023). "Monetary Policy and Inequality". In: Journal of Economic Perspectives. Vol. 37. 1. DOI: 10.1257/jep.37.1.121.
- Miranda-Agrippino, S. & G. Ricco (2021). "The Transmission of Monetary Policy Shocks". In: American Economic Journal: Macroeconomics 13.3. ISSN: 19457715. DOI: 10.1257/mac.20180124.

References VIII

- Ringo, D. (Jan. 2023). "Monetary Policy and Home Buying Inequality". In: Finance and Economics Discussion Series 2023-006, pp. 1–48. ISSN: 1936-2854. DOI: 10.17016/FEDS.2023.006.
- Samarina, A. & A. D. Nguyen (2024). "Does Monetary Policy Affect Income Inequality in the Euro Area?" In: Journal of Money, Credit and Banking 56.1. ISSN: 15384616. DOI: 10.1111/jmcb.13017.

